Beating Shannon requires BOTH efficient adversaries AND non-zero advantage

Yevgeniy Dodis, NYU

In this note we formally show a well known (but not well documented) fact that in order to beat the famous Shannon lower bound on key length for one-time-secure encryption, one must simultaneously restrict the attacker to be efficient, and also allow the attacker to break the system with some non-zero (i.e., negligible) probability. Our proof handles probabilistic encryption, as well as a small decryption error.

1 Definitions

Let (Enc, Dec) be any encryption scheme with key space K and message space M. In general, we use capital letters for random variables, and lower case letters for specific values; e.g., M, C, S denote appropriately defined random messages, ciphertexts and keys, while m, c, s denote some specific value of those. In the description below, every random variable (e.g., M_1, S , etc.) not explicitly defined in terms of other random variables (e.g., $C = \text{Enc}_S(M_1)$) will always be uniform over its corresponding domain.

Remark 1 We allow the encryption algorithm Enc to be probabilistic. However, since all our proofs easily handle this case, we will not explicitly put the randomness R in our notation. I.e., when we write $\operatorname{Enc}_s(m)$, we always really mean a random variable $\operatorname{Enc}_s(m;R)$, even for fixed m and s (let alone when either M or S are random). Similarly, when some encryption is computed inside some probability, we do not explicitly put the choice or R under Pr . E.g., $\operatorname{Pr}_S[\operatorname{Enc}_S(m) = c]$ really means $\operatorname{Pr}_{S,R}[\operatorname{Enc}_S(m;R) = c]$.

DEFINITION 1 A (possibly probabilistic) encryption scheme (Enc, Dec) is called (t, ε) -secure if for any message $m_0 \in \mathcal{M}$, and any adversary Eve running in time at most t, it holds

$$|\Pr_{S,M_1}[Eve(M_1, \mathsf{Enc}_S(m_0)) = 1] - \Pr_{S,M_1}[Eve(M_1, \mathsf{Enc}_S(M_1)) = 1]| \le \varepsilon \tag{1}$$

Namely, Eve cannot tell encryption of m_0 from encryption of uniformly random M_1 .

Remark 2 The above definition is slightly weaker than the more traditional definition stating that for any messages $m_0, m_1 \in \mathcal{M}$, and any adversary Eve running in time at most t, it holds

$$|\Pr_S[Eve(\mathsf{Enc}_S(m_0)) = 1] - \Pr_S[Eve(\mathsf{Enc}_S(m_1)) = 1]| \le \varepsilon$$

This is OK, since we are proving a lower bound. In any event, by hybrid argument the gap between "epsilons" is at most a factor of 2.

Definition 2 A (possibly probabilistic) encryption scheme (Enc, Dec) is called γ -wrong

$$\Pr_{S,M}[\mathsf{Dec}_S(\mathsf{Enc}_S(M)) = M] \ge 1 - \gamma \tag{2}$$

 \Diamond

Namely, decrypting encryption of a random message almost never results in an error.

2 Main Result

According to the values of $t \in [0, \infty]$ and $\varepsilon \in [0, 1]$ one can obtain different notions of security. Here we show that to beat Shannon bound $|\mathcal{K}| \geq |\mathcal{M}|$ (corresponding to $t = \infty$ and $\varepsilon = 0$), we really need both t to be small and ε to be non-zero. Our proof also handles decryption error γ .

Theorem 1 Assume (Enc, Dec) is at most γ -wrong. Then:

- Small error needed. Let v denote maximum bit length of a plaintext plus ciphertext. If (Enc, Dec) is (v,0)-secure, then $|\mathcal{K}| \geq |\mathcal{M}|(1-\gamma)$.
- Small time needed. Let d denote maximum decryption time. If (Enc, Dec) is $(|\mathcal{K}|d, \varepsilon)$ -secure, then $|\mathcal{K}| \geq |\mathcal{M}|(1 \varepsilon \gamma)$.

In other word, to beat the Shannon bound in a non-trivial way for any "functional" (e.g., $\gamma < 1 - 1/poly$) encryption, one must simultaneously restrict Eve to be efficient, as well as allow for some non-zero (but possibly negligible) probability ε of security failure.

Proof of First Part. We show that (v,0)-security implies that for any messages $m_0, m_1 \in \mathcal{M}$ and ciphertext c_1 , it holds:

$$\Pr_{S,M_1}[M_1 = m_1 \text{ and } \mathsf{Enc}_S(m_0)) = c_1] = \Pr_{S,M_1}[M_1 = m_1 \text{ and } \mathsf{Enc}_S(m_1) = c_1)]$$
(3)

To show Equation (3), consider the following $Eve_{m_1,c_1}(m,c)$ running in time t=v: output 1 if and only if $m=m_1$ and $c=c_1$. Since $\varepsilon=0$, it is immediate that Equation (1) \Rightarrow Equation (3) for the $Eve=Eve_{m_1,c_1}$ above. In other words, (v,0)-security implies that distributions $(M_1, \mathsf{Enc}_S(m_0))$ and $(M_1, \mathsf{Enc}_S(M_1))$ are identical: $(M_1, \mathsf{Enc}_S(m_0)) \equiv (M_1, \mathsf{Enc}_S(M_1))$.

Now, pick a fresh random key S_1 and look at

$$\Delta = \Pr_{S,M_1,S_1}[\mathsf{Dec}_{S_1}(\mathsf{Enc}_S(m_0)) = M_1]$$
 (4)

On the one hand, it is clear that

$$\Delta \le \frac{1}{|\mathcal{M}|} \tag{5}$$

Indeed, if we let $M = \mathsf{Dec}_{S_1}(\mathsf{Enc}_S(m_0))$, then M_1 is perfectly uniform and independent of M. So $\Pr[M = M_1] \leq \frac{1}{|\mathcal{M}|}$, indeed. On the other hand, by Equation (3), since $(M_1, \mathsf{Enc}_S(m_0)) \equiv (M_1, \mathsf{Enc}_S(M_1))$, we can rewrite Equation (4) as

$$\Delta = \Pr_{S, M_1, S_1}[\mathsf{Dec}_{S_1}(\mathsf{Enc}_S(M_1)) = M_1]$$
 (6)

But then

$$\begin{array}{lcl} \Delta & = & \Pr_{S,M_1,S_1}[\mathsf{Dec}_{S_1}(\mathsf{Enc}_S(M_1)) = M_1] \\ \\ & \geq & \Pr[S = S_1] \cdot \Pr_{M_1,S_1}[\mathsf{Dec}_{S_1}(\mathsf{Enc}_{S_1}(M_1)) = M_1] \\ \\ & \geq & \frac{1}{|\mathcal{K}|} \cdot (1 - \gamma) \end{array}$$

where the last inequality used Equation (2). Comparing the inequality above with Equation (5), we get $\frac{1}{|\mathcal{K}|} \cdot (1 - \gamma) \leq \Delta \leq \frac{1}{|\mathcal{M}|}$, which implies $|\mathcal{K}| \geq (1 - \gamma)|\mathcal{M}|$.

Proof of Second Part. We show that $(|\mathcal{K}|d,\varepsilon)$ -security implies $|\mathcal{K}| \geq |\mathcal{M}|(1-\varepsilon-\gamma)$. For that, consider the following attacker Eve of complexity $t = |\mathcal{K}|d$:

Eve (m_1, c_1) : output 1 if and only if there exists $s_1 \in \mathcal{K}$ s.t. $\mathsf{Dec}_{s_1}(c_1) = m_1$. Now, let us compute both probabilities when we apply Equation (1) to this Eve. First,

$$\begin{split} \Pr_{S,M_1}[Eve(M_1,\mathsf{Enc}_S(M_1)) = 1] &= \Pr_{S,M_1}[\exists s_1 \text{ s.t. } \mathsf{Dec}_{s_1}(\mathsf{Enc}_S(M_1)) = M_1] \\ &\geq \Pr_{S,M_1}[\mathsf{Dec}_S(\mathsf{Enc}_S(M_1)) = M_1] \\ &\geq 1 - \gamma \end{split}$$

where the last inequality used Equation (2). By Equation (1), we get

$$\Pr_{S,M_1}[Eve(M_1,\operatorname{Enc}_S(m_0)) = 1] \ge \Pr_{S,M_1}[Eve(M_1,\operatorname{Enc}_S(M_1)) = 1] - \varepsilon \ge 1 - \varepsilon - \gamma \tag{7}$$

On the other hand,

$$\Pr_{S,M_1}[Eve(M_1, \mathsf{Enc}_S(m_0)) = 1] = \Pr_{S,M_1}[\exists s_1 \text{ s.t. } \mathsf{Dec}_{s_1}(\mathsf{Enc}_S(m_0)) = M_1] \\ \leq \sum_{s_1} \Pr_{S,M_1}[\mathsf{Dec}_{s_1}(\mathsf{Enc}_S(m_0)) = M_1]$$

However, for any s_1 , if we let $M = \mathsf{Dec}_{s_1}(\mathsf{Enc}_S(m_0))$, then M_1 is perfectly uniform and independent of M. So $\Pr[M = M_1] \leq \frac{1}{|\mathcal{M}|}$, which means that

$$\Pr_{S,M_1}[Eve(M_1,\operatorname{Enc}_S(m_0)) = 1] \le \sum_{s_1} \frac{1}{|\mathcal{M}|} = \frac{|\mathcal{K}|}{|\mathcal{M}|}$$
(8)

Combining Equation (7) and Equation (8), we get
$$1 - \varepsilon - \gamma \le \frac{|\mathcal{K}|}{|\mathcal{M}|}$$
 or $|\mathcal{K}| \ge |\mathcal{M}|(1 - \varepsilon - \gamma)$.

Tightness: Both bounds are nearly tight, which can be shown by tweaking the generalization of the one-time pad (OTP) encryption for general cardinality N message spaces (not just the power of 2, which can be accomplished by addition modulo N). For simplicity, we only do it for two special cases $\varepsilon = 0$ and $\gamma = 0$, leaving the common generalization as a (tedious) exercise.

First, assume $\varepsilon = 0$. Take any $|\mathcal{M}|$ of cardinality N, and any subset $\mathcal{M}_0 \subseteq \mathcal{M}$ of cardinality $N(1-\gamma)$. Start with the OTP scheme over \mathcal{M}_0 (so that $|\mathcal{K}| = N(1-\gamma)$ as well), and enlarge it to

all of \mathcal{M} by taking any fixed $m_0 \in \mathcal{M}_0$ and defining $\mathsf{Enc}_s(m_1) = \mathsf{Enc}_s(m_0)$, for $m_1 \in \mathcal{M} \setminus \mathcal{M}_0$. The addition of these γN messages (which decrypt incorrectly) to our OTP does not affect the security of the scheme (since $\mathsf{Enc}(m_0)$ is perfectly secure), but creates a decryption error with probability γ with $|\mathcal{K}| = |\mathcal{M}|(1 - \gamma)$.

Second, assume $\gamma = 0$. Now, for any \mathcal{M} of cardinality N, take the OTP for \mathcal{M} (so that $|\mathcal{K}| = N$), and simply remove $\varepsilon N/2$ keys from \mathcal{K} , defining the actual set \mathcal{K}_0 of $N(1 - \varepsilon/2)$ keys. One can imagine sampling a key $s \leftarrow \mathcal{K}_0$ but first sampling the key $s \leftarrow \mathcal{K}$ and claiming that Eve unconditionally won the game if $s \in \mathcal{K} \setminus \mathcal{K}_0$. Equivalently, we can always actually run Eve on a fully uniform key s from \mathcal{K} , but then declare Eve victorious anyway if $s \in \mathcal{K} \setminus \mathcal{K}_0$. Clearly, when s is fully uniform, Eve has probability exactly 1/2 telling apart encryptions of m_0 from M_1 , so now her probability is at most $1/2 + \varepsilon/2$, creating distinguishing advantage at most ε with $|\mathcal{K}_0| = |\mathcal{M}|(1 - \varepsilon/2)$.