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Abstract. The last decade has witnessed many clever constructions of parameterized families
of pairing-friendly elliptic curves that now enable implementors targeting a particular security

level to gather suitable curves in bulk. However, choosing the best curves from a (usually very

large) set of candidates belonging to any particular family involves juggling a number of efficiency
issues, such as the nature of binomials used to construct extension fields, the hamming-weight of

key pairing parameters and the existence of compact generators in the pairing groups. In light

of these issues, two recent works considered the best families for k = 12 and k = 24 respectively,
and detailed subfamilies that offer very efficient pairing instantiations. In this paper we closely

investigate the other eight attractive families with 8 ≤ k < 50, and systematically sub-divide

each family into its family tree, branching off until concrete subfamilies are highlighted that
simultaneously provide highly-efficient solutions to all of the above computational issues.

1. Introduction

At the turn of the century, the seminal papers of Sakai et al. [23], Joux [16] and Boneh and
Franklin [6] gave birth to the now thriving field of pairing-based cryptography. While new and
interesting cryptographic protocols exploiting the powerful bilinearity property of pairings are
likely to continue arriving on the scene for a while yet, the accompanying field that focusses on
optimized pairing computation is fast approaching full maturity [10, 31, 13, 2, 27].

In the context of cryptography, the most efficient pairings make use of large prime order sub-
groups of elliptic curves E/Fq. For optimal performance, pairings at different security levels de-
mand elliptic curves with different embedding degrees [24], so in their widely used taxonomy [10],
Freeman, Scott and Teske present the best constructions of pairing-friendly curves corresponding
to all embedding degrees 1 ≤ k ≤ 50. For current levels of security, and for those in the foreseeable
future, the optimal curve choices come from parameterized families of ordinary (non-supersingular)
curves over prime fields Fp. This means that the field size and the number of points on the curve
are parameterized as p(x) and n(x) respectively. If n(x) is reducible then n = n(x0) will not
be prime in general, so we usually also write down r(x), the largest irreducible factor of n(x).
The straightforward way to find curves within a given family is to seek x0’s of appropriate size
such that p(x0) and r(x0) are prime (or r(x0) is almost prime), at which point we have suitable
pairing-friendly curves with r(x0) | n(x0) = #E(Fp(x0)). If left for a few minutes, a simple code
that does exactly this can return many pairing-friendly curves, and in most cases this is just a
tiny fraction of the potential curves that could be used to target a particular security level. A
natural problem that faces serious implementors then, is how to find and use only the very best
curves within a family: this is the motivation for this paper.

Related work. Since they are a perfect fit for the 128-bit security level, the Barreto-Naehrig
(BN) family of curves [4] with k = 12 have already received a great deal of attention. Although
several prior papers looked at subclasses of BN curves that offer advantages with respect to some
aspects of a pairing computation [9, 5, 28], Pereira et al. [12] were the first to consider this prob-
lem from a holistic standpoint, factoring in all of the major parameter choices that arise in a
pairing-based protocol. Among other things, their particular implementation-friendly subclass
of BN curves gives highly-efficient and uniform tower constructions, automatic curve parameters
for the correct sextic twist, and compact generators in the two elliptic curve groups (G1 and
G2) involved in a pairing. Motivated by [12], Costello, Lauter and Naehrig [8] recently targeted
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the 256-bit security level with a similar flavored but slightly different approach and pointed out
implementation-friendly subfamilies of Barreto-Lynn-Scott (BLS) curves [3] with k = 24 that es-
sentially exhibit the same attractive properties.

This work. We thoroughly treat the other eight stand-out candidates for pairing implementa-
tions with 8 ≤ k < 50, and point out highly attractive subfamilies of each. Since it is widely
accepted that embedding degrees of the form k = 2i3j perform most efficiently [18], we look at the
Kachisa-Schaefer-Scott (KSS) families [17] with k = 16, k = 18, k = 32 and k = 36, and at the
BLS families [3] with k = 27 and k = 48. Following a recent (and quite surprising!) announcement
by Aranha [1], we also include the BLS family with k = 12. In addition, thanks to a suggestion
made to us by Michael Scott, we also consider the Brezing-Weng family [7] with k = 8; a prime
candidate for pairings at the (triple-DES equivalent) 112-bit security level. In all eight scenarios,
our systematic approach allows us to point out several implementation-friendly subfamilies that
simultaneously offer all of the desirable properties mentioned above, and many more (see [12, §1]).
As a resource for implementors, we provide many examples of pairing-friendly curves according to
our favorite picks from each tree, which are all readily found within the corresponding families.

Organization. In Section 2 we begin by detailing how to read and use the family trees, as well
as the main advantages of our approach. The next eight sections (§3-§10) are dedicated to the
eight selected families; in each of these sections we present the corresponding family tree and our
favourite picks from it. We conclude in Section 11 with recommendations.

2. Family Trees

For all of the parameterized families considered in this paper, the polynomials for the prime field
characteristic p(x) and/or the elliptic curve group order n(x) have denominators, i.e. p(x), n(x) ∈
Q[x], but p(x), n(x) 6∈ Z[x]. This means that only a subset of x ∈ Z will be such that p(x) and
n(x) can both take on integers, and in all cases this subset is simply defined by some congruency
condition, say x ≡ a mod u. In the simplest scenario, one then kick-starts a search for pairing-
friendly curves by initializing an appropriately sized x0 ≡ a mod u, and iterating with x0 ← x0 +u
until p(x) is prime and r(x), the largest irreducible factor of n(x), is either a prime or almost prime.
At this stage it is then possible to compute the curve equation, find simple irreducible polynomials
over Fp to tower up to the full extension field, and determine which twisted curve is the correct
one. In general, from one successful x0 value (i.e. pairing-friendly curve) to the next, all of these
parameters are likely to be different. In the end, there are many different combinations of the
necessary pairing parameters to choose from, and therefore most of the curves encountered in
a basic search will inevitably be discarded in favor of the very best ones. The ideal alternative
is to be able to prescribe the desired properties in advance, and only search for curves that are
guaranteed to exhibit all of them. This way, searches will avoid a great deal of unnecessary testing
and, over any given time, have a better chance of finding supreme curves.

2.1. Branching out. The natural way to proceed towards this goal is to start by subdividing the
major equivalence class x ≡ a mod u into smaller subclasses x ≡ {a + iu}0≤i<v mod uv, and to
individually separate each of the resulting subclasses again, repeating the process with the goal of
arriving at subclasses where the curves found within it share identical parameters. There are three
traits of the curve we aim to synchronize: the extension field tower used to represent Fpk over
Fp, the curve equation, and the type of twist (which only has two options - see below). Thus, we
leave the twist classification until the end, so that subdivisions or branchings depend only on the
towering choice and on the curve equation; at each stage, the choice of v that inflates the modulus
above will be dictated by one or the other, or sometimes both. We always take the choice that
we believe was most obvious, but argue that the end result doesn’t matter; overall it will take the
same sized inflation (and probably number of intermediate subdivisions) of the original modulus
to determine the specific subclasses that give identical pairing parameters.
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2.2. Extension field towers. For each family, we present between two and six stand-out towering
options for the construction of Fpk . Our towers are presented using two binomials: one used for the
first extension from Fp to either Fp2 or Fp3 , and the other for the remainder of the extension up to
Fpk . More often than not, this produces more preferable towers (faster extension field arithmetic)
than if only one binomial from Fp to Fpk was used to define the tower. For example, for any of the k
considered in this paper, it is easy to show that xk±1 will never be irreducible1 in Fp[x]. However,
choosing instead a different degree k irreducible binomial xk+s (s 6= ±1), means that the quadratic
extension (if applicable) from Fp to Fp2 can no longer be constructed optimally as Fp[u]/(u2 + 1).
Alternatively, defining the tower with two binomials allows for Fp2 = Fp[u]/(u2 +1), and Fpk being
constructed as, say Fp2 [v]/(vk/2 − (u+ 1)), which is clearly preferable (cf. [2, 12, 8]). The towers
Ti are described in the sections corresponding to each family, are given in (our) preferential order,
and are marked red in the trees.

2.3. Curve equations. All families under consideration either have j-invariant 0 or 1728, mean-
ing that the elliptic curve equation is defined by one constant: b in y2 = x3 + b for j = 0 or a in
y2 = x3 + ax for j = 1728. In both cases, we always take the correct curve whose constant has
the smallest absolute value, so any multiplications by it (if at all) incur the minimal number of Fp
additions. In all scenarios herein, this results in less than 10 distinct a or b values that rear their
heads most commonly. The curve constants used to subdivide congruencies are the subscripts of
the ai or bi values marked blue in the trees.

2.4. Type of twist. If the binomial used to extend from the twisted subfield Fpd to the full
extension field Fpk is xk/d− i with i ∈ Fpd , then Scott [26] shows that for the sake of quartic twists
on y2 = x3 +ax and sextic twists on y2 = x3 +b, the correct twist is either type M (multiplication)
which is given by y2 = x3 + ax · i and y2 = x3 + b · i respectively, or type D (division) which is
given by y2 = x3 + ax/i and y2 = x3 + b/i respectively. The only other case is the cubic twist
for k = 27 in Section 7, where we define the type M twist as y2 = x3 + b · i2 and the type D
twist as y2 = x3 + b/i2; this is to force quadratic reciprocity of the element in the twisted subfield.
The type of twist corresponding to any given congruency is found immediately above (or in rare
cases besides) the subclass; this is marked dark green in the trees. There is no great difference or
preference between the two, if they are dealt with correctly (see [26, §5] and [8, §4]).

2.5. Fruits. If a subclass or subclasses of a family share all three traits, we call them fruits2 and
they are labelled light green in the trees. Any equivalence classes found in the same fruit bunch
share the same three parameters described in the previous three paragraphs; all three parameters
can be easily seen by following the branches back up to the top of the tree. The most immediate
bold number found above any bunch is the modulus corresponding to the equivalence classes in the
bunch. Any branchings that don’t (yet) produce consistent pairing parameters for its congruencies
are marked grey, and are called unripe. In almost all cases pursuing further branching of the unripe
fruits gives either undesirable pairing parameters, or congruency classes that are too scarce for
our recommendation.

2.6. Our “picks”. After presenting a family tree, we pick our favorite subfamilies in it, and give
them a star rating (up to 5). Our choice is mostly influenced by the towering option, since we
believe this has the greatest effect on the pairing efficiency. For each of our favorite subfamilies,
we searched for compact representations of generators in both the elliptic curve groups G1 and G2.
In most families, our favorite subfamilies either exhibit one or the other, or both. In many cases
there are several suitable generators, so we have put some of the extra options in Appendix B.
For subfamilies where generators in either group aren’t given, it does not mean that one or more
compact generators doesn’t exist; it just means that our (somewhat basic) searches weren’t able
to find any. Moreover, for any one particular curve belonging to the subfamily, there’s still a good
chance that compact generators (that don’t apply to the entire subfamily) can be found. Beside

1See [8, Prop. 1] for the 3 - k cases, whilst the 3 | k case is obvious.
2Our analogy has no intended relation to the well known “low-hanging fruit” analogy, which is also sometimes

used in the context of pairing-based cryptography [25].
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each of our picks, we give approximate frequencies of the corresponding subfamily across the entire
family of curves. Most of these percentages were calculated from somewhere between 5, 000 and
175, 000 example curves from each family3, and are essentially always as we would expect, given
the corresponding resctriction on the original congruency. In Appendix C, we account for a wide
range of security levels and provide comprehensive lists of low hamming-weight curves belonging
to 5-star subfamilies.

2.7. Advantages. The tree approach is exhaustive and complete, i.e. the branching technique
described above doesn’t lose track of any congruencies, which means that every curve belonging
to a family under consideration fits somewhere in the family tree presented. Another advantage of
presenting the entire tree, rather than just presenting specific subfamilies, is that many implemen-
tors will only want to simultaneously assure some proper subset of the properties we used to form
the family trees. Thus, one can group together separate bunches of the tree that share this subset
of desirable properties, and ignore the other property/s that caused them to branch away from
one another. As an example, suppose one is using affine coordinates for a pairing implementation
on a k = 18 KSS curve of the form y2 = x3 + b. The curve and pairing arithmetic will therefore
be independent of b (cf. [19]), so if the implementors are not necessitating consistent compact
generators in G1 or G2, then all bunches with identical towers and twist types (but different curve
equations) could be grouped in the same search, and use the same (Fp-independent) pairing code.

2.8. Proofs. Since the proofs are tedious and repetitive, they have been tightly crammed into
Appendix A. We provide proofs of the irreducibility criterions for the extension field towers, which
rely on elementary number theory (quadratic and cubic reciprocity modulo p) that is essentially
due to Gauss and Euler. We also make constant use of a helpful theorem due to Benger and
Scott [5]. Since all the elliptic curves within have special CM discriminants, we don’t need the
(deeper) more general CM theory for the correct curve equations, but instead draw heavily on
Algorithms 3.4 and 3.5 of [22], which are also “essentially due to Gauss”. For every family, the
proofs of the twist type (which is always one of two options - see [14, Prop. 8]) follow the recipe
in the proof of [8, Prop. 4], so we omit them for space considerations. We do not prove any non-
existence or negative results, e.g. that an extension field tower which would clearly be preferred
does not (always) apply to this congruency, but the reader should rest assured that we tried all
such options, and this is indeed the case.

2.9. Other parameters. Along with p(x), r(x) and n(x), the description of the polynomial
parameterizations for each family include the trace of Frobenius t(x), the G1 cofactor h(x) =
n(x)/r(x), and f(x), which comes from the CM norm equation 4p = t2 −Df2. The polynomials
f(x) and t(x) are commonly used in the proofs.

2.10. x or x′. The four KSS families all start with congruencies of the form x ≡ ±au mod bu. For
the purpose of simplicity, we replace x by x′ = x/u and work instead with the simpler expression
x′ ≡ a mod b. We therefore remind those making use of the results within to inflate the x′

congruency back to the congruency in x when searching for curves, or alternatively update the
polynomials for p(x) and n(x) to p′(x′) and n′(x′), etc.

3. Brezing-Weng k = 8 curves

The polynomial parameterizations for Brezing-Weng family with k = 8 are:

p(x) = (81x6 + 54x5 + 45x4 + 12x3 + 13x2 + 6x+ 1)/4; f(x) = 3x+ 1;

t(x) = −9x3 − 3x2 − 2x; n(x) = (9x2 − 6x+ 5) · (9x4 + 12x3 + 8x2 + 4x+ 1)/4;

h(x) = 9x2/2− 3x+ 5/2; r(x) = (9x4 + 12x3 + 8x2 + 4x+ 1)/2.(3.1)

We found three towers that were often applicable to the congruencies found in the family tree.
They are defined by the binomial from Fp to Fp2 and the binomial from Fp2 to Fp8 (see Table 1).
The polynomials for p(x) and n(x) in (3.1) insist that x is odd, so we begin with the congruence

3See http://www.craigcostello.com.au/pairing

http://www.craigcostello.com.au/pairing
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Fp
Fp[u]/(u2+ui)−−−−−−−−−→ Fp2

F
p2 [v]/(u4−vi)

−−−−−−−−−−→ Fp8

Ti T1 T2 T3

(ui, vi) (2, u) (3, u) (5, u)

Table 1. Efficient towering options in the k = 8 Brezing-Weng tree.

x ≡ 1 mod 2 and branch off into sub-congruencies to form the family tree in Figure 1 (see Appendix
A for the proofs). We pick several fruit bunches that offer particularly friendly parameters for the
pairing computation, and provide compact generators in the groups G1 and G2 where we found
them (see Table 2). The frequencies in the final column were calculated from over 128, 000 different
Brezing-Weng curves and are entirely as expected. Our 5-star picks constitute approximately 50%
of the entire family.

x ≡ 1 mod 2

1, 3(8)

T1

a1

1

1 + 8i(16)

D
1

M
9

3

3 + 8i(16)

a−2

D
3

a2

M
11

5, 7(8)

{5, 7} + 8i(24)

T2

a3

D
7

5,13,23

{5, 13, 23}
+24j(48)

a2

M
13

D
29

a?

5, 23, 37, 47

{5, ..., 47} +48`(240)

a5

D
5
M
71
85
191

a6

M
47
95
143
239

a?

23 37 53
101 119 133
149 167 181
197 215 229

15,21

{15, 21}+24j(120)

T3

a5 - 111 - D

21
39
69
87
117

{21, ..., 117} +120`(240)

a2

M
141
D
189
237

a3

M
21
D
69
117

a?

39
87
159
207

T?

15
45
63
93

Figure 1. The k = 8 Brezing-Weng tree.

rating equiv. class for x tower a twist G1 gen. G′2 gen. more %
type [h](·, ·) [h′](·, ·) §B.1

1 mod 16 T1 1 D -
`
u,
√

1− 2u
´

(i) 12.5

9 mod 16 T1 1 M -
“
u− 1,

√
3
”

(ii) 12.6

? ? ? ? ? 3 mod 16 T1 −2 D
`
1,
√
−1
´ “

u− 1,
√

3
”

(iii) 12.3

11 mod 16 T1 2 M -
`
1,
√

1 + 2u
´

(iv) 12.5
7 mod 24 T2 3 D (1, 2) (1, 1 + 3/u) (v) 8.4

13 mod 48 T2 2 M
“
4, 6
√

2
”

(u− 1,
√

2− 2u) (vi) 4.1

29 mod 48 T2 2 D
“
4, 6
√

2
”

- (vii) 4.2

? ? ? ? {47, ..., 239}4 mod 240 T2 6 M -
`
1,
√

1 + 6u
´

3.4

71, 85, 191 mod 240 T2 5 M
“
2, 2
√

3
”

- (viii) 2.4

5 mod 240 T2 5 D
“
2, 2
√

3
” “

5,
p

125 + 25/u
”

(ix) 0.9

Table 2. Our favorite picks from the k = 8 Brezing-Weng tree.
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4. BLS k = 12 curves

The polynomial parameterizations for BLS family with k = 12 are:

p(x) = (x− 1)2(x4 − x2 + 1)/3 + x; n(x) = (x− 1)2(x4 − x2 + 1)/3; t(x) = x+ 1;

h(x) = (x− 1)2/3; f(x) = (x− 1)(2x2 − 1)/3; r(x) = x4 − x2 + 1.(4.1)

We found six towers that were often applicable to the congruencies found in the family tree. They

Fp
Fp[u]/(u2+ui)−−−−−−−−−→ Fp2

F
p2 [v]/(u6−vi)

−−−−−−−−−−→ Fp12

Ti T1 T2 T3 T4 T5 T6

(ui, vi) (1, u+ 1) (1, u+ 2) (1, u+ 3) (2, u) (2, u+ 2) (5, u)

Table 3. Efficient towering options in the k = 12 BLS tree.

are defined by the binomial from Fp to Fp2 and the binomial from Fp2 to Fp12 (see Table 3). The

x ≡ 1 mod 3

1 (6)

b1

1 (12)

1 (24)

{1} + 24i
(360)

T6

M
73
145
169
337
D
25
49
217
313

T?

1
97
121
193
241
265
289

13 (24)

{13} + 24i
(72)

T4

M
13
D
61

T?

37

{37} + 72j
(216)

T5

M
181
D
37

T?

109

7 (12)

7 (24)

{7} + 24i
(72)

T1

M
31
D
7

T?

55

{55} + 72j
(360)

T2

M
55
343
D
127

T?

199
271

19 (24)

{19} + 24i
(360)

T2

M
67
163
235
259
D
43
115
139
307

T3

M
283
355
D
187

T?

19
91
211
331

4 (6)

{4} + 6i (72) b−2 T1 D 64

b2

10, 28

{10, 28} + 72j
(360)

T2

M
28
100
D
172

T6

M
10
298
D
82

T?

154
226
244
316

b? 4, 22, 40, 46, 58
(cont. in Fig. 3)

16, 34, 52, 70,

{16, 34, 52, 70} +72j(216)

b3

106
214

T4

M
214

T?

106

b4

16, 34, 70, 88, 124, 142, 178, 196

T1

M
16
88

T?

34, 124, 178, 196

{124, 196}
+216` (1080)

T2

M D
124 340
844 628

988
1060

T3

M
412
772

T?

196
656

(216)
34
178

T4

M
70
142

b−3

52
160

T1

M
160

T?

52

Figure 2. The k = 12 BLS tree.

polynomials for p(x) and n(x) in (4.1) insist that x ≡ 1 mod 3, so we begin with this congruence
and branch off into sub-congruencies to form the family tree in Figure 2 (see Appendix A for
the proofs). To fit the tree in, one of the branches has been snapped off and is on its own in
Figure 3. We pick several fruit bunches that offer particularly friendly parameters for the pairing
computation, and provide compact generators in the groups G1 and G2 where we found them (see
Table 4). The frequencies in the final column were calculated from over 170, 000 different BLS
curves and are entirely as expected. Our 5-star picks constitute approximately 17% of the entire
family.



PARTICULARLY FRIENDLY MEMBERS OF FAMILY TREES 7

{4, 22, 40, 46, 58} + 72j(1080)

T2

b−3

D
364
904

b−5

D
4

184
544
724

b3

M
472
1012

b?

292
832

T3

b5

D
616
976

b−3

D
256

T4

b3

D
118
334
550
766
982

b9

D
46
262
478
694
910

b10

D
1054

b =?

190
406
622
838

T5

b3

D
94
310
526
742
958

b9

M
22
238
454
670

b5

886

T?

40, 58, 76, 112
130, 148,166,202

220, 274, 346, 382
400, 418, 436, 490
508, 562, 580, 598
634, 652, 688, 706
760, 778, 796,814
850, 868, 922, 940

994, 1030, 1048, 1066

Figure 3. Another branch of the k = 12 BLS family tree.

rating equiv. class for x tower b twist G1 gen. G′2 gen. more %
type [h](·, ·) [h′](·, ·) §B.2

64 mod 72 T1 −2 D
`
−1,
√
−3
´ “

1,
q

u−1
u+1

”
4.2

31 mod 72 T1 1 M -
`
−1,
√
u
´

4.1
? ? ? ? ? 7 mod 72 T1 1 D - - 4.2

16, 88 mod 216 T1 4 M -
`
−1,
√

4u+ 3
´

2.8
160 mod 216 T1 −3 M

`
−1,
√
−2
´ `
−1,
√
−3u− 4

´
(i) 1.4

{67, ..., 259}4 mod 360 T2 1 M
“
1,
√

2
” `

−1,
√
u+ 1

´
3.3

55, 343 mod 360 T2 1 M -
`
1,
√
u+ 3

´
1.7

{43, ..., 307}4 mod 360 T2 1 D
“
1,
√

2
” “

1,
q

u+3
u+2

”
3.3

127 mod 360 T2 1 D -
“
−1,

q
−u+1

u+2

”
0.8

? ? ? ? 28, 100 mod 360 T2 2 M (−1, 1) - 1.7
172 mod 360 T2 2 D (−1, 1) - 0.8

124, 844 mod 1080 T2 4 M -
`
−2, 2

√
u
´

0.6

{340, ..., 1060}4 mod 1080 T2 4 D -
“
−1,

q
2−u
2+u

”
1.1

283, 355 mod 360 T3 1 M
“
1,
√

2
”

1.7

? ? ? 187 mod 360 T3 1 D
“
1,
√

2
” “

−1,
q
−u+2

u+3

”
0.8

Table 4. Our favorite picks from the k = 12 BLS tree.

5. KSS k = 16 curves

The polynomial parameterizations for KSS family with k = 16 are:

p(x) = (x10 + 2x9 + 5x8 + 48x6 + 152x5 + 240x4 + 625x2 + 2398x+ 3125)/980;

r(x) = x8 + 48x4 + 625; t(x) = (2x5 + 41x+ 35)/35; h(x) = (x2 + 2x+ 5)/980;

n(x) = (x2 + 2x+ 5)(x8 + 48x4 + 625)/980; f(x) = (x5 + 5x4 + 38x+ 120)/35.(5.1)

There were three common towers found in the family tree. They are defined by the binomial
from Fp to Fp2 and the binomial from Fp2 to Fp16 (see Table 5). The polynomials for p(x) and

Fp
Fp[u]/(u2+ui)−−−−−−−−−→ Fp2

F
p2 [v]/(u8−vi)

−−−−−−−−−−→ Fp16

Ti T1 T2 T3

(ui, vi) (2, u) (3, u) (5, u)

Table 5. Efficient towering options in the k = 16 KSS tree.

n(x) in (5.1) insist that x ≡ ±25 mod 70, so for simplicity we rescale x′ = x/5 and begin with
x′ ≡ ±5 mod 14, branching off into sub-congruencies to form the family tree in Figure 4 (see
Appendix A for the proofs). It is easy to see that r(x) always has 2 · 54 · 72 as a factor, so this
division is necessary for (the updated) r(x) to represent primes. We pick several fruit bunches
that offer particularly friendly parameters for the pairing computation, and provide compact
generators in the groups G1 and G2 where we found them (see Table 6). The frequencies in the
final column were calculated from over 13, 000 different KSS curves with k = 16 and are entirely
as expected. Our 5-star picks constitute approximately 50% of the entire family. The generators
in G′2 = E′(Fp4) use v ∈ Fp4 , where Fp4 = Fp2 [v]/(v2 − u).
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x′ ≡ ±5 mod 14

{5, 9} + 14i (112)

a1

T1

M
61
93
D
5
37

a2

T?

9, 89

{9, 89}
+112j (560)

T3

M
121
201
D
9
89

T?

233
313
457
537
345
425

T1

D
47
79

a−2

T1

M
23
103

a?

19, 33, 51, 65, 75, 107

{19, 33, 51, 65, 75, 107} +112j (1680)

a3

T2

M
19 163
187 331
499 523
667 691
859 1003
1027 1171
1339 1363
1507 1531

T3

M
401
1601

D
929
1409

T?

257
593
737
1073

a5

T2

D
1153
1163

T3

M
219
299
579
797
1059
1139
1419
1619

T?

33
513

a?

51 65 75 107 131 145
177 243 275 289 355 369
387 411 443 467 481 555
611 625 635 705 723 747
803 817 835 849 891 915
947 961 971 1041 1083

1115 1185 1195 1227 1251
1265 1283 1297 1307 1377
1395 1451 1475 1489 1521

1563 1587 1643 1675

Figure 4. The k = 16 KSS family tree.

rating equiv. class for x′ tower a twist G1 gen. G′2 gen. %
(x′ = x/5) type [h](·, ·) [h′](·, ·)

61, 93 mod 112 T1 1 M -
“
v − 1,

p
(v − 1)3 + v(v − 1)

”
12.2

5, 37 mod 112 T1 1 D -
“
−v,
√
−v3 − 1

”
12.7

? ? ? ? ? 47, 79 mod 112 T1 2 D -
“
2/v,

q
8

v3 + 4
v2

”
12.1

23, 103 mod 112 T1 −2 M
`
1,
√
−1
´

- 13.1

? ? ? ? {19, ..., 1531}16 mod 1680 T2 3 M (1, 2)
“
3/v,

q
27
v3 + 9

v2

”
7.9

? ? ? 1153, 1633 mod 1680 T2 5 D
“
2, 2
√

3
”

- 0.9

Table 6. Our favorite picks from the k = 16 KSS tree.

6. KSS k = 18 curves

The polynomial parameterizations for KSS family with k = 18 are:

p(x) = (x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x+ 2401)/21;

r(x) = x6 + 37x3 + 343; t(x) = (x4 + 16x+ 7)/7; h(x) = (x2 + 5x+ 7)/21;

n(x) = (x2 + 5x+ 7)(x6 + 37x3 + 343)/21; f(x) = (5x4 + 14x3 + 94x+ 259)/21.(6.1)

There were five common towers found in the family tree. They are defined by the cubic binomial
from Fp to Fp3 and the binomial from Fp3 to Fp18 (see Table 7). The polynomials for p(x) and

Fp
Fp[u]/(u3+ui)−−−−−−−−−→ Fp3

F
p3 [v]/(u6−vi)

−−−−−−−−−−→ Fp18

Ti T1 T2 T3 T4 T5

(ui, vi) (2, u) (2, 2u) (3, 2u) (5, u) (2, 5u)

Table 7. Efficient towering options in the k = 18 KSS tree.

n(x) in (6.1) insist that x ≡ 14 mod 42, so we rescale x′ = x/14 and begin with x′ ≡ ±1 mod 3,
branching off into sub-congruencies to form the family tree in Figure 5 (see Appendix A for the
proofs). As it stands, r(x) will always contain 73 as a factor, so this division is necessary for (the
updated) r(x) to represent primes. Our favorite picks and the associated generators are in Table
8. The frequencies in the final column were calculated from over 25, 000 different KSS curves with
k = 18 and are as expected. Our 5-star picks constitute approximately 27% of the entire family.
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x′ ≡ 1 mod 3

1 (9)

1, 10 (27)

{1, 10}
+27i(108)

T3

b3 - 37 - D

1, 28, 64

{1, 28, 64}
+108j(3780)

b−9

M
109
325
541
649
865
1081
1297
1405
1621
1837
2161
2377
2809
2917
3349
3565

b5

M
433
568
1108
1513
1648
2053
2188
2593
2728
3133
3268
3673

D
388
928
1468
2008
3088
3628

b±7

b−7

M
1189
1945
2701
3457

b7

M
1

244
757
1000
1756
2269
2512
3025

b6

D
64 172
496 604
712 820

1144 1252
1360 1576
1684 1900
2116 2224
2332 2440
2656 2764
2872 2980
3196 3412
3520 3736

b??

28 136
217 280
352 460
676 784
892 973

1036 1216
1324 1432
1540 1729
1792 1864
1972 2080
2296 2404
2485 2548
2620 2836
2944 3052
3160 3241
3304 3376
3484 3592

3700

T?

10
55
82
91

19 (27)

{19} + 27i (270)

T4

b5 - 208 - D

19
181
262

{19, 181, 262}
+270j(1890)

b−7

M
181
559

b7

M
1261
1639
1882

b?

19
262
289
451
532
721
802
829
991
1072
1099
1342
1369
1531
1612
1801
1882

T?

46
73
100
127
154
235

4, 7 (9)

{4, 7} + 9i (36)

T1

b2 - 4 - D
b−2 - 31 - D

7,16

{7, 16}
+36j(108)

b−4

M
7
43

b3

M
79

b6

M
16

b?

52
88

T2

b2 - 13 - D

25

{25} + 36j
(108)

b3

M
25

b−4

M
61
97

T?

22, 34

{22, 34}
+36j (180)

T5

b5 - 22 - D

58, 142, 178

{58, 142, 178}
+180` (1260)

b7

M
502
1258

D
598

b10

M
178
358
538
718
898
D
58
418
778
958
1138

b?

142
238
322
682
862
1042
1078
1222

T?

34
70
94
106
130
166

Figure 5. The k = 18 KSS family tree.

rating equiv. class for x′ = x/14 tower b twist G1 gen. G′2 gen. more %
type [h](·, ·) [h′](·, ·) §B.3

4 mod 36 T1 2 D (−1, 1)

„
1,
q

u+2
u

«
(i) 8.4

31 mod 36 T1 −2 D (3, 5)
“
1− u,

p
(1− u)3 − 2/u

”
(ii) 7.9

? ? ? ? ? 7, 43 mod 108 T1 −4 M (2, 2)
“
−2, 2

p
−(u+ 2)

”
(iii) 5.3

79 mod 108 T1 3 M (1, 2)
`
−1,
√
−1 + 3u

´
(iv) 2.9

16 mod 108 T1 6 M
“
−1,
√

5
” `

2,
√

2 + 6u
´

2.9

13 mod 36 T2 2 D (−1, 1) - 8.3
? ? ? ? 61, 97 mod 108 T2 −4 M (2, 2)

`
2, 2
√

2− 2u
´

(v) 5.5
25 mod 108 T2 3 M (1, 2) - 2.8

37 mod 108 T3 3 D (1, 2)

„
1,
q

2u+3
2u

«
2.9

{109, ..., 3565}16 mod 3708 T3 −9 M
`
1, 2
√
−2
´ `

−3, 6
√
−1
´

1.4
{568, ..., 3673}13 mod 3708 T3 5 M (−1, 2) - (vi) 1.0

? ? ? {328, ..., 3628}6 mod 3708 T3 5 D (−1, 2) - (vi) 0.5
{1189, ..., 3457}4 mod 3708 T3 −7 M (2, 1) - (vii) 0.4

{1, ..., 2512}8 mod 3708 T3 7 M
“
7, 5
√

14
”

- 0.7

{64, ..., 3736}24 mod 3708 T3 6 D -
“
u− 1,

p
(u− 1)3 + 3/u

”
1.9

Table 8. Our favorite picks from the k = 18 KSS tree.
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7. BLS k = 27 curves

The polynomial parameterizations for BLS family with k = 27 are:

p(x) = (x+ 1)2(x18 − x9 + 1)/3− x19; r(x) = x18 − x9 + 1; f(x) = (x10 − 2x9 + x+ 1)/3;

n(x) = (x2 − x+ 1)(x18 − x9 + 1)/3; t(x) = −x10 + x+ 1; h(x) = (x2 − x+ 1)/3.(7.1)

There were three common towers found in the family tree. They are defined by the cubic binomial
from Fp to Fp3 and the binomial from Fp3 to Fp27 (see Table 9). The polynomials for p(x) and

Fp
Fp[u]/(u3+ui)−−−−−−−−−→ Fp3

F
p3 [v]/(u9−vi)

−−−−−−−−−−→ Fp27

Ti T1 T2 T3

(ui, vi) (3, u) (5, u) (7, u)

Table 9. Efficient towering options in the k = 27 BLS tree.

n(x) in (7.1) insist that x ≡ 1 mod 3, which we use to branch off into sub-congruencies, forming
the family tree in Figure 6 (see Appendix A for the proofs). As it stands, r(x) will always contain
3 as a factor, so division by 3 is necessary for (the updated) r(x) to represent primes. Our favorite

x ≡ 2 mod 3

2 (9)

T1

{2} + 9i (1260)

b−5

D
38
128
173
218
308
353
398
488
533
578
668
713
758
848
893
938
1028
1073
1118
1208
1253

b−7

D
2
65
254
317
380
506
569
632
821
884
1010
1136

b7

D
110
191
236
362
425
443
614
677
695
740
866
929
947
992
1199
1181
1244

b9

D
11,20,29,47
56,74,83,92

101,119,137,146
155,164,182,200
209,227,245,263
272,281,290,299
326,335,344,371
389,407,416,434
452,461,470,479
497,515,524,542
551,560,587,596
605,623,641,650
659,686,704,722
731,749,767,776
785,794,803,812
830,839,857,875
902,911,920,956
965,974,983,1001

1019,1037,1046,1055
1064,1082,1091,1100
1109,1127,1145,1154
1163,1172,1190,1217

1226,1235

5 (9)

T1

{2} + 9i (36)

b−3

M
5
14
32

b3

M
23

8 (9)

{8} + 9i (45)

T2

8

{8} + 45j
(180)

b−5

M
8
53
98

b?

143

T?

17, 26, 35, 44

{17, 26, 35, 44}
+45j (315)

T3

17, 26, 44, 80, 89, 107, 116, 152,
170, 179, 206, 215, 242, 269, 296, 305

{17, ..., 269}
+315` (1260)

b−7

M
44 170
296 422
485 674
737 800
926 989

1052 1241

b7

M
26 89

107 152
341 359
530 611
656 782
845 1034
1097 1115

1160

b?

17 80 161 179
206 215 242 269
305 332 395 404
467 476 494 521
557 584 620 647
710 719 791 809
836 872 899 935

962 971 1025 1106
1124 1151 1187 1214

1250

T?

35
62
71
125
134
161
197
224
251
260
287
314

Figure 6. The k = 27 BLS family tree.

picks and the associated generators are in Table 10. The frequencies in the final column were
calculated from over 6, 000 different BLS curves with k = 27 and behave as expected. Our 5-star
picks constitute approximately 66% of the entire family. The generators in G′2 = E′(Fp9) use
v ∈ Fp9 , where Fp9 = Fp3 [v]/(v3 − u).
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rating equiv. class for x tower b twist G1 gen. G′2 gen. more %
type §B.4

5 mod 36 T1 −3 M - - 8.5
14, 32 mod 36 T1 −3 M [h]

`
1,
√
−2
´

- 16.8
23 mod 36 T1 3 M [h] (1, 2) - 7.8

? ? ? ? ? {38, ..., 1253}21 mod 1260 T1 −5 D - - 5.0
{2, .., 1136}12 mod 1260 T1 −7 D [h] (2, 1) - (i) 3.1
{110, .., 1244}17 mod 1260 T1 7 D [h]

`
−7, 4

√
−21

´
- (ii) 4.0

{11, .., 1235}89 mod 1260 T1 9 D [h] (−2, 1) - (iii) 21.0

? ? ? ? 8, 98 mod 180 T2 −5 M [h]
`
−3, 4

√
−2
´

- 3.3
53 mod 180 T2 −5 M - - 1.67

Table 10. Our favorite picks from the k = 27 BLS tree.

8. KSS k = 32 curves

The polynomial parameterizations for the KSS family with k = 32 are:
p(x) = (x18 − 6x17 + 13x16 + 57120x10 − 344632x9 + 742560x8 + 815730721x2 − 4948305594x

+ 10604499373)/2970292; t(x) = (−2x9 − 56403x+ 3107)/3107;

r(x) = x16 + 57120x8 + 815730721; f(x) = 3x9 − 13x8 + 86158x− 371280;

n(x) = (x2 − 6x+ 13)(x16 + 57120x8 + 815730721)/2970292; h(x) = (x2 − 6x+ 13)/2970292.(8.1)

There were only two common (and efficient) towers found in the family tree. They are defined
by the quadratic binomial from Fp to Fp2 and the binomial from Fp2 to Fp32 (see Table 11).
The polynomials for p(x) and n(x) in (8.1) insist that x ≡ ±325 mod 6214, so we rescale with

Fp
Fp[u]/(u2+ui)−−−−−−−−−→ Fp2

F
p2 [v]/(u16−vi)

−−−−−−−−−−→ Fp32

Ti T1 T2

(ui, vi) (2, u) (3, u)

Table 11. Efficient towering options in the k = 32 KSS tree.

x′ = x/13 and begin with x′ ≡ ±25 mod 478, which branches off into sub-congruencies forming
the family tree in Figure 7 (see Appendix A for the proofs). As it stands, r(x) will always contain
2 · 138 · 2392 as a factor, so we must divide this factor out before (the updated) r(x) can represent
primes. Our favorite picks and the associated generators are in Table 12. The frequencies in the

x′ ≡ ±25 mod 478

25, 453 (478)

{25, 453} + 478i (3824)

a1

T1

M
2365
2893

D
453
981

a−2

T1

M
1887
2415

a2

25, 503, 3321, 3799

T1

D
503
3799

T?

25, 3321

{25, 3321}
+3824j (11472)

T2

D
7145
7673

T?

25
3321
3849
10969

a?

931, 1409, 1459
1937, 2843, 3371

{931, ..., 3371}
+3824j (11472)

a3

T2

M
2843
3371
8579
9107

a?

931 1409
1459 1937
4755 5233
5283 5761
6667 7195
9057 9585

10491 11019

Figure 7. The k = 32 KSS family tree.

final column were calculated from over 2, 600 different KSS curves with k = 32 and are roughly as
expected. Our 5-star picks constitute approximately 51% of the entire family. The generators in
G′2 = E′(Fp8) use w ∈ Fp8 , where Fp8 = Fp4 [w]/(w2 − v), and Fp4 = Fp2 [v]/(v2 − u).
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rating equiv. class tower a twist G1 gen. G′2 gen. more %
for x′ = x/13 type [h](·, ·) [h′](·, ·) §B.5

2365, 2893 mod 3824 T1 1 M -
“
w − 1,

√
w3 − 2w2 + 2w − 1

”
13.2

? ? ? ? ? 453, 981 mod 3824 T1 1 D
“
w,
√
w3 + 1

”
11.5

1887, 2415 mod 3824 T1 −2 M (−1, 1) - (i) 13.3
503, 3799 mod 3824 T1 2 D - - 12.7

7145, 7673 mod 11472 T2 2 D
“
4, 6
√

2
”

- (ii) 5.4

? ? ? ? {2843, ..., 9107}4 T2 3 M (1, 2) - (iii) 13.0
mod11472

Table 12. Our favorite picks from the k = 32 KSS tree.

9. KSS k = 36 curves

x′ ≡ ±7 mod 37

7, 30 (37)

44, 104 (111)

{44, 104} + 111i (444)

q ≡ 1(4)

155, 215, 266, 326

{155, 266, 215, 326} +444j (2664)

T4

b2 - 710 - D
1214

155
659
1598
1931
2102
2435

{155, ..., 2435}
+2664` (13320)

b5

M
155
7430
9590
11315

D
5099
7259

b?

659
1598
1931
2102
2435
2819
3323
4262
4595
4766
5483
5987
6926
7763
8147
8651
9923
10094
10427
10811
12254
12587
12758
13091

T?

215 266
326 599
770 1043
1103 1154
1487 1547
1658 1991
2042 2375
2486 2546

{215, ..., 2546}
+2664`(13320)

T5

b2
M

6875
9035

D
11699
b10
D

1487
b5
D
770
2930
4322
6482
7874
10034
10982
13142

215
1154
2375
2879
3767
5039
5210
5654
5927
7319
7370
7814
8762
9095
9479
10922
11255
12314

T?

266 326
599 1043
1103 1547
1658 1991
2042 2486
2546 2990
3263 3434
3707 3818
4151 4211
4655 4706
5150 5543
5594 6098
6371 6431
6815 6986
7703 8207
8258 8318
8591 9146
9650 10367
10478 10538
10871 11426
11759 11810
12143 12698
13031 13202

q ≡ 3(4)

44, 104, 377, 437

{44, 104, 377, 437}+ 444jj (2664)

T1

b2 - 1376 - D
1880

b−1 - 821 - M
1325

b−1 - 437 - D
2597

104, 2264

{104, 2264}
+ 2664`(7992)

b−4

M
104
5432
7592

2264

b3

M
2768
4928

T?

44, 377, 488, 548, 881, 932, 992, 1265,
1436, 1709, 1769, 1820, 2153, 2213, 2324, 2657

{44, ..., 2657}+ 2664`(13320)

T2

b−1

M
3545
5705
7097
9257
10205
10649
12365
12809

D
1265
1709
2657
4817
6209
8369
12425
12869

932, 992, 2324,
3152, 4100, 4484,
6260, 7652, 8984,

9812, 11144, 12092

{3152, ..., 9812}
+ 13320m(39960)

b3

M
932
2324
4484
22304
24464
38732

D
14312
16472
30740
32900
34292
36452

b−4

M
12092
14252

D
4100
6260
17420
19580

b5

D
992
3152
7652
9812
20972
23132
27632
29792

b?

8984
11144
15644
17804
25412
27572
28964
31124
35624
37784

b−2

M
8540
10700

D
44

11204

T3

b−2 - 5372 - D
b−1 - 10145 - M
b−1 - 3929 - D

4373

488, 5816, 8924

{488,..., 8924 }
+13320m(39960)

b3

M
488
8924
38288
6764

D
30296
32456

b−5

D
3656
5816
16976
19136

b−4

M
20084
22244
33404
35564

b?

11648
13808
24968
27128

T?

377 548
881 1436
1820 2153
2708 3041
3596 4433
4877 4988
5321 5876
6320 6593
7037 7148
7481 7541
8036 8480
8873 9701
9761 10316
11033 11537
11588 11921
12476 12980

13313

Figure 8. The k = 36 KSS family tree.
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The polynomial parameterizations for the KSS family with k = 36 are:
p(x) = (x14 − 4x13 + 7x12 + 683x8 − 2510x7 + 4781x6 + 117649x2 − 386569x+ 823543)/28749;

r(x) = x12 + 683x6 + 117649;h(x) = (x2 − 4x+ 7)/28749; t(x) = (259 + 757x+ 2x7)/259;

n(x) = (x2 − 4x+ 7)(x12 + 683x6 + 117649)/28749; f(x) = (4x7 − 14x6 + 1255x− 4781)/777.(9.1)

There are five common towers found in the family tree. They are defined by the quadratic binomial
from Fp to Fp2 and the binomial from Fp2 to Fp36 (see Table 13). The polynomials for p(x) and n(x)

Fp
Fp[u]/(u2+ui)−−−−−−−−−→ Fp2

F
p2 [v]/(u18−vi)

−−−−−−−−−−→ Fp36

Ti T1 T2 T3 T4 T5

(ui, vi) (1, u+ 1) (1, u+ 2) (1, u+ 3) (2, u) (5, u)

Table 13. Efficient towering options in the k = 36 KSS tree.

in (9.1) insist that x ≡ ±49 mod 259, so we rescale with x′ = x/7 and begin with x′ ≡ ±7 mod 37,
which branches off into sub-congruencies forming the family tree in Figure 8 (see Appendix A for
the proofs). As it stands, r(x) will always contain 76 · 372 as a factor, so we must divide this
factor out before (the updated) r(x) can represent primes. Our favorite picks and the associated
generators are in Table 14. The frequencies in the final column were calculated from almost
7, 000 different KSS curves with k = 36 and are roughly as expected. Our 5-star picks constitute
approximately 17% of the entire family. The generators in G′2 = E′(Fp6) use v ∈ Fp6 , where
Fp6 = Fp2 [v]/(v3 − u).

rating equiv. class for x′ = x/7 tower b twist G1 gen. G′2 gen. %
type [h](·, ·) [h′](·, ·) §B.6

1376, 1880 mod 2664 T1 2 D (−1, 1)

„
−1,

q
2−v

v

«
4.1

821, 1325 mod 2664 T1 −1 M
`
−1,
√
−2
´ `

1,
√

1− v
´

4.1
? ? ? ? ? 437, 2597 mod 2664 T1 −1 D

`
−1,
√
−2
´

- 4.3

{104, ..., 7592}4 mod 7992 T1 −4 M (2, 2)
“
1− v,

p
(1− v)3 − 4v

”
(i) 3.0

2768, 4928 mod 7992 T1 3 M (1, 2)
“
1− v,

p
(1− v)3 + 3v

”
1.1

{3545, ..., 12809}8 mod 13320 T2 −1 M -
`
v,
√
u+ 2− v

´
2.2

{1265, ..., 12869}8 mod 13320 T2 −1 D -
“
1/v,

q
1

u+2 − v
”

3.4

8540, 10700 mod 13320 T2 −2 M (3, 5)
“
1,
p

1− 2/v
”

(ii) 1.0

44, 11204 mod 13320 T2 −2 D (3, 5) - (ii) 0.9
? ? ? ? {932, ..., 38732}5 mod 39960 T2 3 M (1, 2) - (iii) 0.7

{14312, ..., 36452}6 mod 39960 T2 3 D (1, 2) - (iii) 1.0
12092, 14252 mod 39960 T2 −4 M (2, 2) - ?? 0.3

{4100, ..., 19580}4 mod 39960 T2 −4 D (2, 2) - ?? 0.6

{992, ..., 29792}8 mod 39960 T2 5 D -

„
−v,

q
5−v4

v

«
1.1

5372 mod 13320 T3 −2 D (3, 5) - 0.5
10145 mod 13320 T3 −1 D - - 0.5

3929, 4373 mod 13320 T3 −1 M - - 0.8
? ? ? {488, ..., 38288}4 mod 39960 T3 3 M (1, 2) - ?? 0.5

30296, 32456 mod 39960 T3 3 D (1, 2) - ?? 0.3
{3656, ..., 19136}4 mod 39960 T3 −5 D

`
−3, 4

√
−2
´

- (v) 0.6
{20084, ..., 35564}4 mod 39960 T3 −4 M (2, 2) - (vi) 0.6

Table 14. Our favorite picks from the k = 36 KSS tree.

10. BLS k = 48 curves

The polynomial parameterizations for the BLS family with k = 48 are:

p(x) = (x− 1)2(x16 − x8 + 1)/3 + x; r(x) = x16 − x8 + 1; t(x) = x+ 1;

n(x) = (x− 1)2(x16 − x8 + 1)/3; f(x) = (x− 1)(2x8 − 1)/3; h(x) = (x− 1)2/3.(10.1)

There are five common towers found in the family tree. They are defined by the quadratic binomial
from Fp to Fp2 and the binomial from Fp2 to Fp48 (see Table 15). The polynomials for p(x) and n(x)
in (10.1) insist that x ≡ ±1 mod 3, which branches off into sub-congruencies forming the family
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Fp
Fp[u]/(u2+ui)−−−−−−−−−→ Fp2

F
p2 [v]/(u24−vi)

−−−−−−−−−−→ Fp48

Ti T1 T2 T3 T4 T5

(ui, vi) (1, u+ 1) (1, u+ 2) (2, u) (2, u+ 2) (5, u)

Table 15. Efficient towering options in the k = 48 BLS tree.

x ≡ 1 mod 3

1 (6)

b1

1 (12)

1 (24)

{1} + 24i
(120)

25
49

{25, 49}
+120j (360)

T5

M
145
169
D
25
49

T?

265
289

T?

1
73
97

13 (24)

{13} + 24i
(72)

T3

M
13
D
61

T?

37

{37} + 72j
(216)

T4

M
181
D
37

T?

109

7 (12)

{7} + 12i (72)

T1

M
31
D
7

T?

19
43
55
67

{19, ..., 67}
+72j(360)

T2

M
55
235
259
D
115
139

T?

19
43
67
91
127
163
187
199
211
271
283
307
331
343
355

4 (6)

4 (12)

{4} + 12i (72)

T1

b−2 - 64 - D

16

{16} + 72j (216)

b−3

M
160

b4

M
16
88

T?

4, 28, 40, 52

{4, 28, 40, 52}
+72j (360)

T2

b2 - 100 - M

4
124
184
340

{4, ..., 340}
+360`(1080)

b−5

D
4

184
544
724

b−3

M
484
D
364
700
904

b4

M
124
844
D
340
1060

T?

28
40
52
76
112
148
172
196
220
244
256
268
292
316
328

10 (12)

10 (24)

{10} + 24i
(72)

T3

10, 34

{10, 34}
+72j(216)

b4

M
34
178

b3

M
106
D
10

b?

82
154

T?

58

{58} + 72j
(216)

T4

b3 - 202 - D

130

{130}
+216`(1080)

b9

M
130
562
778
994

b5

M
346

T?

58

22 (24)

{22} + 24i
(120)

70
94

{70, 94}
+120j (360)

T5

b2 - 190 - M
b4 - 214- M

70
94

{70, 94}+
360`(1080)

b4

D
70
790

b3

D
430
94

b?

454
814

T?

310
334

T?

22
46
118

Figure 9. The k = 48 BLS family tree.

rating equiv. class for x tower b twist G1 gen. G′2 gen. more %
type [h](·, ·) [h′](·, ·) §B.7 %

64 mod 72 T1 −2 D (3, 5)
“
1− 2/w,

p
(1− 2/w)3 − 2

”
(i) 4.5

? ? ? ? ? 31 mod 72 T1 1 M -
“
w + 1,

p
(w + 1)3 + 1

”
(ii) 4.5

7 mod 72 T1 1 D - - 4.4
55, 235, 259 mod 360 T2 1 M - - 2.0

115, 139 mod 360 T2 1 D
“
1,
√

2
”

- 1.4

100 mod 360 T2 2 M - - 0.7
{4, ..., 724}4 mod 1080 T2 −5 D

`
−15, 26

√
−5
´

- 1.1
? ? ? ? 364, 700, 904 mod 1080 T2 −3 D - - 0.6

484 mod 1080 T2 −3 M - -
124, 844 mod 1080 T2 4 M -

`
2,
√

8 + 4w
´

(iii) 0.2
340, 1060 mod 1080 T2 4 D -

`
1,
√

1 + 4w
´

(iv) 0.4

13 mod 72 T3 1 M −
`
1,
√
w + 1

´
(v) 3.9

61 mod 72 T3 1 D − - 4.1

? ? ? 34, 178 mod 216 T3 4 M
“
−1,
√

3
”

- (vi) 2.9

106 mod 216 T3 3 M (1, 2) - 1.4
10 mod 216 T3 3 D (1, 2) - 1.5

Table 16. Our favorite picks from the k = 48 BLS tree.

tree in Figure 9 (see Appendix A for the proofs). Our favorite picks and the associated generators
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are in Table 16. The frequencies in the final column were calculated from over 5, 000 different BLS
curves with k = 48 and are as expected. Our 5-star picks constitute approximately 51% of the
entire family. The generators in G′2 = E′(Fp8) use w ∈ Fp8 , where Fp8 = Fp4 [w]/(w2 − v), and
Fp4 = Fp2 [v]/(v2 − u).

11. Recommendations

For all curve families under consideration, as well as BN k = 12 and BLS k = 24 curves,
Table 17 gives the approximate security level at which the DLP and ECDLP complexities are
balanced. The ECDLP security is computed as half the bit-length of the group order r, whilst the
calculation of the security in Fpk comes directly from the formula in [30, §6.2.1]. This gives a rough
indication of which security level(s) a family is particularly suitable for, and where the family will
best compete against other families. For such security levels, we point to where examples of strong
curves with low hamming-weights and implementation-friendly parameters can be found.

192-bit secure curves
family ρ-value x0 E[r(x0)] sec. F

q(x0)k sec. security levels example curves

(log q/ log r) (bits) (bits) (bits) accounted for (bits) found in
BW k = 8 1.5 60 121 121 112 Table 18
BN k = 12 1 60 122 122 80 - 192 [12, §4]
BLS k = 12 1.5 85 170 170 192, 224 Table 19, Table 20
KSS k = 16 1.25 49 188 189 192, 224 Table 19, Table 20
KSS k = 18 1.33 74 217 217 192, 224 Table 19, Table 20
BLS k = 24 1.25 62 252 253 192 - 320 [8, §6]
BLS k = 27 1.11 28 251 253 256, 288 Table 21, Table 22
KSS k = 32 1.125 41 304 302 288, 320 Table 22, Table 23
KSS k = 36 1.167 57 328 330 320, 352 Table 23, Table 24
BLS k = 48 1.125 49 392 390 352, 384 Table 24, Table 25

Table 17. Balancing ECDLP and DLP security in families, and where example
curves are found.

Our advice on how to proceed agrees almost entirely with that at the end of Scott’s note [26,
§6], who recommends first finding the optimal degree k binomial xk− i ∈ Fp[x] to define the entire
tower, before going searching for curves (that support this tower). The only difference in our
recommendation is in the slight performance gain that’s achieved when defining the tower using
two binomials. Thus, we recommend choosing one or more of the subfamilies that guarantee our
favorite tower choices (or yours), and restricting the search parameter x0 to the corresponding
congruences and to be of low hamming-weight before kick-starting a search. If, in addition, there
is a preference in the size of a curve constant, the nature of the twist, or the existence of compact
generators, then the subfamilies herein give a concrete way to also simultaneously prescribe these
desired properties in advance.

Alternatively, the lists of curves in Appendix C should stand implementors in good stead for a
while yet, at least until accepted levels of security go beyond the AES equivalent of 384-bits, or
perhaps until even better curve families are found.
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Appendix A. Proofs

For each family, we first give proofs for the towers Ti in the corresponding tree, before giving
proofs for the correct curve constants ai or bi. The proofs for the curve constants sometimes need
results that follow from the towers they are associated with, so rather than prove things twice, we
occasionally rely on the reader to match congruencies with their corresponding reciprocity results
from the tower proofs.

A.1. Towers. Our proofs of the towers mostly make use of the following theorem.

Theorem A.1 (Benger-Scott [5], Thm. 4). Let m > 1, n > 0 be integers, p and odd prime and
α ∈ F×pn . The binomial xm−α is irreducible in Fpn [x] if the following two conditions are satisfied:

http://conf.isi.qut.edu.au/ice-em2007/program/
http://www.ecrypt.eu.org/documents/D.SPA.13.pdf


PARTICULARLY FRIENDLY MEMBERS OF FAMILY TREES 17

(1) Each prime factor q or m divides p− 1 and NFpn/Fp
(α) ∈ Fp is not a qth residue in Fp;

(2) If m ≡ 0 mod 4, then pn ≡ 1 mod 4.

The Norm of α ∈ Fpn over Fp is defined as

NFpn/Fp
(α) =

n−1∏
i=0

αp
i

We will only be using Theorem A.1 to prove irreducibility in Fp2 [x] or Fp3 [x], i.e. we only need
to compute NFp2/Fp

and NFp3/Fp
, which we abbreviate to N2,1 and N3,1 respectively. The norm

computation usually requires a trivial (possibly repeated) application of Fermat’s little theorem,
so we omit the details to save space.

Whether towering up to Fp2 or Fp3 , or towering beyond them to Fpk then, the proofs all amount
to showing quadratic or cubic non-reciprocity in Fp. We write the quadratic and cubic characters
of a as usual, i.e. (ap )2 and (ap )3 respectively, and for quadratic reciprocity, we use the following
two results.

Proposition A.2 ([15], §5, Prop. 5.1.3). 2 is a quadratic residue modulo p iff p ≡ 1, 7 mod 8.

Theorem A.3 ([15], §5, Thm. 2). Let q be an odd prime.

(a) If q ≡ 1 mod 4, then q is a quadratic residue modulo p iff p ≡ r mod q, where r is a quadratic
residue modulo q.

(b) If q ≡ 3 mod 4, then q is a quadratic residue modulo p iff p ≡ ±b2 mod 4q, where b is an odd
integer prime to q.

For cubic reciprocity, we apply Euler’s conjectures [21], which were originally based on Fermat’s
observation that for p ≡ 1 mod 3, p can be written as p = a2 + 3b2, where a and b are unique up
to sign. For our purposes, a more convenient formulation of Euler’s conjectures (which are also
special cases of Lehmer’s result [20]) can be made in the following theorem, by instead writing 4p
as 4p = L2 + 27M2, where L and M are unique up to sign ([15, Prop. 8.3.2]).

Theorem A.4 (Euler’s conjectures [21], Prop. 7.1 - 7.4). For p ≡ 1 mod 3, let L and M be the
unique integers (up to sign) such that 4p = L2 + 27M2. Then,

(i) :
(

2
p

)
3

= 1↔ L ≡M ≡ 0 mod 2; (ii) :
(

3
p

)
3

= 1↔M ≡ 0 mod 3;

(iii) :
(

5
p

)
3

= 1↔ LM ≡ 0 mod 5; (iv) :
(

7
p

)
3

= 1↔ LM ≡ 0 mod 7;

The convenience of analyzing the equation 4p = L2 + 27M2 comes from the CM norm equation
for curves with discriminant D: 4p = t2−Df2. Curves of discriminant D = −3 are the only curves
requiring cubic reciprocity (extensions) in this paper, so we can always write 4p = t2 + 3f2 where
t = t(x) and f = f(x) are given in the family parameterizations. Depending on the different cases
for (t, f) mod 6, three different manipulations of the CM norm equation (taken from [8]) can be
employed to write 4p = L2 + 27M2, given below.

(i) 4p = t2 + 27 (f/3)2

(ii) 4p =
(

3f + t

2

)2

+ 27
(
t− f

6

)2

(iii) 4p =
(
t− 3f

2

)2

+ 27
(
t+ f

6

)2

(A.1)

Throughout the towering proofs we refer to equation (A.1)-(i),(ii), or (iii) depending on how L
and M (in 4p = L2 + 27M2) are computed from t(x) and f(x), which we abbreviate to t and f
for short.
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A.2. Curve equations. For k = 8, k = 16 and k = 32 KSS curves, the correct curve has CM
discriminant D = −1 and is of the form E/Fp : y2 = x3 + ax. If g is a fourth-power-free integer,
then a is precisely one of {1, g, g2, g3} ([29, §X.6]). For all the other families, the correct curve has
discriminant D = −3 and is of the form E/Fp : y2 = x3 + b. In this scenario, if g is neither square
or cube in Fp, then b is precisely one of {1, g, g2, g3, g4, g5} ([29, §X.5, Corr. 5.4.1]). For both of
these special scenarios (CM discriminants), Rubin and Silverberg [22] present simple algorithms
(Alg. A.5 and Alg. A.6 below) to determine the correct a or b value, both of which they say are
“essentially due to Gauss”. Our proofs make constant use of these algorithms.

Algorithm A.5 (Rubin-Silverberg [22], Alg 3.4). Suppose D = −1, i.e. 4p = t2 + f2 and
E/Fp : y2 = x3 − ax. Set L = t/2 and M = f/2. A correct curve (value of a) is found by the
following algorithm.

• Step 1: If L is odd and L− 1 ≡M mod 4, then a = 1.
• Step 2: If L is odd and L−1 6≡M mod 4, then a ∈ Fp is any square that is not a fourth

power (i.e. a(p−1)/4 ≡ −1 mod p).
• Step 3: If L is even, replace M by −M if necessary to ensure that M − 1 ≡ L mod 4,

then output any a ∈ Fp such that a(p−1)/4 ≡ L/M mod p.

Notice that the choice of a in Alg. A.5 is such that y2 = x3− ax is the correct curve, whilst we
have been using y2 = x3 + ax as the correct curve throughout. Thus, a specific proof that a = ã
will actually use −ã when Alg. A.5 is invoked.

Algorithm A.6 (Rubin-Silverberg [22], Alg 3.5). Suppose D = −3, i.e. 4p = t2 + 3f2 and
E/Fp : y2 = x3 + b. A correct curve (value of b) is found by the following algorithm.

• Step 1: If f ≡ 0 mod 3 and t ≡ 2 mod 3, then b = 16.
• Step 2: If f ≡ 0 mod 3 and t ≡ 1 mod 3, then b = 16b′, where b′ ∈ Fp is any cube that

is not a square (i.e. b′(p−1)/6 ≡ −1 mod p).
• Step 3: If f 6≡ 0 mod 3. replace f by −f if necessary to ensure that f ≡ 1 mod 3. If
t ≡ 2 mod 3, output b = 16b′ for any b′ satisfying b′(p−1)/6 ≡ 2t/(3f − t) mod p.

• Step 4: Otherwise, output b = 16b′ for any b′ satisfying b′(p−1)/6 ≡ 2t/(3f + t) mod p.

A.3. Proofs for each family. We shrink the proofs themselves for space considerations.

k = 8 Brezing-Weng curves. T1: x ≡ 1, 3, 9, 11 mod 16 all imply p ≡ 5 mod 8, so that Fp2 = Fp(u) =

Fp[u]/(u2+2) by Prop. A.2. Now, N2,1(u) = 2 and we already have ( 2
p
)2 = −1, so that x4−u is irreducible

in Fp2 [x] by Thm. A.1. �
T2: x ≡ 5, 7, 13, 23 mod 24 all imply p ≡ 17 mod 24. Using Thm. A.3-(b), with p ≡ 5 mod 12, and since
the odd squares modulo 12 are either 1 or 9, we have that (±3

p
)2 = −1, so that Fp2 = Fp(u) = Fp[u]/(u2+3).

We also have that N2,1(u) = 3, so that x4 − u is irreducible in Fp2 [x] by Thm. A.1. �
T3: x ≡ 21, ..., 117 mod 120 all give p ≡ 13, 17 mod 20, invoking Thm. A.3-(b), and since the odd squares
modulo 20 are either 1, 5 or 9, we have that (±5

p
)2 = −1, so that Fp2 = Fp(u) = Fp[u]/(u2 + 5). We also

have that N2,1(u) = 5, so that x4 − u is irreducible in Fp2 [x] by Thm. A.1. �
a1: x ≡ 1, 9 mod 16 gives (L,M) ≡ (1, 2) mod 4, then Step 2 of Alg. A.5 equipped with (−1

p
)2 = 1 but

(−1
p

)4 = −1 gives the result. �
a2: x ≡ 11 mod 16 gives (L,M) ≡ (2, 1) mod 4, so replace M by −M and use Alg. A.5-Step 3 to give

−2(p−1)/4 ≡ L/M mod p. x ≡ 13, 29 mod 48 and x ≡ 141, 189, 237 mod 240 gives (L,M) ≡ (3, 0) mod 4,
so Step 2 of Alg. A.5 this time equipped with (−2

p
)2 = 1 but (−2

p
)4 = −1 ([29, Prop. 6.6]) gives the

result. �
a−2: x ≡ 3 mod 16 gives (L,M) ≡ (2, 1) mod 4, so replace M by −M in Alg. A.5 - Step 3 and observe

that 2(p−1)/4 ≡ L/M mod p. �
a3: x ≡ 7 mod 24 gives (L,M) ≡ (0, 3) mod 4, so replace M by −M and use Alg. A.5-Step 3 and observe

that −3(p−1)/4 ≡ L/M mod p. x ≡ 21, 69, 117 mod 240 gives (L,M) ≡ (3, 0) mod 4, so Step 2 of Alg. A.5
this time equipped with (−3

p
)2 = 1 but (−3

p
)4 = −1 gives the result. �

a5: x ≡ 11 mod 120 and x ≡ 71, 191 mod 240 give (L,M) ≡ (0, 3) mod 4, so replace M by −M and use

Alg. A.5-Step 3 and observe that−5(p−1)/4 ≡ L/M mod p. x ≡ 5, 85 mod 240 gives (L,M) ≡ (3, 0) mod 4,
so Step 2 of Alg. A.5 equipped with (−5

p
)2 = 1 but (−5

p
)4 = −1 gives the result. �
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a6: x ≡ 47, 95, 143, 239 mod 240 gives (L,M) ≡ (0, 3) mod 4, so replace M by −M and use Alg. A.5-Step

3 and observe that −6(p−1)/4 ≡ L/M mod p.

k = 12 BLS curves. T1: x ≡ 7, 31, 64 mod 72 and 160 mod 216 all imply p ≡ 19 mod 24, so that
Fp2 = Fp(u) = Fp[u]/(u2 + 1). Note that 2, 3 | p − 1, and N2,1(u + 1) = 2, ( 2

p
)2 = −1 (Prop. A.2) and

( 2
p
)3 = −1 as follows. For x ≡ 7 mod 72, t ≡ f ≡ 2 mod 6, so use eq. (A.1)-(ii) and observe that both L

and M are both odd. For x ≡ 31 mod 72, t ≡ 2 mod 6 and f ≡ 4 mod 6, so use eq. (A.1)-(iii) to see that
L and M are both odd. For x ≡ 64 mod 72, eq. (A.1)-(i) yields this directly since f is a multiple of 3,
say f = 3M , giving 4p = L2 + 27M2, where L = t = x + 1 ≡ 65 mod 72 is odd. For x ≡ 160 mod 216,
observe that t ≡ f ≡ 5 mod 6 so use eq. (A.1)-(ii) to further deduce that L and M are both odd. Thus
N2,1(u + 1) = 2, and ( 2

p
)3 = ( 2

p
)2 = −1 by Thm. A.4-(i), so that v6 − (u + 1) is irreducible in Fp2 [x] by

Thm. A.1. �
T2: x ≡ 55, 127, 343 mod 360 imply p ≡ 19 mod 144, x ≡ 43, ..., 307 mod 360 imply p ≡ 7 mod 24, x ≡
28, 100, 172 mod 360 implies p ≡ 127 mod 216, x ≡ 124, ..., 1060 mod 1800 implies p ≡ 127 mod 360,
x ≡ 4, ..., 1012 mod 1080 implies p ≡ 79 mod 108. In all cases, p ≡ 7 mod 12, so that Fp2 = Fp(u) =

Fp[u]/(u2 + 1). N2,1(u + 2) = 5, ( 5
p
)2 = −1 (p ≡ 2, 3 mod 5 in all cases, and use Thm. A.3), and

( 5
p
)3 = −1 as follows. x ≡ 28, 100, 172 mod 360 gives (t, f) ≡ 5, 3 mod 6, and x ≡ 55, ..., 307 mod 360 gives

(t, f) ≡ (2, 0) mod 6, so applying eq. (A.1)-(i) to both gives one of (L,M) ≡ (1, 4), (3, 3), (4, 1) mod 5,
so that LM 6≡ 0 mod 5. x ≡ 43, 115, 259 gives (t, f) ≡ (2, 2) mod 6, so using eq. (A.1)-(ii) further gives
(L,M) ≡ (1, 4), (4, 1) mod 5, so that LM 6≡ 0 mod 5. Finally, x ≡ 139 mod 360 gives (t, f) ≡ (2, 4) mod 6,
so we use eq. (A.1)-(iii) to give (L,M) ≡ (1, 1) mod 5, implying LM 6≡ 0 mod 5. Thus, ( 5

p
)3 = ( 5

p
)2 = −1

by Thm. A.4-(iii), so that v6 − (u+ 2) is irreducible in Fp2 [x] by Thm. A.1. �
T3: x ≡ 187, 283, 355 mod 360 implies p ≡ 7 mod 336, x ≡ 412, 772 mod 1800 implies p ≡ 343 mod 360,
x ≡ 616, 976, 256 mod 1080 implies p ≡ 331 mod 360, so that Fp2 = Fp(u) = Fp[u]/(u2 + 1). Note that
2, 3 | p − 1, and this time N2,1(u + 3) = 10. For x ≡ 187, 283, 355 mod 360 and x ≡ 412, 772 mod 1800
we will prove that 2 is a quadratic residue but a cubic non-residue, whilst 5 is a quadratic non-residue
but is a cube in Fp. 2 being a quadratic residue follows from Prop. A.2. 5 being a quadratic non-
residue follows from p ≡ 2, 3 mod 5 for these cases. For x ≡ 187 mod 360 and x ≡ 283, 355 mod 360,
we have (t, f) ≡ (2, 2) mod 6 and (t, f) ≡ (2, 4) mod 6 respectively, which use eq. (A.1)-(ii) and eq.
(A.1)-(iii) respectively to show that L and M are always odd, meaning that 2 is a cubic non-residue.
Furthermore, both cases further reveal that L ≡ 0 mod 5 so that 5 is always a cubic residue. Combining
( 2

p
)2 = 1, ( 5

p
)2 = −1, ( 2

p
)3 = −1 and ( 5

p
)3 = 1 yields the result for x ≡ 187, 283, 355 mod 360 and

x ≡ 412, 772 mod 1800. We now address x ≡ 256, 616, 976 mod 1080. This time we prove the opposite of
the previous cases: namely that 5 is a quadratic but non-cubic residue, and that 2 is a non-quadratic but
cubic residue. ( 2

p
)2 = −1 follows from Prop. A.2. ( 5

p
)2 = 1 follows from p ≡ 1 mod 5 and Thm. A.3.

For all three congruencies we have (t, f) ≡ (5, 1) mod 6 which invokes the use of eq. (A.1)-(iii) to show
that L and M are always even (so that ( 2

p
)3 = 1)), but (L,M) ≡ (1, 2) mod 5, so that ( 5

p
)3 = −1 from

LM 6≡ 0 mod 5 and Thm. A.4-(iii). This completes the proof. �
T4: x ≡ 13, 61 mod 72 implies p ≡ 13 mod 24, x ≡ 70, 142, 214 mod 216 implies p ≡ 37 mod 72, x ≡
118, ..., 1054 mod 1080 implies p ≡ 37 mod 72, so that Fp2 = Fp(u) = Fp[u]/(u2 + 2) (Prop. A.2). Since

2, 3 | p − 1 and N2,1(u) = 2, ( 2
p
)2 = −1 (Prop. A.2), and ( 2

p
)3 = −1 as follows. For x ≡ 13 mod 72,

t ≡ 2 mod 6 and f ≡ 4 mod 6, so use eq. (A.1)-(iii) to see that L and M are both odd. For x ≡ 61 mod 72,
t ≡ f ≡ 2 mod 6, so use eq. (A.1)-(ii) to see that L and M are both odd. For x ≡ 70, 142, 214 mod 216,
t ≡ f ≡ 5 mod 6, so use eq. (A.1)-(ii) to further observe that L and M are again both odd. For all
x ≡ 118, ..., 1054 mod 1080, f = 3M so use eq. (A.1)-(i) and observe that M is always odd. Thus
N2,1(u) = 2 and ( 2

p
)3 = ( 2

p
)2 = −1 by Thm. A.4-(i), so that v6 − u is irreducible in Fp2 [x] by Thm.

A.1. �
T5: x ≡ 37, 181 mod 216 implies p ≡ 37 mod 144, x ≡ 94, ..., 670 mod 1080 implies p ≡ 133 mod 216, so
that Fp2 = Fp(u) = Fp[u]/(u2 + 2) (Prop. A.2). Since 2, 3 | p − 1 and N2,1(u) = 6, which is not a

quadratic or cubic residue as follows. To show ( 6
p
)2 = −1, we see immediately that (−2

p
)2 = −1 from

Prop. A.2. To see that ( 3
p
)2 = 1, we use Thm. A.3-(b) with p ≡ 1 mod 12. For the cubic non-residuosity,

we have to split the cases. Observe that for x ≡ 37, 181 mod 216 we have (t, f) ≡ (2, 0) mod 6 so that
eq. (A.1)-(i) can be used to see that (L,M) ≡ (2,±2) mod 3, so that 3 is a cubic non-residue. On
the other hand, (L,M) ≡ (0, 0) mod 2 for this case so that 2 is a cubic residue, which concludes the
first case(s). For x ≡ 94, ..., 670 mod 1080, we always have (t, f) ≡ (5, 1) mod 6, so using eq. (A.1)-(iii)
gives (L,M) ≡ (4,±2) mod 6, so that 3 is again a cubic non-residue but a quadratic residue. Thus,
( 6

p
)3 = ( 6

p
)2 = −1 by Thm. A.4-(i),(ii), so that v6 − (u+ 2) is irreducible in Fp2 [x] by Thm. A.1. �
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T6: x ≡ 25, ..., 337 mod 360 implies p ≡ 1 mod 24, x ≡ 10, 82, 288 mod 360 implies p ≡ 73 mod 144. In
all cases, p ≡ 2, 3 mod 5 so that Fp2 = Fp(u) = Fp[u]/(u2 + 5). Now, N2,1(u) = 5 so it remains to show

( 5
p
)3 = −1. x ≡ 73, 145, 217 mod 360 gives (t, f) ≡ (2, 0) mod 6 so that eq. (A.1)-(i) gives (L,M) ≡

(1, 4), (3, 3), (4, 1) mod 5. For x ≡ 25, 169, 313 mod 360 we get (t, f) ≡ (2, 2) mod 6, so applying eq. (A.1)-
(ii) gives (L,M) ≡ (1, 4), (4, 1) mod 5. x ≡ 49, 337 mod 360 gives (t, f) ≡ (2, 4) mod 6, so applying eq.
(A.1)-(iii) gives (L,M) ≡ (3, 2), (1, 1) mod 5. Lastly, x ≡ 10, 82, 288 mod 360 all give (t, f) ≡ (5, 3) mod 6,
so we can apply eq. (A.1)-(i) to see (L,M) ≡ (3, 3), (1, 4) mod 5. In all cases then, LM 6≡ 0 mod 5, so
that ( 5

p
)3 = ( 5

p
)2 = −1 by Thm. A.4-(iii), so v6 − u is irreducible in Fp2 [x] by Thm. A.1. �

b1: n ≡ 0 mod 12. b must be square and cube, and one of {1, g, g2, g3, g4, g5} for g non-square and
non-cube, so b = 1 is the only option. �
b2: n ≡ 27 mod 108, p ≡ 1 mod 16. (t, f) ≡ (2, 0) mod 3, so apply Algorithm A.6-Step 1 and take b = 16.
( 2

p
)2 = 1 by Prop A.2. so 8 = µ6 for µ2 = 2, thus the curve with b = 16/µ6 = 2 is isomorphic. �

b−2: n ≡ 27 mod 432, p ≡ 19 mod 72. (t, f) ≡ (2, 0) mod 3, so apply Algorithm A.6 - Step 1 and take
b = 16. This time (−2

p
)2 = 1 by Prop A.2, so −8 = µ6 for µ2 = −2, thus the curve with b = 16/µ6 = −2

is isomorphic. �
b4: n ≡ 3 mod 36, p ≡ 1 mod 12. Proof is identical to case x0 ≡ 16 mod 72 for k = 24 BLS curves in [8,
Prop. 3]. �
b3: n ≡ 15 mod 24, p ≡ 1 mod 12. There are three cases that arise: (t, f) ≡ (2, 0), (2, 1), (2, 2) mod 3.
For (t, f) ≡ (2, 0) mod 3, we terminate with b = 16 from A.6, so b = 3 follows from observing 16/3
(equivalently 2435) is µ6 for some µ, which follows from the cubic and quadratic reciprocities of 2 and
3. For the other two cases (t, f) ≡ (2, 1) mod 3 and (t, f) ≡ (2, 2) mod 3, we use Alg. A.5 and take

b′(q−1)/6 = 12(q−1)/6 ≡ 2t/(3f − t) mod p and b′(q−1)/6 = 12(q−1)/6 ≡ 2t/(−3f − t) mod p respectively, so
we can take b = 16b′/26 = 3 in both cases. �
b−3: n ≡ 147 mod 216, p ≡ 7 mod 12. This time the two latter cases of the previous proof arise: (t, f) ≡
(2, 1) mod 3 and (t, f) ≡ (2, 2) mod 3, so again we use Alg. A.5, but this time it we take b′ = −12 to see

b′(q−1)/6 = −12(q−1)/6 ≡ 2t/(3f − t) mod p and b′(q−1)/6 = −12(q−1)/6 ≡ 2t/(−3f − t) mod p respectively,
so we can take b = 16b′/26 = −3 in both cases. �
b−5: n ≡ 3 mod 360, p ≡ 727 mod 1620. We always have (t, f) ≡ (2, 1) mod 3, so Alg. A.5 with b′ = −20

gives b′(q−1)/6 = −20(q−1)/6 ≡ 2t/(3f − t) mod p, so we can take b = 16b′/26 = −5. �
b5: n ≡ 75 mod 900, p ≡ 214 mod 810. Again we always have (t, f) ≡ (2, 1) mod 3, so Alg. A.5 this time

with b′ = 20 gives b′(q−1)/6 = 20(q−1)/6 ≡ 2t/(3f − t) mod p, so we can take b = 16b′/26 = 5. �
b9: n ≡ 3 mod 12, p ≡ 1 mod 6. Two cases: (t, f) ≡ (2, 0) mod 3 means b = 16 is the curve from Alg. A.5.
It is easily seen that ( 36

p
)3 = 1, so ( 36

p
)6 = 1, meaning we can multiply b by 36/26 to get the isomorphic

curve with b = 9. For the second case we have (t, f) ≡ (2, 1) mod 3, so Alg. A.5 - Step 3 with b′ = 36

gives b′(q−1)/6 = 36(q−1)/6 ≡ 2t/(3f − t) mod p, so we can take b = 16b′/64 = 9. �
b10: n ≡ 183 mod 240, p ≡ 37 mod 120. Two cases: (t, f) ≡ (2, 0) mod 3 means b = 16 is the curve from
Alg. A.5. It is easily seen that ( 40

p
)6 = 1, meaning we can multiply b by 40/26 to get the isomorphic curve

with b = 10. For the second case we have (t, f) ≡ (2, 1) mod 3, so Alg. A.5 - Step 3 with b′ = 40 gives

b′(q−1)/6 = 40(q−1)/6 ≡ 2t/(3f − t) mod p, so we can take b = 16b′/64 = 10. �

k = 16 KSS curves. T1: x′ ≡ 5, 37, 61, 93 mod 112, x′ ≡ 47, 79 mod 112, x′ ≡ 23, 103 mod 112 all imply
p ≡ 5 mod 8, so that Fp2 = Fp(u) = Fp[u]/(u2 + 2) by Prop. A.2. Now, N2,1(u) = 2 and we already have

( 2
p
)2 = −1, so that x8 − u is irreducible in Fp2 [x] by Thm. A.1. �

T2: x′ ≡ 19, ..., 1531 mod 1680, x′ ≡ 1153, 1633 mod 1680 all imply p ≡ 17 mod 24. Using Thm. A.3-(b),
with p ≡ 5 mod 12, and since the odd squares modulo 12 are either 1 or 9, we have that (±3

p
)2 = −1, so

that Fp2 = Fp(u) = Fp[u]/(u2 + 3). We also have that N2,1(u) = 3, so that x8 − u is irreducible in Fp2 [x]
by Thm. A.1. �
T3: This proof requires a special splitting of the elements in bunches. Namely, x′ ≡ 9, 89 mod 560 implies
p ≡ 57 mod 80; x′ ≡ 121, 201 implies p ≡ 73 mod 180; x′ ≡ 401, 1601 implies p ≡ 193 mod 240; x′ ≡
929, 1409 implies p ≡ 97 mod 240. We can now use Thm. A.3-(b), with p ≡ 13, 17 mod 20, and since the
odd squares modulo 20 are either 1, 5 or 9, we have that (±5

p
)2 = −1, so that Fp2 = Fp(u) = Fp[u]/(u2 +5).

We also have that N2,1(u) = 5, so that x8 − u is irreducible in Fp2 [x] by Thm. A.1. �
a1 : n ≡ 2500 mod 10000, p ≡ 5 mod 8. (L,M) ≡ (1, 2) mod 4, so we use Step 2 of Alg. A.5 and −1 is
easily seen to be a square that is not a quartic residue. �
a2 : n ≡ 0 mod 1250, p ≡ 1 mod 4. Two cases arise: (L,M) ≡ (3, 0) mod 4, so use Step 2 of A.5 where
(−2

p
)2 = 1 but (−2

p
)4 = −1 gives the result. For (L,M) ≡ (2, 3) mod 4, we use Step 3 of Alg. A.5 and the

fact that −2(p−1)/4 ≡ L/M mod p to give the result. �
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a−2 : n ≡ 1250 mod 40000, p ≡ 13 mod 16. (L,M) ≡ (2, 3) mod 4, and this time we have 2(p−1)/4 ≡
L/M mod p. �
a3 : n ≡ 0 mod 1250, p ≡ 1 mod 8. Two cases: (L,M) ≡ (3, 0) mod 4, so Step 2 of A.5 and (−3

p
)2 = 1

but (−3
p

)4 = −1 gives the result. For the second case, (L,M) ≡ (0, 1) mod 4, so Step 3 of Alg. A.5 and

−3(p−1)/4 ≡ L/M gives the result. �
a5 : n ≡ 0 mod 1250, p ≡ 1 mod 8. Two cases: (L,M) ≡ (3, 0) mod 4 so Step 2 of Alg. A.5 with
(−5

p
)2 = 1 and (−5

p
)4 = −1 gives the result. For (L,M) ≡ (0, 1) mod 4, Step 3 of Alg. A.5 with

−5(p−1)/4 ≡ L/M mod p finishes the proof. �

k = 18 KSS curves. T1: x′ ≡ 4, 7, 16, 31 mod 36 implies p ≡ 1 mod 6. We need to prove ( 2
p
)3 = −1.

x′ ≡ 4, 31 mod 36 gives t ≡ 1 mod 6 and f ≡ 3 mod 6, so f ≡ 3M and further M ≡ 1 mod 2, so we
can use eq. (A.1)-(i) to give 4p = L2 + 27M2, where L and M are both odd. x′ ≡ 7, 16 mod 36 gives
t ≡ f ≡ 1 mod 6, so we can use eq. (A.1)-(ii) to further show that L and M are both odd. Thus,
(±2

p
)3 = −1 by Thm. A.4-(i), so that Fp3 = Fp(u) = Fp[u]/(u3 + 2). Note that x′ ≡ 4, 16 mod 36 gives

p ≡ 5 mod 8, and x′ ≡ 7, 31 mod 36 gives p ≡ 7 mod 8, so (−2
p

)2 = −1 by Prop. A.2. Now, N3,1(u) = −2

and ( 2
p
)2 = −1, so that x6 − u is irreducible in Fp3 [x] by Thm. A.1. �

T2: x′ ≡ 13, 25 mod 36 implies p ≡ 7 mod 24. We need to prove that ( 2
p
)3 = −1. With x′ ≡ 13 mod 36,

f ≡ 0 mod 3, i.e. f = 3M , insists use of eq. (A.1)-(i), which further reveals 4p = L2 + 27M2 has L and M
as odd. With x′ ≡ 25 mod 36, f ≡ t ≡ 1 mod 6 insists use of eq. (A.1)-(ii) to give (3f + t)/2 and (t−f)/6
both odd. Thus, Fp3 = Fp(u) = Fp[u]/(u3 + 2). This time, we have N3,1(2u) = −16 and (−16

p
)2 = −1

(since (−1
p

)2 = −1 and −16 = −1 · 42), and further (−16
p

)3 = −1 (since (−2
p

)3 = −1 by Thm. A.4-(i) and

−16 = −2 · 23), so x6 − u is irreducible in Fp3 [x] by Thm. A.1. �
T3: x′ ≡ 1, 28, 37, 64 mod 108 implies p ≡ 7 mod 18, and also that f ≡ 2, 8 mod 9, so that ( 3

p
)3 = −1 by

Thm. A.4-(ii), and Fp3 = Fp(u) = Fp[u]/(u3 + 3). Now, N3,1(u) = −24, which is not a cubic residue

(since −3 isn’t). To apply Thm. A.1, it remains to show that (−24
p

)2 = −1. x′ ≡ 1, 28, 37, 64 mod 108

also implies p ≡ 3, 5 mod 8, so that ( 2
p
)2 = −1. Since −24 = 2 · −3 · 22, and ( 2

p
)2 = −1, we have that

(−24
p

)2 · (−3
p

)2 = −1, so it suffices to show that (−3
p

)2 = 1. We have to split the possible congruences: for

x′ ≡ 1, 37 we always have p ≡ 7 mod 12, and taking q = 3 in Thm. A.3 does the trick, since 1 and 9 are
the only “odd squares” modulo 12. Thus, for x′ ≡ 1, 37, ( 3

p
)2 = −1 and (−1

p
)2 = −1 gives (−3

p
)2 = 1. For

x′ ≡ 28, 64, we have p ≡ 1 mod 12, which does just the opposite, meaning ( 3
p
)2 = 1, but (−1

p
)2 = 1 also,

meaning (−3
p

)2 = 1 as well. �

T4: x′ ≡ 22, 58, 142, 178 mod 180 implies p ≡ 1 mod 12. To prove (−2
p

)3 = −1, we need to split into two

separate cases and use Thm. A.4-(i). For x′ ≡ 22, 58 mod 180, we have f ≡ 0 mod 3, i.e. f = 3M ,
insists use of eq. (A.1)-(i), which further reveals 4p = L2 + 27M2 has L and M always odd. For
x′ ≡ 142, 178 mod 180 we have t ≡ f ≡ 1 mod 6 and application of eq. (A.1)-(ii) shows that L and M
are both odd. Thus, Fp3 = Fp(u) = Fp[u]/(u3 + 2). N3,1(5u) = −250, and (−250

p
)3 = −1 follows from

( 2
p
)3 = −1 (since −250 = −2 · 53), so it remains to prove (−250

p
)2 = −1 before applying Thm. A.1.

Since p ≡ 1 mod 4, (−1
p

)2 = 1 so that (−250
p

)2 = ( 10
p

)2. Further, x′ ≡ 22, 58, 142, 178 mod 180 implies

p ≡ 1 mod 8 so Prop. A.2 says that ( 2
p
)2 = 1, meaning that ( 10

p
)2 = ( 2

p
)2 · ( 5

p
)2 = ( 5

p
)2. For this,

combine the fact that x′ ≡ 22, 58, 142, 178 mod 180 implies p ≡ 2, 3 mod 5 with Thm. A.3-(a) to give that
( 5

p
)2 = −1. Thus, (−250

p
)2 = −1 so that x6 − 2u is irreducible in Fp3 [x] by Thm. A.1. �

T5: x′ ≡ 19, 181, 208, 262 mod 270 implies p ≡ 7 mod 54. We now show that (−5
p

)3 = ( 5
p
) − 1 using

Thm. A.4 - (iii). First, for x′ ≡ 19, 181, 208, 262 mod 270, we always have t ≡ 1 mod 6 and f ≡ 5 mod 6,
so we make use eq. (A.1)-(iii) and see that niether L nor M is divisible by 5. Thus, ( 5

p
)3 = −1 and

Fp3 = Fp(u) = Fp[u]/(u3 + 5). N3,1(u) = −5, so to finish the proof we need to show that (−5
p

)2 = −1.

We split the congruencies into two cases: x′ ≡ 19, 181 mod 270 gives p ≡ 3 mod 4 and p ≡ ±1 mod 5
which means firstly that (−5

p
)2 = −( 5

p
)2, and also that ( 5

p
)2 = 1 from Thm. A.3-(a). For the other two

congruencies x′ ≡ 208, 262 mod 270, p ≡ 1 mod 4 and p ≡ ±2 mod 5 which means firstly that this time
(−5

p
)2 = ( 5

p
)2, but secondly that ( 5

p
)2 = −1 from Thm. A.3-(a). In both cases then, (−5

p
) = −1 and

(−5
p

)2 =)−5
p

)3 = −1, so that x6 − u is irreducible in Fp3 [x] by Thm. A.1. �
b3: n ≡ 16807 mod 37044, p ≡ 7 mod 36. Two cases arise: (t, f) ≡ (1, 1) mod 3, so Step 4 of Alg. A.6

with b′ = 12 gives 12(p−1)/6 ≡ 2t/(3f + t) mod p, and dividing b = 16b′ by 26 gives the result. For the
other case, (t, f) ≡ (1, 2) mod 3, so Step 3 of Alg. A.6 with b′ = 12 (and the division by 26) gives the
same result. �
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b−9: n ≡ 4459 mod 37044. We always have the case (t, f) ≡ (1, 2) mod 3, so Step 4 of Alg. A.6 with

b′ = −36 gives −36(p−1)/6 ≡ 2t/(−3f + t) mod p. Division of b = 16b′ by 26 gives the result. �
b5: n ≡ 343 mod 2058, p ≡ 1 mod 6. Two cases arise: (t, f) ≡ (1, 0) mod 3, so Step 2 of Alg. A.6 with

b′ = 20 gives 20(p−1)/6 ≡ −1 mod p gives the result. For the second case, (t, f) ≡ (1, 2) mod 3 so Step 4
of Alg. A.6 with b′ = 20 gives the same constant. �
b7: n ≡ 343 mod 2058, p ≡ 1 mod 6. Three cases arise: (t, f) ≡ (1, 0) mod 3 means Step 2 of Alg. A.6

applies, here with b′ = 36 gives 36(p−1)/6 ≡ −1 mod p. The second two cases are (t, f) ≡ (1, 1) mod 3

and (t, f) ≡ (1, 2) mod 3, which both use Step 4. of Alg. A.6 and b′ = 36 to give 36(p−1)/6 ≡ 2t/(3f +
t), 2t/(−3f + t) mod p respectively. All three cases give b = 16b′ which can be divided by 26 to give
b = 7. �
b−7: n ≡ 53851 mod 86436, p ≡ 115 mod 252. One case: (t, f) ≡ (1, 2) mod 3 so Step 4. of Alg A.6 with

b′ = −28 gives −28(p−1)/6 ≡ 2t/(−3t+ f) mod p. Division of b = 16b′ by 26 gives the result. �
b6: n ≡ 22981 mod 24696, p ≡ 61 mod 72. Two cases arise, both requiring Step 4 of Alg. A.6. Namely
(t, f) ≡ (1, 2) mod 3 and (t, f) ≡ (1, 1) mod 3 take b′ = 24 to give 24(p−1)/6 mod p as 2t/(−3f + t) and
2t/(3f + t) respectively. Division of b = 16b′ by 26 gives the result. �
b2: n ≡ 12691 mod 18522, p ≡ 31 mod 54. (t, f) ≡ (1, 0) mod 3 is the only case, so taking b′ = 8 gives

8(p−1)/6 ≡ −1 mod p in Step 2 of Alg. A.6, and dividing b = 16b′ by 26 gives the result. �
b−4: n ≡ 4459 mod 12348, p ≡ 7 mod 36. The only case is (t, f) ≡ (1, 1) mod 3 which requires Step 4 of

Alg. A.6 with b′ = −16 to give −16(p−1)/6 ≡ 2t/(3f + t) to give the result (again, after division of b by
26). �
b−2: n ≡ 49735 mod 74088, p ≡ 31 mod 216. The only case is (t, f) ≡ (1, 0) mod 3, for which we can use

Step 2 of Alg. A.6 to deduce that b′ = −8 always gives −8(p−1)/6 ≡ −1 mod p. Division of b by 26 gives
b = −2. �
b10: n ≡ 10633 mod 41160, p ≡ 97 mod 120. Two cases arise: (t, f) ≡ (1, 0) mod 3 requires Step 2 of Alg.

A.6 with b′ = 40 to always give 40(p−1)/6 ≡ −1 mod p. The second case is (t, f) ≡ (1, 1) mod 3, which

uses b′ = 40 in Step 4 of Alg. A.6 to give 40(p−1)/6 ≡ 2t/(3f + t) mod p. In both cases we again divide b
by 26 to give the smaller constant. �

k = 27 BLS curves. T1: x ≡ 2 mod 9 implies p ≡ 7 mod 9. Once case: t ≡ 5 mod 6 and f ≡ 1 mod 6,
so applying eq. (A.1)-(iii) gives further that M 6≡ 0 mod 3 so Thm. A.4-(ii) gives ( 3

p
)3 = −1. Thus,

Fp3 = Fp(u) = Fp[u]/(u3 + 3), and furthermore since N3,1(u) = −3, we immediately have that x9 − u is
irreducible in Fp3 [x] by Thm. A.1. �
T2: x ≡ 8 mod 45 implies p ≡ 37 mod 45. Again, x ≡ 8 mod 45 gives t ≡ 5 mod 6 and f ≡ 1 mod 6,
insisting the use of eq. (A.1)-(iii) which gives both L,M 6≡ 0 mod 5, so ( 5

p
)3 = −1 by Thm. A.4-(iii).

Thus, Fp3 = Fp(u) = Fp[u]/(u3+5), and since N3,1(u) = −5, we immediately have that x9−u is irreducible
in Fp3 [x] by Thm. A.1. �
T3: x ≡ 17, ..., 269 mod 315 implies p ≡ 1 mod 45. Again, x ≡ 17, ..., 269 mod 45 gives t ≡ 5 mod 6 and
f ≡ 1 mod 6, so applying eq. (A.1)-(iii) to see that L,M 6≡ 0 mod 7 and Thm. A.4-(iv) gives ( 7

p
)3 = −1.

Thus, Fp3 = Fp(u) = Fp[u]/(u3 + 7), and since N3,1(u) = −7, x9 − u is irreducible in Fp3 [x] by Thm.
A.1. �
b−5: n ≡ 1083 mod 1350. We always have (t, f) ≡ (2, 1) mod 3, so Step 3 of Alg. A.6 with b′ = −20 gives

−20(p−1)/6 ≡ 2t/(3f − t) mod p. Division by 26 gives a smaller constant as usual. �
Other b’s: All other proofs are identical, i.e. have (t, f) ≡ (1, 2) mod 3 and use Step 3 of Alg. A.6 with
the appropriate b′. �

k = 32 KSS curves. T1: x′ ≡ 453, ..., 2893 mod 3824, x′ ≡ 1887, 2415 mod 3824 and x′ ≡ 503, 3799 mod
3824 all imply p ≡ 5 mod 8, so that ( 2

p
)2 = (−2

p
)2 − 1 by Prop. A.2. Thus, Fp2 = Fp(u) = Fp[u]/(u2 + 2),

and since N2,1(u) = 2, x16 − u is irreducible in Fp2 [x] by Thm. A.1. �
T2: x′ ≡ 7145, 7673 mod 11472 implies p ≡ 17 mod 48, x′ ≡ 2843, 3371, 8579, 9148 mod 11472 implies
p ≡ 17 mod 24. So we always have p ≡ 5 mod 12. The “odd squares” modulo 12 are 1 and 9 only,
so that Thm. A.3-(ii) allows us to immediately conclude that ( 3

p
)2 = (−3

p
)2 = −1 in all cases. Thus,

Fp2 = Fp(u) = Fp[u]/(u2 + 3), and since N2,1(u) = 3, x16 − u is irreducible in Fp2 [x] by Thm. A.1. �
a1: n ≡ 81573072100 mod 117465223824, p ≡ 5 mod 8. (L,M) ≡ (1, 2) mod 4, so using Step 2 of Alg. A.5
with (−1

p
)2 = 1 and (−1

p
)4 = −1 gives the result. �

a−2: n ≡ 8157307210 mod 939721790592, p ≡ 5 mod 16. (L,M) ≡ (2, 1) mod 4, so using Step 3 of Alg.

A.5 with 2(p−1)/4 ≡ L/M mod p gives the result. �
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a2: n ≡ 8157307210 mod 14683152978, p ≡ 1 mod 4. Two cases: (L,M) ≡ (2, 1) mod 4, so using Step 3 of

Alg. A.5 with −2(p−1)/4 ≡ L/M mod p gives the first result. For the second result (L,M) ≡ (3, 0) mod 4

so Step 2 of Alg. A.5 with −2(p−1)/4 ≡ −1 mod p completes the proof. �
a3: n ≡ 301820366770 mod 469860895296, p ≡ 17 mod 72. (L,M) ≡ (0, 3) mod 4 is the only scenario, so

Step 2 of Alg. A.5 with −3(p−1)/4 ≡ −1 mod p gives the result. �

k = 36 KSS curves. T1: x′ ≡ 1880, ..., 2264 mod 2664 implies p ≡ 19 mod 24, so that Fp2 = Fp(u) =

Fp[u]/(u2 + 1). Now, N2,1(u + 1) = 2, and ( 2
p
)2 = −1 from Prop. A.2. To prove ( 2

p
)3 = −1, we need to

split the congruencies into 4 sets. Firstly, x′ ≡ 1376, 1880 mod 2664 gives t ≡ 1 mod 6 and f ≡ 3 mod 6,
so eq. (A.1)-(i) with f = 3M gives L and M both odd. For x′ ≡ 821, 1325 mod 2664 gives t ≡ 4 mod 6
and f ≡ 2 mod 6, so eq. (A.1)-(iii) reveals that L and M are both odd. For x′ ≡ 437, 2597 mod 2664,
we have t ≡ f ≡ 4 mod 6, and using eq. (A.1)-(ii) reveals that L and M are both odd. Lastly, x′ ≡
104, 2264 mod 2664 gives t ≡ f ≡ 1 mod 6, so again using eq. (A.1)-(ii) gives L and M as both odd.
Thus, ( 2

p
)3 = −1 by Thm. A.4-(i) so that x18 − (u+ 1) is irreducible in Fp2 [x] by Thm. A.1. �

T2: x′ ≡ 3152, ..., 7652 mod 13320 implies p ≡ 31 mod 36, so that Fp2 = Fp(u) = Fp[u]/(u2 + 1).

N2,1(u + 2) = 5, and ( 5
p
)2 = −1 since x′ ≡ 3152, ..., 7652 mod 13320 always gives p ≡ 2, 3 mod 5, al-

lowing us to apply Thm. A.3-(i). To prove ( 5
p
)3 = −1, we must split the congruences into 6 differ-

ent sets: x′ ≡ 932, 6260, 4100, 12092 mod 13320 gives t ≡ f ≡ 1 mod 6, so using eq. (A.1)-(ii) gives
(L,M) ≡ (1, 4), (2, 2) mod 5. x′ ≡ 3152, ..., 7652 mod 13320 gives t ≡ 1 mod 6 and f ≡ 5 mod 6 so using
eq. (A.1)-(iii) gives (L,M) ≡ (3, 3), (1, 4) mod 5. x′ ≡ 44, ..., 11204 mod 13320 gives t ≡ 1 mod 6 and
f ≡ 3 mod 6 so using eq. (A.1)-(i) gives (L,M) ≡ (1, 1), (1, 4) mod 5. x′ ≡ 1709, ...12869 mod 13320 gives
t ≡ 4 mod 6 and f ≡ 0 mod 6, so using eq. (A.1)-(i) with f ≡ 3M gives (L,M) ≡ (1, 1), (1, 4) mod 5.
x′ ≡ 1265, ..., 12425 mod 13320 gives t ≡ f ≡ 4 mod 6 so we can use eq. (A.1)-(ii) to further give
(L,M) ≡ (1, 4), (2, 2) mod 5. Lastly, x′ ≡ 2657, ..., 10649 mod 13320 gives t ≡ 4 mod 6 and f ≡ 2 mod 6,
and then eq. (A.1)-(iii) gives (L,M) ≡ (3, 3), (1, 4) mod 5. Thus, ( 5

p
)3 = ( 5

p
)2 = −1 by Thm. A.4-(iii), so

that x18 − (u+ 2) is irreducible in Fp2 [x] by Thm. A.1. �
T3: x′ ≡ 5372, ..., 10145 mod 13320 implies p ≡ 7 mod 12, so that Fp2 = Fp(u) = Fp[u]/(u2 + 1). N2,1(u+

3) = 10. To show ( 10
p

)3 = ( 10
p

)2 = −1 we must split the congruencies. x′ ≡ 3929, ..., 10145 mod 13320

implies p ≡ 7 mod 24 so that ( 2
p
)2 = 1, and also that p ≡ 2, 3 mod 5 so that ( 5

p
)2 = −1, which gives

( 10
p

)2 = −1. Each of the four congruencies give a different pair for (t, f) mod 6: x′ ≡ 5372 mod 13320→
(t, f) ≡ (1, 3) mod 6, so using eq. (A.1)-(i) gives L, M both odd but L ≡ 0 mod 5. x′ ≡ 3929 mod
13320 → (t, f) ≡ (4, 4) mod 6, so using eq. (A.1)-(ii) gives L, M both odd but again L ≡ 0 mod 5.
x′ ≡ 8924 mod 13320 → (t, f) ≡ (1, 1) mod 6, so using eq. (A.1)-(ii) again gives L, M both odd and
L ≡ 0 mod 5. x′ ≡ 10145 mod 13320 → (t, f) ≡ (4, 2) mod 6, so using eq. (A.1)-(iii) this time gives
L, M both odd and L ≡ 0 mod 5. Thus, for all four cases ( 2

p
)3 = −1 by Thm. A.4-(i) and ( 5

p
)3 = 1

by Thm. A.4-(iii) so that ( 10
p

)3 = −1. For the second set x′ ≡ 488, 4373, 5816 mod 13320. For both

x′ ≡ 488, 5816 mod 13320, (t, f) ≡ (1, 5) mod 6 so using eq. (A.1)-(iii) gives both L and M as even,
but with either (L,M) ≡ (3, 1), (3, 4) mod 5 so that ( 2

p
)3 = −1 but ( 5

p
)3 = 1 from A.4-(i) and (iii),

meaning ( 10
p

)3 = −1. Lastly, x′ ≡ 4373 mod 13320 gives (t, f) ≡ (4, 0) mod 6 so eq. (A.1)-(i) shows

that (L,M) ≡ (2, 4) mod 10, meaning again that ( 10
p

)3 = −1. Thus, ( 10
p

)2 = ( 10
p

)3 = −1 in all cases so

x18 − (u+ 3) is irreducible in Fp2 [x] by Thm. A.1. �
T4: x′ ≡ 710, ..., 2102 mod 2664 implies p ≡ 13 mod 24 so that Fp2 = Fp(u) = Fp[u]/(u2 + 2) (by Prop.

A.2). N2,1(u) = 2, and ( 2
p
)3 = −1 as follows. Again, we need to split the possibilities: x′ ≡ 710, 1214 mod

2664 gives (t, f) ≡ (1, 3) mod 6 so using eq. (A.1)-(i) gives L and M both odd. x′ ≡ 155, 659 mod 2664
gives (t, f) ≡ (4, 2) mod 6 so that eq. (A.1)-(iii) gives both L and M as odd. x′ ≡ 1931, 2435 mod
2664 gives (t, f) ≡ (4, 4) mod 6 so that this time eq. (A.1)-(ii) gives both L and M as odd. Lastly,
1598, 2102 mod 2664 gives (t, f) ≡ (1, 1) mod 6 so again eq. (A.1)-(ii) gives both L and M as odd. Thus,
( 2

p
)3 = ( 2

p
)3 = −1 by Thm. A.4-(i), so that x18 − u is irreducible in Fp2 [x] by Thm. A.1. �

T5: x′ ≡ 9035, ..., 5210 mod 13320 implies p ≡ 37 mod 180, and the only possibilities for p modulo 5 are
2, 3, so that Fp2 = Fp(u) = Fp[u]/(u2 + 5) by Thm. A.3. N2,1(u) = 5, and ( 5

p
)3 = −1 as follows. Again

we require splitting the congruencies: for x′ ≡ 4322, ..., 10982 mod 13320 we have (t, f) ≡ (1, 5) mod 6
and x′ ≡ 1487 mod 13320 we have (t, f) ≡ (4, 2) mod 6, so for both these cases eq. (A.1)-(iii) reveals that
(L,M) ≡ (3, 3) mod 5 so that LM 6≡ 0 mod 5. x′ ≡ 7874, 10034 mod 13320 gives (t, f) ≡ (1, 3) mod 6
and x′ ≡ 6875, 11699, 9035 mod 13320 gives (t, f) ≡ (4, 0) mod 6 so applying eq. (A.1)-(i) to both gives
(L,M) ≡ (1, 4), (1, 1) mod 5 so that LM 6≡ 0 mod 5. Lastly, x′ ≡ 770, 2930 mod 13320 gives (t, f) ≡
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(1, 1) mod 6 demanding the use of eq. (A.1)-(ii) to show that (L,M) ≡ (1, 4) mod 5 so that LM 6≡ 0 mod 5.
In all cases then, ( 5

p
)3 = ( 5

p
)2 = −1 by Thm. A.4-(iii), x18 − u is irreducible in Fp2 [x] by Thm. A.1. �

b5: n ≡ 117649 mod 352947, p ≡ 1 mod 6. Three cases arise: (t, f) ≡ (1, 0) mod 3 uses Step 2 of Alg. A.6

with b′ = 20 to give 20(p−1)/6 ≡ −1 mod p. (t, f) ≡ (1, 1) mod 3 needs Step 4 and (t, f) ≡ (1, 2) mod 3

both use Step 4 with b′ = 20 to give 20(p−1)/6 mod p as 2t/(3f + t) and 2t/(−3f + t) respectively. All
three cases require further division of b by 26 to give the smaller constant b = 5. �
b2: n ≡ 470596 mod 3176523, p ≡ 19 mod 54. (t, f) ≡ (1, 0) mod 3 always, so Step 2 of Alg. A.6 with

b′ = 8 gives 8(p−1)/6 ≡ −1 mod p, and division of b by 26 gives the result.
b10: n ≡ 117649 mod 1764735, p ≡ 1 mod 12. Three cases arise: (t, f) ≡ (1, 0) mod 3 uses Step 2 of Alg.

A.6 with b′ = 40 to give 40(p−1)/6 ≡ −1 mod p. (t, f) ≡ (1, 1) mod 3 needs Step 4 and (t, f) ≡ (1, 2) mod 3

both use Step 4 with b′ = 40 to give 40(p−1)/6 mod p as 2t/(3f + t) and 2t/(−3f + t) respectively. All
three cases require further division of b by 26 to give the smaller constant b = 10. �
b−1: n ≡ 470596 mod 2823576, p ≡ 7 mod 12. Three cases arise: (t, f) ≡ (1, 0) mod 3 uses Step 2 of

Alg. A.6 with b′ = −4 to give −4(p−1)/6 ≡ −1 mod p. (t, f) ≡ (1, 1) mod 3 needs Step 4 and (t, f) ≡
(1, 2) mod 3 both use Step 4 with b′ = −4 to give −4(p−1)/6 mod p as 2t/(3f + t) and 2t/(−3f + t)
respectively. All three cases require further division of b by 26 to give the smaller constant b = −1. �
b−4: n ≡ 30471091 mod 33882912, p ≡ 31 mod 36. (t, f) ≡ (1, 1) mod 3 is the only case. Thus, b′ = −16

into Step 4 of Alg. A.6 gives −16(p−1)/6 ≡ 2t/(3f + t), and division of b by 26 gives b = −4. �
b3: n ≡ 30471091 mod 33882912, p ≡ 103 mod 108. Two cases arise: (t, f) ≡ (1, 1) mod 3 and (t, f) ≡
(1, 2) mod 3, so applying Step 4 of Alg. A.6 with b′ = 12 to both gives −16(p−1)/6 mod p as 2t/(3f + t)
and 2t/(−3f + t) respectively. Division by 26 gives the result. �
b−2: n ≡ 41765395 mod 101648736, p ≡ 127 mod 216. We always have (t, f) ≡ (1, 0) mod 3, so Step 2 of

Alg. A.6 with b′ = −8 gives −8(p−1)/6 ≡ −1 mod p. Further division of b = 16b′ by 26 gives the result. �
b−5: n ≡ 166002739 mod 169414560, p ≡ 139 mod 180. We always have (t, f) ≡ (1, 2) mod 3 so Step 4 of

Alg. A.6 with b′ = −20 gives −20(p−1)/6 ≡ 2t/(−3f + t) mod p. Again, further division of b = 16b′ by 26

gives the result. �

k = 48 BLS curves. T1: x ≡ 7, 31 mod 72 implies p ≡ 19 mod 24, x ≡ 16, 64 mod 72 implies p ≡
19 mod 24, so that Fp2 = Fp(u) = Fp[u]/(u2 + 1). N2,1(u) = 2, ( 2

p
)2 = −1 (Prop. A.2) and ( 2

p
)3 = −1 as

follows. We have to prove each case separately: x ≡ 7 mod 72 gives t ≡ f ≡ 2 mod 6, whilst x ≡ 16 mod 72
gives t ≡ f ≡ 5 mod 6, so using eq. (A.1)-(ii) gives L and M both odd for both cases. x ≡ 31 mod 72
gives t ≡ 2 mod 6 and f ≡ 4 mod 6, so using A.1-(iii) gives L and M both odd for both cases. Lastly,
x ≡ 64 mod 72 gives t ≡ 5 mod 6 and f ≡ 3 mod 6, so applying eq. (A.1)-(i) further gives L and M both
odd for both cases. Thus, ( 2

p
)3 = ( 2

p
)2 = −1 by Thm. A.4-(i), so that x24− (u+ 1) is irreducible in Fp2 [x]

by Thm. A.1. �
T2: x ≡ 235, ..., 139 mod 360 implies p ≡ 7 mod 60, x ≡ 4, ..., 340 mod 360 implies p ≡ 7 mod 60, so
that Fp2 = Fp(u) = Fp[u]/(u2 + 1). N2,1(u + 2) = 5, which is not a quadratic residue since x ≡
235, ..., 139 mod 360 gives p ≡ 2 mod 5, invoking Thm. A.3. To prove ( 5

p
)3 = −1, we need to case

bash. x ≡ 55, 235 mod 360 gives (t, f) ≡ (2, 0) mod 6 so we can apply eq. (A.1)-(i) to further yield
(L,M) ≡ (1, 4) mod 5, so that LM 6≡ 0 mod 5, x ≡ 115, 259 mod 360 gives (t, f) ≡ (2, 2) mod 6 so
we apply eq. (A.1)-(ii) to further yield (L,M) ≡ (1, 1), (1, 4) mod 5, giving LM 6≡ 0 mod 5. Lastly,
x ≡ 139 mod 360 gives (t, f) ≡ (2, 4) mod 6, so applying A.1-(iii) to further yield (L,M) ≡ (1, 1) mod 5
gives LM 6≡ 0 mod 5. Thus, ( 5

p
)3 = ( 5

p
)2 = −1 by Thm. A.4-(iii), meaning that x24− (u+2) is irreducible

in Fp2 [x] by Thm. A.1. �
T3: x ≡ 13, 61 mod 72 implies p ≡ 13 mod 24, x ≡ 10, 34 mod 72 implies p ≡ 13 mod 24,so that Fp2 =

Fp(u) = Fp[u]/(u2 + 2) from (Prop. A.2). N2,1(u) = 2, and ( 2
p
)3 = −1 as follows. x ≡ 34, 61 mod 72 gives

(t, f) ≡ (5, 5) mod 6 and (t, f) ≡ (2, 2) mod 6 respectively, which insists use of eq. (A.1)-(ii) to give L and
M as both odd. x ≡ 10 mod 72 gives (t, f) ≡ (1, 0) mod 6 so that eq. (A.1)-(i) can be used to show L is
odd. Lastly, x ≡ 13 mod 72 gives (t, f) ≡ (2, 4) so that A.1-(iii) can be used to show L and M are both
odd. Thus, ( 2

p
)3 = ( 2

p
)2 = −1 by Thm. A.4-(i), so that x24 − u is irreducible in Fp2 [x] by Thm. A.1. �

T4: x ≡ 37, 181 mod 216 implies p ≡ 37 mod 144, x ≡ 130, 202 mod 216 implies p ≡ 133 mod 216, so that
Fp2 = Fp(u) = Fp[u]/(u2 + 2). N2,1(u + 2) = 6. We first have that ( 2

p
)2 = −1 Prop. A.2, but ( 2

p
)3 = 1

for all cases as follows. x ≡ 37, 181 mod 216 gives (t, f) ≡ (2, 0) mod 6 so that we can use eq. (A.1)-(i)
to show that L and M are both even. x ≡ 130, 202 mod 216 gives (t, f) ≡ (5, 1) mod 6 so we can use
A.1-(iii) to show that L and M are both even. Thus, ( 2

p
)3 = 1. On the other hand, we show that ( 3

p
)2 = 1

but ( 3
p
)3 = −1. Note that p ≡ 1 mod 12 so that Thm. A.3-(b) gives ( 3

p
)2 = 1. To show ( 3

p
)3 = −1, the
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same congruencies and corresponding (t, f) pairs immediately give that M 6≡ 0 mod 3 in all cases. Thus,
( 6

p
)3 = ( 6

p
)2 = −1 by Thm. A.4-(i) and (ii), so that x24− (u+ 2) is irreducible in Fp2 [x] by Thm. A.1. �

T5: x ≡ 25, 145, 49, 169 mod 360 implies p ≡ 97 mod 120, x ≡ 70, 190, 94, 214 mod 360 implies p ≡ 97 mod
120, so that Fp2 = Fp(u) = Fp[u]/(u2 + 5). N2,1(u) = 5, and ( 5

p
)2 = −1 (by Thm. A.3-(a) with

p ≡ 2 mod 5), and further ( 5
p
)3 = −1 as follows. x ≡ 190 mod 360 gives (t, f) ≡ (5, 3) mod 6 and

x ≡ 145 mod 360 gives (t, f) ≡ (2, 0) mod 6. In both cases, eq. (A.1)-(i) gives (L,M) ≡ (1, 4) mod 5
so that LM 6≡ 0 mod 5. For x ≡ 25, 169 mod 360, (t, f) ≡ (2, 2) mod 6 whilst for x ≡ 70, 214 mod 360,
(t, f) ≡ (5, 5) mod 6, so eq. (A.1)-(ii) gives (L,M) ≡ (1, 4), (4, 4) mod 5 so that LM 6≡ 0 mod 5. Lastly,
x ≡ 49 mod 360 gives (t, f) ≡ (2, 4) mod 6 so application of A.1-(iii) further reveals that (L,M) ≡
(1, 1) mod 5, meaning that LM 6≡ 0 mod 5. Thus, ( 5

p
)3 = ( 5

p
)2 = −1 by Thm. A.4-(iii), so that x24 − u is

irreducible in Fp2 [x] by Thm. A.1. �
b1: n ≡ 0 mod 12. n ≡ 0 mod 12 needs b as square and cube, so for any non-square, non-cube g, 1 is the
only possibility in {1, g, g2, g3, g4, g5}. �
b−2: n ≡ 27 mod 432, p ≡ 19 mod 72. (t, f) ≡ (2, 0) mod 3 means b = 16, and (−2

p
)2 = 1 so −8 ≡ µ6 for

µ =
√
−2, so b = −2 gives an isomorphic curve. �

b−3: n ≡ 147 mod 216, p ≡ 7 mod 12. Two cases: (t, f) ≡ (2, 1) mod 3 and (t, f) ≡ (2, 2) mod 3, both of

which use Step 3 of Alg. A.6 with b′ = −12 to give −12(p−1)/6 mod p as 2t/(3f − t) and 2t/(−3f − t)
respectively. Division of b = 16b′ by 26 gives the result. �
b4: n ≡ 3 mod 72, p ≡ 1 mod 18. (t, f) ≡ (2, 2) mod 3 is the only option, so b′ = 16 into Step 3 of Alg.

A.6 gives 16(p−1)/6 ≡ 2t/(−3f − t) mod p. Division of b = 16b′ by 26 finishes the proof. �
b2: n ≡ 243 mod 432. (t, f) ≡ (2, 0) mod 3 means b = 16 from Step 1 of Alg. A.6. Division by 8 = µ3 for

µ =
√

2 gives an isomorphic curve with b = 2. �
b−5: n ≡ 3 mod 360, p ≡ 1267 mod 1620. (t, f) ≡ (2, 1) mod 3 is the only option, so Step 3 with b′ = −20

yields −20(p−1)/6 ≡ 2t/(3f − t) mod p. Division of b = 16b′ by 26 gives the result. �
b3: n ≡ 3 mod 24, p ≡ 1 mod 12. Three cases arise: (t, f) ≡ (2, 0) mod 3 means b = 16. It isn’t
hard to show 3/16 = µ6 for µ ∈ Fp so that b = 3 gives an isomorphic curve. The other two cases are
(t, f) ≡ (2, 1) mod 3 and (t, f) ≡ (2, 2) mod 3, both of which use b′ = 12 in Step 3 of Alg. A.6 to give

12(p−1)/6 mod p as 2t/(3f−t) and 2t/(−3f−t) respectively. Division of b = 16b′ by 26 gives an isomorphic
curve and finishes the proof. �
b9: n ≡ 3 mod 24, p ≡ 1 mod 6. Two cases: (t, f) ≡ (2, 0) mod 3 means b = 16, for which it isn’t hard to
show 9/16 = µ3 (and hence µ̃6), giving b = 9 as an isomorphic curve. �
b5: n ≡ 3 mod 24, p ≡ 1 mod 30. Two cases: (t, f) ≡ (2, 0) mod 3 means b = 16. Again we use 5/16 = µ6

for some µ to give the smaller constant. For the second case, (t, f) ≡ (2, 1) mod 3, so Step 3 of Alg. A.6

with b′ = 20 gives 20(p−1)/6 ≡ 2t/(3f − t) mod p, and division of b = 16b′ by 26 finishes the proof. �
b2: n ≡ 243 mod 432. (t, f) ≡ (2, 0) mod 3 is the only case, which immediately gives b = 16 from Step 1

of Alg. A.6. ( 2
p
)2 = 1 is easy (Prop. A.2), so 8 = µ6 and b = 2 is a smaller constant. �

Appendix B. Some more generators

For the sake of protocols or implementations that may require them, this section lists extra
generators that were found in the pairing groups G1 and G2 in each of the subfamilies. For the
most part we stopped looking for any more once we had found 2 or 3 extra generators in any
subfamily.

B.1. More compact generators for k = 8. Refer back to Table 2 - (i) : In G2, we also have
[h′](2/u,

√
−4/u− 1). (ii) : InG2, [h′](u−3,

√
(u− 3)3 + (u− 3)u, [h′](u+2,

√
(u+ 2)3 + u(u+ 2)).

(iii) : In G1, (−1,
√

1), (−2,
√
−4), (2, 2). In G2, (u + 2,

√
(u+ 2)3 − 2(u+ 2)/u) and (u −

3,
√

(u− 3)3 − 2(u− 3)/u also work. (iv) : In G2 is [h′](−1,
√
−1− 2u). (v) : In G2 we also

have [h](−3, 2
√
−6), [h](−1,

√
2) and [h](3,

√
30); G2 also has [h′](−1,−1 + 3/u). (vi) : G1 also

has [h](−4, 6
√
−2). (vii) : Again, G1 also has [h](−4, 6

√
−2). (viii) : G1 also has [h](−2, 2

√
−3).

(ix) : Again, G1 has [h](−2, 2
√
−3) too. G2 also has [h′]

(
−5,

√
−125− 25/u

)
.

B.2. More compact generators for k = 12. Refer back to Table 4 - (i) : In G1, we also have
[h′]
(
−5,
√
−128

)
, [h′]

(
3,
√

24
)

and [h′]
(
9,
√

726
)
.
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B.3. More compact generators for k = 18. Refer back to Table 8 - for all cases here, the
extra generators are in G1: (i) [h](−3,

√
−25), [h](1,

√
3); (ii) [h](−1,

√
3); (iii) [h](−2, 4

√
−3),

[h](1,
√
−3), [h](5, 11); (iv) [h](−3, 2

√
−6), [h](−1,

√
2); (v) [h](−2, 2

√
−3), [h](1,

√
−3); (vi)

[h](−5, 2
√
−30), [h](−2,

√
−3); (vii) [h](−1, 2

√
−2).

B.4. More compact generators for k = 27. Refer back to Table 10 - all the extra generators are
in G1: (i) : [h](−5, 8

√
−2), [h](3, 2

√
6) [h](9, 11

√
6); (ii): [h](7, 4

√
21); (iii) : [h](3, 6), [h](6, 3

√
5).

B.5. More compact generators for k = 32. Refer back to Table 12 - all the extra generators
are in G1: (i): [h](−5, 8

√
−2), [h](3, 2

√
6), [h](9, 11

√
6); (ii): [h](−4, 6

√
2); (iii): [h](−3, 6

√
−1),

[h](−1, 2
√
−1), [h](3, 6).

B.6. More compact generators for k = 36. Refer back to Table 14 - all the extra generators
are in G1: (i): [h](−2, 2

√
−3), [h](1,

√
−3), [h](5, 11); (ii): [h](−2,

√
−10), [h](−1,

√
−3); (iii):

[h](−2,
√
−5); (iv): [h](3,

√
30); (v): [h](5, 2

√
30); (vi): [h](−2, 2

√
−3), [h](−1,

√
−5), [h](1,

√
−3),

[h](4, 2
√

15).

B.7. More compact generators for k = 48. Refer back to Table 16 - (i): Both in G2 are
[h′](−1 − 2/w,

√
(−1− 2/w)3 − 2), [h′](±5 − 2/w,

√
(±5− 2/w)3 − 2); (ii): In G2 is [h′](1 −

w,
√

(1− w)3 + 1); (iii): In G2 is [h′](−2,
√
−8 + 4w); (iv): All in G2 are [h′](−1,

√
−1 + 4w),

[h′](−3,
√
−27 + 4w), [h′](3,

√
27 + 4w); (v): In G2 is [h′](−1,

√
1− w); (vi): All in G1 are

[h](−5, 11
√

1), [h](−2, 2
√
−1), [h](2, 2

√
3).

Appendix C. Example curves from 5-star subfamilies

We give numerous examples of pairing-friendly curves that belong to some of the 5-star sub-
families in each family. The security levels covered by a particular family come from Table 17.
In most cases, our searches returned many more low-weight curves than what we have presented,
so we have chosen a small sample that also spans a few bits slightly below the exact security
level. When we found them, we chose to include curves whose hamming-weight is equal to their
NAF-weight, and have marked these cases with an asterix (next to the weight given) in the tables.

As mentioned in [8], odd congruencies generally find curves with a signed binary (NAF) repre-
sentation whose weight is one more than those of even congruencies, since the last bit is forced to
be ±1 in the former case.

The reader is reminded that although the KSS subfamilies are presented with simplified con-
gruencies x′ ≡ a mod b, the actual congruencies in should be re-inflated (before searching) to
x ≡ au mod bu, where u = 5, 14, 13, 7 for k = 16, 18, 32, 36 respectively. Thus, for k = 18 where
u = 14, congruencies in x′ that appear to be odd, are actually even congruencies in x.

Lastly, we remark that the curves in Tables 18-25 have certainly not exhausted all curves
belonging to the associated family, up to the given weights, and for the given security ranges. In
most cases, our searches would terminate when a prescribed number of curves were found, and if
resumed, would be kick-started somewhere else entirely, in order to better span neighboring bits
the targeted level of security.

E-mail address: craig.costello@qut.edu.au
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112-bit secure curves
family subfamily/details x0 weight Fq (bits) / F

qk sec. r (bits) / E[r] sec.

1− 221 + 248 − 252 4 316 / 113 210 / 104

1− 246 − 249 − 252 4 318 / 113 211 / 105

1 + 218 + 252 3∗ 317 / 113 211 / 105

1 + 212 + 228 + 252 4∗ 317 / 113 211 / 105

1− 26 + 233 + 253 4 323 / 114 215 / 107

1− 24 − 214 − 254 4 329 / 115 219 / 109

1− 224 + 233 + 254 4 329 / 115 219 / 109

1− 217 − 235 − 254 4 329 / 115 219 / 109

x ≡ 1 mod 16 1 + 216 − 248 − 254 4 329 / 115 219 / 109

T1, a1, D 1 + 243 − 253 + 255 4 332 / 116 221 / 110

1 + 29 + 255 3∗ 335 / 116 223 / 111

1− 25 + 220 − 255 4 335 / 116 223 / 111

1 + 218 + 237 − 255 4 335 / 116 223 / 111

1− 221 + 240 − 255 4 335 / 116 223 / 111

1 + 237 + 241 + 255 4∗ 335 / 116 223 / 111

1 + 25 + 246 + 255 4∗ 335 / 116 223 / 111

1− 243 − 247 + 255 4 335 / 116 223 / 111

1− 213 + 254 − 256 4 338 / 117 225 / 112

−1 + 22 − 218 − 252 4 317 / 113 211 / 105

−1 + 22 + 225 + 227 + 253 5 323 / 114 215 / 107

−1 + 22 − 221 − 249 − 253 5 323 / 114 215 / 107

−1 + 22 + 29 + 251 − 254 5 328 / 115 218 / 108

−1 + 22 − 24 − 212 − 254 5 329 / 115 219 / 109

x ≡ 3 mod 16 −1 + 22 − 218 + 220 + 254 5 329 / 115 219 / 109

T1, a−2, D −1 + 22 + 213 + 224 + 254 5 329 / 115 219 / 109

−1 + 22 − 234 − 254 4 329 / 115 219 / 109

−1 + 22 − 26 − 218 + 255 5 335 / 116 223 / 111

−1 + 22 + 211 − 226 − 255 5 335 / 116 223 / 111

−1 + 22 + 234 − 240 + 255 5 335 / 116 223 / 111

Brezing- −1 + 22 + 211 − 243 − 255 5 335 / 116 223 / 111

Weng −1 + 22 + 241 + 248 + 255 5 335 / 116 223 / 111

k = 8 1− 23 + 224 + 248 − 253 5 323 / 114 214 / 106

(see §3) 1 + 23 + 25 − 225 + 253 5 323 / 114 215 / 107

1− 23 − 25 + 248 + 253 5 323 / 114 215 / 107

1− 23 − 219 − 229 − 254 5 329 / 115 219 / 109

1 + 23 − 27 − 242 − 254 5 329 / 115 219 / 109

1 + 23 − 239 + 245 + 254 5 329 / 115 219 / 109

1 + 23 + 235 − 248 − 254 5 329 / 115 219 / 109

1− 23 − 241 − 253 + 255 5 332 / 116 221 / 110

1− 23 − 211 + 216 − 255 5 335 / 116 223 / 111

x ≡ 9 mod 16 1 + 23 + 26 + 230 + 255 5∗ 335 / 116 223 / 111

T1, a1, M 1− 23 + 213 + 238 − 255 5 335 / 116 223 / 111

1− 23 − 220 + 238 − 255 5 335 / 116 223 / 111

1 + 23 − 223 + 238 + 255 5 335 / 116 223 / 111

1− 23 − 217 + 239 + 255 5 335 / 116 223 / 111

1− 23 + 237 + 239 − 255 5 335 / 116 223 / 111

1− 23 − 223 − 244 + 255 5 335 / 116 223 / 111

1− 23 + 29 − 246 + 255 5 335 / 116 223 / 111

1 + 23 − 236 − 247 − 255 5 335 / 116 223 / 111

1− 23 − 228 − 249 − 255 5 335 / 116 223 / 111

1− 23 − 237 − 252 − 255 5 336 / 116 223 / 111

−1− 22 − 25 − 213 + 253 5 323 / 114 215 / 107

−1− 22 − 29 + 223 + 253 5 323 / 114 215 / 107

−1− 22 + 219 + 233 + 253 5 323 / 114 215 / 107

−1− 22 − 212 − 227 − 254 5∗ 329 / 115 219 / 109

−1− 22 − 224 − 237 − 254 5∗ 329 / 115 219 / 109

−1− 22 + 237 + 239 + 254 5 329 / 115 219 / 109

x ≡ 11 mod 16 −1− 22 − 27 + 213 − 255 5 335 / 116 223 / 111

T1, a2, M −1− 22 + 213 + 217 − 255 5 335 / 116 223 / 111

−1− 22 + 242 − 245 + 255 5 335 / 116 223 / 111

−1− 22 − 225 + 246 + 255 5 335 / 116 223 / 111

−1− 22 − 211 + 248 + 255 5 335 / 116 223 / 111

−1− 22 + 232 + 254 − 256 5 338 / 117 225 / 112

Table 18. Low weight curves offering 112-bit security.
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192-bit secure curves
family subfamily/details x0 weight Fq (bits) / F

qk sec. r (bits) / E[r] sec.

248 − 272 − 2105 3 629 / 187 421 / 210

223 + 234 + 2106 3∗ 635 / 188 425 / 212

246 + 274 − 2108 3 647 / 189 432 / 215

x ≡ 64 mod 72 −271 + 281 − 2109 3 653 / 190 436 / 217

T1, b−2, D −221 + 291 − 2109 3 653 / 190 436 / 217

−249 + 273 − 2111 3 665 / 192 444 / 221

−240 − 267 − 2111 3∗ 665 / 192 445 / 222

279 − 291 − 2111 3 665 / 192 445 / 222

−252 + 262 − 2105 3 629 / 187 420 / 209

219 + 284 − 2107 3 641 / 189 428 / 213

x ≡ 16, 88 mod 216 −223 + 296 + 2109 3 653 / 190 437 / 218

T1, b4, M 211 − 225 + 2110 3 659 / 191 440 / 219

BLS −241 + 282 − 2110 3 659 / 191 440 / 219

k = 12 260 − 2107 − 2112 3 671 / 192 449 / 224

(see §4) −224 − 232 − 234 − 2105 4∗ 629 / 187 421 / 210

−214 − 216 − 244 − 2107 4∗ 641 / 189 429 / 214

−24 − 230 − 261 − 2108 4∗ 647 / 189 433 / 216

−28 − 245 − 294 − 2108 4∗ 647 / 189 433 / 216

x ≡ 160 mod 216 −234 − 296 − 2103 − 2108 4∗ 647 / 189 433 / 216

T1, M , b−3 215 + 225 + 244 + 2109 4∗ 653 / 190 437 / 218

−29 − 291 − 299 − 2109 4∗ 653 / 190 437 / 218

−216 − 281 + 2110 3 659 / 191 440 / 219

−24 − 262 − 2101 − 2110 4∗ 659 / 191 441 / 220

25 + 247 + 258 + 2111 4∗ 665 / 192 445 / 222

223 + 225 + 266 + 2111 4∗ 665 / 192 445 / 222

−273 − 285 − 293 − 2111 4∗ 665 / 192 445 / 222

1 + 212 + 225 + 245 − 248 5 469 / 186 367 / 183

1− 226 − 233 + 240 − 248 5 471 / 187 369 / 184

1 + 221 − 239 + 246 + 248 5 474 / 187 371 / 185

1− 212 − 242 + 244 − 246 + 249 6 479 / 188 375 / 187

x′ ≡ 61, 93 mod 112 1− 25 + 27 + 229 + 243 − 249 6 480 / 188 376 / 187

T1, a1, M 1 + 214 + 221 + 225 + 230 + 249 6∗ 481 / 189 377 / 188

1− 214 + 224 + 236 + 246 + 249 6 482 / 189 378 / 188

1− 229 + 231 − 241 − 247 − 249 6 484 / 189 379 / 189

1− 229 − 236 + 238 − 248 + 250 6 486 / 189 381 / 190

1− 220 + 223 − 227 + 230 − 250 6 491 / 190 385 / 192

−1 + 22 − 217 − 232 − 245 + 249 6 480 / 188 376 / 187

−1 + 22 − 27 − 211 + 220 + 249 6 481 / 189 377 / 188

x′ ≡ 23, 103 mod 112 −1 + 22 + 28 + 220 + 223 + 249 6 481 / 189 377 / 188

T1, M , a−2 −1 + 22 − 221 − 229 + 238 + 249 6 481 / 189 377 / 188

KSS −1 + 22 + 234 + 236 + 248 − 250 6 486 / 189 381 / 190

k = 16 −1 + 22 − 220 − 222 + 231 + 250 6 491 / 190 385 / 192

(see §5) −1 + 22 − 27 + 237 + 251 5 501 / 192 393 / 196

1 + 23 − 217 + 229 + 247 − 249 6 476 / 188 373 / 186

1− 23 + 215 + 220 + 232 + 249 6 481 / 189 377 / 188

1 + 23 + 29 − 215 + 238 − 249 6 481 / 189 377 / 188

x′ ≡ 5, 37 mod 112 1− 23 + 218 − 232 + 241 + 249 6 481 / 189 377 / 188

T1, a1, D 1− 23 + 230 + 239 − 247 − 249 6 484 / 189 379 / 189

1− 23 − 210 − 212 + 231 + 250 6 491 / 190 385 / 192

1 + 23 + 27 − 210 − 237 + 250 6 491 / 190 385 / 192

1 + 23 + 226 − 244 + 251 5 500 / 192 393 / 196

−1− 22 − 231 − 235 + 248 5 471 / 187 369 / 184

x′ ≡ 47, 79 mod 112 −1− 22 + 220 − 241 + 247 − 249 6 481 / 189 377 / 188

T1, a2, D −1− 22 + 211 − 221 − 235 + 249 6 481 / 189 377 / 188

−1− 22 − 24 − 216 − 226 − 250 6∗ 491 / 190 385 / 192

218 + 234 − 245 − 264 4 508 / 203 376 / 187

x′ ≡ 4 mod 36 212 + 246 − 251 − 264 4 508 / 203 376 / 187

T1, b2, D 228 + 247 − 251 + 264 4 508 / 203 376 / 187

25 − 215 + 242 − 265 4 516 / 205 382 / 190

220 − 224 + 228 + 235 − 264 5 508 / 203 376 / 187

24 − 28 − 223 + 239 − 264 5 508 / 203 376 / 187

−213 − 231 − 244 − 262 − 264 5∗ 511 / 204 378 / 188

222 − 236 − 238 − 263 + 265 5 513 / 204 380 / 189

KSS −215 − 220 + 245 + 263 − 265 5 513 / 204 380 / 189

k = 18 x′ ≡ 16 mod 108 −212 + 225 − 260 + 262 − 265 5 515 / 205 381 / 190

(see §6) T1, b6, M 218 + 229 − 235 + 237 + 265 5 516 / 205 382 / 190

27 − 216 + 240 + 260 + 265 5 516 / 205 382 / 190

−25 + 221 + 235 − 262 − 265 5 517 / 205 383 / 191

−224 − 231 + 243 + 262 + 265 5 517 / 205 383 / 191

225 + 234 + 237 + 264 − 266 5 521 / 206 386 / 192

−23 − 232 − 242 − 264 + 266 5 521 / 206 386 / 192

x′ ≡ 79 mod 108 21 + 229 + 259 + 265 4∗ 516 / 205 382 / 190
T1, M , b3

x′ ≡ 7, 43 mod 108 21 − 215 + 218 + 263 + 265 5 519 / 205 384 / 191
T1, M , b−4

Table 19. Low weight curves offering 192-bit security.
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224-bit secure curves
family subfamily/details/rating x0 weight Fq (bits) / F

qk sec. r (bits) / E[r] sec.

−234 + 258 + 2150 3 899 / 219 601 / 300

276 + 295 − 2151 3 905 / 219 604 / 301

−2101 − 2138 − 2151 3∗ 905 / 219 605 / 302

243 − 259 + 2152 3 911 / 220 608 / 303

−25 − 261 + 2153 3 917 / 221 612 / 305

x ≡ 64 mod 72 250 − 2131 − 2154 3 923 / 221 617 / 308

T1, b−2, D 296 − 2131 + 2155 3 929 / 222 620 / 309

27 − 295 − 2155 3 929 / 222 621 / 310

−265 + 277 + 2156 3 935 / 222 625 / 312

−275 + 2111 + 2156 3 935 / 222 625 / 312

230 − 259 − 2158 3 947 / 224 633 / 316

−221 + 260 + 2159 3 953 / 224 637 / 318

BLS −251 + 288 − 2150 3 899 / 219 600 / 299

k = 12 288 + 291 − 2151 3 905 / 219 604 / 301

(see §4) 222 + 246 + 2151 3∗ 905 / 219 605 / 302

x ≡ 16, 88 mod 216 −2105 − 2124 + 2152 3 911 / 220 608 / 303

T1, b4, M −247 + 2144 − 2154 3 923 / 221 616 / 307

−24 + 288 + 2154 3 923 / 221 617 / 308

−27 + 2137 − 2155 3 929 / 222 620 / 309

−2127 + 2140 + 2155 3 929 / 222 621 / 310

−227 − 2147 + 2155 3 929 / 222 620 / 309

−295 + 2116 − 2150 3 899 / 219 600 / 299

−259 − 267 − 2152 3∗ 911 / 220 609 / 304

x ≡ 160 mod 216 222 − 269 + 2153 3 917 / 221 612 / 305

T1, b−3, M −222 − 235 − 2153 3∗ 917 / 221 613 / 306

−283 − 2150 − 2155 3∗ 929 / 222 621 / 310

214 − 234 − 2159 3 953 / 224 637 / 318

−289 − 2100 − 2159 3∗ 953 / 224 637 / 318

1− 222 + 256 + 266 − 269 5 679 / 219 535 / 267

1 + 214 + 217 + 236 + 269 5 681 / 220 537 / 268

1 + 225 − 233 − 265 − 270 5 691 / 221 545 / 272

x′ ≡ 61, 93 mod 112 1− 220 − 262 + 269 − 271 5 696 / 222 549 / 274

KSS T1, a1, M 1− 247 − 254 − 265 + 271 5 700 / 222 552 / 275

k = 16 1 + 221 − 238 + 251 + 271 5 701 / 222 553 / 276

(see §5) 1 + 223 + 248 + 257 + 271 5∗ 701 / 222 553 / 276

1− 215 − 255 − 266 − 272 5 711 / 224 561 / 280

x′ ≡ 5, 37 mod 112 1− 23 + 212 + 222 + 230 − 269 6 681 / 220 537 / 268

T1, a1, D 1− 23 + 211 − 247 − 271 5 701 / 222 553 / 276

220 + 226 + 236 − 276 4 604 / 219 448 / 223

231 − 236 + 251 − 276 4 604 / 219 448 / 223

238 + 241 + 262 + 276 4∗ 604 / 219 448 / 223

26 + 218 − 239 − 278 4 620 / 222 460 / 229

x′ ≡ 4 mod 36 −219 − 245 + 250 − 278 4 620 / 222 460 / 229

T1, b2, D 218 − 257 + 261 − 279 4 628 / 223 466 / 232

27 − 224 − 226 − 280 4 636 / 224 472 / 235

−23 − 218 − 249 + 280 4 636 / 224 472 / 235

224 − 240 + 256 + 280 4 636 / 224 472 / 235

26 − 213 − 273 − 280 4 636 / 224 472 / 235

KSS 218 − 240 − 266 + 274 − 276 5 601 / 219 446 / 222

k = 18 −230 + 240 + 250 + 276 4 604 / 219 448 / 223

(see §6) 213 + 241 + 258 + 271 + 276 5∗ 604 / 219 448 / 223

x′ ≡ 16 mod 108 −215 + 218 − 226 − 272 − 276 5 605 / 220 449 / 224

T1, b6, M 213 + 223 − 228 + 272 + 276 5 605 / 220 449 / 224

−26 − 224 − 237 + 275 − 277 5 609 / 220 452 / 225

−220 − 262 + 268 + 275 − 277 5 609 / 220 452 / 225

220 + 232 − 262 − 277 4 612 / 221 454 / 226

−213 + 231 + 237 + 254 + 277 5 612 / 221 454 / 226

x′ ≡ 7, 43 mod 108 21 + 217 − 222 + 230 + 276 5 604 / 219 448 / 223

T1, b−4, M 21 − 214 − 255 − 263 − 276 5 604 / 219 448 / 223

21 + 214 − 261 − 264 − 276 5 604 / 219 448 / 223
x′ ≡ 79 mod 108

T1, b3, M 21 + 27 − 211 − 241 + 277 5 612 / 221 454 / 226

Table 20. Low weight curves offering 224-bit security.
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256-bit secure curves
subfamily/details x0 weight Fq (bits) / F

qk sec. r (bits) / E[r] sec.

−211 − 215 − 223 − 226 4∗ 522 / 245 470 / 234

−24 − 27 + 221 − 225 + 227 5 531 / 247 478 / 238

22 + 27 − 218 − 221 + 227 5 538 / 249 484 / 241

26 − 212 − 217 − 227 4 539 / 249 485 / 242

24 + 28 + 216 − 223 − 227 5 541 / 249 486 / 242

−22 + 211 + 214 − 224 − 227 5 542 / 249 488 / 243

29 + 219 − 221 − 226 + 228 5 550 / 251 495 / 247

−24 − 212 + 224 − 226 + 228 5 553 / 252 498 / 248

24 − 27 + 214 − 225 + 228 5 555 / 252 499 / 249

x ≡ 5, 14, 32 mod 36 23 + 27 − 219 − 224 + 228 5 557 / 252 501 / 250

T1, b−3, M −22 − 29 + 211 + 217 + 228 5 559 / 253 503 / 251

−26 + 211 + 213 + 224 + 228 5 561 / 253 504 / 251

−21 − 24 + 222 − 226 − 228 5 565 / 254 508 / 253

−211 + 214 + 220 + 226 + 228 5 565 / 254 509 / 254

−23 − 25 + 212 − 214 + 227 − 229 6 571 / 255 513 / 256

26 − 213 + 219 + 222 − 227 + 229 6 571 / 255 514 / 256

210 + 212 − 218 − 223 + 227 − 229 6 571 / 255 514 / 256

21 + 25 + 215 + 226 − 229 5 575 / 256 517 / 258

−1 + 27 + 214 + 223 − 227 5 537 / 248 483 / 241

BLS −1− 29 − 214 + 216 + 227 5 539 / 249 485 / 242

k = 27 21 + 25 + 215 − 225 + 228 5 555 / 252 499 / 249

(see §7) 24 + 27 + 222 + 225 − 228 5 555 / 252 499 / 249

x ≡ 11, ..., 1235 mod 1260 −21 + 25 − 221 + 223 − 228 5 558 / 253 502 / 250

T1, b9, D −22 + 25 + 215 − 228 4 559 / 253 503 / 251

23 − 211 + 217 + 223 + 228 5 560 / 253 504 / 251

1− 210 + 213 + 220 + 226 + 228 6 565 / 254 509 / 254

1 + 29 − 213 − 215 + 227 − 229 6 571 / 255 513 / 256

1 + 22 − 210 + 218 + 227 − 229 6 571 / 255 513 / 256

−1 + 28 + 213 − 215 + 227 5 539 / 249 485 / 242

−1− 28 − 220 − 224 + 226 − 228 6 553 / 252 498 / 248

−1− 27 − 217 − 221 + 224 − 228 6 557 / 252 501 / 250

x ≡ 23 mod 36 −1 + 22 + 25 + 210 + 212 + 228 6 559 / 253 503 / 251

T1, b3, M −1 + 22 − 221 − 224 + 226 + 228 6 564 / 254 507 / 253

−1− 26 + 214 − 220 − 226 − 228 6 565 / 254 509 / 254

−1− 211 − 217 − 221 − 227 + 229 6 570 / 255 513 / 256

−1− 22 − 26 + 227 4 539 / 249 485 / 242

−23 − 27 + 219 − 227 4 539 / 249 485 / 242

x ≡ 110, ..., 1244(1260) 1− 211 − 218 + 220 − 226 + 228 6 551 / 251 496 / 247

T1, b7, D 1− 213 + 215 − 221 + 224 − 228 6 557 / 252 501 / 250

1− 29 − 212 + 214 + 220 − 228 6 559 / 253 503 / 251

x ≡ 2, ..., 1136 mod 1260 21 + 28 − 214 + 222 − 228 5 558 / 253 503 / 251

T1, b−7, D 1− 24 − 26 + 225 + 228 5 562 / 253 506 / 252

Table 21. Low weight curves offering 256-bit security.
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288-bit secure curves
subfamily/details x0 weight Fq (bits) / F

qk sec. r (bits) / E[r] sec.

1− 24 − 29 + 236 4 719 / 281 647 / 323

1 + 220 + 226 − 230 − 235 + 237 6 730 / 283 657 / 328

1 + 28 + 212 + 219 − 235 + 237 6 731 / 283 657 / 328

1− 22 + 216 + 232 − 235 + 237 6 732 / 284 659 / 329

1 + 22 − 211 + 233 − 235 + 237 6 733 / 284 660 / 329

1− 210 − 218 − 224 − 234 + 237 6 735 / 284 661 / 330

1 + 217 + 220 + 224 − 233 + 237 6 737 / 284 663 / 331

1 + 211 + 215 + 217 + 231 + 237 6∗ 739 / 285 665 / 332

210 + 212 − 217 + 237 4 739 / 285 665 / 332

x ≡ 5, 14, 32 mod 36 1 + 27 − 29 + 215 + 237 5 739 / 285 665 / 332

T1, b−3, M 27 + 224 − 229 − 237 4 739 / 285 665 / 332

1 + 22 + 218 − 222 + 232 + 237 6 740 / 285 666 / 332

1 + 210 + 217 + 221 − 235 − 237 6 745 / 286 671 / 335

−29 + 224 − 236 + 238 4 751 / 287 675 / 337

1− 212 − 220 − 232 + 238 5 758 / 288 683 / 341

1 + 28 − 225 − 231 + 238 5 759 / 288 683 / 341

226 − 235 − 237 + 239 4 768 / 289 691 / 345

−1 + 25 + 27 − 226 − 231 + 237 6 738 / 285 664 / 331

1 + 28 − 212 + 217 + 237 5 739 / 285 665 / 332

−21 − 214 − 220 + 224 + 237 5 739 / 285 665 / 332

BLS 25 − 217 − 221 − 224 + 237 5 739 / 285 665 / 332

k = 27 x ≡ 11, ..., 1235 mod 1260 25 − 29 + 225 − 227 + 237 5 739 / 285 665 / 332

(see §7) T1, b9, D 1 + 23 + 215 + 219 + 227 + 237 6∗ 739 / 285 665 / 332

26 + 211 + 227 − 229 + 237 5 739 / 285 665 / 332

21 + 25 − 215 + 229 − 237 5 739 / 285 665 / 332

−1 + 216 − 226 − 234 − 237 5 742 / 285 668 / 333

28 + 224 − 233 − 238 4 760 / 288 684 / 341

−1 + 213 + 223 + 228 + 236 5 719 / 281 647 / 323

−1− 225 − 229 − 231 − 235 + 237 6 730 / 283 657 / 328

−1 + 27 − 216 + 222 − 234 + 237 6 735 / 284 661 / 330

x ≡ 23 mod 36 −1− 210 − 222 − 229 − 237 5∗ 739 / 285 665 / 332

T1, b3, M −1 + 27 − 213 − 230 − 237 5 739 / 285 665 / 332

−1 + 215 + 229 − 231 + 238 5 759 / 288 683 / 341

−1− 22 − 28 − 221 − 230 − 238 6∗ 759 / 288 683 / 341

−1 + 215 + 229 − 231 + 238 5 759 / 288 683 / 341

−1− 28 − 211 − 222 + 238 5 759 / 288 683 / 341

x ≡ 110, ..., 1244 mod 1260 −26 − 220 − 227 − 230 − 237 5∗ 739 / 285 665 / 332

T1, b7, D −22 − 220 − 226 − 231 − 237 5∗ 739 / 285 665 / 332

−1 + 22 − 26 − 226 + 238 5∗ 759 / 288 683 / 341

27 + 213 − 237 3 739 / 285 665 / 332

1− 24 − 28 − 227 + 237 5 739 / 285 665 / 332

x ≡ 38, ..., 1253 mod 1260 27 + 29 + 222 − 226 − 237 5 739 / 285 665 / 332

T1, b−5, D −21 + 28 + 211 − 228 + 237 5 739 / 285 665 / 332

28 + 215 − 218 + 228 + 237 5 739 / 285 665 / 332

1 + 216 + 233 + 238 4∗ 760 / 288 684 / 341

1 + 214 + 217 + 221 + 230 − 232 + 237 − 239 8 674 / 294 572 / 285

1− 25 + 210 + 212 − 218 − 237 + 239 7 674 / 294 571 / 285

1 + 26 − 214 − 221 − 230 + 232 + 235 − 239 8 679 / 295 576 / 287

KSS x′ ≡ 453, 981 mod 3824 1− 27 − 29 + 221 + 226 − 228 − 230 + 239 8 681 / 296 578 / 288

k = 32 T1, a1, D 1 + 29 − 211 + 214 + 219 − 221 − 224 − 239 8 681 / 296 578 / 288

(see §8) 1 + 27 − 29 − 214 − 217 − 220 − 229 − 239 8 681 / 296 578 / 288

1− 27 − 29 + 221 + 226 − 228 − 230 + 239 8 681 / 296 578 / 288

1− 27 − 212 + 217 + 222 − 228 − 235 − 239 8 683 / 296 580 / 289

1− 223 − 232 + 235 + 239 5 682 / 296 579 / 289

x′ ≡ 2365, 2893 mod 3824 1− 23 − 27 + 225 − 236 + 238 6 656 / 291 555 / 277

T1, a1, M 1− 23 + 27 − 212 − 228 − 231 − 235 − 239 8 683 / 296 580 / 289

Table 22. Low weight curves offering 288-bit security.
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320-bit secure curves
subfamily/details x0 weight Fq (bits) / F

qk sec. r (bits) / E[r] sec.

1− 29 − 213 − 228 + 231 + 240 − 245 7 788 / 314 673 / 336

1− 27 − 210 − 219 + 235 + 240 − 245 7 788 / 314 673 / 336

KSS 1 + 29 + 212 − 215 + 221 − 223 − 225 + 245 8 789 / 315 674 / 336

k = 32 x′ ≡ 453, 981 mod 3824 1 + 24 + 26 − 218 + 226 − 228 − 234 + 245 8 789 / 315 674 / 336

(see §8) T1, a1, D 1− 26 + 214 − 220 − 222 + 234 − 246 7 807 / 318 690 / 344

1 + 25 + 217 − 225 + 229 − 236 + 246 7 807 / 318 690 / 344

1 + 26 + 28 − 213 − 218 − 236 − 247 7 825 / 320 706 / 352

1− 28 − 218 + 224 + 237 − 246 + 248 7 836 / 322 715 / 357

−23 − 217 − 228 − 252 + 255 5 753 / 324 631 / 315

23 + 214 − 223 + 234 − 236 − 255 6 756 / 325 633 / 316

25 + 29 + 226 − 231 + 240 − 255 6 756 / 325 633 / 316

x′ ≡ 1376, 1880 mod 2664 −29 + 225 − 227 + 238 + 242 + 255 6 756 / 325 633 / 316

T1, b2, D −23 + 212 + 214 − 233 + 243 + 255 6 756 / 325 633 / 316

−23 − 28 − 229 − 234 − 245 − 255 6∗ 756 / 325 633 / 316

−28 − 221 − 231 + 242 + 245 − 255 6 756 / 325 633 / 316

−27 − 219 − 232 + 244 − 248 − 255 6 756 / 325 633 / 316

−23 + 212 − 215 + 224 − 234 + 255 6 756 / 325 633 / 316

−25 + 28 − 211 + 235 + 237 − 255 6 756 / 325 633 / 316

x′ ≡ 104, ..., 7592 mod 7992 −27 − 225 + 231 − 234 − 239 − 255 6 756 / 325 633 / 316

KSS T1, b−4, M −211 + 221 + 236 + 242 − 244 − 255 6 756 / 325 633 / 316

k = 36 23 + 27 − 224 − 233 + 247 + 255 6 756 / 325 633 / 316

(see §9) 210 − 217 + 219 − 221 − 251 + 255 6 754 / 324 632 / 315

24 + 27 + 232 − 248 + 252 − 255 6 753 / 324 631 / 315

−230 − 233 − 240 − 248 − 250 + 255 6 755 / 324 633 / 316

212 + 232 + 241 − 245 + 250 + 255 6 756 / 325 634 / 316

−26 − 219 − 244 + 247 + 251 + 255 6 757 / 325 634 / 316

x′ ≡ 2768, 4928 mod 7992 23 + 215 + 217 + 224 − 229 + 240 + 255 7 756 / 325 633 / 316

T1, b3, M −25 + 211 − 224 − 230 + 239 − 241 − 255 7 756 / 325 633 / 316

−25 − 216 + 218 − 221 − 231 − 241 − 255 7 756 / 325 633 / 316

−215 + 222 + 227 − 231 − 233 − 241 − 255 7 756 / 325 633 / 316

211 + 216 + 223 + 234 − 237 + 256 6 770 / 327 645 / 322

26 + 210 + 231 + 234 + 250 − 256 6 769 / 327 645 / 322

−227 − 234 + 239 − 244 − 250 − 256 6 770 / 327 646 / 322

23 − 26 − 234 + 239 + 253 + 256 6 772 / 327 647 / 323

Table 23. Low weight curves offering 320-bit security.
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352-bit secure curves
subfamily/details x0 weight Fq (bits) / F

qk sec. r (bits) / E[r] sec.

x′ ≡ 2768, 4928 mod 7992

T1, b3, M −212 − 232 + 234 − 245 + 265 5 896 / 348 753 / 376

KSS −25 − 216 − 218 + 227 + 231 + 265 6 896 / 348 753 / 376

k = 36 x′ ≡ 1376, 1880 mod 2664 −210 + 223 + 242 + 257 − 265 5 896 / 348 753 / 376

(see §9) T1, b2, D −226 + 241 − 245 + 262 + 265 5 898 / 349 755 / 377

221 − 231 + 249 − 258 + 266 5 910 / 351 765 / 382

x′ ≡ 104, ..., 7592 mod 7992 −25 − 216 − 246 + 250 + 265 5 896 / 348 753 / 376

T1, b−4, M 210 + 216 − 223 − 230 + 232 + 265 6 896 / 348 753 / 376

x′ ≡ 821, 1325 mod 2664 −1 + 22 + 233 + 237 + 243 − 255 + 266 7 910 / 351 765 / 382

T1, b−1, M −1 + 22 + 27 − 29 + 219 + 228 − 266 7 910 / 351 765 / 382

−1 + 22 − 219 − 231 − 249 + 252 + 266 7 910 / 351 765 / 382

x ≡ 437, 2597 mod 2664 −1 + 22 + 25 − 221 + 245 + 254 − 266 7 910 / 351 765 / 382

T1, b−1, D −1− 22 + 26 + 218 − 222 − 233 − 266 7 910 / 351 765 / 382

−211 − 221 + 243 3 773 / 369 688 / 343

x ≡ 16, 88 mod 216 −230 − 236 − 238 + 244 4 790 / 373 704 / 351

T1, b4, M 23 − 211 − 221 − 224 + 244 5 791 / 373 704 / 351

29 + 226 − 242 − 244 4 797 / 374 710 / 354

−23 + 28 − 213 + 219 − 244 5 791 / 373 704 / 351

x ≡ 64 mod 72 −27 + 210 + 217 + 220 − 244 5 791 / 373 704 / 351

T1, b−2, D −28 − 215 − 217 + 223 + 244 5 791 / 373 705 / 352

212 − 214 + 217 + 226 + 244 5 791 / 373 705 / 352

−215 + 229 + 231 − 241 + 244 5 787 / 372 701 / 350

−220 − 226 − 238 + 241 − 244 5 788 / 372 702 / 350

BLS x ≡ 160 mod 216 211 + 218 + 227 − 231 + 244 5 791 / 373 704 / 351

k = 48 T1, b−3, M −24 − 218 − 221 + 224 + 244 5 791 / 373 705 / 352

(see §10) −28 + 213 − 225 + 234 + 244 5 791 / 373 705 / 352

−28 + 215 + 230 + 240 + 244 5 792 / 373 706 / 352

−27 + 225 − 229 + 243 − 245 5 801 / 375 714 / 356

−1 + 23 + 233 + 241 − 244 5 787 / 372 701 / 350

−1 + 26 − 223 + 228 − 244 5 791 / 373 704 / 351

x ≡ 7 mod 72 −1− 26 − 211 − 225 − 228 − 244 6∗ 791 / 373 705 / 352

T1, b1, D −1 + 218 − 225 + 229 + 244 5 791 / 373 705 / 352

−1− 230 − 237 + 240 + 244 5 792 / 373 706 / 352

−1 + 218 − 225 + 229 + 244 5 791 / 373 705 / 352

−1− 214 − 217 − 226 − 231 − 244 6∗ 791 / 373 705 / 352

−1 + 24 − 215 − 219 − 223 + 244 6 791 / 373 704 / 351

x ≡ 31 mod 72 −1− 27 − 210 − 213 − 216 − 244 6∗ 791 / 373 705 / 352

T1, b1,M −1− 213 + 218 − 227 − 244 5 791 / 373 705 / 352

−1 + 217 − 219 + 240 + 244 5 792 / 373 706 / 352

Table 24. Low weight curves offering 352-bit security.

384-bit secure curves
subfamily/details x0 weight Fq (bits) / F

qk sec. r (bits) / E[r] sec.

27 + 217 + 232 − 248 4 863 / 387 768 / 383

x ≡ 64 mod 72 −217 + 230 − 235 + 248 4 863 / 387 768 / 383

T1, b−2, D −26 − 222 + 236 − 248 4 863 / 387 768 / 383

−24 + 211 − 216 + 219 − 248 5 863 / 387 768 / 383

27 + 235 + 247 − 249 4 873 / 388 778 / 388

x ≡ 160 mod 216 27 − 210 + 216 − 229 + 248 5 863 / 387 768 / 383

T1, b−3, M 26 + 234 + 240 + 248 4∗ 863 / 387 769 / 384

−1 + 24 − 216 − 231 + 248 5 863 / 387 768 / 383

−1 + 216 + 218 + 230 − 248 5 863 / 387 768 / 383

x ≡ 7 mod 72 −1 + 212 + 217 − 220 + 222 − 248 6 863 / 387 768 / 383

BLS T1, b1, D −1 + 26 − 213 + 220 − 223 + 248 6 863 / 387 768 / 383

k = 48 −1− 213 + 215 + 218 + 248 5 863 / 387 769 / 384

(see §10) −1 + 28 − 215 + 217 − 224 − 248 6 863 / 387 769 / 384

−1− 210 − 213 + 223 − 229 − 248 6 863 / 387 769 / 384

23 + 214 + 217 − 219 + 248 5 863 / 387 768 / 383

23 − 29 − 219 + 230 − 248 5 863 / 387 768 / 383

x ≡ 16, 88 mod 216 −24 − 216 + 220 − 225 + 248 5 863 / 387 768 / 383

T1, b4, M 27 − 212 − 217 − 227 + 248 5 863 / 387 768 / 383

25 + 218 − 227 + 236 − 248 5 863 / 387 768 / 383

−25 − 211 + 225 + 229 + 248 5 863 / 387 769 / 384

25 − 28 + 215 − 236 − 248 5 863 / 387 769 / 384

−1 + 24 − 28 − 227 + 248 5 863 / 387 768 / 383

x ≡ 31 mod 72 −1 + 213 + 223 + 228 − 230 + 248 6 863 / 387 768 / 383

T1, b1, M −1− 210 − 221 + 225 + 230 − 248 6 863 / 387 768 / 383

−1 + 29 − 222 + 225 + 230 + 248 6 863 / 387 769 / 384

−1 + 27 + 217 + 219 + 226 + 248 6 863 / 387 769 / 384

Table 25. Low weight curves offering 384-bit security.
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