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Abstract

In this paper, combining the biclique cryptanalysis with the MITM

attack, we present the first key recovery method for the full ARIA-

256 faster than brute-force. The attack requires 280 chosen plaintexts,

and the time complexity is about 2255.2 full-round ARIA encryptions

in the processing phase.
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1 Introduction

The ARIA block cipher [1]was designed by a group of Korean experts in
2003, and was standardized as the Korean Standard in 2004. ARIA supports
key length of 128,192 and 256 bits, these versions of ARIA are denoted as
ARIA-128, ARIA-192 and ARIA-256. The number of rounds for these three
versions are 12, 14 and 16, respectively. In ref. [1], the designers of ARIA
presented some cryptanalysis including both differential cryptanalysis, lin-
ear cryptanalysis, and some other known attacks . Later Biryukov et al.
performed an evaluation of ARIA [2], however, they especially focused on
truncated differential cryptanalysis and dedicated linear cryptanalysis. In
ref. [3], Wu et al. firstly found some non-trivial 4-round impossible differen-
tials which led to a 6-round attack on ARIA. The security of ARIA against
boomerang attack was presented by Fleischmann et al. in [4]. Li et al. firstly
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found some 3-round integral distinguishers by counting methods, which also
led up to a 6-round integral attack on ARIA-192 [5], recently, Li et al. [6] pre-
sented the meet-in-the-middle(MITM) attacks on the round-reduced ARIA,
which led to a 8-round attack on ARIA-256. For ARIA-256, the number of
cryptanalyzed round did not increase since then.

ARIA with its wide-trail strategy was designed to withstand differen-
tial and linear cryptanalysis. ARIA is an involution SPN cipher and has
involution substitution and diffusion layers by using operations such as mul-
tiplications in a finite field. In the diffusion layer of ARIA, a 16× 16 binary
matrix of the maximum branch number 8 is used to avoid some attacks well
applied to the reduced round of Rijndael.

The basic concept of the MITM attack was proposed by Diffie and Hell-
man [7]. So far, this attack has been applied to several block ciphers. Fur-
thermore, over the past few years, this attack has been improved in a line of
preimage attacks on hash functions and several novel techniques are intro-
duced.

Biclique cryptanalysis was first introduced for hash cryptanalysis [8]. An-
drey Bogdanov⋆ et al. carried over the concept of the independent bicilique
to AES cryptanalysis [9], and constructed a 3 round biclique. Combining the
biclique with the MITM attack, they presented the first key recovery method
for the full AES-128 faster than brute-force. To construct the independent
biclique, we need two independent related-key differentials. When it comes
to the ciphers whose diffusion operation is fast, it is difficult to construct the
biclique.
Our Contribution:

In this paper, we combine the Biclique cryptanalysis with the MITM
attack, and present the first key recovery method for the full ARIA-256
faster than brute-force.

1. Four 128-bit values W0, W1, W2, W3 are generated from the master key
MK by using a 3-round 256-bit Feistel cipher. We select those types
of differentials of MK such that the difference of W1 is 0. Then we can
construct a 2-round biclique for ARIA-256. However, those types of
differentials of MK in other versions of ARIA are not exist.

2. Because the position of active-byte of the master key will affect the
number of active-byte of the round key, we found a type of keys such
that the round key have the least number of active-bytes in round 3.
Hence, the computation complexity can be decreased as well as possible.
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3. The attack on ARIA-256 consists of two parts. Firstly, we construct
a 2-round biclique of dimension 8 for ARIA-256. Then, we attack the
remaining 14 rounds by using MITM method. By matching only on a
single byte, the computation complexity can be reduced. Table 1 gives
the comparison between our result and earlier best result.

Table 1 Summary of Attacks on ARIA-256
Rounds Data Complexity Type of attack Paper

8 256 2251.6 MITM Attack [6]
16 280 2255.2 Biclique Key Recovery Attack This paper

This paper is organized as follows. We introduce the biclique key recovery
attack in Section 2 and give a brief description of ARIA in Section 3. In
Section 4, we present a biclique key recovery attack for the full round ARIA-
256. Finally, section 5 summarizes this paper.

2 Biclique Key Recovery Attack

The main idea behind the biclique key recovery attack is based on the biclique
structure which can be used to decrease the complexity of the MITM attack.
It is apparent to see that the construction of biclique is an important step.
The following sections will describe the steps of the biclique key recovery
attack.

2.1 Biclique Structure

Now we introduce the notation of a biclique. Let f be a subcipher that maps
a plaintext P to the internal state S: f

K
(P ) = S.

The 3-tuple [{Pi}, {Sj}, {K[i, j]}] is called a d-dimensional Biclique, if

Sj = f
K[i,j]

(Pi)

2.2 Biclique from Independent Related-Key Differen-

tials

Definition 1.A byte is called an active-byte, if the input differential of it is
non-zero. Otherwise, it is called a non-active-byte.
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Definition 2.If the trail of a differential do not share active nonlinear compo-
nents (such as active S-boxes in ARIA) with the trail of another differential,
we call them independent related-key differentials.

Let the key K[0, 0] map plaintext P0 to the internal state S0, and consider
two sets of 2d related-key differentials each over f with respect to the base

computation P0
K[0,0]
−−−→

f
S0.

• ▽i-differentials. A differential in the first set maps input difference ▽i

to an output difference 0 under key difference ▽K
i :

▽i

▽K
i−−→
f

0, with ▽K
0 = 0, ▽0 = 0

• △j-differentials. A differential in the second set maps input difference
0 to an output difference △j under key difference △K

j :

0
△K

j

−−→
f
△j, with △

K
0 = 0, △0 = 0

If ▽i-differentials and △j-differentials are independent, then we can con-
struct 22d combined differentials:

▽i

▽K
i ⊕△K

j

−−−−−→
f

△j, for all i, j ∈ {0, . . . , 2
d − 1}

Substituting P0, S0, andK[0, 0] to the combined differentials, one obtains:

P0 ⊕▽i

K[0,0]⊕▽K
i ⊕△K

j

−−−−−−−−−−→
f

S0 ⊕△j

Finally, we put:
Pi = P0 ⊕▽i,

Sj = S0 ⊕△j,

K[i, j] = K[0, 0]⊕▽K
i ⊕△

K
j

and get exactly the definition of a d-dimensional biclique.

2.3 Biclique Key Recovery Attack

Based on the biclique from independent related-key differentials, we describe
the biclique key recovery attack.
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For each set of keys the adversary builds a structure of 2d plaintexts Pi

and 2d intermediate states Sj with respect to the set of keys K[i, j] which
satisfies the following condition:

Sj = fK[i,j](Pi)

The adversary asks the oracle to encrypt plaintexts Pi under the secret
key Ksecret, and obtains the 2d ciphertexts Ci:

Pi
oracle
−−−→

e
Ci

If the texted key K[i, j] satisfies the following condition:

Sj

K[i,j]
−−−→

e1

−→v =←−v
K[i,j]
←−−−

e2
Ci (1)

We consider it is a key candidate.

2.4 Matching with Precomputations

Here we describe the idea of matching with precomputations. This can be
seen as an efficient way of checking equation (1).

Firstly, the adversary computes and stores in memory 2d+1 full computa-
tions

for all j Sj

K[0,j]
−−−→ −→v and for all i ←−v

K[i,0]
←−−− Ci

Then for particular i, j he recomputes only those parts of state that differ
from the stored ones. Hence, he can decrease the computational complexity.

3 Description of ARIA-256

The ARIA-256 block cipher is an involution SPN cipher and have involution
substitution and diffusion layers. The diffusion layer uses a 16 × 16 binary
matrix in GF (28). The substitution layer consists of sixteen 8 × 8 S-boxes.
The 128 bits state can be denoted as 4 × 4 matrix in GF (28) as shown in
Fig. 1.

Each round of the cipher consists of three parts, Round key addition(AK),
Substitution layer(SL), Diffusion layer(DL). Note that the diffusion layer of
the last round is replaced by a round key addition.
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Figure 1: The state of ARIA
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Figure 2: Two types of S-box layer

Substitution layer: nolinear substitution, the Substitution layer con-
sists of two types of S-box layers. Type 1 is used in the odd rounds and type
2 is used in the even rounds as shown in Fig. 2.

Diffusion layer: P : GF (28)16 → GF (28)16 is given by

(x0, x1, . . . , x15)→ (y0, y1, . . . , y15)

where

y0 = x3⊕x4⊕x6⊕x8⊕x9⊕x13⊕x14, y8 = x0⊕x1⊕x4⊕x7⊕x10⊕x13⊕x15,

y1 = x2⊕x5⊕x7⊕x8⊕x9⊕x12⊕x15, y9 = x0⊕x1⊕x5⊕x6⊕x11⊕x12⊕x14,

y2 = x1⊕x4⊕x6⊕x10⊕x11⊕x12⊕x15, y10 = x2⊕x3⊕x5⊕x6⊕x8⊕x13⊕x15,

y3 = x0⊕x5⊕x7⊕x10⊕x11⊕x13⊕x14, y11 = x2⊕x3⊕x4⊕x7⊕x9⊕x12⊕x14,

y4 = x0⊕x2⊕x5⊕x8⊕x11⊕x14⊕x15, y12 = x1⊕x2⊕x6⊕x7⊕x9⊕x11⊕x12,

y5 = x1⊕x3⊕x4⊕x9⊕x10⊕x14⊕x15, y13 = x0⊕x3⊕x6⊕x7⊕x8⊕x10⊕x13,

y6 = x0⊕x2⊕x7⊕x9⊕x10⊕x12⊕x13, y14 = x0⊕x3⊕x4⊕x5⊕x9⊕x11⊕x14,

y7 = x1⊕x3⊕x6⊕x8⊕x11⊕x12⊕x13, y15 = x1⊕x2⊕x4⊕x5⊕x8⊕x10⊕x15,

We address two internal states in each round as follows in ARIA-256: #1
is the state after AK in round 1, #2 is the state after DL in round 1, #3
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Figure 3: MK of ARIA-256
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Figure 4: Initialization part of key schedule

is the state after AK in round 2,. . . , #31 is the state after the first AK in
round 16, #32 is the state after the second AK in round 16.

The 256 bites initial key MK of ARIA-256 can be rearranged as a 4× 8
matrix as shown in Fig .3.

The key schedule of ARIA-256 consists of two parts, which are initializa-
tion and round key generation as follows:

(1) Initialization
In the initialization part, the master key MK denote as follow: MK =

KL‖KR. Four 128-bit valuesW0, W1, W2, W3 are generated from the master
key MK, by using a 3-round 256-bit Feistel cipher.

W0 = KL, W2 = Fe(W1, CK2)⊕W0

W1 = Fo(W0, CK1)⊕KR, W3 = Fo(W2, CK3)⊕W1

The initialization process is given in Fig. 4.
Here, Fo and Fe are even and odd round functions, respectively, The

128-bit keys CKi of the round functions are constants.
(2) Round key generation
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Figure 5: Initialization key MK[0, 0]

In the generation part, combining the four 18-bits values W0, W1, W2,
W3 to obtain encryption round keys eki as follows:

ek1 = (W0)⊕ (W1 >>> 19), ek2 = (W1)⊕ (W2 >>> 19),
ek3 = (W2)⊕ (W3 >>> 19), ek4 = (W0 >>> 19)⊕ (W3),
ek5 = (W0)⊕ (W1 >>> 31), ek6 = (W1)⊕ (W2 >>> 31),
ek7 = (W2)⊕ (W3 >>> 31), ek8 = (W0 >>> 31)⊕ (W3),
ek9 = (W0)⊕ (W1 >>> 61), ek10 = (W1)⊕ (W2 >>> 61),
ek11 = (W2)⊕ (W3 >>> 61), ek12 = (W0 >>> 61)⊕ (W3),
ek13 = (W0)⊕ (W1 <<< 31), ek14 = (W1)⊕ (W2 <<< 31),
ek15 = (W2)⊕ (W3 <<< 31), ek16 = (W0 <<< 31)⊕ (W3),
ek17 = (W0)⊕ (W1 <<< 19).

4 Biclique Key Recovery Attack for the Full

ARIA-256

In this section, combining the Biclique cryptanalysis with the MITM attack,
we present the first key recovery method for the full ARIA-256 faster than
brute-force.

4.1 Key Partitioning

We define the key sets respect to the master key MK. The base keys
MK[0, 0] = KL‖KR are all possible 2240 32-byte values with KL0 = KL9 =
0 whereas the remaining 30 bytes run through all values as shown in Fig. 5.

The keys {MK[i, j]} in a set are enumerated by all possible byte differ-
ences i and j with respect to the KL value and Fo(KL,CK1) ⊕ Fo(KL ⊕
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Figure 6: Key set {MK[i, j]}

T i,j, CK1) (T
i,j denote the input differences of KL) value respect to the KR

value of the base key MK[0, 0] as shown in Fig. 6.
Hence, the ARIA-256 key space is partitioned into the 2240 sets of 216

keys each.

4.2 2-Round Biclique of Dimension 8 for ARIA-256

In this section, we aim to construct a biclique such that the number of rounds
contained is as long as possible. Because the diffusion layer of ARIA-256 has
the maximum branch number 8, 1 active-byte will transform to 16 active-
bytes after 2 round. We only can construct a 2-round biclique from combined
related-key differentials as described in section 2.2.

1. The adversary fixes P0 = 0 and derives S0 = f
MK[0,0]

(P0)
Note that the diffusion layer of the last round is replaced by a round key

addition, it is difficult to construct a long biclique on the bottom of ARIA-
256. Hence, we choose the biclique on the top of ARIA-256 which differs
from [9].

2. Constructing key differences ▽K
i and △K

j

The▽i-differentials are based on the key difference▽K
i , and△j-differentials

are based on the key difference △K
j . The choice of ▽

K
i and △K

j is dominated
by two aspects. On one hand, in order to construct two independent related-
key differentials, the number of active-bytes of the first 2 round key should
be as few as possible. Note that the round keys eki are generated by W0, W1,
W2, W3. we choose those kind of differences which can make the differences
of these four 128-bits values as simple as possible. On the other hand, note
that the position of active-byte of the master key will affect the number of
active-bytes of the round key, in order to decrease the number of SL and DL
bytes which need to be recomputed, we need a type of key that can makes
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j

the round key have the least number of active-bytes in round 3 after round
key generation.

According to the two aspects above, we choose the key as shown in Fig.
7. Key differences ▽K

i are enumerated by all possible byte differences i with
respect to theKL value and the Fo(KL,CK1)⊕Fo(KL⊕T i, CK1) (T

i denote
the input differences of KL) value respect to the KR value of the base key
MK[0, 0]. Hence, the difference of W1 is 0 and the difference of W2 is the
same as the difference of W0. A similar property hold for △K

j . Furthermore,
the number of active-bytes of ek3 in ▽i-differentials are determined by the
position of the 7 active-bytes of W3, and the position of differences i affect
the position of the 7 active-bytes of W3. We found KL9 is the best position
of active-byte that can make ek3 have the least number of active-bytes.

3. Constructing ▽i-differentials and △j-differentials
We can obtain two independent related-key differentials ▽i-differentials

and △j-differentials from key differentials ▽K
i and △K

j respectively. Both
sets of differentials are depicted in Fig .8.

We put:
Pi = P0 ⊕▽i,

Sj = S0 ⊕△j

MK[i, j] = MK[0, 0]⊕▽K
i ⊕△

K
j

and get a 2-round biclique of dimension 8 [{Pi}, {Sj}, {MK[i, j]}] for ARIA-
256.

Since the ▽i-differentials affects only 10 bytes of the plaintext, all the
plaintexts share the same values in P0,5,8,10,13,15. As a result, the data com-
plexity does not exceed 280.
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4.3 Matching over 14 Rounds

Firstly, as shown in Fig. 11, we expand ▽i-differentials and △j-differentials
to full-round differentials, and derive the overlapping byte from them. The
tested key MK[i, j] is a key candidate of the secret key Ksecret if

Sj

MK[i,j]
−−−−→

e1

−→v (#250) =
←−v (#250)

MK[i,j]
←−−−−

e2
Ci (2)

(#250 denote the first byte of #25). Here, only matching a single byte, the
computation complexity can be decreased.

We first precompute Sj

K[0,j]
−−−→ −→v and ←−v

K[i,0]
←−−− Ci for 0 ≤ i, j ≤ 28 − 1,

and store the 29 values as well as the intermediate states and subkeys in
memory. Then let i and j run through {0, 1, . . . , 28 − 1} respectively and
check whether the condition (2) holds. In the matching process, we need
only recompute those variables that differ from the ones stored in memory.

Next we evaluate the amount of recomputation in both directions. Be-
cause the round from 3 to 11 does not decrease the computation complexity,
we omit these rounds as shown in Fig. 9 and Fig. 11.
Recomputation cryptanalysis of forward direction:

As shown in Fig. 9, compute Sj

MK[i,j]
−−−−→ −→v differs from the stored bytes

of Sj

MK[0,j]
−−−−→ for all i, j. It is determined by the influence of the difference
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between keys MK[i, j] and MK[0, j]. The number byte of internal state
which need not to be recomputed is 5 + 9 = 14.
Recomputation cryptanalysis of backward direction:

As shown in Fig. 10, compute ←−v
MK[i,j]
←−−−− Ci differs from the stored bytes

of←−v
MK[i,0]
←−−−− Ci for all i, j. It is determined by the influence of the difference

between keys MK[i, j] and MK[i, 0]. The number byte of internal state
which need not to be recomputed is 15 + 9 + 15 = 39.

4.4 Complexities

Let us evaluate the full complexity of this approach. Since the full key space
partition into the 2240 sets, we get the following equation:

Cfull = 2n−2d(CBiclique + Cprecomp + Crecomp + Cfalsepas)

where:

• CBiclique is the complexity of constructing a single biclique.

• Cprecomp is the complexity of the precomputation.

• Crecomp is the complexity of the internal variable v 216 times. It strongly
depends on the diffusion properties.
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• Cfalsepas is the complexity generated by false positives, which have to be
matched on other variables. If we match on a single byte, the number
of false positives is about 28. Each requires only a few operations to
re-check.

The values CBiclique and Cprecomp together do not exceed 28 calls of the full
AIRA-256. The full key recovery complexity is dominated by 2n−2d ·Crecomp.
SL and DL are the major part of the round transformation and the key
schedule. The number of bytes which need to be recomputed is 256 − 32 −
14 − 39 = 171 in the round transformation and 0 in the key schedule. And
the total number of bytes is 16 ∗ 16 + 3 ∗ 16 = 304. As a result, Crecomp is
equivalent to 216 ∗ 171/304 = 215.17 runs of the full AIRA-256.

Hence, the full computational complexity amounts to about

Cfull = 2240(28 + 215.17 + 28) = 2255.2.

5 Conclusion

In this paper, we construct a 2-round biclique of dimension 8 for ARIA-256
by using a type of special master keys and tools like independent related-
key differentials et al. We put forward the first key recovery attack on the
full ARIA-256, and it has an advantage of 20.8 over brute-force. The data
complexity does not exceed 280. Alternatively, this paper may inspire work
on other block ciphers if the key schedule of them diffuse slowly.
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