
Some results on q-ary bent functions

Deep Singh?, Maheshanand Bhaintwal and Brajesh Kumar Singh

Department of Mathematics,
Indian Institute of Technology Roorkee, Roorkee 247667 INDIA

deepsinghspn@gmail.com,mahesfma@iitr.ernet.in,bksingh0584@gmail.com

Abstract

Kumar et al.(1985) have extended the notion of classical bent Boolean functions in the general-
ized setup on Znq . They have provided an analogue of classical Maiorana-McFarland type bent
functions. In this paper, we study the crosscorrelation of a subclass of such generalized Maiorana-
McFarland (GMMF) type bent functions. We provide a construction of quaternary (q = 4) bent
functions on n + 1 variables in terms of their subfunctions on n-variables. Analogues of sum-of-
squares indicator and absolute indicator of crosscorrelation of Boolean functions are defined in
the generalized setup. Further, q-ary functions are studied in terms of these indictors and some
upper bounds of these indicators are obtained. Finally, we provide some constructions of balanced
quaternary functions with high nonlinearity under Lee metric.

Key words: q-ary bent functions; Walsh-Hadamard transform; Parseval’s identity; GMMF type
bent functions; Crosscorrelation

1 Introduction

Let Z, R and C denote the set of integers, real numbers and complex numbers, respectively, and let
Zq denote ring of integers modulo q. The additive group Zq is isomorphic to Uq = {1, ξ, . . . , ξq−1},
the multiplicative group of complex qth roots of unity. A function from Fn2 to F2 is called a
Boolean function. Recently, several generalizations of Boolean functions have been proposed by
several authors and effect of Walsh-Hadamard transform on them has been studied. The classical
bent functions were introduced by Rothaus [8]. For an excellent survey on existing generalizations
of bent functions we refer to [13]. Kumar et al. [6] have generalized the notion of classical bent
functions by considering functions from Znq to Zq, where q ≥ 2 is any positive integer. Let Bn,q
denote the set of such generalized q-ary functions.

The Walsh-Hadamard transform of f ∈ Bn,q is a complex-valued function from Znq to C defined
as follows

Wf (u) =
1
q

n
2

∑
x∈Zn

q

ξf(x)+<x,u>,

where < x, u > denotes the usual inner product in Znq .
A function f ∈ Bn,q is generalized bent (or q-ary bent) if |Wf (u)| = 1 for every u ∈ Znq . It

has been proved in [6] that generalized bent functions exist for every value of q and n, except
when n is odd and q = 2 mod 4, whereas Boolean bent functions exist only for even n. Kumar
et al. [6] have provided an analogue of classical Maiorana-McFarland class of bent functions
in the generalized setup and discussed several properties of these functions. For more results
on q-ary bent functions we refer to [1–4]. Generalized bent functions are widely applicable in
Code-Division Multiple-Access (CDMA) communications systems [10]. Solé and Tokareva have
investigated systematically the links between Boolean bent functions [8], generalized bent Boolean
functions [12], and quaternary bent functions [6]. Recently, Zadda and Parraud [5] have introduced
the notion of balancedness and nonlinearity for quaternary functions.

Let f, g ∈ Bn,q. The sum
Cf,g(u) =

∑
x∈Zn

q

ξf(x)−g(x+u),
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is called the cross-correlation between the function f and g at u ∈ Znq . Moreover, for f = g, the
sum Cf,f (u) = Cf (u) is called the autocorrelation of f at u.

It follows from Shannon’s basic design principles confusion and diffusion [11] of secret key
cryptosystems, that the constituent Boolean functions of secret key system should have low
crosscorrelation and certain uniformity properties. Recently, Sarkar and Maitra [9], and Zhou
et al. [14] have reported some interesting results in this direction. Zhou et al. [14] have introduced
two new indicators: sum-of-squares indicator and the absolute indicator. These two indicators
of crosscorrelation between two Boolean functions are called the global avalanche characteristics
(GAC) between them. Analogous to these two indicators, we define two similar indicators: sum-
of-squares-of-modulus indicator (SSMI) and modulus indicator (MI) of crosscorrelation between
two functions in the generalized setup.

The sum-of-squares-of-modulus indicator (SSMI) of f, g ∈ Bn,q is defined as

σf,g =
∑
u∈Zn

q

|Cf,g(u)|2,

and the modulus indicator (MI) of f, g ∈ Bn,q is defined as

4f,g = max
u∈Zn

q

|Cf,g(u)|.

The (periodic) crosscorrelation of sequences is relevant to CDMA applications. Kumar et al. [7]
have introduced a large family of quaternary sequences with low correlation.

1.1 Preliminaries on quaternary functions

In this section, we discuss some basic results on quaternary functions.
The support of function f ∈ Bn,4 is defined as Supp(f) = {u ∈ Zn4 : f(u) 6= 0}. Further, the

relative support of f is defined as Suppj(f) = {u ∈ Zn4 : f(u) = j} for all j ∈ Z4 and ηj(f) denotes
the size of Suppj(f). A function f ∈ Bn,4 is balanced if and only if for all j ∈ Z4, ηj = 4n−1. The
Hamming weight wH(f) of f is the size of its support i.e., η1(f)+η2(f)+η3(f) and the Hamming
distance between two functions f, g ∈ Bn,4 is defined by dH(f, g) = wH(f − g). The Lee weights
wL of 0, 1, 2, 3 in Z4 are 0, 1, 2, 1 respectively and the Lee weight wL(u) of an element u ∈ Zn4
is the rational sum of the Lee weight of its components. The Lee distance dL(u, v) between two
elements u, v ∈ Zn4 is wL(u+ v). The Lee weight wL(f) of f ∈ Bn,4 is η1(f) + 2η2(f) + η3(f) and
the Lee distance between two functions f, g ∈ Bn,4 is defined by dL(f, g) = wL(f − g). Define
W2
f (u) = 1

2n

∑
x∈Zn

4
(−1)f(x)+<x,u>.

Definition 1. Let An,4 be set of all affine functions in Bn,4. The nonlinearity of f ∈ Bn,4 is
defined as nlH4 (f) = ming∈An,4 dH(f, g) under Hamming metric and nlL4 (f) = ming∈An,4 dL(f, g)
under Lee metric.

A function f ∈ Bn,4 is quaternary bent if and only if |Wf (u)| = 1, i.e., Wf (u) ∈ {±1,±ı} for all
u ∈ Zn4 .

The following proposition is [5, Proposition 3] in terms of normalized Wlash-Hadamard
transform.

Proposition 1. The nonlinearity of f ∈ Bn,4 under Lee metric is given by

nlL4 (f) = 4n − 2n max
u∈Zn

4 ,β∈Z4
{Re[ıβWF (u)]}

= 4n − 2n max
u∈Zn

4

{|Re[WF (u)]|, |Im[WF (u)]|},

where Re[z] and Im[z] respectively denote the real and imaginary part of the complex number z.

Proposition 2. [5, Theorem 2] Let f ∈ Bn,4 be quaternary bent. Then

nlL4 (f) = 4n − 2n.

Proposition 3. [5, Proposition 1] A function f ∈ Bn,4 is balanced if and only if Wf (0) =
W2
f (0) = 0.
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2 Properties of Walsh-Hadamard transform in the generalized setup

Lemma 1. Let n be a positive integer and u ∈ Znq , then∑
x∈Zn

q

ξ<u, x> =
{
qn, if u = 0,
0, otherwise . (1)

Proof. Let u = (u1, u2, . . . , un) and x = (x1, x2, . . . , xn) be in Znq . Then

∑
x∈Zn

q

ξ<u, x> =
∑
x∈Zn

q

ξu1x1+u2x2+...+unxn =
n∏
i=1

∑
xi∈Zq

ξuixi

=
n∏
i=1

(
1− (ξui)q

1− ξui

)
=
{
qn, if ui = 0,∀i = 1, . . . , n,
0, otherwise.

Theorem 1. If f, g ∈ Bn,q and u,y ∈ Znq , then∑
u∈Zn

q

Cf,g(u) ξ<u, y> = qnWf (y)Wg(y), and

Cf,g(u) =
∑
y∈Zn

q

Wf (y)Wg(y) ξ<−u, y>.

Proof. The cross-correlation between f and g is

Cf,g(u) =
∑
x∈Zn

q

ξf(x)−g(x+u)

Therefore, using Lemma 1, we have∑
u∈Zn

q

Cf,g(u)ξ<u, y> =
∑
u∈Zn

q

∑
x∈Zn

q

ξf(x)−g(x+u)+<u, y>

=
∑
x∈Zn

q

ξf(x)
∑
u∈Zn

q

ξ−g(x+u)+<u, y>

=
∑
x∈Zn

q

ξf(x)
∑
u∈Zn

q

ξ−g(u)+<x−u, y>

=
∑
x∈Zn

q

ξf(x)+<x, y>
∑
u∈Zn

q

ξ−(g(u)+<u, y>)

= qnWf (y)Wg(y).

Therefore, ∑
y∈Zn

q

Wf (y)Wg(y)ξ<−u, y> =
1
qn

∑
y∈Zn

q

∑
v∈Zn

q

Cf,g(v)ξ<v, y>+<−u, y>

=
1
qn

∑
v∈Zn

q

Cf,g(v)
∑
y∈Zn

q

ξ<v−u, y>

= Cf,g(u).

In particular, if f = g, then we have the following corollary

Corollary 1. Let f be a q-ary function on Znq then the autocorrelation of f is given as

Cf (x) =
∑
y∈Zn

q

|Wf (y)|2ξ−<x, y>.
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By putting x = 0 in Corollary 1 we obtain∑
y∈Zn

q

|Wf (y)|2 = qn,

which is known as Parseval’s identity in the generalized setup.
The following corollary is due to Kumar et al. [6, Property 4]. An alternative proof of this

result follows from Lemma 1 and Corollary 1.

Corollary 2. A function f ∈ Bn,q is q-ary bent if and only if Cf (u) = 0 for all u ∈ Znq \ {0}.

3 Characterizations of q-ary bent functions

Let v = (vr, . . . , v1). We define

fv(xn−r, . . . , x1) = f(xn = vr, . . . , xn−r+1 = v1, xn−r, . . . , x1).

For any u = (ur, . . . , u1) ∈ Zrq and w = (wn−r, . . . , w1) ∈ Zn−rq , we define the vector concatena-
tion uw as

uw = (u,w) = (ur, . . . , u1, wn−r, . . . , w1).

Lemma 2. Let u ∈ Zrq, w ∈ Zn−rq and f be an n-variable generalized q-ary function on Znq .
Then autocorrelation of f is given by

Cf (uw) =
∑
v∈Zr

q

Cfv,fv⊕u(w).

Proof. We compute,

Cf (uw) =
∑
x∈Zn

q

ξf(x)−f(x+uw) =
∑
v∈Zr

q

∑
z∈Zn−r

q

ξf(vz)−f(vz+uw)

=
∑
v∈Zr

q

∑
z∈Zn−r

q

ξfv(z)−fv+u(z+w) =
∑
v∈Zr

q

Cfv,fv+u(w).

Any two q-ary functions f and g are said to have complementary autocorrelation if and only
if Cf (u) + Cg(u) = 0 for all u ∈ Znq \ {0}.

Theorem 2. Any two generalized q-ary functions f and g on Znq have complementary autocor-
relation if and only if

|Wf (u)|2 + |Wg(u)|2 = q, for all u ∈ Znq .

Proof. Suppose f and g are two generalized q-ary functions on Znq possess complimentary auto-
correlation then

qn(|Wf (u)|2 + |Wg(u)|2) =
∑
x∈Zn

q

(Cf (x) + Cg(x))ξ<u,x> = qn+1.

Which implies, |Wf (u)|2 + |Wg(u)|2 = q, for all u ∈ Znq .
Conversely, suppose that |Wf (u)|2 + |Wg(u)|2 = q, for all u ∈ Znq . Then

Cf (x) + Cg(x) =
∑
x∈Zn

q

(|Wf (u)|2 + |Wg(u)|2)ξ<u,x>

= 2
∑
x∈Zn

q

ξ<u,x> = 2n+1δ0(u),

and therefore, if u 6= 0, then Cf (x) + Cg(x) = 0. Therefore, f and g have complementary auto-
correlation.
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The following theorem is a slightly generalized version of Theorem 3 by Tokareva [13].

Theorem 3. Let f1 ∈ Br,q and f2 ∈ Bs,q. Then a function g ∈ Br+s,q expressed as

g(xr+s, . . . , xr+1, xr, . . . , x1) = f1(xr, . . . , x1) + f2(xr+s, . . . , xr+1),

is q-ary bent if and only if f1 and f2 both are q-ary bent functions.

Proof. Let (u,v) ∈ Zrq × Zsq. We compute,

Wg(u,v) =
∑

(x,y)∈Zr
4×Zs

4

ıg(x,y)+<u,x>+<v,y>

=
∑
x∈Zr

4

ıf1(x)+<u,x>
∑
y∈Zs

4

ıf2(y)+<v,y> =Wf1(u)Wf2(v).
(2)

Suppose f1 and f2 both are q-ary bent, then |Wf1(u)| = 1 and |Wf2(v)| = 1. This implies
that , |Wg(u,v)| = |Wf1(u)||Wf2(v)| = 1, for all (u,v) ∈ Zrq × Zsq. Hence g is q-ary bent.

Conversely, we assume g is q-ary bent function, our aim is to show that the functions f1 and
f2 are q-ary bent functions. Let us suppose that f1 is not q-ary bent, then there exists u ∈ Zrq such
that |Wf1(u)| > 1. This implies that |Wf2(v)| < 1 for every v ∈ Zsq, as 1 = |Wf1(u)||Wf2(v)|.
This contradicts the fact that

∑
b∈Zs

q
|Wf2(b)|2 = qs.

3.1 Construction of quaternary bent functions in Bn+1,4 from the functions in Bn,4

Theorem 4. Let n be a positive integer. A function h ∈ Bn+1,4 expressed as

h(xn+1, xn, . . . , x1) = (1 + xn+1)f(xn, . . . , x1) + xn+1g(xn, . . . , x1),

where f, g ∈ Bn,4, is quaternary bent if and only if

(i) |
∑3
j=0Whj (u)| = 2, for all u ∈ Zn4 .

(ii) Wh0 (u)−Wh2 (u)

Wh1 (u)−Wh3 (u) = φ(u) and Wh0 (u)+Wh2 (u)

Wh1 (u)+Wh3 (u) = ıψ(u) where φ(u), ψ(u) ∈ R.

(iii)
∑3
j=0 |Whj

(u)|2 = 4 for all u ∈ Zn4 and

Wh0(u)Wh2(u) +Wh0(u)Wh2(u) +Wh1(u)Wh3(u) +Wh1(u)Wh3(u) = 0.

Proof. Let us identify (xn+1, xn, . . . , x1) ∈ Zn+1
4 with (xn+1,x) ∈ Z4 × Zn4 . Suppose that the

function
h(xn+1,x) = (1 + xn+1)f(x) + xn+1g(x)

is quaternary bent. The Walsh-Hadamard transform of h at (a,u) ∈ Z4 × Zn4 is

Wh(a,u) =
1

4
n+1

2

∑
(xn+1,x)∈Z4×Zn

4

ıh(xn+1,x)+axn+1+<u, x>

=
1

2n+1

3∑
j=0

∑
x∈Zn

4

ıhj(x)+aj+<u, x> =
1
2

3∑
j=0

ıajWhj
(u)

=
1
2

(Wh0(u) + ıaWh1(u) + (−1)aWh2(u) + (−ı)aWh3(u)).

(3)

Since h is quaternary bent, |Wh(a,u)| = 1 for all (a,u) ∈ Z4 × Zn4 . This implies that

|Wh0(u) +Wh1(u) +Wh2(u) +Wh3(u)| = 2. (4)

|Wh0(u)−Wh2(u) + ı(Wh1(u)−Wh3(u))| = 2. (5)
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|Wh0(u)−Wh1(u) +Wh2(u)−Wh3(u)| = 2. (6)

|Wh0(u)−Wh2(u)− ı(Wh1(u)−Wh3(u))| = 2. (7)

Combining (4) and (6), we obtain

Wh0(u) +Wh2(u)
Wh1(u) +Wh3(u)

= −
(
Wh0(u) +Wh2(u)
Wh1(u) +Wh3(u)

)
,provided Wh1(u) +Wh3(u) 6= 0,

which implies that Wh0 (u)+Wh2 (u)

Wh1 (u)+Wh3 (u) is purely imaginary, i.e.,

Wh0(u) +Wh2(u)
Wh1(u) +Wh3(u)

= ıψ(u),where ψ(u) ∈ R. (8)

Similarly on combining (5) and (7), we obtain that

Wh0(u)−Wh2(u)
Wh1(u)−Wh3(u)

= φ(u),where φ(u) ∈ R. (9)

Solving (5) and (9) we have

|Wh1(u)−Wh3(u)|2 |(ı+ φ(u))|2 = 4

i.e., |Wh1(u)−Wh3(u)|2
(

1 +
|Wh0(u)−Wh2(u)|2

|Wh1(u)−Wh3(u)|2

)
= 4

i.e., |Wh0(u)−Wh2(u)|2 + |Wh1(u)−Wh3(u)|2 = 4. (10)

Similarly, from (6) and (8), we have

|Wh0(u)−Wh2(u)|2 + |Wh1(u)−Wh3(u)|2 = 4. (11)

On combining (10) and (11), we obtain

Wh0(u)Wh2(u) +Wh0(u)Wh2(u) +Wh1(u)Wh3(u) +Wh1(u)Wh3(u) = 0. (12)

Similarly, (11) and (12) provides
∑3
j=0 |Whj (u)|2 = 4.

Conversely, suppose that the conditions (i), (ii) and (iii) are true. Condition (ii) implies
that the terms Wh0(u) − Wh2(u) and Wh1(u) − Wh3(u) ( as well as Wh0(u) + Wh2(u) and
Wh1(u)+Wh3(u) ) can not be zero simultaneously. SupposeWh0(u)−Wh2(u) = 0 then |Wh0(u)−
Wh2(u)| = 2 ( as well as, ifWh0(u)+Wh2(u) = 0 then |Wh0(u)+Wh2(u)| = 2). Now consider the
case when neither |Wh0(u)−Wh2(u)| |Wh1(u)−Wh3(u)| 6= 0 nor |Wh0(u) +Wh2(u)| |Wh1(u) +Wh3(u)| 6=
0.
Let (a,u) ∈ Z4 × Zn4 be arbitrary. Condition (i) implies that |Wh(0,u)| = 1.
Using condition (ii) and (iii) we have

4 |Wh(1,u)|2 = |Wh0(u)−Wh2(u) + ı(Wh1(u)−Wh3(u))|2

= |Wh1(u)−Wh3(u)|2|φ(u) + ı|2 = |Wh1(u)−Wh3(u)|2
(
1 + φ2(u)

)
=
(
|Wh0(u)−Wh2(u)|2 + |Wh1(u)−Wh3(u)|2

)
=

3∑
j=1

|Whj
(u)|2

−
(
Wh0(u)Wh2(u) +Wh0(u)Wh2(u) +Wh1(u)Wh3(u) +Wh1(u)Wh3(u)

)
= 4,

which implies that |Wh(1,u)| = 1.
Similarly for a = 2, 3 we have from condition (ii) and (iii) that |Wh(a,u)| = 1. Therefore,

|Wh(a,u)| = 1 for all (a,u) ∈ Z4 × Zn4 .
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4 Two indicators of cross-correlation for q-ary functions

The following result for the binary case were shown in [14]. One can straightforwardly infer by
modifying those results hold under the current notion, as well.

Theorem 5. Let f, g ∈ Bn,q then

(1) 4f,g = 0 if and only if f(x)− g(x + u) is balanced for any u ∈ Znq .
(2) 4f,g = qn if and only if f(x) = g(x + u) + a, a ∈ Zq for some u ∈ Znq .
(3) 0 ≤ 4f,g ≤ qn.

Any two q-ary functions f and g are said to be perfectly uncorrelated [9] if Wf (u)Wg(u) = 0 for
all u ∈ Znq .

Theorem 6. Let f, g ∈ Bn,q. Then

(a) |Cf,g(0)|2 ≤ σf,g ≤ q3n
(b) σf,g = q3n if and only if f and g are affine functions.
(c) σf,g = |Cf,g(0)|2 if and only if f and g are either generalized bents or perfectly uncorrelated.

Proof. (a) Using Theorem 1 and Cauchy inequality, (
∑
i aibi)

2 ≤
∑
i a

2
i

∑
i b

2
i for all ai, bi ∈ R,

we have

σf,g =
∑
u∈Zn

q

Cf,g(u)Cf,g(u)

=
∑
u∈Zn

q

∑
x∈Zn

q

Wf (x)Wg(x)ξ<−u, x>
∑
y∈Zn

q

Wf (y)Wg(y)ξ<−u, y>

=
∑
x∈Zn

q

∑
y∈Zn

q

Wf (x)Wf (y)Wg(x)Wg(y)
∑
u∈Zn

q

ξ<u, y−x>

= qn
∑
x∈Zn

q

|Wf (x)|2|Wg(x)|2 ≤ qn
∑

x∈Zn
q

|Wf (x)Wg(x)|

2

≤ qn
∑
x∈Zn

q

|Wf (x)|2
∑
x∈Zn

q

|Wg(x)|2 = q3n

(b) From (a), we have σf,g = q3n if and only if∑
u∈Zn

q

|Wf (u)|2|Wg(u)|2 =
∑
u∈Zn

q

|Wf (u)|2
∑
u∈Zn

q

|Wg(u)|2

That is,
∑

u,v∈Zn
q u6=v |Wf (u)|2|Wg(v)|2 = 0 if and only if |Wf (u)|2|Wg(v)|2 = 0 for any u 6= v.

If |Wf (u)|2 = 0 for all u ∈ Znq then it contradicts the Parseval’s identity. Therefore |Wf (u0)|2 6=
0 for at least one u0 ∈ Znq . Consider the following cases:

(1) If there exist only one u0 ∈ Znq such that |Wf (u0)|2 6= 0 then |Wg(v)|2 = 0 for all v ∈ Znq
except v 6= u0. By Parseval identity, we have |Wf (u0)|2 = qn which implies that f(x) =
a− < u0,x > for some a ∈ Zq. On the other hand, since |Wg(v)|2 = 0 for any v 6= u0, implies
|Wg(u0)|2 = qn. That is g(x) = b− < u0,x > for some b ∈ Zq. Thus f and g are affine.

(2) If there exist only two u1,u2 ∈ Znq (u1 6= u2) such that |Wf (u1)|2 6= 0 and |Wf (u2)|2 6= 0,
then |Wg(u)|2 = 0 for any u 6= u1 and |Wg(u)|2 = 0 for any u 6= u2 accordingly. That is,
|Wg(u)|2 = 0 for all u ∈ Znq which contradicts Parseval’s identity. Similarly, there does not
exist only k(3 ≤ k ≤ 2n) distinct ui ∈ Znq (1 ≤ i ≤ k) such that |Wf (ui)|2 6= 0.
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(c) σf,g = (4f,g(0))2 if and only if

∑
u∈Zn

q

|Wf (u)|2|Wg(u)|2
∑
u∈Zn

q

12 =

∑
u∈Zn

q

|Wf (u)Wg(u)| × 1

2

,

if and only if, by Cauchy-Schwarz’s inequality, for any u ∈ Znq , Wf (u)Wg(u)
1 = φ(u) such that

|φ(u)| = k, a positive real number. There are two cases:

(1) If k = 0, then f and g are perfectly uncorrelated.
(2) If k 6= 0, then |Wf (u)Wg(u)| = |Wf (v)||Wg(v)| for all u,v ∈ Znq . This is equivalent to

|Wf (u)|
|Wf (v)| = |Wg(v)|

|Wg(u)| = t for all u,v ∈ Znq , where t is positive real. That is, |Wf (u)| = t|Wf (v)|
and |Wg(v)| = t|Wg(u)|. Using Parseval’s identity, we get t2 = 1. Therefore, |Wf (u)|2| and
|Wg(u)|2 are constants for all u ∈ Znq . Again by using Parseval’s identity, we get |Wf (u)| =
1 = |Wg(u)| for all u ∈ Znq which proves that f and g both are generalized bent.

4.1 Crosscorrelation of Maiorana-McFarland type q-ary bent functions

In this section we obtain crosscorrelation between two bent functions in a subclass of Maiorana-
McFarland type q-ary bent functions.

Kumar et al. [6, Theorem 1] have given a natural generalization of the classical Maiorana
McFarland construction. We provide here an alternative proof of this result.

Lemma 3. [6, Theorem 1] Let n = 2m, where m is a positive integer. Then a function f :
Zmq × Zmq −→ Zq expressed as

f(x,y) =< x, π(y) > + g(y),

where g : Zmq −→ Zq is any q-ary function and π : Zmq −→ Zmq be any permutation, is bent.

Proof. Let (u,v) ∈ Zmq × Zmq . Using Lemma 1, we compute,

Wf (u,v) =
1
qm

∑
x∈Zm

q

∑
y∈Zm

q

ξ<x, π(y)>+g(y)+<u, x>+<v, y>

=
1
qm

∑
y∈Zm

q

ξg(y)+<v, y>
∑

x ∈Zm
q

ξ<π(y)+u, x>

= ξg(π
−1(−u))+<v, π−1(−u)>

Thus |Wf (u,v)| = 1 for all (u,v) ∈ Zmq × Zmq . This completes the proof.

Let P be the set of permutations on Zmq such that π1, π2 ∈ P =⇒ π−1
1 − π−1

2 ∈ P.

Theorem 7. Let n = 2m, m a positive integer. Let f1, f2 be two q-ary Maiorana-McFarland
type generalized bent function on Znq , i.e., f1(x,y) =< x, π1(y) > +g1(y) and f2(x,y) =<
x, π2(y) > +g2(y) for all x,y ∈ Zmq , where π1, π2 are permutations on Zmq and g1, g2 ∈ Bm,q. If
π1, π2 ∈ P, then

|Cf1,f2(u,v)| = qm, ∀ (u,v) ∈ Zmq × Zmq .
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Proof. By Lemma 1 and Lemma 3, we have

Cf1,f2(u,v) =
∑

x,y∈Zm
q

Wf1(x,y)Wf2(x,y)ξ<x, u>+<y, v>

=
∑

x,y∈Zm
q

(ξg1(π
−1
1 (−x))+<y, π−1

1 (−x)>)(ξg2(π
−1
2 (−x))+<y, π−1

2 (−x)>)ξ<x, u>+<y, v>

=
∑

x,y∈Zm
q

ξg1(π
−1
1 (−x))+<y, π−1

1 (−x)>−g2(π−1
2 (−x))−<y, π−1

2 (−x)>+<x, u>+<y, v>

=
∑

x∈Zm
q

ξg1(π
−1
1 (−x))−g2(π−1

2 (−x))+<x, u>
∑

y∈Zm
q

ξ<y, v+π−1
1 (−x)−π−1

2 (−x)>.

= qmξg1(π
−1
1 (π−1

2 −π
−1
1 )−1(v))−g2(π−1

2 (π−1
2 −π

−1
1 )−1(v))+<u, x>

This completes the proof.

It is to be noted that smaller values 4f,g and σf,g correspond to low correlation between f and
g. From Theorem 7 we have 4f1,f2 = q2n and σf1,f2 = qm. These bounds are much better than
the trivial bounds obtained in Theorem 10 and 6.

4.2 Relationship among crosscorrelation of four q-ary functions

Zhuo [15] has established the relationship among crosscorrelation of four arbitrary Boolean func-
tions. In the following results we provide an analogue of these results in the generalized setup.

Theorem 8. Let f, g, h, k ∈ Bn,q. Then∑
u∈Zn

q

Cf,g(u)Ch,k(u + e) =
∑
a∈Zn

q

Cf,h(a)Cg,k(a + e), ∀e ∈ Znq . (13)

Proof. For any e ∈ Znq , we have∑
u∈Zn

q

Cf,g(u)Ch,k(u + e) =
∑
u∈Zn

q

∑
x∈Zn

q

ξf(x)−g(x+u)
∑
y∈Zn

q

ξh(y)−k(y+u+e)

=
∑

x,y∈Zn
q

ξf(x)−h(y)
∑
u∈Zn

q

ξ−g(x+u)+k(y+u+e) =
∑

x,y∈Zn
q

ξf(x)−h(y)
∑
λ∈Zn

q

ξ−g(λ)+k(y−x+λ+e)

=
∑
a∈Zn

q

∑
y∈Zn

q

ξf(y−a)−h(y)
∑
λ∈Zn

q

ξ−g(λ)+k(λ+a+e) =
∑
a∈Zn

q

∑
y∈Zn

q

ξf(y)−h(y+a)Cg,k(a + e)

=
∑
a∈Zn

q

Cf,h(a)Cg,k(a + e)

In particular, if we take f = h and g = k, then we have the following result.

Corollary 3. Let f, g ∈ Bn,q, then∑
u∈Zn

q

Cf,g(u)Cf,g(u + e) =
∑
a∈Zn

q

Cf (a)Cg(a + e).

In particular, if e = 0, then we have

σf,g =
∑
a∈Zn

q

Cf (a)Cg(a). (14)

Corollary 4. Let f, g ∈ Bn,q, then σf,g ≤ q3n.

Proof. The result follows from the fact that σf ≤ q3n and the Cauchy inequality in (14).
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If g = k in (13), then we have
∑

u∈Zn
q
Cf,g(u)Ch,g(u + e) =

∑
a∈Zn

q
Cf,h(a)Cg(a + e). Moreover,

if g is q-ary bent, then we have the following proposition.

Proposition 4. Let f, g, h ∈ Bn,q and g is q-ary bent, then

(1)
∑

u∈Zn
q
Cf,g(u)Ch,g(u + e) = qnCf,h(−e)φ{−e}(a), where φ{v}(u) =

{
1, if u = v,
0, otherwise .

(2) σf,g = q2n.
(3) If e 6= 0 and f(x) is q-ary bent, then

∑
u∈Zn

q
Cf,g(u)Ch,g(u + e) = 0.

Theorem 9. Let f, g ∈ Bn,q such that g is q-ary bent, then

4f,g ≥ qn/2, and

max
u∈Zn

q \{0}
|Cf,g(u)| ≥

√
q2n − |Cf,g(0)|2

qn − 1
.

Proof. We have σf,g =
∑

u∈Zn
q
|Cf,g(u)|2. Thus, the absolute value of each Cf,g(u) will be minimum

only when they all possess equal values. Therefore the minimum value of 4f,g is
√
σf,g/qn. From

property (2) of Proposition 4, we have σf,g =
∑

u∈Zn
q
C2f,g(u) = q2n. Since the sum on the left

side has qn non-negative terms, therefore 4f,g ≥
√
q2n/qn = qn/2.

Since
∑

u∈Zn
q \{0}

C2f,g(u) = q2n − |Cf,g(0)|2 and the sum on left side has qn − 1 non-negative

terms, therefore maxu∈Zn
q \{0} |Cf,g(u)| ≥

√
q2n−|Cf,g(0)|2

qn−1 .

Corollary 5. Let f, g ∈ Bn,q such that g is q-ary bent. If |Cf,g(0)| < qn/2, then maxu∈Zn
q \{0} |Cf,g(u)| >

qn/2.

5 Secondary constructions on quaternary balanced functions with five
valued Walsh-Hadamard spectra

In this section, we construct some balanced quaternary functions with high nonlinearity under
Lee metric.
Theorem 10. Suppose g ∈ Bn+1,4 is expressed as

g(xn+1, xn, . . . , x1) = xn+1 + f(xn, . . . , x1),

where f ∈ Bn,4 be a quaternary bent. Then g is balanced and its nonlinearity under Lee metric is
given by

nlL4 (g) = 4n+1 − 2n+2.

Proof. Let x = (xn, . . . , x1) ∈ Zn4 and j ∈ Z4.

Suppj(g) = {x′ = (xn+1,x) ∈ Z4 × Zn4 |g(x′) = j}
= {x ∈ Zn4 , xn+1 ∈ Z4|f(x) + xn+1 = j}
= ∪3

l=0{x ∈ Zn4 |f(x) = l = (j − xn+1) mod 4} = ∪3
l=0Suppl(f),

implies that ηj(g) = | ∪3
i=0 Suppi(f)| =

∑3
i=0 ηi(f) = 4n for all j ∈ Z4. Hence, g is balanced.

The Walsh-Hadamard transform of g at (un+1,u) ∈ Z4 × Zn4 is

Wg(un+1,u) =
1

2n+1

∑
(xn+1,x)∈Z4×Zn

4

ıg(xn+1,x)+<u,x>+un+1xn+1

=
1

2n+1

∑
(xn+1,x)∈Z4×Zn

4

ıf(x)+<u,x>+(un+1+1)xn+1

=
1

2n+1

∑
x∈Zn

4

ıf(x)+<u,x>
∑

xn+1∈Z4

ı(un+1+1)xn+1

=
{

2 Wf (u), if un+1 = 3,
0, otherwise . (15)
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Since f is quaternary bent, therefore Wf (u) ∈ {±1,±ı} for every u ∈ Zn4 . Using (15), we have

Wg(un+1,u) =
{
±2 or ± ı 2, if un+1 = 3,
0, otherwise .

Thus the Walsh-Hadamard spectrum of g contains 5 distinct values from the set {±2,±ı2, 0} for
every (un+1,u) ∈ Z4 × Zn4 . By Proposition 1, we have

nlL4 (g) = 4n+1 − 2n+1 max
(un+1,u)∈Z4×Zn

4

{|Re[Wg((un+1,u))]|, |Im[Wg((un+1,u))]|}

= 4n+1 − 2n+2.

Remark 1. A function g ∈ Bn+1,4 expressed as

g(xn+1, xn, . . . , x1) = xn+1 + f(xn, . . . , x1),

where f ∈ Bn,4, is balanced and its nonlinearity under Lee metric is

nlL4 (g) = 4 nlL4 (f).

Proof. The proof is a direct consequence of (1) and Proposition 1.

Theorem 11. Let f1 ∈ Br,4 and f2 ∈ Bs,4. A function g ∈ Br+s,4 expressed as

g(xr+s, . . . , xr+2, xr+1, . . . , x1) = f1(xr, . . . , x1) + f2(xr+s, . . . , xr+2, xr+1),

is balanced if either f1 or f2 is balanced.

Proof. The proof follows from Proposition 3 and the fact that Wg(u,v) = Wf1(u)Wf2(v) and
W2
g (u,v) =W2

f1
(u)W2

f2
(v) for all (u,v)Zr4 × Zs4.
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