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Abstract. The performance of the elliptic curve method (ECM) for integer factorization plays
an important role in the security assessment of RSA-based protocols as a cofactorization tool
inside the number field sieve. The efficient arithmetic for Edwards curves found an application
by speeding up ECM. We propose techniques based on generating and combining addition-
subtracting chains to optimize Edwards ECM in terms of both performance and memory re-
quirements. This makes our approach very suitable for memory-constrained devices such as
graphics processing units (GPU). For commonly used ECM parameters we are able to lower the
required memory up to a factor 55 compared to the state-of-the-art Edwards ECM approach.
Our ECM implementation on a GTX 580 GPU sets a new throughput record, outperforming
the best GPU, CPU and FPGA results reported in literature.
Keywords: Elliptic curve factorization, cofactorization, addition-subtraction chains, twisted
Edwards curves, parallel architectures.

1 Introduction

Today, more than 25 years after its invention by Hendrik Lenstra Jr., the elliptic curve
method [24] (ECM) remains the asymptotically fastest integer factorization method for finding
relatively small prime factors of large integers. Although it is not the fastest general purpose
integer factorization method, when factoring a composite integer n = pq with p ≈ q ≈

√
n the

number field sieve [32, 23] (NFS) is asymptotically faster, it has recently received a renewed
research interest due to the discovery of an interesting normal form for elliptic curves intro-
duced by Edwards [13]. From a cryptologic point of view the practical performance of ECM is
important since it is used to rapidly factor many small (up to one or two hundred bits) inte-
gers inside NFS. This is illustrated by the fact that it is estimated that five to twenty percent
(cf. Section 2.2 why this is hard to estimate) of the total wall-clock time was spent in ECM
in the current world-record factorization of a 768-bit RSA number [20] (and it is expected
that this percentage will grow for larger factorizations). Using ECM as a tool to factor many
small numbers inside NFS is an active research area by itself. Offloading this work to recon-
figurable hardware such as field-programmable gate arrays is studied in [37, 16, 11, 17, 25, 40]
while [5, 4] considers parallel architectures such as graphics processing units (GPUs) and the
Cell broadband engine architecture. A comparison between software and hardware based so-
lutions is presented in [21]. Traditionally, ECM is implemented using Montgomery curves [26]
and uses the various techniques described in [39]. The most-widely used ECM implementation
is GMP-ECM [41] and this implementation, or modifications to it, is responsible for setting
all recent ECM record factorizations (see a description of some of these record factorizations
in [8]). After the invention of Edwards curves Bernstein et al. explored the possibility to use
these curves in the ECM setting [3]. Hisil et al. [19] published a coordinate system for Edwards
curves which results in the fastest known realization of curve arithmetic. A follow-up paper
? Part of this work was performed when the first author was working at the Laboratory for Cryptologic
Algorithms, EPFL, Lausanne, Switzerland.
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by Bernstein et al. discusses the usage of these “a = −1” twisted Edwards curves [1] for ECM.
The speedup from switching to Edwards curves comes at a price, addition chains [35] (or
addition-subtraction chains [28]) equipped with large windowing sizes [9] are used (cf. [6] for
a summary of these techniques). The memory requirement for Edwards ECM grows roughly
linearly with the input parameters of ECM while a small constant number of residues modulo
n are sufficient when using Montgomery curves.

In this paper we optimize ECM by exploiting the fact that the same scalar is often used
when computing the elliptic curve scalar multiplication (ECSM), allowing one to prepare
particularly good addition-subtraction chains for these fixed scalars. Our approach is inspired
by the ideas used in the ECM implementation by Dixon and Lenstra [12] from 1992. In [12] the
total cost to compute the ECSM, in terms of point doubling and point additions, is lowered
by testing if the computation of the ECSM using batches of small prime products is cheaper
(requires fewer point additions) than processing the primes one at a time (or all in one big
batch). We generalize this idea: many billions of integers, which are constructed such that
they can be computed using an addition-subtraction chain with a high doubling/addition
ratio, are tested for smoothness and factored. By fixing different popular elliptic curve scalar
values used in ECM inside NFS we are able to combine some of these integers using a greedy
approach. This results in a more efficient ECSM algorithm with a smaller memory footprint.
To illustrate, compared to the cofactorization setting considered by Bernstein et al. in [5, 4]
(using the parameter B1 = 213) the techniques from this paper reduce the memory by a factor
55. This makes our approach particularly interesting for environments where the memory (per
thread) is constrained; e.g. GPUs. We illustrate the practical benefits by implementing this
approach for GPUs: setting a new throughput speed record compared to the current CPU,
GPU and FPGA based results reported in literature. The best addition-subtraction chains
found for the various popular B1 values can be found online [7].

This paper is organized as follows. After recalling the preliminaries in Section 2 the notation
and basic idea behind elliptic curve constant scalar multiplication is discussed in Section 3.
Section 4 explains how to combine these chains such that they might result in a faster and
more memory efficient ECM. Section 5 explains a side-effect why certain chains require more
modular multiplications and Section 6 presents the obtained results. Section 7 concludes the
paper.

2 Preliminaries

2.1 The Elliptic Curve Method

The elliptic curve method (ECM) for integer factorization [24] is analogous to the Pollard
p − 1 integer factorization method [33] and attempts to factor a composite integer n. The
general idea behind ECM is as follows (we follow the description from [24]). First, pick a
random point P and construct an elliptic curve E over Z/nZ such that P ∈ E(Z/nZ) (cf. [22,
Sec. 2.B]). Next, compute the elliptic curve scalar multiplication Q = kP ∈ E(Z/nZ). The
positive integer k is selected such that it is divisible by many small prime powers: e.g. k =
lcm(1, 2, . . . , B1) for some bound B1 ∈ Z. If for a prime p dividing n the order #E(Fp) is
B1-powersmooth (an integer is defined to be B-powersmooth if none of the prime powers
dividing this integer is greater than B) then #E(Fp) | k. In other words, Q = kP and the
neutral element of the curve become the same modulo p. In this event we have p | gcd(n,Qz),
where Qz is the z-coordinate of the point Q when using projective Weierstrass coordinates. If
gcd(n,Qz) 6= n then we have split n.
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Table 1. Performance comparison between GMP-ECM and EECM-MPFQ using the “a = −1” twisted Edwards
curves in terms of modular multiplications (M) and squarings (S) together with the required number of residues
modulo n (R) which needs to be kept in memory.

B1
GMP-ECM [41] EECM-MPFQ [3]

#S #M #S+#M #R #S #M #S+#M #R

256 1 066 2 025 3 091 14 1 436 1 638 3 074 38
512 2 200 4 210 6 410 14 2 952 3 183 6 135 62

1024 4 422 8 494 12 916 14 5 892 6 144 12 036 134
8192 35 508 68 920 104 428 14 47 156 45 884 93 040 550

Hasse proved (see e.g. [36, Theorem 1.1]) that the order #E(Fp) is in the interval [p +
1 − 2

√
p, p + 1 + 2

√
p]. The advantage of ECM is that one can randomize the group order

by trying different curves. It has been shown in [24] that the (heuristic) run-time of ECM
depends mainly on p, the smallest non-trivial prime divisor of n, and can be expressed as

O(exp((
√
2 + o(1))(

√
log p log log p))M(log n))

where M(log n) represents the complexity of multiplication modulo n and the o(1) is for
p → ∞. The approach described here is often referred to as “stage 1”. There is a “stage 2”
continuation for ECM which takes as input a bound B2 ∈ Z and succeeds (in factoring n)
if Q = kP has prime order ` (for B1 < ` < B2) in E(Fp). This means that #E(Fp) is B1-
powersmooth except for one prime factor which is below B2. There are several techniques [10,
26, 27] how to perform stage 2 efficiently. In the following we will focus on stage 1 only.

2.2 Cofactorization using ECM

The relation collection phase, one of the two main phases of NFS, generates a lot of composite
integers which need to be tested for powersmoothness. This is done using different factorization
techniques and is denoted as the cofactorization phase. To illustrate, the total time spent in the
cofactorization procedure was roughly one third of the sieving time when factoring the 768-bit
RSA modulus in [20]. Note that this one third includes the time of pseudo primality tests
and different factorization methods: quadratic sieve [34], Pollard p− 1 [33] and ECM. In this
cofactorization phase only composites up to 140 bits were considered and ECM was used only
for composites up to 109 bits. The parameters for ECM varied depending on the size of the
composites and ranged from B1 = 150 to B1 = 500 where often only a single curve was tried
with a maximum of around eight curves. Observing the trend of past record factorizations, it
is conceivable that cofactorization becomes more important in bigger factorizations (cf. [5] for
more detailed arguments about the significance of ECM in NFS).

2.3 Montgomery versus Edwards Curves

The main motivation to use Edwards (over Montgomery) curves is performance. There is one
implementation of ECM using Edwards curves available: EECM-MPFQ. This implementation
includes the “a = 1” Edwards curves approach from [3] and the “a = −1” Edwards curves
approach from [1]. The a = −1 Edwards ECM approach is the fastest in practice and we use
this as the base setting to compare to. Table 1 compares the required number of multiplications
and squarings required in GMP-ECM and EECM-MPFQ for different typical B1 values used in
ECM when used as a cofactorization method in NFS. These numbers show that using Edwards
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curves results in fewer modular multiplications and squarings. However, the required storage
for GMP-ECM (Montgomery curves) is independent of B1 while it grows almost linearly with
the size of B1 and is significantly higher, due to the use of windowing based methods, for
EECM-MPFQ (Edwards curves, see [3, Table 4.1]).

3 Elliptic Curve Constant Scalar Multiplication

Most of the addition-subtraction chains based algorithms in practice use a w-bit windowing
technique, for some (optimal) width w, to reduce the number of required elliptic curve addi-
tions. The total number of additions may be significantly reduced by using this approach but
one also needs to store more points: 2w−1 when using sliding windows [38]. In environments
where the available memory per thread is low, these methods cannot be used or one is forced
to settle for a suboptimal window size. A prime example of such a platform are graphics pro-
cessing units (GPUs); one of the latest GPU architectures [29] (Fermi) shares 64 kilobyte fast
shared memory per 32 processors and each processor typically time-shares multiple threads
(e.g., 16 to 32 corresponding to 128 to 64 bytes per thread).

We investigate two approaches to lower the number of elliptic curve additions and the
storage required to compute the scalar product. Our approach is inspired by the results re-
ported by Dixon and Lenstra [12]. Suppose we have a scalar k = lcm(1, . . . , B1) =

∏`
i=1 pi,

where the pi are primes which can occur multiple times. Typically, the ECSM is implemented
processing one such pi at a time [39]. In [12] it is suggested to process the pi in batches; i.e. mul-
tiply a batch of pi’s at a time such that the weight of the product w(

∏
i pi), the number of

ones in the binary representation of
∏

i pi, is (much) lower than the sum of the individual
weights

∑
iw(pi). If this is the case then the number of required EC-additions is reduced

when using the straight forward double-and-add approach (which does not require to store
any additional precomputed points). Such low-weight products can be constructed by greedily
searching through b-tuples of the pi where b is small. In [12] b was at most 3 which reduced
the total weight by approximately a factor three. As an example the following triple is given

1028107 · 1030639 · 1097101 = 1162496086223388673
w(1028107) = 10, w(1030639) = 16, w(1097101) = 11,

w(1162496086223388673) = 8,

where the product of primes of weights 10, 16, and 11 results in a integer of weight eight.
The resulting composite integer can be computed using an addition chain requiring only seven
additions and 60 doublings using the naive double-and-add algorithm.

In this section we explore different methods to find numbers which can be constructed
using even better (higher) doubling/addition ratios. These methods do not aim to construct
sequences by combining the different pi (as in [12]) but we propose an opposite approach by
factoring many integers which are the result of addition-subtraction chains with high dou-
bling/addition ratios and subsequently combining these integers such that all pi’s are used.
These addition-subtraction chains are constructed such that they do not require any large
lookup tables. Notice that the information encoding the sequence of arithmetic operations
has to be stored (in all approaches). This does not pose a problem since this information is
constant and can be shared among all the computational units (or streamed to the units or
even hardcoded) and hence does not result in additional overhead in practice.

In the remainder of the paper we denote addition-subtraction chains simply as chains.
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3.1 Chains With Restrictions

In order to generate integers which can be computed using a chain with a high doubling/addition
ratio we need to construct and denote chains of a certain length m. A chain is a sequence
of doublings, additions and subtractions denoted by D,A and S respectively. A doubling can
always be assumed to apply to the previously generated element in the chain (instead of dou-
bling any previous element), since one can reorder the symbols such that doubling always
occurs on the last element without changing the result of the chain. In some cases this might
result in a shorter (more efficient) sequence when the same element is doubled multiple times.
Let us define the set of symbols O as

O = {D} ∪ {Ai,j | i, j ∈ Z, i > j} ∪ {Si,j | i, j ∈ Z, i > j},

where the subscripts indicate on which element in the chain we compute (this is made more
precise later). The set of all m-tuples, ordered lists of m elements, of symbols in O with the
restriction that no elements can be used which have not yet been generated is

Om = {(om−1, . . . , o0) ∈ Om | ok ∈ {D} ∪ {Ai,j | i ≤ k} ∪ {Si,j | i ≤ k}, 0 ≤ k < m}.

In order to construct a chain from such an m-tuple of symbols we define functions σm :
O × Zm+1 → Zm+2 such that (o, (tm, . . . , t0)) 7→ (tm+1, tm, . . . , t0) where

tm+1 =


2tm if o = D,
ti + tj if o = Ai,j ,
ti − tj if o = Si,j .

Given an m-tuple of symbols (om−1, . . . , o0) ∈ Om the (m + 1)-tuple of integers associated
to this chain is σm−1(om−1, σm−2(om−2, . . . , σ0(o0, 1) . . .)) and the resulting integer produced
by this chain is tm. As an example consider the 7-tuple of symbols (S6,0, D,D,A3,0, D,D,D)
∈ O7 which corresponds to the 8-tuple of integers in the chain (35, 36, 18, 9, 8, 4, 2, 1) computed
as

σ6(S6,0, σ5(D,σ4(D,σ3(A3,0, σ2(D,σ1(D,σ0(D, 1))))))).

The function σm is the correspondence between a tuple of symbols and the actual chain. The
example shows how to compute the resulting integer 35 using one subtraction, one addition
and five doublings.

The set of tuples Om consists of the most generic type of chains, a significant amount of
tuples corresponds to chains which perform useless (unnecessary) computations. An example
is computing the addition (or subtraction) of two previous values without using this result.
To address this we define a more restricted set of tuples Pm ⊂ Om as

Pm = {(om−1, . . . , o0) ∈ Om | ok ∈ {D} ∪ {Ai,j | i = k} ∪ {Si,j | i = k}, 0 ≤ k < m}.

These additional restrictions ensure that, just as for the doubling, we only add or subtract
to the last integer in the sequence to obtain the next one. Such chains are known as Brauer
chains or star addition chains [18, Section C6].

In this setting we write Aj and Sj for Ai,j and Si,j , respectively, and k > 0 subsequent
instances of D are denoted by Dk. The previous example can now be written as S0D2A0D

3 ∈
P7 by abusing the notation: omitting the brackets and comma’s. In practice we would generate
sequences of symbols such that a number of elliptic curve additions A and doublings D are
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Fig. 1. The two top lines on the left denote the number of generated addition-subtraction chains computing
odd integers with Pm (upper (red) line) and Qm (lower (green) line) when fixing A=3 and varying the number
of doublings from one to fifty. The lower two lines show the number of unique integers corresponding to these
chains where the upper line corresponds to Pm.

fixed and look at sequences of symbols of length m = A+D which use A times Aj or Sj and
D times D. Different tuples might compute the same integer result. Using our example, the
number 35 can be obtained with D = 5 and A = 2 in different ways

35 = (23 + 1) · 22 − 1 S0D
2A0D

3 ∈ P7
= (24 + 1) · 2 + 1 A0DA0D

4 ∈ P7.

3.2 Generating Chains

We discuss how to efficiently generate the resulting integers tm in a low-storage and no-storage
setting.

The Low-Storage Setting. Let A be the number of elliptic curve additions and D the
number of elliptic curve doublings (with D ≥ A). The generation of all the tuples in Pm, with
m = A + D results in many identical integers tm. Removing these duplicate integers can be
achieved by first generating and storing all the resulting integers and subsequently sorting and
keeping exactly one of consecutive equal integers. To avoid storing all the resulting integers
for a given pair (A,D), which requires a significant amount of storage as we will see later, and
to avoid sorting this huge data set we define a more restricted set of rules Qm ⊂ Pm ⊂ Om as
follows

Qm =
{
(om−1, . . . , o0) ∈ Pm | o0 = D, om−1 ∈ {Ai, Si}, 0 < k < m− 1 : ok ∈ {D} ∪ {Ai, Si},

ok ∈ {Ai, Si} ⇒ ok−1 = D ∧ (i = 0 ∨ oi−1 ∈ {A`, S`})
}
.
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The restrictions used in the definition of Qm ensure that the resulting integer is odd and
only addition (or subtraction) of an odd number to the current (even) number is allowed.
This approach significantly reduces the amount of chains which produce the same resulting
integer at the cost of slightly reducing the number of unique integers produced. To illustrate,
Figure 1 shows the number of tuples generated by Pm and Qm when using A = 3 additions
and 3 ≤ D ≤ 50 doublings resulting in odd integers. For D = 50 the total number of tuples
generated by P53 is more than 140 times higher compared to Q53 while the number of unique
odd resulting integers is only 1.09 times higher.

The list of m + 1 integers ui corresponding to the m-tuple of symbols from Qm can be
efficiently generated recursively using

ui+1 =

{
2ui
ui ± uj for j < i and 2 | ui, 2 - uj

with u0 = 1 and ensuring that the final operation is not a doubling (to make the resulting
integer odd). Hence, the next integer in the sequence can always be obtained by doubling or
adding a previous odd number uj to the current even integer ui. The required storage depends
on which uj are used in subsequent additions and at which indices they are used. In practice
we generate all sequences using a fixed number of doublings D and additions A making sure
that the resulting storage requirement is never too large.

A sequence of additions and doublings corresponding to the chains resulting from Qm looks
like

AiA−1
DdA−1 . . . Ai1D

d1Ai0D
d0 = (AiA−1

D)DdA−1−1 . . . (Ai1D)Dd1−1(Ai0D)Dd0−1 (1)

with D =
∑A−1

i=0 di, di > 0, and indices ij that satisfy the restrictions of Qm, i.e., ij takes one
of the values

∑h
g=0(dg +1) for −1 ≤ h < j. Such a sequence starts with a doubling, ends with

an addition and an addition is always preceded by a doubling. Hence, there are
(D−1
A−1

)
choices

for the order of the A− 1 pairs (AijD) and the D−A doublings D. Since every addition can
be substituted by a subtraction the number of possibilities is multiplied by a factor 2A. The
indices ij can be chosen in A! ways, hence the total number of resulting integers produced by
Qm is (

D− 1

A− 1

)
·A! · 2A = 2A ·A ·

A−1∏
i=1

(D−A + i).

The No-Storage Setting. The second setting we consider is constructing chains which
do not require any additional stored points, besides the in- and output (and possibly some
auxiliary variables required to calculate the elliptic curve group operation). This means we are
looking for integers which can be computed using chains which only use doublings and add or
subtract the input point. We can define the set of tuples Rm ⊂ Qm as Rm = {(om−1, . . . , o0) ∈
Qm | ok ∈ {A0, S0, D}, 0 ≤ k < m}. All resulting integers of no-storage chains which can be
constructed using A elliptic curve additions and D elliptic curve doublings are of the form

2D +
A−1∑
i=0

±2ni , with 0 = n0 < n1 < . . . < ni < . . . < nA−1 < D.

This follows from (1) by setting ij = 0; we have ni =
∑i

g=1 dA−g. Using the same argument
as in the low-storage setting the number of resulting integers generated by Rm is

(D−1
A−1

)
· 2A.
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Compared to the low-storage setting the number is reduced by a factor of A!, reflecting the
missing choice of the indices ij .

4 Combining Chains

Recall that, given a bound B1, we want to perform an elliptic curve scalar multiplication with
the integer k =

∏`
i=1 pi = lcm(1, . . . , B1) where the product ranges over ` (not necessarily

distinct) primes. We can get rid of the problems posed by the primes 2 in this product by
noticing that they can be handled by a sequence of doublings at the end of the ECSM and
assuming in the following that all si are odd. The techniques from the previous section provide
us with a lot of integers which can be constructed using a known number of additions (here
we count subtractions as additions) and doublings. Since different chains can lead to the same
integer we pick for each of these integers one chain (preferably the one with the lowest cost).
In this way we get a list of distinct integers, each with an associated chain. We index this list
by an index set I and call si the integer corresponding to i ∈ I. For i ∈ I denote by add(si)
resp. dbl(si) the number of additions resp. doublings in the chain and by {si,1, . . . , si,ti} the
multiset of the primes in the prime decomposition of si. Furthermore, let cost(si) be the cost
of performing a scalar multiplication with si using the associated chain. A reasonable choice
for Edwards curves is cost(si) = 7dbl(si) + 8add(si) + 1 which will be discussed in the next
section.

Ideally, we want to find a subset I ′ ⊂ I such that k |
∏

i∈I′ si and
∑

i∈I′ cost(si) is minimal.
To facilitate our task we will modify this in two ways. If the product in the first condition
is bigger than k we do more work than necessary. This can lead to a lower cost, but we
assume that replacing the first condition by k =

∏
i∈I′ si will not increase the minimum of∑

i∈I′ cost(si) significantly. The second modification is the replacement of
∑

i∈I′ cost(si) by∑
i∈I′ add(si). To explain why we think that this does not increase the minimum too much

we consider subsets I ′ for which
∑

i∈I′ cost(si) is close to the minimum. Then most si have
a high ratio dbl(si)

add(si)
and therefore we have for most of them si ≈ 2dbl(si). Since

∏
i∈I′ si = k

the sum
∑

i∈I′ dbl(si) ≈ log2(k) does not vary too much. Furthermore, the summand 1 in the
cost function is the least significant term and the cardinality of I ′ does not vary much. We
are aware that the second modification is more delicate than the first one, but, as explained
below, we will generate many sets I ′ and will pick the best one amongst them using the more
costly function cost(si).

The condition k =
∏

i∈I′ si implies that every si in this product is B1-powersmooth which
suggests the following two stage approach:

1. Restrict to Î = {i ∈ I | si is B1-powersmooth}.
2. Find a subset I ′ ⊂ Î such that the multisets⋃

i∈I′
{si,1, . . . , si,ti} = {p1, . . . , p`}

coincide and that
∑

i∈I′ add(si) is minimal.

Testing a large list of numbers for B1-powersmoothness can be done using the method from [15,
Section 4]. The main idea is to build a product tree from the list, replace the root node R (the
product of all numbers of the list) by k mod R (where k = lcm(1, . . . , B1) is precomputed)
and then tree-wise replace each node by the residue of k modulo the node. The leaves resulting
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in 0 contained B1-powersmooth numbers and their factorizations can be obtained by other
means.

Finding an optimal set I ′ is in general a difficult problem and has been studied in [31]. We
choose to use a greedy approach which produces satisfactory results. We start with an empty
set I ′ and the multiset M = {p1, . . . , p`} of primes to be matched. As long as M is non-empty
we select an integer si =

∏ti
j=1 si,j with {si,1, . . . si,ti} ⊂M such that the ratio dbl(si)

add(si)
is high

and replace I ′ by I ′ ∪ {i} and M by M \ {si,1, . . . si,ti}. This may fail because we might not
be able to satisfy the condition {si,1, . . . si,ti} ⊂ M at a given point. There are several ways
to overcome this problem, e.g., we could increase our supply of si by generating more chains.
Another way consists in aborting the greedy search at this point, getting k = c ·

∏
i∈I′ si for

some integer c. Using the method of Dixon/Lenstra, we can search for a decomposition of c
into several factors, each having a good chain. For the sizes of B1 considered in this paper,
namely B1 ≤ 8192, c consisted of very few primes and was often 1. Therefore the usually lower
doubling/addition ratio of the c-part does not pose a problem for small B1.

A refinement to this approach is to also take the size of the prime factors si,j into account.
A strategy could be to prefer choosing integers si which have mostly large prime divisors,
since the majority of the primes pi is large. The idea is to attach a score to a B1-powersmooth
integer given its prime factorization with respect to the currently unmatched prime factors in
k. For a multiset N of primes bounded by B1 the ratio of j-bit primes is defined as

aj(N) :=
#{p ∈ N | dlog2(p)e = j}

#M
,

where 1 ≤ j ≤ dlog2(B1)e. Given M , the multiset of currently unmatched primes, the score
of si is defined as

score

si = ti∏
j=1

si,j ,M

 =

dlog2(B1)e∑
h=1:

ah(M)6=0

ah({si,1, . . . , si,ti})
ah(M)

The higher the score the more small prime divisors are likely to be present. In general, for a
given ratio, we select the integers which have a low score.

To illustrate, consider B1 = 1024 where the initial ai are

a2 = 0.032, a3 = 0.037, a4 = 0.021, a5 = 0.053, a6 = 0.037,
a7 = 0.069, a8 = 0.122, a9 = 0.229, a10 = 0.399

(with
∑10

i=2 ai = 1). Almost 40 percent of all the primes fall in the largest (10-bit) category.
An example of a low score-integer is 11529215054666795009 = 743 ·719 ·677 ·461 ·457 ·449 ·337
where the size of the smallest prime is 9-bit, the score is 3.57 and this integer can be computed
using 63 doublings and five additions as A0D

11A0D
12A0D

10A0D
28A0D

2 ∈ R68. On the other
hand, an example of a high-score integer, consisting of mainly small primes, is 1048575 =
41 · 31 · 11 · 52 · 3, its score is significant higher (29.62) and it can be computed with 20
doublings and a single subtraction as S0D20 ∈ R21.

This approach using scores is outlined in Algorithm 1. Note that the scores are recalculated
each time an si is chosen. In practice one could reduce the amount of these costly recalculations
by picking several si in lines 10-13 of the algorithm; in this case one has to check that the
union of the prime factors of the chosen si is still a multisubset of M .
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Algorithm 1 Given a bound B1 and a set of B1-powersmooth integers {si | i ∈ Î}, which can
be computed with a chain using add(si) resp. dbl(si) elliptic curve additions resp. doublings,
together with the prime factorization of these integers (si =

∏
j si,j) the algorithm attempts

to output triples (sj , add(sj), dbl(sj)) such that lcm(1, . . . , B1) = c ·
∏

j sj for a small integer

c. This algorithm considers scores ≤ T only and combines integers si for which
dbl(si)
add(si)

≥ r

where r starts at rh and is decreased until rl.

Input:


Bound B1 ∈ Z, we have lcm(1, . . . , B1) =

∏`
i=1 pi with pi prime.

Set of integers {si | i ∈ Î} with si =
∏

j si,j for si,j prime and i ∈ Î .

Upper and lower bound on the doubling/addition ratio: rh and rl.
A threshold value for the score: T.

Output: Triples (si, add(si),dbl(si)) and c such that c ·
∏
i

si = lcm(1, . . . , B1).

1. M ← {p1, . . . , p`}, I ′ ← ∅
2. for r = rh to rl do
3. found ← true
4. while found=true do
5. found ← false, j ← 0
6. for i ∈ Î do
7. if {si,1, . . . , si,ti} ⊂M and

dbl(si)
add(si)

≥ r and score(si,M) ≤ T then

8. j ← j + 1, scorej ← (score(si,M), i)
9. sort scorei for 1 ≤ i ≤ j with respect to score(si,M)
10. if j ≥ 1 then
11. i← index from score1, output (si, add(si), dbl(si))
12. I ′ ← I ′ ∪ {i}, M ←M \ {si,1, . . . , si,ti}
13. found ← true
14. output {(si, add(si), dbl(si)) | i ∈ I ′} and c =

∏
p∈M p

A Randomized Variant In the current state, Algorithm 1 returns a single solution given a
set of input parameters. To increase the amount of different subsets I ′, and thereby hopefully
improving the results, we randomize the selection process of the index that is added in lines
10-13 of the algorithm. With probability x ∈ R (0 < x < 1) select the si corresponding to
score1 or, with probability 1− x, skip it and repeat this procedure for score2 and so on. If we
have reached the end of the list (after j trials) one could apply a deterministic choice.

5 Additional Multiplications

The fastest arithmetic for Edwards curves is due to Hisil et al. [19]. They propose to use
extended twisted Edwards coordinates, which are twisted Edwards coordinates plus an aux-
iliary coordinate. This allows faster addition but slower doubling. Using a mixing technique,
by switching between extended twisted Edwards and regular twisted Edwards, the overall
cost for scalar multiplication is reduced [19]. This is realized by performing the doublings
using the cheaper regular twisted Edwards coordinates when a doubling is followed by a dou-
bling. When an addition is required after a doubling one can use the doubling formula in
the extended twisted Edwards coordinates (which does not need the auxiliary coordinate as
input) at the cost of an extra multiplication to compute the auxiliary coordinate of the result.
Next, the fast addition is performed in extended twisted Edwards coordinates; one multipli-
cation (to compute the auxiliary coordinate of the output) can be saved, cancelling the extra
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Table 2. The left table shows the number of integers (#int) generated with an addition-subtraction chain
using A and D elliptic curve additions and doublings respectively. All these integers were tested for 2.9 · 109-
powersmoothness and, if smooth, the prime divisors are stored. The bold ranges indicate that 231 random
integers per single A, D combination were tested for smoothness instead of the full range. The right table
shows the number of unique B1-powersmooth integers in the no-storage and low-storage setting for different
values of B1.

No-storage setting Low-storage setting
A D #int A D #int
1 5− 200 3.920 · 102 1 5− 250 4.920 · 102
2 10− 200 7.946 · 104 2 10− 250 2.487 · 105
3 15− 200 1.050 · 107 3 15− 250 1.235 · 108
4 20− 200 1.035 · 109 4 20− 250 6.101 · 1010
5 25− 200 8.114 · 1010 5 25− 158 2.956 · 1012

5 159− 220 1.331 · 1011

6 30− 150 9.150 · 1011 6 60− 176 2.513 · 1011

7 35− 66 9.900 · 1010
Total 1.096 · 1012 3.403 · 1012

B1 No-Storage Low-Storage
256 2.423 · 105 9.210 · 106
512 1.470 · 106 3.159 · 107

1 024 5.691 · 106 7.861 · 107
8 192 9.352 · 107 4.400 · 108

2.9 · 109 2.274 · 1010 3.997 · 1010

multiplication used when doubling, since a doubling is always performed after an addition
in ECSM-algorithms. This approach assumes that both inputs of the elliptic curve addition
are in extended twisted Edwards coordinates. This is the case for double-and-add algorithms
and (signed) windowing algorithms where the computation of the auxiliary coordinates of the
lookup table are a minor overhead.

In both our settings, where we consider low- and no-storage, this does not hold. The
computation of the large elliptic curve scalar product is done by processing batches of prime
products (the si) at a time. All the additions or subtractions required in the chain to compute
si require that the points are in extended twisted Edwards coordinates. When required, the odd
intermediate results are stored in extended twisted Edwards coordinates at a cost of a single
additional multiplication. The cost of computing a low-storage chain (om−1, . . . , o0) ∈ Qm

resulting in si is increased by x(si)multiplications, where x(si) = #{j | ∃h : oh ∈ {Aj , Sj}, 0 ≤
h < m}; i.e. the unique number of indices used in the additions and subtractions. Therefore
we get for the cost function from the previous section cost(si) = 7dbl(si)+8add(si)+x(si). In
the no-storage setting we always have x(si) = 1 leading to the choice for cost(si) given at the
beginning of the previous section. In total we have #{chains used} additional multiplications
in the no-storage setting and a potentially higher number in the low-storage setting. We can
save one multiplication due to the sequence containing the power of 2 (which consists of
doublings only) and another multiplication if we assume that the input point is already in
extended twisted Edwards coordinates.

6 Results

Using the rules given in Section 3.2 for both the no-storage and the low-storage setting,
we generated more than 1012 integers for many choices of the number of additions A and
doublings D. Table 2 summarizes the ranges we have covered where bold ranges (in the low-
storage setting) indicate that only 231 random integers were generated instead of the full range.
All these integers were subjected to 2.9 ·109-powersmoothness tests which reduced the number
of integers by about two orders of magnitude. This large powersmoothness-bound was chosen
to facilitate searching for efficient chains for much larger B1 parameters. From the reduced set
of integers we extracted those that are B1-powersmooth for the values of B1 used in this paper
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Table 3. The table shows the number of modular multiplications (M) and squarings (S) required to calculate
A elliptic curve additions and D doublings for various B1 parameters when factoring an integer n with ECM.
The memory required is expressed as the number of residues (R), integers modulo n, which are kept in memory.
The performance speedup (in terms of #M + #S) and memory reduction compared to the Edwards ECM
approach from [1] is given.

B1 #M #S #M+#S speedup A D #R reduction
256 [1] 1 638 1 436 3 074 69 359 38
No-storage 1 400 1 444 2 844 1.08 38 361 10 3.80
Low-storage 1 383 1 448 2 831 1.09 35 362 14 2.71
512 [1] 3 183 2 952 6 135 120 738 62
No-storage 2 842 2 964 5 806 1.06 75 741 10 6.20
Low-storage 2 776 2 964 5 740 1.07 65 741 18 3.44
1 024 [1] 6 144 5 892 12 036 215 1 473 134
No-storage 5 596 5 912 11 508 1.05 141 1 478 10 13.40
Low-storage 5 471 5 904 11 375 1.06 123 1 476 18 7.44
8 192 [1] 45 884 47 156 93 040 1 314 11 789 550
No-storage 43 914 47 160 91 074 1.02 1 043 11 790 10 55.00
Low-storage 42 855 47 136 89 991 1.03 878 11 784 18 30.56

(see right part in Table 2). These computations were done on five 8-core Intel Xeon E5430
(2.66GHz) and took more than a year, i.e., in total over 40 core years. The smoothness testing
required most of the run-time and up to 4.6GB of memory. Using the approach outlined in
Algorithm 1 one of these nodes was occasionally used for the combining experiments which
consisted of thousands of runs of the randomized greedy approach, each of them taking only
a couple of seconds for these low values of B1.

Table 4 shows an example for B1 = 256 in the no-storage setting. All the prime powers pe ≤
256 with p prime, e ∈ Z such that pe+1 > 256 are used (using exactly the same prime powers
as in GMP-ECM and EECM-MPFQ). The total cost, in terms of modular multiplications and
squarings, for these 15 chains is 361× (3M+4S)+38× 8M+13M = 1400M+1444S where
the 13 additional multiplications are due to changing to extended twisted Edwards coordinates
in all except the first and last chain (row) in Table 4. Only additions or subtractions with the
input point are performed, hence no storage besides the in- and output is required.

Table 3 shows the results obtained using Algorithm 1 on our dataset (see Table 2). The
memory required is expressed in the number of residues (R), integers modulo n, which need
to be kept in memory. Here we assume that extended twisted Edwards coordinates are used,
i.e., every point is represented by four coordinates. In the setting of EECM-MPFQ [3, 1] we
assume that an optimal window size is used and that besides the window table only the input
point needs to be kept in memory while we assume that two points (the input point and
the current active point) are required in the no- and low-storage setting. The implementation
of the elliptic curve group operation is assumed to require at most two auxiliary variables
(residues). Hence, the no-storage setting requires memory for 2× 4 + 2 = 10 residues modulo
n. The low-storage results presented in Table 3 require to store at most two additional points
(8 more residues modulo n compared to the no-storage setting). This is still significantly less
compared to the approach used in [3, 1].

6.1 Application to GPUs

When running ECM on memory constrained devices, like GPUs, the large number of precom-
puted points required for the windowing methods cannot be stored in fast memory. Typically
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Table 4. Example of the best chain found for B1 = 256 in the no-storage setting.

#D #A product chain
11 1 89 · 23 S0D

11

14 2 197 · 83 S0D
5S0D

9

15 2 193 · 191 S0D
12A0D

3

15 2 199 · 19 · 13 A0D
14A0D

1

18 1 109 · 37 · 13 · 5 A0D
18

19 2 157 · 53 · 7 · 3 · 3 S0D
6S0D

13

21 3 223 · 137 · 103 A0D
10A0D

10A0D
1

23 3 179 · 149 · 61 · 5 S0D
13A0D

5S0D
5

28 1 127 · 113 · 43 · 29 · 5 · 3 S0D
28

30 3 181 · 173 · 167 · 11 · 7 · 3 A0D
11A0D

16A0D
3

33 5 211 · 73 · 67 · 59 · 47 · 3 S0D
6A0D

2A0D
11S0D

3S0D
11

36 4 241 · 131 · 101 · 79 · 31 · 11 A0D
2A0D

16A0D
16A0D

2

41 4 233 · 229 · 163 · 139 · 107 · 17 S0D
9S0D

4S0D
11S0D

17

49 5 251 · 239 · 227 · 151 · 97 · 71 · 41 S0D
3S0D

29A0D
4A0D

8A0D
5

8 0 28 D8

361 38 Total

one is forced to settle for a (much) smaller window size reducing the advantage from using
twisted Edwards curves. For example, in [5] no large window sizes are used at all, the authors
remark: “Besides the base point, we cannot cache any other points”. Memory is also a problem
in [4], the faster curve arithmetic from Hisil et al. [19] is not used since this requires storing a
fourth coordinate per point.

From the data given in Table 3 it becomes clear that our approach reduces the memory
requirements significantly. For example, the memory required to run ECM in the cofactoriza-
tion setting on GPUs using B1 = 8192 can be reduced by a factor 55. This setting was already
considered in [5, 4] where the authors were forced to reduce memory requirements by using
suboptimal window sizes. Hence, when using the methods described in this paper less mem-
ory is required allowing the usage of the faster curve arithmetic and reducing the number of
elliptic curve additions required in the computation of the elliptic curve scalar multiplication.

6.2 Performance Comparison

In order to measure the practical speedup of the methods described in this paper we imple-
mented the no-storage approach on GPUs. This implementation uses the Compute Unified
Device Architecture (CUDA) which facilitates the development of massively-parallel general
purpose applications for GPUs [30]. Our implementation is targeted at the third generation
CUDA GPUs called “Fermi” [29]. Table 5 compares the performance results of different hard-
ware platforms for B1 = 960 and B1 = 8192, numbers chosen such that we can directly
compare to results reported in the literature on other (hardware) platforms. For B1 = 960,
which is used as the example B1 value in [40, 11] and not spending as much effort as for
B1 = 1024, we were able to construct a no-storage chain requiring 1 371 doublings and 135
additions. The FPGA and GTX295 results are quadratically scaled to 192-bit arithmetic to
compare the different performance results. The other GPU results are from [4] and this im-
plementation is optimized for the second generation CUDA GPUs. The pricing for this card
is omitted since it is no longer sold (this card was launched January 2009). The results on the
Intel i7-2600K CPUs have been obtained with the ECM implementation (using Montgomery
curves) from the NFS software suite [14] which is responsible for all recent record NFS fac-
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Table 5. Performance comparison of ECM on different platforms (using the “a = −1” twisted Edwards curves
if available). The first table lists the different hardware properties. The second and third table state results
for B1 = 960 and B1 = 8192 respectively. The scaled number of curves are when using 192-bit moduli. The
performance ratio is the ratio between the GTX 580 no-storage row and the current row for the scaled number
of curves per 100 USD.

properties GPU CPU FPGA
GTX 295 GTX 580 Intel i7-2600K V4SX35-10 V4SX25-10

#cores 480 512 4 24 1
clock (MHz) 1 242 1 544 3 400 200 220
price (USD) - 400 300 468 298
#threads 46 080 8 192 4 24 1
#bits in moduli 210 192 192 202 135

performance (#curves), B1 = 960 performance
(1/sec) (1/sec, scaled) (1/100 USD, scaled) ratio

GTX 580, no-storage 171 486 171 486 42 872 1.00
GTX 580, windowing 79 170 79 170 19 793 2.17
Intel i7 [14] 13 661 13 661 4 554 9.41
Intel i7 [2] 8 677 8 677 2 892 14.82
V4SX35-10 [40] 3 240 3 586 766 55.97
V4SX25-10 [11] 16 000 7 910 2 654 16.15

performance (#curves), B1 = 8192

GTX 295 [4] 4 928 5 895 - -
GTX 580, no-storage 19 869 19 869 4 967 1.00
GTX 580, windowing 9 106 9 106 2 277 2.18
Intel i7 [14] 1 629 1 629 543 9.15
Intel i7 [2] 1 092 1 092 364 13.65

torizations (e.g. [20]) and the EECM-MPFQ software package [2] which uses Edwards curves.
The FPGA results are from [11, 40] and the FPGA prices are taken from [40]. Note that the
prices are for the GPU, CPU or FPGA devices only; in order to get a fully operational system
more hardware is required. Note also that for all of the considered devices newer versions
with better price performance ratio exist, but we do not expect that these will change this
comparison significantly.

For the sake of comparison we also implemented Edwards ECM for GPUs using the same
192-bit arithmetic but using the windowing based approach. For B1 = 960 (B1 = 8192)
we used a signed sliding window of size 26 (28), precomputing and storing 25 (27) extended
twisted Edwards coordinates. These results are stated in Table 5 as well. On the GTX 580
the no-storage approach is more than twice as fast as the approach based on windowing
techniques. This is significantly better than the theoretical numbers from Table 3. When
running exactly the same experiment on 96-bit (three 32-bit limbs instead of six 32-bit limbs)
moduli the number of curves per second for the no-storage and windowing approach is 76 665
and 75 584 for B1 = 8192 and 649 904 and 618 111 for B1 = 960, respectively. We think that
this behaviour can be partially explained by an increased memory usage for the windowing
approach and a better handling of the no-storage approach by the compiler since this approach
uses fewer variables.

Another interesting observation is that the FPGA performance per 100 USD is lower than
that of the CPU-based approaches. Furthermore, aided by the no-storage approach outlined
in this paper, the GPU performance is almost an order of magnitude faster per 100 USD than
the CPU and more than a order of magnitude faster compared to the fastest FPGA results.
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This suggests that GPUs are the best platform, i.e. give the best performance / price ratio,
for integer cofactorization.

7 Conclusion

The relatively new Edwards curves combined with the fast arithmetic from extended twisted
Edwards coordinates are faster compared to using Montgomery curves. This speed-up comes
at a price, namely a larger memory requirement which, when optimizing for speed, grows
roughly linearly in the size of B1, whereas the memory requirement in the Montgomery curves
setting is constant and small. Inspired by the approach from Dixon and Lenstra and using
the fact that only a few popular B1-values are used in practice in NFS, we have presented
techniques to reduce the memory requirement significantly by doing precomputations for these
B1-values. In these precomputations we tested over 1012 integers coming from chains with a
low addition/doubling ratio for smoothness and combined them using a greedy approach. Our
results show that we require significantly less memory compared to the current state-of-the-
art Edwards ECM approach, and are even slightly faster. This makes our approach extremely
suitable for memory-constrained parallel architectures like GPUs. This is demonstrated by our
GPU implementation which sets a new ECM cofactorization throughput speed record.
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