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Abstract. Spatial encryption was first proposed by Boneh and Hamburg in 2008. It is one implementation
of the generalized identity-based encryption schemes and many systems with a variety of properties can
be derived from it. Recently, Hamburg improved the notion by presenting a variant called doubly-spatial
encryption. The doubly-spatial encryption is more powerful and expressive. More useful cryptography
systems can be builded from it, such as attribute-based encryption, etc. However, most presented spatial
encryption schemes are proven to be selectively secure. Only a few spatial encryption schemes achieve
adaptive security, but not under standard assumptions. And no fully secure doubly-spatial encryption
scheme has been presented before.

In this paper, we primarily focus on the adaptive security of (doubly-)spatial encryption. A spatial en-
cryption scheme and a doubly-spatial encryption scheme have been proposed. Then we apply the dual
system methodology proposed by Waters in the security proof. Both of the schemes can be proven adap-
tively secure under standard assumptions, the decisional linear (DLIN) assumption and the decisional
bilinear Diffe-Hellman (DBDH) assumption, over prime order groups in the standard model. To the best
of our knowledge, our second scheme is the first fully secure construction of doubly-spatial encryption. [1]
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1 Introduction

Identity-based cryptography, proposed by Shamir in 1984 [15]: it allows any string to be used as a
public key. In an identity-Based Encryption (IBE) scheme: an authority that holds a master secret
key can take any arbitrary identity string and extract a secret key corresponding to this identity. A
message is encrypted under the recipient’s identity and only the user with the matching identity can
successfully decrypt the message.

In 2008, Boneh and Hamburg [2] proposed a general framework for constructing identity-based
crypto systems, which they called Generalized Identity-Based Encryption (GIBE). In the GIBE, one
secret key SKr is associated with a role r, which belongs to an allowable roles set R. Secret keys for
certain roles can be delegated to create keys for other roles. A role r can delegate to another role r′,
and defines r � r′, if a key for r can be used to efficiently create a key for r′. Because this relation is
transitive and antisymmetric, � defines a partial order on R. Let P be a set of allowable policies. A
user should choose a policy p ∈ P to encrypt a message, and outputs CTp. The chosen policy governs
which users will be able to decrypt the message using the keys corresponding to their roles. If SKr

can decrypt CTp, defines r � p. Further more, the systems must have a most powerful role > ∈ R.
The master secret key in GIBE SK> has a role >. For all policies p and roles r, we have > � r and
> � p. So the master secret key can be seen as a secret key that has highest power in the system. The
roles and policies can be efficiently encoded, and that the � relation can be determined efficiently.

[2] also gave an important instance of the GIBE framework: spatial encryption. In a spatial
encryption scheme, policies are points in Znp and roles are affine subspaces of Znp . The delegation



relation � on roles is defined by subspace inclusion: role ρ1 � ρ2 if ρ1’s affine subspace contains ρ2’s
subspace. The ciphertext size is always constant. With the property, the spatial encryption scheme
can be used to construct a host of efficient IBE-like schemes: multicast IBE, broadcast hierarchical
IBE, predicate encryption, multiple authorities IBE and so on.

In [8], Hamburg first proposed the notion of doubly-spatial encryption. Doubly-spatial encryption
is more expressive than spatial encryption. In the doubly-spatial encryption scheme, the policies are
affine subspaces in Znp instead of vectors. And the secret key can decrypt the ciphertext if its affine
subspace intersects with the affine subspace of the ciphertext. As mentioned in [8], many useful crypto
systems can be implemented by doubly-spatial encryption scheme, such as attribute-based encryp-
tion [7,14], threshold-based encryption [3,5], all-but-one signatures [8], etc. Spatial encryption can be
embedded in doubly-spatial encryption. But the construction of doubly-spatial encryption is not so
efficient as spatial encryption, since the length of the ciphertext is not constant. The first construction
of doubly-spatial encryption [8] is proven to be selectively secure under some unnatural assumptions.

Related Work. Boneh and Hamburg [2] proposed the first selectively secure spatial encryption under
Bilinear Decision Diffie-Hellman Exponent (BDHE) assumption. Subsequently, Zhou and Cao [17]
provided a variant of Boneh-Hamburg scheme under a weaker assumption, decisional bilinear Diffe-
Hellman (DBDH) assumption, but the ciphertext size is not constant. The first fully secure spatial
encryption scheme was proposed by [12]. The construction [12] was based on the three composite order
bilinear groups and proven fully secure under three non-standard assumptions over composite order
bilinear groups. Recently, Hamburg [8] proposed an adaptively secure scheme based on some static
assumptions over prime order groups, but the assumptions are still non-standard. [8] also proposed
the first doubly-spatial encryption with selective security. Attrapadung and Libert [1] proposed a
constant-size ciphertext inner product encryption with adaptive security. The scheme can be regarded
as a special case of spatial encryption, in which the vector of a secret key can be seen as the orthogonal
space of the vector in the spatial encryption. Till now, no spatial or doubly-spatial encryption scheme
can been proven fully secure under some natural assumptions. As [8] said, how to construct fully secure
spatial and doubly-spatial encryption schemes using natural assumptions is still a problem that needs
to solve.

Waters [16] introduced the dual system encryption to overcome the limitations of partitioning. In a
dual encryption system, keys and ciphertexts can take on one of two forms: normal and semi-functional.
A normal key can decrypt both normal and semi-functional ciphertexts, while a semi-functional key
can only decrypt normal ciphertexts. The semi-functional keys and ciphertexts are not used in the
real system, only in the proof of security. And later, dual system encryption used in [9–11, 13] to
obtain adaptive security for IBE, HIBE, and ABE systems. Since prime order groups do not have the
good functionalities and appealing features as composite order groups, only a few schemes [10,13] can
be realizing in the prime order setting. Though [6] proposed techniques translation from composite
order schemes to prime order one, the translations are insufficient and inefficient and how to efficiently
achieve fully secure in prime order setting remains an interesting issue.

Our Contributions. The main drawbacks of the previous works are that the schemes are only selectively
secure or they achieve adaptively secure using some complex assumptions. In this paper, we construct
a fully secure spatial encryption scheme and a fully secure doubly-spatial encryption scheme. And
we use dual system encryption technique introduced by Waters [16] in the proof. In contrast with
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previous spatial encryption works, the security of our scheme depends on neither some non-standard
assumptions [8] nor the assumptions over composite order pairing groups [12], but two standard
assumptions: DLIN and DBDH, in the standard model. Our spatial encryption scheme has constant-
size ciphertext, which coincides with the original intention of spatial encryption. Our doubly-spatial
encryption scheme can been seen as an extension of the first scheme. Its security is also reduced to DLIN
and DBDH assumptions in the standard model. To remark, our doubly-spatial encryption scheme is
the first fully secure construction. This paper solves the problem brought forward by Hamburg in [8].

Our schemes are based on Waters’ tag-based IBE [16]. In the constructions, we extend the “two-
equation revocation” technique of [10] to “n-equation revocation”. We create each ciphertext with a
uniformly distributed tag and each secret key with a uniformly distributed tag, too. The decryption
algorithm will not work if the tag of the secret key and the tag of ciphertext has some relations.
While in the actual simulation from normal secret key to semi-functional secret key, the tags created
by simulator are linear dependent. The simulator can create the semi-functional secret keys of all
affine spaces in the vector space. All the semi-functional secret keys can not decrypt the challenged
ciphertext, even if the affine spaces of the semi-functional secret keys contain the challenged vector due
to the setting of tags. With the linear relationship of the tags, the simulation can process successfully.
But this relationship is information theoretically hidden to the adversary.

2 Preliminaries

2.1 Bilinear Groups

We present a few facts related to groups with efficiently computable bilinear maps. G and GT be two
multiplicative cyclic groups of prime order p. Let g be a generator of G and e be a bilinear map,
e : G×G → GT such that e(g, g) 6= 1 for g and for any u, v ∈ Zp, it holds that e(gu, gv) = e(g, g)uv.
We say that G is a bilinear group if the group operation in G and the bilinear map e : G×G→ GT are
both efficiently computable. Notice that the map e is symmetric since e(gu, gv) = e(g, g)uv = e(gv, gu).

2.2 Complexity Assumptions

We define the Decisional Bilinear Diffie-Hellman (DBDH) and Decisional Linear (DLIN) as-
sumptions as follows.

Definition 1. Let G be a bilinear group of prime order p as defined above. Choose a random generator
g ∈ G and exponents c1, c2, c3 ∈ Zp. An algorithm B that outputs µ ∈ {0, 1} has advantage ε in solving
the DBDH problem if

|Pr[B(g, gc1 , gc2 , gc3 , T = e(g, g)c1c2c3) = 0]− Pr[B(g, gc1 , gc2 , gc3 , T = R) = 0]| > ε

where R is the random choice of GT . We say that the decision DBDH assumption holds in G if no
polynomial time algorithm has non-negligible advantage in solving the DBDH problem.

Definition 2. Choose random generators g, f, ν ∈ G and exponents c1, c2 ∈ Zp. An algorithm B that
outputs µ ∈ {0, 1} has advantage ε in solving the DLIN problem if

|Pr[B(g, f, ν, gc1 , f c2 , T = νc1+c2) = 0]− Pr[B(g, f, ν, gc1 , f c2 , T = R) = 0]| > ε
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where R is the random choice of G. We say that the decision linear assumption holds in G if no
polynomial time algorithm has non-negligible advantage in solving the DLIN problem.

2.3 Affine Spaces

Let p be a prime number, and Zp be the field of integers modulo p. For some positive integer n,
let Znp denote an n-dimensional vector space over the field Zp. We use boldface to denote the vector
a = (a1, a2, . . . , an) ∈ Znp . The inner product is defined by < a, b >=

∑n
i=1 ai · bi. For any vector

x ∈ Znp and any matrix M ∈ Zn×np (w.l.o.g., we consider M as a phalanx in this paper), we define the
affine subspace S(M,x) ⊆ Znp by

S(M,x) := {x+M> · y|y ∈ Znp}

If these elements M> · y are all unique, we have S(M,x) = Znp and we say that S(M,x) is an n-
dimensional affine subspace. It is a basic theorem from linear algebra that the dimension of an affine
subspace S(M,x) is the rank of M .

If S(M ′,x′) ⊆ S(M,x) ⊆ Znp , we must have M ′ = M · T and x′ = x+M> · y for some (efficiently
computable) matrix T ∈ Zn×np and y ∈ Znp .

3 (Doubly-)Spatial Encryption

Below, we give the definition of (doubly-)spatial encryption and its security model.

3.1 Algorithms of (Doubly-)Spatial Encryption

A (doubly-)spatial encryption system is a quite expressive GIBE contribution that it can be embed
many other GIBEs inside. The roles in the spatial encryption are all the affine subspaces of Znp . We say
that r1 � r2 if and only if r1 ⊆ r2. The policies for spatial encryption are vectors of Znp , and we say that
p � r if and only if p ∈ r. For the doubly-spatial encryption, the policies are the affine subspaces in the
vector space Znp . p � r if and only if p∩ r 6= ∅. The construction for spatial encryption will emerge as
a special case of the construction for doubly-spatial encryption. A (doubly-)spatial encryption scheme
consists of four polynomial time algorithms described as follows:

Setup(λ, n): The algorithm takes as input a security parameter λ and a space dimension n. It returns
public parameters PP , an n-dimension affine space V and a master secret key K>. The master key
K> can be seen the secret key of the affine space KV .

Delegate(PP, V1,KV1 , V2): The algorithm takes as input the secret key KV1 for the affine vector space
V1 and outputs the secret key KV2 for V2, where V1 ⊆ V2. We require that the distribution of the private
keys produced by this algorithm should be independent of the path taken. That is, all keys for a given
vector space come from the same distribution, no matter how they were delegated.

Encrypt(PP,x/W,m): The spatial encryption algorithm encrypts a message m under a vector x and
outputs a ciphertext CTx. For the doubly-spatial case, the message m is encrypted under an affine
subspace W , and the algorithm outputs a ciphertext CTW .
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Decrypt(PP,CTx/CTW ,KV ,x/W ): The spatial decryption algorithm takes as input the secret key
KV to decrypt the ciphertext CTx. Decryption succeeds if x ∈ V , and it outputs the plaintext m. For
the doubly-spatial case, decryption succeeds if W ∩ V 6= ∅, and it outputs the plaintext m.

3.2 Adaptive Security of (Doubly-)Spatial Encryption

We define the adaptive security for the (doubly-)spatial encryption system under chosen plaintext
attacks (CPA) adversary. We now present the following game between an adversary and a challenger.

Setup(λ, n): The challenger runs the algorithm Setup(λ, n) and sends public parameters PP to the
adversary.

Phase I: The adversary makes delegation queries of Vi to the challenger, who runs the delegation
algorithm Delegate(PP,>,K>, Vi) and returns KVi .

Challenge: The adversary submits two messages m0,m1 and a vector (or an affine subspace) x/W
for challenge. We require that the adversary has not been given a decryption key whose affine subspace
contains the challenged vector (intersects with the challenged affine subspace for the doubly-spatial
encryption case), that is, x 6∈ Vi (W ∩Vi = ∅) for all delegation queries of Vi in Phase I. The challenger
chooses a random µ ∈ {0, 1}, runs the algorithm Encrypt(PP,x/W,mµ), and returns the resulting
challenge ciphertext CT ∗ to the adversary.

Phase II: The second query phase is exactly like the first one, except that the adversary may not
issue delegation queries for affine subspace that contains x (intersects with W ).

Guess: The adversary outputs a guess µ′ ∈ {0, 1} and wins if µ′ = µ.

We define the advantage of the adversary A in attacking a (doubly-)spatial encryption scheme Π as
AdvSEA,Π = |Pr[µ′ = µ]− 1/2|.

Note that, we only define the delegation of secret keys from the master key in stead of other secret
keys. Since the distribution of the secret keys are independent from the path of delegation taken, we
can use the delegation of the master secret key to simulate all the other secret keys’ delegations.

Definition 3. A (doubly-)spatial encryption scheme Π is adaptively secure if no PPT adversaries
have at most non-negligible advantage in winning the above game.

4 Adaptively Secure Spatial Encryption under Simple Assumptions

In this section, we propose an adaptively secure spatial encryption based on [16] tag-based IBE. We
attach a tag value tagc ∈ Zp to each ciphertext and a tag which is a vector (tagV , tagV ) ∈ Zn+1

p to
each secret key for space V . The decryption algorithm will only work if the tag of the decryption key
and the tag of ciphertext have the relation < M> · y, tagV > +tagV − tagc 6= 0.

In addition, the delegation algorithm should guarantee the distribution of secret keys independent
of the delegation path. However, the HIBE scheme in [16] dose not guarantee this property. Because
the tag of the new secret key coincides with the existing secret key in delegation algorithm. While in
the key generation algorithm, the tag of the secret key is randomly chosen. In order to avoid that, we
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only uniformly choose the tag of the master secret key, and let delegation algorithm compute the tag
of the new key in some way instead of randomly choosing it. In the mean while, re-randomization is
also required to uniform the distribution of the new secret keys.

Setup(λ, n): The setup algorithm takes input a security parameter λ. It first chooses bilinear groups
(G,GT ) of prime order p > 2λ and an n-dimensional affine space V = Znp . Next, it randomly chooses
generators g, v, v1, v2 ∈ G, α, α0, α1, . . . , αn, a1, a2, b, r1, r2, z1, z2, tagV ∈ Zp, and tagV ,x0 ∈ Znp . Let
α = (α1, . . . , αn). It publishes the public parameters PP as the group description G along with:

g, gβ, w = gα0 , Z = e(g, g)αa1b, gα, ga1 , ga2 , gb, gba1 , gba2 , τ1 = v · va11 , τ2 = v · va22 , T1 = τ b1 , T2 = τ b2

Then it computes the master secret key as:

D1 = gαa1 · vr, D2 = g−α+z1 · vr1, D3 = g−bz1 , D4 = vr2 · gz2 , D5 = g−bz2 , D6 = gbr2 ,

D7 = gr1 , K0 = gr1(<x0,α>+α0tagV +β), K = gr1(α+α0tagV )

where r = r1+r2. The master secret key is defined to be K> = KV = (D1, . . . , D7,K0,K, tagV , tagV ),
which can also be considered as the secret key of the whole affine space V = S(I,x0), where I is the
identity matrix.

Delegate(PP, V1,KV1 , V2): The algorithm takes input two affine subspaces V1 = S(M1,x1), V2 =
S(M2,x2) and a secret key of the affine subspace V1 with the form:

KV1 =

D1 = gαa1 · vr, D2 = g−α+z1 · vr1, D3 = g−bz1 , D4 = vr2 · gz2 ,
D5 = g−bz2 , D6 = gbr2 , D7 = gr1 ,

K0 = gr1(<x1,α>+α0tagV1+β), K = gr1(M
>
1 α+α0tagV1 ), tagV1 , tagV1


Since V2 ⊆ V1, we must have M2 = M1 · T and x2 = x1 + M>1 · y for some efficiently computable
matrix T and vector y. We can then compute a key K ′V2 = (D′1, . . . , D

′
7,K

′
0,K

′, tagV2 , tagV2) for V2:

D′1 = D1, D
′
2 = D2, D

′
3 = D3, D

′
4 = D4, D

′
5 = D5, D

′
6 = D6, D

′
7 = D7,

K ′0 = gr1(<x1,α>+α0tagV1+β) · gr1y>·(M>1 α+α0tagV1 ) = gr1(<x2,α>+α0tagV2+β),

K′ = gr1T
>·(M>1 α+α0tagV1 ) = gr1(M

>
2 α+α0tagV2 )

and the tag of K ′V2 are tagV2 = tagV1+ < M>1 · y, tagV1 >, tagV2 = T> · tagV1 .
However, we also need to re-randomize the new secret key to ensure all secret keys for the same

affine subspace having the same distribution. To do this, it randomly picks r′1, r
′
2, z
′
1, z
′
2 ∈ Zp and

computes

D′′1 = D′1 · vr
′
1+r

′
2 = gαa1 · vr′′ , D2 = D′2 · gz

′
1 · vr

′
1+r

′
2

1 = g−α+z
′′
1 · vr′′1 ,

D′′3 = D′3 · g−bz
′
1 = g−bz

′′
1 , D′′4 = D′4 · v

r′1+r
′
2

2 · gz′2 = vr
′′

2 · gz
′′
2 ,

D′′5 = D′5 · g−bz
′
2 = g−bz

′′
2 , D′′6 = D′6 · gbr

′
2 = gbr

′′
2 , D′′7 = D′7 · gr

′
1 = gr

′′
1 ,

K ′′0 = gr1(<x2,α>+α0tagV2+β) · gr′1(<x2,α>+α0tagV2+β) = gr
′′
1 (<x1,α>+α0tagV2+β),

K′′ = gr1(M
>
2 ·α+α0tagV2 ) · gr′1(M>2 ·α+α0tagV2 ) = gr

′′
1 (M

>
2 α+α0tagV2 )
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where z′′1 = z1 + z′1, z
′′
2 = z2 + z′2, r

′′
1 = r1 + r′1, r

′′
2 = r2 + r′2, r

′′ = r+ r′1 + r′2. And it outputs the secret
key KV2 = (D′′1 , . . . , D

′′
7 ,K

′′
0 ,K

′′, tagV2 , tagV2).

Encrypt(PP,x,m): Given a message m ∈ GT and a vector x ∈ V , the encryption algorithm randomly
chooses s1, s2, t, tagc ∈ Zp and computes

C0 = m · Zs2 , C1 = gb(s1+s2), C2 = gba1s1 , C3 = ga1s1 , C4 = gba2s2 , C5 = ga2s2 ,

C6 = τ s11 · τ
s2
2 , C7 = T s11 · T

s2
2 · w

−t, E1 = (gα0·tagc+<x,α>+β)t, E2 = gt,

And outputs CTx = (C0, C1, . . . , C7, E1, E2, tagc).

Decrypt(PP,CTx,KV ′ ,x): If x ∈ V ′ = S(M,x′), we can efficiently find y such that x = x′ +M> ·y.
If < y, tagV ′ > +tagV ′ − tagc 6= 0, it recovers

φ1 = (
5∏
j=1

e(Cj , Dj)) · (
7∏
j=6

e(Cj , Dj))
−1 = e(g, g)αa1bs2 · e(g, w)r1t

φ2 =

(
e(KyK0, E2)

e(E1, D7)

) 1
<y,tagV ′>+tagV ′−tagc

= e(g, w)r1t

It finally recovers the plaintext as
m = E0 · φ2 · φ−11

Otherwise, the algorithm aborts and returns ⊥.

The Independence of Delegation. In the definition, we also require that delegation is independent of
the path taken. That is, for the affine subspaces V3 = S(M3,x3), V2 = S(M2,x2), V1 = S(M1,x1)
satisfying V3 ⊆ V2 ⊆ V1, Delegate(PP, V1,KV1 , V3) should produce the same distribution as
Delegate(PP, V2,Delegate(PP, V1,KV1 , V2), V3). From the denotation of affine space, we have:

M3 · T3 = M1 = M2 · T2, M3 · T ′3 = M2

x3 = M>2 · y + x2, x2 = M>1 · y′ + x2, x3 = M>1 · y′′ + x1.

In our scheme, suppose two secret keys of subspace V3 are generated from different delegations as
following:

KV3 = (D1, . . . , D7,K0,K, tagV3 , tagV3)← Delegate(PP, V1,KV1 , V3)

K ′V3 = (D′1, . . . , D
′
7,K

′
0,K

′, tag′V3 , tag
′
V3)← Delegate(PP, V2,Delegate(PP, V1,KV1 , V2), V3)

where D1, . . . , D7 and D′1, . . . , D
′
7 have the same distribution because of the re-randomizing. Due to

the way of tag generation in the delegation, we have the relationship:

tag′V3 = (T ′3)
> · tagV2 = (T ′3)

> · T>2 · tagV1 = T>3 · tagV1 = tagV3 ,

tagV3 = tagV2+ < M>2 · y, tagV2 >
= tagV1+ < M>1 · y′, tagV1 > + < M>2 · y, T>2 · tagV1 >
= tagV1+ < M>1 · y′′, tagV1 >= tag′V3

7



So the tags from different delegation are equal. With this conclusion, K0,K and K ′0,K
′ are also

have the same distribution. The two secret keys will have the same distribution and the delegation
algorithm coincides with the definition.
Remarks. Now we analysis the probability of the abortion in the decryption algorithm. Since the tags
of the secret key are independent from different delegations, we have

< y, tagV ′ > +tagV ′ − tagc
= < y, (T>)−1 · tagV > +tagV + < y′, tagV > −tagc
= < y′′, tagV > +tagV − tagc

where y′′ = y+(T>)−1 ·y′ and x′ = I> ·y′. Since tagV , tagV are uniform distributed in their domains,
the algorithm aborts with 1/p probability.

Theorem 1. The construction above is adaptively secure under the DLIN and DBDH assumptions.

Proof. The proof uses the dual system methodology introduced in [16], which involves ciphertexts and
private keys that can be normal or semi-functional.

– Semi-functional ciphertexts are generated by first computing a normal ciphertext CTx = (C0, C1, . . . ,
C7, E1, E2, tagc). Then it chooses a random x ∈ Zp. It sets C ′0 = C0, C

′
1 = C1, C

′
2 = C2, C

′
3 =

C3, E
′
1 = E1, E

′
2 = E2, tag

′
c = tagc, leaving these elements and the tag unchanged. It then sets

C ′4 = C4 · gba2x, C ′5 = C5 · ga2x, C ′6 = C6 · va2x2 , C ′7 = C7 · vba2x2

The semi-functional ciphertext is CT ′x = (C ′0, C
′
1, . . . , C

′
7, E

′
1, E

′
2, tag

′
c).

– Semi-functional secret keys are generated by first computing a normal secret key KV = (D1, . . . ,
D7,K0,K, tagV , tagV ). Then it chooses a random γ ∈ Zp. It sets D′3 = D3, D

′
5 = D5, D

′
6 =

D6, D
′
7 = D7,K

′
0 = K0,K

′ = K, tag′V = tagV , tag
′
V = tagV , leaving these elements and the tag

unchanged. It then sets

D′1 = D1 · g−a1a2γ , D′2 = D2 · ga2γ , D′4 = D4 · ga1γ

The semi-functional secret key is K ′V = (D′1, . . . , D
′
7,K

′
0,K

′, tag′V , tag
′
V ).

The proof proceeds with a game sequence starting from GameReal, which is the actual attack
game. The following games are defined below.

Game0 is the real attack game but the challenge ciphertext is semi-functional.
Gamek (for 1 ≤ k ≤ q) is identical to Game0 except that the first k secret key delegation queries

are answered by returning semi-functional secret keys.
Gameq+1 is as Gameq but the challenge ciphertext is a semi-functional encryption of a random

element of GT instead of the actual plaintext.
We prove the indistinguishability between two consecutive games under some assumptions below.

The sequence ends in q+1, where the challenge ciphertext is independent of the challenger’s bit µ,
hence any adversary has no advantage. ut

Lemma 1. If DLIN is hard, Game0 is indistinguishable from GameReal.

8



Proof. The simulator S begins by taking in an instance (G, g, f, ν, gc1 , f c2 , T ) of the decision linear
problem. We now describe how it executes the setup, delegate phases, and challenge phase of the
spatial encryption game with the adversary A.

Setup. The algorithm chooses random exponents b, α, yv, yv1 , yv2 ∈ Zp and random group elements
gα1 , . . . , gαn , gβ, w ∈ G. It then implicitly sets g = g, ga1 = f, ga2 = ν.

Finally, it sets the variables as: gb, gba1 = f b, gba2 = νb, v = gyv , v1 = gyv1 , v2 = gyv2 .

Using this it can calculate τ1, τ2, T1, T2 and e(g, g)αa1b = e(g, f)α·b in order to publish the public
parameters PP . We also note that using α it can compute the master secret key.

Key Delegation Phases 1,2. Since simulator S has the actual master secret key KV it simply runs
the delegation algorithm to generate the keys in both phases. Note that the KV it has only allows for
the creation of normal keys.

Challenge. The simulator S two messages m0,m1 and challenge vector x. It then flips a coin µ.
We describe the creation of the challenge ciphertext in two steps. First, it creates a normal cipher-
text using the real algorithm by calling Encrypt(PP,x,mµ), which outputs a ciphertext CT ′x =
(C ′0, C

′
1, . . . , C

′
7, E

′
1, E

′
2, tag

′
c). Let s′1, s

′
2, t
′ be the random exponents used in creating the ciphertext.

Then we modify the components of the ciphertext as follows. It sets

C0 = C ′0 ·(e(gc1 , f)·e(g, f c2))bα, C1 = C ′1 ·gbc1 , C2 = C ′2 ·f−bc2 , C3 = C ′3 ·f c2 , C4 = C ′4 ·T b, C5 = C ′5 ·T,

C6 = C ′6 · gyvc1 · f−yv1c2 · T yv2 , C7 = C ′7 · (gyvc1 · f−yv1c2 · T yv2 )b, E1 = E′1, E2 = E′2, tagc = tag′c

where this assignment implicitly sets s1 = −c2+s1, s2 = s′2+c1+c2, and s = s′1+s′2+c1. The returned
ciphertext is CT ∗x = (C0, C1, . . . , C7, E1, E2, tagc). If T = νc1+c2 , it will have the same distribution as
a standard ciphertext; otherwise, it will be distributed identically to a semi-functional ciphertext. The
simulator S receives a bit µ′ and outputs 0, if µ′ = µ. ut

Lemma 2. For any 1 ≤ k ≤ q, if an adversary A can distinguish Gamek from Gamek−1, we can build
a distinguisher for the DLIN problem.

Proof. In this proof, the simulator S can create semi-functional keys for any affine spaces. However, the
simulator S can not simply create an affine space Vk containing the challenged vector deciding whether
the k-th queried private key is normal or semi-functional. Since in the reduction we create the tags for
the k-th secret key and the challenged ciphertext with some linear relations. With this relation, the
simulator S can not create a secret key that can decrypt the challenged ciphertext independently of
whether it was a semi-functional secret key. But the linear relations information theoretically hidden
to the adversary. That is, in the view of the adversary, the tag of the k-th secret key and the tag of
ciphertext are completely independent.

The simulator S begins by taking in an instance (G, g, f, ν, gc1 , f c2 , T ) of the decision linear prob-
lem. We now describe how it executes the setup, delegate phases, and challenge phase of the spatial
encryption game with the adversary A.

Setup. The simulator S picks α, a1, a2, yv1 , yv2 , yw, yu, yh. It then sets

g = g, Z = e(g, f)αa1 , ga1 , ga2 , gb = f, gba1 = (f)a1 , gba2 = (f)a2 , v = ν−a1·a2
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v1 = νa2 · gyv1 , v2 = νa1 · gyv2 , τ1 = gyv1a1 , τ2 = gyv2a2 , T1 = fyv1a1 , T2 = fyv2a2

Finally, S randomly chooses A0, B0, α
′
0 ∈ Zp, A,B ∈ Znp and sets

gα = fA · gB, gβ = fA0 · gB0 , gα0 = f · gα′0

This will define all the public parameters of the system. Note that by virtue of knowing α, the
simulator S will know the regular master secret key.

Key Delegation Phases 1,2. We break the key delegation queries into three cases. Secret key
delegation is done the same regardless of whether we are in phase 1 or 2. Consider the i-th query made
by adversary A.

– Case 1: i > k When i is greater than k, the simulator S will generate a normal key for the
delegation query of affine subspace Vi. Since it has the master secret key KV it can run that
algorithm.

– Case 2: i < k When i is less than k, the simulator S will generate a semi-functional key for the
delegation query of affine subspace Vi. It first creates a normal key using KV . Then it makes it
semi-functional using ga1a2 .

– Case 3: i = k The algorithm first runs the secret key delegation algorithm to generate a normal
secret key KVk with D′1, . . . , D

′
7,K

′
0,K

′ using

tagVk = − < A,xk > −A0, tagVk = −M>k ·A

for the requested affine subspace Vk = S(Mk,xk). It implicitly sets the tag of the master secret
key tagV = A. Let r′1, r

′
2, z
′
1, z
′
2 be random exponents used.

D1 = D′1 · T−a1a2 , D2 = D′2 · T a2(gc1)yv1 , D3 = D′3 · (f c2)yv2 , D4 = D′4 · T a1(gc1)yv2 , D5 = D′5 · (f c2)yv2 ,

D6 = D′6 · f c2 , D7 = D′7 · gc1 , K0 = K ′0 · (gc1)<B,xk>+B0−(<A,xk>+A0)α′0 , K = K′ · (gc1)M
>
k ·B−α

′
0M
>
k ·A

The semi-functional secret key is KVk = (D1, . . . , D7,K0,K, tagVk , tagVk). In addition, we note
that we implicitly set z1 = z′1 − yv1c2, z2 = z′2 − yv2c2, r1 = r′1 + c1 and r2 = r′2 + c2. If T is a
linear tuple of the form T = νc1+c2 , then the k-th query results in a normal key. Otherwise, if
T is a random group element, then we can write T = νc1+c2gγ for random γ ∈ Zp. This forms a
semi-functional key where γ is the added randomness to make it semi-functional.

Challenge. The simulator S is given a challenge vector x and the messages m0,m1. Then it flips
a coin µ. In this phase S needs to be able to generate a semi-functional challenge ciphertext. One
problem is that S does not have the group element vb2 so it cannot directly create such a ciphertext.
However, in the case where tagc = − < x,A > −A0 it will have a different method of doing so.
S first runs the normal encryption algorithm to generate a normal ciphertext CT ′ for vector x and

messagemµ with a tag tagc = − < x,A > −A0. It then gets a standard ciphertext C ′0, C
′
1, . . . , C

′
7, E

′
1, E

′
2

under random exponents s′1, s
′
2, t
′ and sets

C0 = C ′0, C1 = C ′1, C2 = C ′2, C3 = C ′3, C4 = C ′4 · fa2δ, C5 = C ′5 · ga2δ, C6 = C ′6 · va2δ,

C7 = C ′7 · fyv2δa2ν−a1δα
′
0a2 , E1 = E′1 · (ν<B,x>+B0−(<x,A>+A0)α′0)a1a2δ, E2 = E′2 · νa1a2δ

10



If T is a tuple, then we are in Gamek−1, otherwise we are in Gamek.

Note that, the simulator can not generate the secret keys to decrypt challenged ciphertext neither
it is normal or semi-functional. Because for a vector subspace V ′ = S(M ′,x′) containing x, the tag
of KV ′ generated by S is tagV ′ = − < A,x′ > −A0, tagV ′ = −(M ′)> ·A. And for some y, we have
x = (M ′)> · y + x′ and < tagV ′ ,y > +tagV ′ − tagc = 0 Due to the decryption algorithm, the secret
key can not decrypt the challenged ciphertext even it is normal form.

Since (tagVk , tagVk) and tagc are independent in the scheme, we should clarify that the adversary
can not detect any special relationship between tagVk , tagVk , tagc in the simulation. Suppose they
are linearly dependent, that is, there exists constants ζ, η ∈ Zp, ζ ∈ Znp and we have the relation
ζ · tagVk + η · tagc+ < ζ, tagVk >= 0. We simplifies it by

(ζ − η)A0+ < M>k · ζ + ζxk − ηx,A >= 0

This implies, for some y = ζ/η, we have x = xk+M>k ·y. It conflicts with the definition of the game,
because the vector x is in the subspace Vk. So tagVk , tagVk , tagc are linearly independent, and A0,A
are hidden from the adversary’s view.

S receives a bit µ′ and outputs 0 if µ′ = µ. ut

Lemma 3. Suppose that there exists an adversary A that makes at most q queries and |Gameq −
Gameq+1| = ε. Then we can build a simulator S that has advantage ε in solving the DBDH problem.

Proof. We begin by noting that in both of these two games the challenge ciphertexts and all the secret
keys are semi-functional. Therefore, the simulator S only needs to be able to generate semi-functional
secret keys. S begins by taking in a DBDH instance (G, g, gc1 , gc2 , gc3 , T ).

Setup. The simulator S begins by choosing random exponents a1, b, yv, yv1 , yv2 , α0, α1, . . . , αn, β ∈ Zp.
It then sets

g = g, gβ, Z = e(gc1 , gc2), gα = (gα1 , . . . , gαn), ga1 , ga2 = gc2 , gb, gba1 , gba2 = gbc2 ,

v = gyv , v1 = gyv1 , v2 = gyv2 , w = gα0 , τ1 = v · va11 , τ
b
1 , τ2 = v · (gc1)yv2 , τ b2

The simulator S publish the public key PK. Note that the master secret key gα is not available to S.
We point out that this setup lets α = c1 · c2, a2 = c2.

Key Delegation Phase 1,2. All secret key delegations result in semi-functional keys. When a request
for an affine subspace V1 = S(M,x1) is made, the secret key delegation algorithm chooses random
r1, r2, z1, z2, γ

′, tagV1 , tagV1 and defines r = r1 + r2. It implicitly sets the variable γ = γ′ + c1.

It creates the key as:

D1 = (gc2)−γ
′a1vr, D2 = (gc2)−γ

′
vr1g

z1 , D3 = (gb)−z1 , D4 = (gc1)a1ga1γ
′
vr2g

z2 ,

D5 = (gb)−z2 , D6 = gr2b, D6 = gr1 , K0 = gr1(<x1,a>+α0tagV1+β), K = gr1(M
>·a+α0tagV1 )

Challenge. The simulator S receives a challenge vector x and two message m0,m1 from the attacker.
S will now create a challenge ciphertext that is a semi-functional ciphertext of either mµ or a random
message, depending on T . It first chooses a random bit µ.
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S chooses random s1, t and tagc ∈ Zp. It will implicitly let s2 = c3. The message mµ ∈ GT is
blinded as C0 = mµ · T a1b. It then chooses random x′ ∈ Zp and will implicitly set x = x′ − c3.

C1 = gs1b · (gc3)b, C2 = gba1s1 , C3 = gbs1 , C4 = (gc2)x
′b, C5 = (gc2)x

′
,

C6 = τ s11 (gc3)yv(gc2)yv2x
′
, C7 = τ bs11 (gc3)byv(gc2)yv2x

′bw−t, E1 = (gα0·tagc+<x,a>+β)t, E2 = gt

If T is a tuple, then we are in Gameq, otherwise we are in Gameq+1. S receives a bit µ′ and outputs
0 if µ = µ′. ut

5 Adaptively Secure Doubly-Spatial Encryption

In this section, we propose an adaptively secure doubly-spatial encryption. In the doubly-spatial
encryption, the policies, as well as roles, are the affine subspaces in Znp . The roles and policies are
opposites of each other in same way. That is, Znp is the most powerful role, but the weakest policy,
and vectors are the strictest policies, but the most restricted roles.

Our construction is not so efficient as the spatial encryption construction, because the length of the
ciphertext depends on the dimension of the affine space. We change the tag attaching in the ciphertext
by a vector (tagc, tagc) ∈ Zn+1

p . Then the ciphertext and the secret key can be seen as a dual pair in
the construction. The scheme consists four algorithms, and the Setup and Delegate algorithms are
completely the same as the spatial encryption scheme in Sec. 4. So we omit them in this paper.

Encrypt(PP,W,m): Given a message m ∈ GT and an affine subspace W = S(M,x), the encryption
algorithm randomly chooses s1, s2, t, tagc ∈ Zp, tagc ∈ Znp and computes

C0 = m · Zs2 , C1 = gb(s1+s2), C2 = gba1s1 , C3 = ga1s1 , C4 = gba2s2 , C5 = ga2s2 , C6 = τ s11 · τ
s2
2 ,

C7 = T s11 · T
s2
2 · w

−t, E1 = (gα0·tagc+<x,a>+β)t, E2 = gt, E3 = (gα0tagc+M>a)t

And outputs CTW = (C0, C1, . . . , C7, E1, E2,E3, tagc, tagc).

Decrypt(PP,CTW ,KV ′ ,W ): If V ′∩W 6= ∅, there exits a vector x∗ ∈ V ′∩W . Then we can efficiently
find y,y′ such that x∗ = x + M> · y = x′ + (M ′)> · y′, where W = S(M,x), V ′ = S(M ′,x′). If
< tagV ′ ,y

′ > +tagV ′ − (tagc+ < tagc,y >) 6= 0, it then recovers

φ1 = (

5∏
j=1

e(Cj , Dj)) · (
7∏
j=6

e(Cj , Dj))
−1 = e(g, g)αa1bs2 · e(g, w)r1t

φ2 =

(
e(Ky′K0, E2)

e(E3
yE1, D7)

) 1
<tagV ′ ,y

′>+tagV ′−(tagc+<tagc,y>)

= e(g, w)r1t

It finally recovers the plaintext as
m = E0 · φ2 · φ−11

Otherwise, the algorithm aborts and returns ⊥. And the algorithm aborts with 1/p probability.

Theorem 2. The doubly-spatial encryption construction is adaptively secure under the DLIN and
DBDH assumptions.

Due to space considerations the proof is given briefly in the appendix.
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6 Conclusion

We give a fully secure spatial and a fully secure doubly-spatial encryption scheme over prime order
groups under standard assumptions, the decisional linear (DLIN) assumption and the decisional bi-
linear Diffe-Hellman (DBDH) assumption, in the standard model. To the best of our knowledge, no
presented correlated work has achieved this. However, how to construct (doubly-)spatial encryption
which has strong anonymous property is still an open problem.

References

1. Attrapadung, N., Libert, B.: Functional encryption for inner product achieving constant-size ciphertexts with adap-
tive security or support for negation. In: P.Q. Nguyen, D. Pointcheval (Eds.) PKC 2010, LNCS 6056, pp. 384-402.
Springer, 2010

2. Boneh, D., Hamburg, M.: Generalized identity based and broadcast encryption schemes. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 455-470. Springer, 2008

3. Canetti, R., Goldwasser, S.: An efficient threshold public key cryptosystem secure against adaptive chosen ciphertext
attack. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 90-106. Springer, 1999

4. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 254-271. Springer, 2003

5. Delerablee, C., Pointcheval, D.: Dynamic threshold public-key encryption. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 317-334. Springer, 2008

6. Freeman, D. M.: Converting pairing-based cryptosystems from composite-order groups to prime-order groups. In:
H. Gilbert (Ed.) EUROCRYPT 2010, LNCS 6110, pp. 44-61. Springer, 2010

7. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access conrol of encrypted
data. In: ACM conference on Computer and Communications Security (ACM CCS), 2006

8. Hamburg, M.: Spatial encryption. IACR Cryptology ePrint Archive 2011: 389
9. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based

encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 62-91. Springer, 2010

10. Lewko, A., Sahai, A., Waters, B.: Revocation systems with very small private keys. IEEE Symposium on Security
and Privacy 2010: 273-285

11. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In:
Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455-479. Springer, 2010

12. Moriyama, D., Doi, H.: A fully secure spatial encryption scheme. IEICE Transactions 94-A(1): 28-35 (2011)
13. Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear

assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191-208. Springer, 2010
14. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,

pp. 457-473. Springer, 2005
15. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO

1984. LNCS, vol. 196, pp. 47-53. Springer, 1985
16. Waters, B.: Dual system encryption realizing fully secure IBE and HIBE under simple assumptions. In: S. Halevi

(Ed.) CRYPTO 2009, LNCS 5677, pp. 619-636. Springer, 2009.
17. Zhou, M., Cao, Z.: Spatial encryption under simpler assumption. In: J. Pieprzyk, F. Zhang (Eds.) ProvSec 2009,

LNCS 5848, pp. 19-31. Springer, 2009.

A Proof of Theorem 2

Since the proof of the adaptive security of the doubly-spatial encryption is very alike of the proof in
Sec. 4, partial proof, which is immediate and trivial from the proof of theorem 1, is omitted here. We
briefly give the proof of the indistinguishability of Gamek and Gamek+1, which is the most non-trivial
part in the proof of theorem 2.
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The setting of the parameters in the setup phase is the same as lemma 2. And the simulator uses
the same way to answer the secret key query as in lemma 2. In the challenge phase, when the simulator
S is given a challenge affine subspace W = S(M,x) and the messages m0,m1, it first runs the normal
encryption algorithm to generate a normal ciphertext CT ′ for W with tag tagc = − < x,A > −A0 and
tagc = −M> ·A. It then gets a standard ciphertext C ′0, C

′
1, . . . , C

′
7, E

′
1, E

′
2 and sets the semi-functional

ciphertext as

C0 = C ′0, C1 = C ′1, C2 = C ′2, C3 = C ′3

C4 = C ′4 · fa2δ, C5 = C ′5 · ga2δ, C6 = C ′6 · va2δ, C7 = C ′7 · fyv2δa2ν−a1δα
′
0a2

E1 = E′1 · (ν<B,x>+B0−(<x,A>+A0)α′0)a1a2δ, E2 = E′2 · νa1a2δ

E3 = E′3 · (νM
>·B−α′0M>·A)a1a2δ

Since (tagVk , tagVk) and (tagc, tagc) are chosen independent in the scheme, we should prove that
the adversary cannot detect any special relationship between tagVk , tagVk , tagc, tagc in the simulation.
Suppose they are linearly dependent, there exists constants ζ, η, ζ,η and an equation

ζ · tagVk + η · tagc+ < ζ, tagVk > + < η, tagc >= 0

This implies, for some y1,y2, we have xk +M>k ·y1 = x+M> ·y2. It means Vk ∩W 6= ∅. It conflicts
with the definition of the game. So we say tagVk , tagVk , tagc, tagc are linearly independent, and A0,A
are hidden from the adversary’s view.
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