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In this note we formally show a well known (but not well documented) fact that in order to
beat the famous Shannon lower bound on key length for one-time-secure encryption, one must
simultaneously restrict the attacker to be efficient, and also allow the attacker to break the system
with some non-zero (i.e., negligible) probability. Our proof handles probabilistic encryption, as well
as a small decryption error.

1 Definitions

Let (Enc,Dec) be any encryption scheme with key space K and message spaceM. In general, we use
capital letters for random variables, and lower case letters for specific values; e.g., M,C, S denote
appropriately defined random messages, ciphertexts and keys, while m, c, s denote some specific
value of those. In the description below, every random variable (e.g., M1, S, etc.) not explicitly
defined in terms of other random variables (e.g., C = EncS(M1)) will always be uniform over its
corresponding domain.

Remark 1 We allow the encryption algorithm Enc to be probabilistic. However, since all our
proofs easily handle this case, we will not explicitly put the randomness R in our notation. I.e.,
when we write Encs(m), we always really mean a random variable Encs(m;R), even for fixed m and
s (let alone when either M or S are random). Similarly, when some encryption is computed inside
some probability, we do not explicitly put the choice or R under Pr. E.g., PrS [EncS(m) = c] really
means PrS,R[EncS(m;R) = c].

Definition 1 A (possibly probabilistic) encryption scheme (Enc,Dec) is called (t, ε)-secure if for
any message m0 ∈M, and any adversary Eve running in time at most t, it holds

| Pr
S,M1

[Eve(M1,EncS(m0)) = 1]− Pr
S,M1

[Eve(M1,EncS(M1)) = 1] | ≤ ε (1)

Namely, Eve cannot tell encryption of m0 from encryption of uniformly random M1. ♢

Remark 2 The above definition is slightly weaker than the more traditional definition stating that
for any messages m0,m1 ∈M, and any adversary Eve running in time at most t, it holds

|Pr
S
[Eve(EncS(m0)) = 1]− Pr

S
[Eve(EncS(m1)) = 1]| ≤ ε

This is OK, since we are proving a lower bound. In any event, by hybrid argument the gap between
“epsilons” is at most a factor of 2.
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Definition 2 A (possibly probabilistic) encryption scheme (Enc,Dec) is called γ-wrong

Pr
S,M

[DecS(EncS(M)) = M ] ≥ 1− γ (2)

Namely, decrypting encryption of a random message almost never results in an error. ♢

2 Main Result

According to the values of t ∈ [0,∞] and ε ∈ [0, 1] one can obtain different notions of security. Here
we show that to beat Shannon bound |K| ≥ |M| (corresponding to t = ∞ and ε = 0), we really
need both t to be small and ε to be non-zero. Our proof also handles decryption error γ.

Theorem 1 Assume (Enc,Dec) is at most γ-wrong. Then:

• Small error needed. Let v denote maximum bit length of a plaintext plus ciphertext.
If (Enc,Dec) is (v, 0)-secure, then |K| ≥ |M|(1− γ).

• Small time needed. Let d denote maximum decryption time.
If (Enc,Dec) is (|K|d, ε)-secure, then |K| ≥ |M|(1− ε− γ).

In other word, to beat the Shannon bound in a non-trivial way for any “functional” (e.g., γ <
1 − 1/poly) encryption, one must simultaneously restrict Eve to be efficient, as well as allow for
some non-zero (but possibly negligible) probability ε of security failure.

Proof of First Part. We show that (v, 0)-security implies that for any messages m0,m1 ∈ M
and ciphertext c1, it holds:

Pr
S,M1

[M1 = m1 and EncS(m0)) = c1] = Pr
S,M1

[M1 = m1 and EncS(m1) = c1)] (3)

To show Equation (3), consider the following Evem1,c1(m, c) running in time t = v: output 1 if and
only if m = m1 and c = c1. Since ε = 0, it is immediate that Equation (1) ⇒ Equation (3) for the
Eve = Evem1,c1 above. In other words, (v, 0)-security implies that distributions (M1,EncS(m0))
and (M1,EncS(M1)) are identical: (M1,EncS(m0)) ≡ (M1,EncS(M1)).

Now, pick a fresh random key S1 and look at

∆ = Pr
S,M1,S1

[DecS1(EncS(m0)) = M1] (4)

On the one hand, it is clear that

∆ ≤ 1

|M|
(5)

Indeed, if we let M = DecS1(EncS(m0)), then M1 is perfectly uniform and independent of M .
So Pr[M = M1] ≤ 1

|M| , indeed. On the other hand, by Equation (3), since (M1,EncS(m0)) ≡
(M1,EncS(M1)), we can rewrite Equation (4) as

∆ = Pr
S,M1,S1

[DecS1(EncS(M1)) = M1] (6)
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But then

∆ = Pr
S,M1,S1

[DecS1(EncS(M1)) = M1]

≥ Pr[S = S1] · Pr
M1,S1

[DecS1(EncS1(M1)) = M1]

≥ 1

|K|
· (1− γ)

where the last inequality used Equation (2). Comparing the inequality above with Equation (5),
we get 1

|K| · (1− γ) ≤ ∆ ≤ 1
|M| , which implies |K| ≥ (1− γ)|M|.

Proof of Second Part. We show that (|K|d, ε)-security implies |K| ≥ |M|(1− ε− γ). For that,
consider the following attacker Eve of complexity t = |K|d:

Eve(m1, c1): output 1 if and only if there exists s1 ∈ K s.t. Decs1(c1) = m1.
Now, let us compute both probabilities when we apply Equation (1) to this Eve. First,

Pr
S,M1

[Eve(M1,EncS(M1)) = 1] = Pr
S,M1

[∃s1 s.t. Decs1(EncS(M1)) = M1]

≥ Pr
S,M1

[DecS(EncS(M1)) = M1]

≥ 1− γ

where the last inequality used Equation (2). By Equation (1), we get

Pr
S,M1

[Eve(M1,EncS(m0)) = 1] ≥ Pr
S,M1

[Eve(M1,EncS(M1)) = 1]− ε ≥ 1− ε− γ (7)

On the other hand,

Pr
S,M1

[Eve(M1,EncS(m0)) = 1] = Pr
S,M1

[∃s1 s.t. Decs1(EncS(m0)) = M1]

≤
∑
s1

Pr
S,M1

[Decs1(EncS(m0)) = M1]

However, for any s1, if we let M = Decs1(EncS(m0)), then M1 is perfectly uniform and independent
of M . So Pr[M = M1] ≤ 1

|M| , which means that

Pr
S,M1

[Eve(M1,EncS(m0)) = 1] ≤
∑
s1

1

|M|
=
|K|
|M|

(8)

Combining Equation (7) and Equation (8), we get 1− ε− γ ≤ |K|
|M| or |K| ≥ |M|(1− ε− γ).

Tightness: Both bounds are nearly tight, which can be shown by tweaking the generalization of
the one-time pad (OTP) encryption for general cardinality N message spaces (not just the power of
2, which can be accomplished by addition modulo N). For simplicity, we only do it for two special
cases ε = 0 and γ = 0, leaving the common generalization as a (tedious) exercise.

First, assume ε = 0. Take any |M| of cardinality N , and any subset M0 ⊆ M of cardinality
N(1− γ). Start with the OTP scheme overM0 (so that |K| = N(1− γ) as well), and enlarge it to
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all ofM by taking any fixed m0 ∈M0 and defining Encs(m1) = Encs(m0), for m1 ∈M\M0. The
addition of these γN messages (which decrypt incorrectly) to our OTP does not affect the security
of the scheme (since Enc(m0) is perfectly secure), but creates a decryption error with probability
γ with |K| = |M|(1− γ).

Second, assume γ = 0. Now, for any M of cardinality N , take the OTP for M (so that
|K| = N), and simply remove εN/2 keys from K, defining the actual set K0 of N(1 − ε/2) keys.
One can imagine sampling a key s ← K0 but first sampling the key s ← K and claiming that
Eve unconditionally won the game if s ∈ K\K0. Equivalently, we can always actually run Eve
on a fully uniform key s from K, but then declare Eve victorious anyway if s ∈ K\K0. Clearly,
when s is fully uniform, Eve has probability exactly 1/2 telling apart encryptions of m0 from M1,
so now her probability is at most 1/2 + ε/2, creating distinguishing advantage at most ε with
|K0| = |M|(1− ε/2).
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