
Stronger Public Key Encryption Schemes Withstanding
RAM Scraper Like Attacks

S. Sree Vivek, S. Sharmila Deva Selvi, C. Pandu Rangan

Theoretical Computer Science Lab,
Department of Computer Science and Engineering,

Indian Institute of Technology Madras, India.
{sharmila,svivek,prangan}@cse.iitm.ac.in

Abstract. Security of an encryption system is formally established through the properties
of an abstract game played between a challenger and an adversary. During the game, the
adversary will be provided with all information that he could obtain in an attack model
so that the adversary is fully empowered to carry out the break. The information will be
provided to the adversary through the answers of appropriately defined oracle queries. Thus,
during the game, adversary will ask various oracle queries and obtain the related responses and
have them at his disposal to effect a break. This kind of interaction between challenger and
adversary is called as training to the adversary. For example, in the lunch time attack model,
the adversary may ask encryption as well as decryption oracle queries. The indistinguishability
of ciphertext under this model (IND-CCA2 model) is considered to offer strongest security for
confidentiality. In the recent past, an adversary could obtain several additional information
than what he could normally obtain in the CCA2 model, thanks to the availability of powerful
malwares. In order to realistically model the threats posed by such malwares, we need to
empower the adversary with answers to few other kinds of oracles. This paper initiates such
a research to counter malwares such as RAM scrapers and extend the CCA2 model with
additional oracles to capture the effect of RAM scrapers precisely. After discussing the new
kind of attack/threat and the related oracle, we show that the transformation in [8] that yields
a CCA2 secure system does not offer security against RAM scraper based attack. We refer the
decryption oracle as glass box decryption oracle. We then propose two new schemes that offer
security against glassbox decryption and also establish the formal security proof for the new
schemes in random oracle and standard model.

Keywords: Public Key Encryption, Adaptive Chosen Ciphertext Secure with Glass Box Decryption,
CPA-CCA2 Transformations, Random Oracle model, Standard model.

1 Introduction

The security notions for public key encryption systems have witnessed tremendous depth in their
understanding over the past three decades. Currently, it is commonly agreed that an encryption
scheme producing ciphertexts that are indistinguishable even by an adversary who carries an adaptive
chosen ciphertext attack (CCA2) gives the best protection for the confidentiality of the encrypted
message. The adversary who carries out the CCA2 attack has black box access to the encryption
and decryption oracles. In other words, it is assumed that the adversary has only the input and
outputs of various oracle queries and with these values, the adversary attempts to break the system.
However, in real life, an adversary could obtain a number of additional related informations and
these informations may help the adversary in some unexpected way to break the encryption scheme.
The side channel attacks, for example obtains several information during the execution of oracles,
other than the inputs and outputs of the queries. It is well known that these additional informations
can be used effectively to break the cryptosystem that are proved secure in the traditional sense.

Thus it is important to extend the existing models and in the extended model, we must provide
additional input/information to the adversary that he could obtain himself in real-life (besides the
answers for encryption/decryption oracles). Such an adversary would model the real-life threats more
accurately.

This paper addresses one such important extension to the CCA2 security model and accounts
for additional information that an adversary would obtain. Our model is inspired by the following
threat.

RAM Scraper is a piece of malware created to grab data residing in a systems volatile memory.
RAM scrapers can be deployed to capture selective data than to effect bulk data grabs, thus avoiding
dramatic increase in data traffic that could potentially raise illicit traffic flag. This is the key reason
why operations of RAM scrapers never get noticed and the threats posed by RAM scrapers were
added to the list of Top Data Breach Attacks by Verizon Business [3]. Since all the standards for
secure communication of sensitive data requires end-to-end encryption while being transmitted,
received or stored, the unencrypted information residing in RAM during decryption is a new hope
for the adversary This is why the adversary targets the RAM precisely, using RAM scrapers. Now-
a-days, a typical computing system that is running cryptographic algorithms will have a Trusted
Platform Module (TPM) integrated in it. The private key of a user will be stored in TPM and the
computations involving private keys will be carried out in TPM as showed in Fig. 1.

Fig. 1. Trusted Platform Module Deployed

The decryption algorithms and signing algorithms need the private key values for their compu-
tations. However, the private key values will not be moved to RAM. For example, the execution
of a decryption algorithm may contain some computational steps that does not involve private key
values and some steps using private keys values. The computations of first kind will be done in
CPU and the resulting values will be available in RAM and the computations of the second type
will be carried out in TPM after obtaining the necessary values from RAM. All the values obtained
through the computations done in TPM will of-course be sent/available in RAM. If this computing
system is affected by a RAM scraper malware, then the adversary may obtain all the intermediate
values obtained during the execution but the adversary cannot obtain the private keys. The glass
box decryption, introduced in this paper models this scenario exactly.

In view of the above scenario, we equip our adversary with a Glass Box decryption oracle rather
than with the traditional Black Box decryption oracle. Specifically, we assume that, when the ad-
versary makes a glass box decryption oracle query, he obtains, besides the output of the oracle, all

the intermediate values generated during the execution of the decryption algorithm. We make the
realistic assumption that the adversary does not obtain the private key in this process as discussed
above since the steps involving the private key are carried out in trusted/secure memory but the
resulting values are available in RAM.
Adaptive Chosen Ciphertext Security with Glass box Decryption: This model is stronger
than CCA2 model in the sense that we have replaced the usual black box decryption oracle in CCA2
model with a stronger glass box oracle. All other oracles of CCA2 will also be considered in CCA2
model without any change. The glass box decryption oracle query, denoted by Glass-Box-Dec(c),
returns the following:

– If the decryption algorithm is properly terminated with an output, then, the output and all the
intermediate values generated during the execution will be returned.

– If the decryption algorithm is terminated with an ABORT , then the intermediate values gener-
ated up to that point will be returned.

– The private key values will not be returned.

Formally, we describe the values available to the adversary due to the execution of glass box de-
cryption using the well-known notations of Activation Records and Remote Procedure Calls. Each
execution of a procedure is carried out in the system with the help of a book keeping mechanism
called activation record. Activation record consists of storages associated with variables declared in
the procedure (parameters, local variables etc) [13]. Thus, we assume that all values available in
the activation record is visible/available to the adversary. To model the scenario that all compu-
tations using secret keys are done in trusted platforms, we assume that all remote call procedures
(specifically the calls made to trusted platform) are available only in a black box fashion. We also
make one final reasonable assumption that the (remote) function calls made to the trusted platform
are one-way functions of the secret key values stored in the trusted platform. In sum, if the de-
cryption algorithm consists of several expression evaluation using the storages S1, S2, . . . and remote
function calls f1, f2, . . . returning the values F1, F2, . . . respectively, then the execution of black box
decryption makes 〈S1, S2, . . . , F1, F2, . . .〉 also to be available to the adversary.

1.1 Related Works:

Recently, few works have been reported in areas such as extending the security model and designing
schemes against freezing attacks, where it is possible to measure a significant fraction of secret key
bits if the secret key is stored in the part of memory which can be accessed even after power is turned
off [1]. Their paper talks about retrieving the secret information from the system volatile memory. [9]
deals with the issue of storing cryptographic keys and computing on them in a manner that preserves
security even if the adversary obtains information through leakage during the computation on the
key. The design of cryptographic primitives resilient to key-leakage attacks, where the attacker
has the provision to repeatedly and adaptively learn information about the secret key, with the
constraint that the overall amount of such information is bounded by some parameter was done in
[2]. Recently, [11] talks about provable leakage resilient encryption schemes. It is to be noted that
in all these works, resisting the side-channel attacks through which the attacker can retrieve the
private key is being considered. Even though the schemes talk about mitigating the attacks due to
key leakage, they do not consider the complete exposure of ephemeral keys. It should be further
noted that even if encryption schemes are designed for key leakage resilience, RAM scrapers present
a devastating threat to those systems too.

1.2 Our Contribution:

In this paper, we point out that the CCA2 notion (currently the strongest notion for confidentiality)
will not capture the attack by RAM scrapers during the lunch time attack. We propose the new

security notion for confidentiality, named as “Adaptive Chosen Ciphertext Attack Security with
Glass box Decryption”, which captures the attack by RAM scrapers. Many transformations are
known till date for converting a CPA secure scheme to a CCA2 secure scheme in the random oracle
model. We consider [8], the transformation which converts any CPA secure public key encryption
scheme to a CCA2 secure public key encryption scheme. We propose two new stronger encryption
scheme. Our first scheme is proved to be secure in the random oracle model and the second is proved
in the standard model.

2 Preliminary Concepts

2.1 Computational Diffie Hellman Problem (CDH):

Definition 1. Let κ be the security parameter and G be a multiplicative group of order q, where
|q| = κ. Given (g, ga, gb)R ∈ G, the computational Diffie Hellman problem is to compute gab ∈ G.

The advantage of an adversary A in solving the computational Diffie Hellman problem is defined
as the probability with which A solves the above computational Diffie Hellman problem.

AdvCDH
A = Pr[A(g, ga, gb) = gab]

The computational Diffie Hellman assumption holds in G if for all polynomial time adversaries A,
the advantage AdvCDH

A is negligible.

2.2 Decisional Bilinear Diffie-Hellman Problem (DBDH):

Definition 2. Given (R, aR, bR, cR,α) ∈ G4
1 × G2 for unknown a, b, c ∈ Z∗

q , where G1 is a cyclic

additive group with prime order q, the DBDH in 〈G1, G2〉 is to decide whether α
?= ê(R,R)abc. Here,

G2 is a multiplicative group with order q.

The advantage of any probabilistic polynomial time algorithm A in solving DBDH in 〈G1, G2〉 is
defined as

AdvDBDH
A = |Pr[A(R, aR, bR, cR, ê(R,R)abc) = 1]− Pr[A(R, aR, bR, cR,α) = 1]|

The DBDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage
AdvDBDH

A is negligibly small.

2.3 CCA2 Security Notion:

– C generates (sk, pk) ← Gen(κ) and pk is given to A.
– A is given oracle access to Decsk(.). A gives C two messages m0 and m1 of the same length.
– C chooses a random bit δ ← {0, 1} and generates the challenge ciphertext c ← Encpk(mδ). and

gives it to A.
– A continues to get oracle access to Encpk(.) as well as Decsk(.) and outputs a bit δ′ finally.
– C outputs 1 if δ = δ′ and 0 otherwise.

A public key encryption scheme E = (Gen, Enc, Dec) has indistinguishable encryptions under adaptive
chosen ciphertext attack (CCA2) if for all probabilistic polynomial time adversaries A the following
advantage funtion is negligible in κ:

AdvE,CCA2
A =

∣∣∣∣Pr(b = b′)− 1
2

∣∣∣∣

2.4 CCA2 Security With Glass Box Decryption:

This model is identical to IND-CCA2 game, except that, Glass-Box-Dec oracle will be used by the
adversary (instead of the regular black box decryption oracle).
The Glass-Box-Dec Oracle: Let I (denoting intermediate values) be the set of output due to
the execution of Glass-Box-Decsk(c) oracle with ciphertext c as input. This can be denoted as
I ← Glass-Box-Decsk(c). I contains two different kinds of values:

– All values computed with the private key stored in the TPM. Note that the computations done
with the private key in the TPM will be like a one-way function evaluation of the input and
the private key. Hence it is not possible to retrieve the private key from the output value (e.g:
Exponentiating the input with the private key in a Diffie-Hellman-based decryption scheme OR
computing a Schnorr signature with a locally chosen (chosen inside the TPM) random number.)

– All other computations done outside the TPM, i.e inside the RAM.

So, the adversary virtually gets access to all computed values during decryption, except the private
key. ♦

– C generates (sk, pk) ← Gen(κ) and pk is given to A.
– A is given oracle access to Glass-Box-Decsk(.). A gives C two messages m0 and m1 of the same

length.
– C chooses a random bit δ ← {0, 1} and generates the challenge ciphertext c ← Encpk(mδ). and

gives it to A.
– A continues to get oracle access to Encpk(.) as well as Glass-Box-Decsk(.) and outputs a bit δ′

finally.
– C outputs 1 if δ = δ′ and 0 otherwise.

A public key encryption scheme E = (Gen, Enc, Dec) has indistinguishable encryptions under adaptive
chosen ciphertext attack with glass box decryption if for all probabilistic polynomial time adversaries
A the following advantage funtion is negligible in κ:

AdvE,GB
A =

∣∣∣∣Pr(b = b′)− 1
2

∣∣∣∣

3 Attack on the Fujisaki-Okamoto Transformation-1:

We use the plain CPA secure El-Gamal encryption scheme described below to instantiate the trans-
formations.
Plain El-Gamal Encryption: The CPA secure El-Gamal encryption scheme EL is a tuple of
probabilistic polynomial time algorithms (EL.Gen, EL.Enc, EL.Dec) such that:

– EL.Gen: The private key and public key pair of a user is (sk, pk) = (x, gx).
– EL.Enc: Compute c1 = gr and c2 = pkr ⊕m and the ciphertext is c = 〈c1, c2〉.
– EL.Dec: To decrypt, compute m = c2 ⊕ csk

1 .

3.1 Applying Fujisaki-Okamoto Transformation-1:

When we apply the Fujisaki-Okamoto Transformation-1 [8] to the plain El-Gamal encryption EL,
we obtain a CCA2 secure public key encryption scheme, which is described below:
CCA2 Secure El-Gamal Encryption I: We apply the Fujisaki-Okamoto transformation-1 [8] to
convert the plain El-Gamal encryption scheme EL into a CCA2 secure scheme which leads to the
following scheme:

– EL.Gen: The private key and public key pair of a user is (sk, pk) = (x, gx).
– EL.Enc: Compute r = F (σ,m), c1 = gr, c2 = σ ⊕H(pkr), c3 = m⊕G(σ) and the ciphertext is

c = 〈c1, c2, c3〉. H and G are two cryptographic hash functions.
– EL.Dec: To decrypt, compute σ = c2 ⊕H(csk

1), m = c3 ⊕G(σ) and accept m if c1
?= gF (σ,m).

Fact: El-Gamal Encryption I is CCA2 secure if the CDH Problem is hard to solve in polynomial
time.
Remark: When the decryption process of this system is attacked by a RAM scraper, the values of
csk
1 , σ, m are available to the adversary, assuming that the private key is available in the TPM and

the computation of csk
1 (using the private key) is done in the TPM.

3.2 Attack using Glassbox Decryption:

The attack on the specific instance of Fujisaki-Okamoto Transformation-1 follows:

– During the game, the adversary A chooses two messages m0 and m1 and gives them to the
challenger C.

– C chooses a random bit δ ∈ {0, 1}, computes the challenge ciphertext c∗ on the message mδ and
sends c∗ to A.

– The only restriction posed on A is that A should not query the glass box decryption on c∗.
– We show that A, who gets the challenge ciphertext and knows the messages m0 and m1 can

easily outputs a bit δ′ such that δ′ = δ (δ was selected by C to generate the challenge ciphertext)
by performing the following:
• Let the challenge ciphertext generated by C be c∗ = 〈c∗1, c∗2, c∗3〉. Let c∗1 = gr, c∗2 = σ∗⊕H(pkr)

and c∗3 = mδ ⊕G(σ∗), where r = F (σ∗,mδ).
• A computes c′1 = c∗1, c′2 = c∗2 and chooses c′3 randomly from the range of the hash function

G(.) and forms a new ciphertext c′ = 〈c′1, c′2, c′3〉.
• Now, A queries Glass-Box-Dec(c′).
• While running the glass box decryption of c′, C generates csk

1 , σ′ = σ and some m′ as
intermediate values, i.e. I = 〈csk

1 ,σ′,m′〉.
• C sends I as response to glass box decryption of c′. Moreover, C will reject the ciphertext c′

because the check c′1
?= gF (σ′,m′) will fail.

• Since A has obtained the value σ′ from C, A can easily obtain the message mδ by computing
mδ = c∗3 ⊕G(σ′) and checking whether c∗1

?= gF (σ′,mδ).
• Thus, A identifies the bit δ almost always.

It should be noted that similar attack can be demonstrated on transformations in [7] and [10].

4 Confronting the RAM Scraper Attack

It can be noted from the above section that almost all the transformations did not withstand RAM
scraper attack. It is clear from the description of the attacks that in the decryption process, the
private key of the receiver is used to derive a message from the ciphertext and then the validity
of the message is checked using some verification step. The attacker who has access to the glass
box decryption oracle gets the advantage of the computations done using the private keys of the
receiver during the decryption. The motivation behind our scheme is to thwart the attacker from
obtaining any useful information due to glass box decryption. One way to do this is to carry out the
ciphertext verification before decryption and hence the attacker cannot manipulate the ciphertext
in a meaningful way to pass the ciphertext verification test. Thus any manipulated ciphertext gets
rejected in the first level of verification itself without any further computations. Even if the ciphertext

is tweaked in such a way that the ciphertext verification test passes, the decryption rejects the
ciphertext and the intermediate value obtained through the glass box decryption oracle should be
designed in such a way that they are of no use to the adversary. Based on this line of thinking,
we propose the new scheme that offers security against glass box decryption oracle. We prove the
scheme to be secure in the random oracle model.

4.1 The Encryption Scheme (EncryptIGB):

The construction of the EncryptIGB scheme makes use of a one-time signature scheme, which is
strongly existentially unforgeable under chosen message attack and secure in the random oracle
model. The one-time signature scheme is required to be strong because it should have the property
that it should not be possible to create a new valid signature even for previously-signed messages.
The one-time signature is defined as OSign = (Gen,Sig,Ver). Without loss of generality we assume
that the Gen algorithm takes the security parameter 1κ and a random one-time signing key osk
and produces a value ovk, where the one-time signature generating user will use osk as the one-
time signing key and ovk as the corresponding one-time verification key. In other words, ovk =
Gen(osk, 1κ) can be considered as the key generation algorithm. For every use of Sig, as this is
a one-time signature algorithm, the signer chooses a fresh osk, compute the corresponding ovk.
Obviously, the function Gen() is a one-way function. σ ← Sigosk(m‖ovk) is the signing algorithm
which outputs the signature σ and {0, 1} ← Verovk(σ,m‖ovk) is the verification algorithm, which
outputs ‘0’ if the signature is invalid and ‘1’ if the signature is a valid. We state informally that any
standard signature scheme, which is existentially unforgeable under chosen message attack can be
used to construct a strong one-time signature in the random oracle model by just choosing a signing
key and a verification key each time to generate a signature and including the verification key along
with the message to generate the message digest during the signing process.

The new scheme employs three cryptographic hash functions namely H1 : {0, 1}∗ → Z∗
q , H2 :

G → {0, 1}κ1+κ2 where κ1 is the length of the message and κ2 is the length of an element in Z∗
q and

H3 : G×G → G. The details of the construction follows:

– GenGB: The private key and public key pair of a user are generated as follows:
• Choose g ∈R G and x ∈R Z∗

q .
• The private key sk = x and the public key pk = gx.

– EncGB: Encryption is done as follows:
• Choose r ∈R Z∗

q .
• Compute osk = H1(m‖r).
• Compute c1 = ovk = gosk.
• Compute h3 = H3(c1,pk), c2 = (m‖r)⊕H2((h3pk)osk) and c3 = hosk

3 .
• Compute σ = Sigosk(c1, c2, c3).
• The ciphertext is c = 〈c1, c2, c3,σ〉.

– DecGB: To decrypt the ciphertext c = 〈c1, c2, c3,σ〉, perform the following:
• Check whether Verc1(σ, 〈c1, c2, c3〉)

?= 1
• If the above check holds, compute X = csk1 c3.
• Compute m′‖r′ = c2 ⊕H2(X).
• Compute osk′ = H1(m′‖r′).
• Check whether c1

?= gosk′
and c3

?= H3(c1,pk)osk
′
, if the check holds then accept m′ as the

message, else reject the ciphertext c.

Theorem 1. The encryption scheme EncryptIGB is IND-CCA2 secure with glass box decryption in
the random oracle model if the CDH Problem is hard to solve in polynomial time, assuming that the
one-time signature scheme OSign is strongly unforgeable.

Proof: Let the CDH instance given to the challenger C be 〈g, ga, gb〉. C gives the description of the
system and pk = ga as the target public key to the adversary A. A has to distinguish the ciphertext
corresponding to the public key pk.
Phase 1: A gets access to the following oracles during the first phase of interaction as described
below:
OH1 Oracle: Given the input m‖r, C checks whether a tuple of the form 〈m‖r,osk〉 exists in list
LH1 . If it appears, returns the corresponding osk else chooses a random value osk ∈R Z∗

q , stores the
tuple 〈m‖r,osk〉 in the list LH1 and returns osk.
OH2 Oracle: Given X ∈ G as input to the hash oracle, C checks whether a tuple of the form 〈X, h2〉
exists in list LH2 . If it appears, returns the corresponding h2 value else chooses a random value
h2 ∈R {0, 1}κ1+κ2 , stores the tuple 〈X, h2〉 in the list LH2 and returns h2.
OH3 Oracle: Given Y ∈ G,pk ∈ G as input to the hash oracle, C checks whether a tuple of the form
〈Y,pk, u, h3〉 exists in list LH3 . If it appears, returns the corresponding h3 value else performs the
following:

– Chooses a random value u ∈R Z∗
q .

– Computes h3 = (pk−1gu).
– Stores the tuple 〈Y,pk, u, h3〉 in the list LH3 and returns h3.

OGlass-Box-Dec Oracle: Given a ciphertext c = 〈c1, c2, c3,σ〉, C performs the following to decrypt it.

– C checks whether Verc1(σ, 〈c1, c2, c3〉)
?= 1. If the check doesnot hold, then C returns all values

obtained during the execution of Verc1(σ, 〈c1, c2, c3〉) to A and halts. (Note: The values returned
at this step by C can be obtained by A even without querying C, because Ver() is a public
verification algorithm. If the check holds, C returns all the values obtained during the execution
of Ver() and proceeds.)

– If (there exists a tuple of the form 〈m′‖r′,osk〉 in the list LH1 with c1 = gosk) then,
1. If (there exists a tuple of the form 〈c1,pk, u, h3〉 in list LH3) then,

• Compute X = (h3pk)osk.
Else,
• Choose a random value u ∈R Z∗

q .
• Compute h3 = (pk−1gu).
• Add the tuple 〈c1,pk, u, h3〉 in the list LH3 .
• Compute X = (h3pk)osk.

2. If (there is no tuple of the form 〈X, h2〉 in list LH2) then,
• Choose h2 ∈R {0, 1}κ1+κ2 .
• Add the tuple 〈X, h2〉 in the list LH2 .

3. Compute h2 ⊕ c3 = m̂‖r̂
4. If (m′‖r′ = m̂‖r̂) then, return 〈osk, X,m′, r′〉 else return 〈osk, X, m̂, r̂〉.

Else, // (there is no tuple of the form 〈m′‖r′,osk〉 in the list LH1 with c1 = gosk)
1. If (there exists a tuple of the form 〈c1,pk, u, h3〉 in list LH3) then,

• Compute X = cu
1 . // (Note that even in this case X = cu

1 can be interpreted as
cu
1 = (h3pk)osk for some unknown osk. However, not knowing osk value is not a problem

as this was never explicitly set/required in any query. Note again that these kind of com-
putations are internal ’book keeping’ computations done by the challenger and adversary
need not know any of these details/exact values. Only answers given as a response to the
queries should satisfy the equations appearing in encryption steps.)

Else,
• Choose a random value u ∈R Z∗

q .
• Compute h3 = (pk−1gu).
• Add the tuple 〈c1,pk, u, h3〉 in the list LH3 .

• Compute X = cu
1 .

2. If (there is no tuple of the form 〈X, h2〉 in list LH2) then,
• Choose h2 ∈R {0, 1}κ1+κ2 .
• Add the tuple 〈X, h2〉 in the list LH2 .

3. Compute h2 ⊕ c3 = m̂‖r̂
4. If (m′‖r′ = m̂‖r̂) then, return I = 〈osk, X,m′, r′〉 else return I = 〈osk, X, m̂, r̂〉.

Challenge: A gives two messages m0 and m1 to C. C chooses δ ∈ {0, 1} and generates the challenge
ciphertext as follows:

– Set c∗1 = gb.
– Choose c∗2 ∈R {0, 1}κ1+κ2 .
– Choose u∗ ∈R Z∗

q , compute h∗3 = gu∗
, add the tuple 〈c∗1,pk, u∗, h∗3〉 to the list LH3 and computes

c∗3 = (gb)u∗
.

– Since the proof is in the random oracle model, C would be able to generate the signature σ∗

without the actual one-time signing key osk = b, with the help of the one-time verification
key ovk = gb. Here, ovk = c∗1. Thus, we consider that C is capable of generating the one-time
signature σ∗ = Sigosk(c∗1, c∗2, c∗3)

– The challenge ciphertext c∗ = 〈c∗1, c∗2, c∗3,σ∗〉.

Phase 2: A makes a second phase of interaction with C but with the restriction that, A should not
query the decryption of c∗. All oracles are similar to that of Phase 1. Now, A can submit a ciphertext
with few components of the challenge ciphertext c∗ intact and altering the other components. Note
that if c∗1 is not altered and all other components are altered in the challenge ciphertext c∗, i.e. the
altered ciphertext c′ = 〈c∗1, c′2, c′3,σ′〉, then the one-time signature σ′ cannot be generated such that
it passes the verification as A does not know the one time signing key osk∗ that corresponds to c∗1. If
c′ = 〈c∗1, c′2, c′3,σ∗〉, this also implies a forgery on OSig because the message for the one-time signature
i.e. 〈c∗1, c′2, c′3, 〉 is altered but the signature is the same as for the challenge ciphertext c∗. Thus we
claim that it is not possible to generate a valid ciphertext with the same one-time verification key c∗1.
Instead, A can generate a new ciphertext from the challenge ciphertext that passes the verification
of the one-time signature alone and this is done as follows:

– Chooses a new one-time signing key osk′ by querying OH1 with some random input m‖r.
– Computes c′1 = gosk′

.
– Queries the OH3 oracle with 〈c′1,pk〉 as input and gets h′3 = (pk−1gu′

).
– Computes a new one-time signature as σ′ = Sigosk′(c′1, c∗2, c∗3).
– The new ciphertext that passes the one-time signature verification is c′ = 〈c′1, c′2 = c∗2, c

′
3 =

c∗3,σ
′〉.

We show that A is not going to get any advantage to distinguish the challenge ciphertext c∗,
by querying the OGlass-Box-Dec oracle with c′ as input. To decrypt the ciphertext, C performs the
following:

– Checks whether Verc′1
(σ′, 〈c′1, c′2, c′3〉)

?= 1. The check holds, and hence C proceeds with the next
step.

– For all tuples of the form 〈m‖r, osk′〉 that appears in list LH1 , checks whether gosk
′ ?= c′1. There

is obviously a matching tuple because C has queried the OH1 oracle with m‖r as input.
– Checks whether a tuple of the form 〈Y,pk, h3〉, such that Y = c′1 and t = c′2 appears in list LH3 .

Obviously, it appears in the list.
– Computes X ′ = (h3pk)osk

′
and checks whether a tuple of the form 〈X ′, h2〉 exists in list LH2 .

There will not be an entry corresponding to this X ′ in the list LH2 because A has not queried
the OH2 oracle with X ′ as input, Hence, C will reject the ciphertext c′.

– C returns 〈X ′〉 as the intermediate value. Note that X ′ *= X∗, where X∗ is the value computed
during the computation of the challenge ciphertext. X ′ = (h3pk)osk

′
= (pk−1gu′

pk)osk
′
= gu′

where as X∗ = (gbu∗
)pkb = (gbu∗

)gab, which clearly shows that X ′ *= X∗ and X ′ does not leak
any information regarding X∗.

Guess: At the end of the second phase of interaction, A rejects the ciphertext c∗. Let ε be the
advantage of A in breaking the security of our EncryptIGB scheme. C obtains the solution for the
CDH problem with an advantage

ε

qH2

, where qH2 is the total number of queries made to the OH2

oracle. This is because:

– C has set pk = ga, therefore, the corresponding private key sk∗ = a (implicitly). C has also set
c∗1 = gb, therefore, osk = b implicitly.

– Since A should have computed (X = (h3pk∗)osk and queried the OH2 oracle, there should be
an entry of the form 〈X, h2〉 in list LH2 such that X = gbu∗

gab. C picks a random X value from

the list LH2 and with probability
1

qH2

it will be the X value computed by A to decrypt c∗.

– C retrieves the value u∗ from the list LH3 , which is used to generate the challenge ciphertext

and computes gab =
X

(gb)u∗ .

– Thus, the probability that C solves the CDH problem is
ε

qH2

"

4.2 The Encryption Scheme (EncryptIIGB):

In this section we propose a new public key encryption scheme EncryptIIGB and formally prove the
IND-CCA2 security with glass box decryption in the standard model. The details of the construction
follows:

– GenGB: Let G1 be a additive group with prime order q and G2 be a multiplicative group with
the same order. Let ê : G1 ×G1 → G2 be an admissible bilinear pairing. The scheme uses three
cryptographic hash functions defined as: H1 : G2 → {0, 1}lm , H2 : G1 × {0, 1}lm → Zq and
H3 : G1 → Zq. Here lm is the size of the message. Note that H3 should be target collision
resistant hash function. The private key and public key pair of a user are generated as follows:
• Choose x, s ∈R Zq and P,Q, Y, Z ∈R G1.
• Compute X = xP ∈ G1.
• Compute α = ê(P,Q)s ∈ G2.
• The private key sk = 〈x, s〉 ∈ Z2

q and the public key pk = 〈P,Q,X, Y, Z,α〉 ∈ G5
1 ×G2.

– EncGB: Encryption is done as follows:
• Choose r, t ∈R Zq.
• Compute C1 = rP and C2 = m⊕H1(αr).
• Compute ĥ = H2(C1, C2), h = H3(r(ĥP + tX)) and C3 = r(hY + Z).
• Set C4 = t.
• The ciphertext is C = 〈C1, C2, C3, C4〉.

– DecGB: To decrypt the ciphertext C = 〈C1, C2, C3, C4〉, perform the following:
• Compute ĥ = H2(C1, C2).
• Compute U = ĥC1, V = C4xC1 and h = H3(U + V).
• If ê(C3, P) ?= ê(hY + Z,C1) then m = C2 ⊕H1(ê(C1, Q)s) else ABORT .

Proof of Correctness: To show that the decryption works properly, we have to show that:

1. U + V = r(ĥP + tX).
2. If C = 〈C1, C2, C3, C4〉 is properly constructed, then ê(C3, P) ?= ê(hY + Z,C1).

3. ê(C1, Q)s = αr, where C1 = rP .

Proof: Assume that for some r ∈ Zq,
C1 = rP (1)

With respect to the same r,
C3 = r(hY + Z) (2)

Hence it should be true that,
ê(C3, P) ?= ê(hY + Z,C1) (3)

This proves the second assertion. Now,

U + V = ĥC1 + C4xC1 = ĥrP + txrP = r(ĥP + txP) = r(ĥP + tX)

Thus,
U + V = r(ĥP + tX) (4)

This shows that h = H3(U +V) correctly recovers the h computed in the encryption algorithm. This
proves the first claim. For the third claim, we note that ê(C1, Q)s = ê(rP,Q)s = [ê(P,Q)s]r = αr,
Therefore,

ê(C1, Q)s = αr (5)

This completes the proof that the decryption correctly recovers the message.
Remark: The glass box decryption oracle should return 〈ĥ, U, V, h, hY + Z, ê(C1, Q)s〉. In fact, ĥ
and U can be computed by the addversary himself. Note that, the computation of V and ê(C1, Q)s

involves one way function evaluation of private key values. Also, ê(C1, Q)s need to be sent only if
the test in the last step of decryption algorithm passes.

Theorem 2. The encryption scheme EncryptIIGB is IND-CCA2 secure with glass box decryption,
if the DBDH Problem is hard to solve in polynomial time.

Proof: Let 〈(R, aR, bR, cR) ∈ G4
1, γ ∈ G2〉 be an instance of the DBDH problem. Let A be an

algorithm that is capable of breaking the security of the EncryptIIGB scheme. We will show how to
construct another algorithm that uses A to break the DBDH problem in G1 and G2. This algorithm
is called the challenger C. A interacts with C and C responds to A’s queries as given below:
Setup: C sets up a system as follows:

– Set P = R
– Set

Q = bR (6)

– Set

α = ê(aR, bR) (7)

Therefore, α = ê(aR, bR) = ê(R, bR)a = ê(P,Q)a

Thus, the second component of the private key denoted as s, is in fact a (implicitly). C does not
know the value of a. Now, choose x ∈R Zq and set

X = xP (8)

This fixes the first component of the private key. Thus the private keys are 〈x, s = a〉 and C knows
x but does not know s.

C chooses h̃, y, z̃ ∈R Zq and computes

β = h̃(cP) (9)

h∗ = H3(β) (10)

Y =
1
h∗

(Q + yP) (11)

Z = −Q + z̃P (12)

The public keys are 〈P,Q,X, Y, Z,α〉 and the private keys are 〈x, s = a〉
Phase I: A performs a series of queries to the glass box decryption oracle. The description of the
glass box decryption oracle and the responses given by C to the queries by A are described below.
OGlass-Box-Dec Oracle: When a request for decryption of ciphertext C = 〈C1, C2, C3, s〉 is made, C
decrypts it in the following way:

– Computes

ĥ = H2(C1, C2) (13)

U = ĥC1 (14)

Since, C knows the private key x, C can also compute

V = C4xC1 (15)

Since the values of U and V are correct, C computes correctly

h = H3(U + V) (16)

Note that H3 is a target collision resistant hash function and if (h = h∗), abort. Since the Y and
Z values are public C computes correctly the value

hY + Z (17)

So far, C could do all computations directly as all the input values are correctly available. So,
there is no difficulty in computing and returning to A the values 〈ĥ, U, V, h, hY + Z〉. However,
if the check ê(C3, P) ?= ê(hY + Z,C1) passes, C must return the value ê(C1, Q)s as well to A,
However, as noted before C does not know the value of s. Thus, C has to simulate this value
interms of other quantities computable by C. Observe that since P is a generator,

C1 = rP, for some r ∈ Zq (18)

Since ê(C3, P) = ê(hY + Z,C1) it follows that

C3 = r(hY + Z) (19)

For the same r defined in equation (18). Now,

ê(C1, Q)s= ê(rP,Q)s

= ê(P,Q)rs

= ê(sP, Q)r

= ê(aP, rQ)s Since (s = a)

C knows the value of aP = aR and value of Q as they are inputs for the hard problem. However,
C does not know the value of r. Hence C will compute the value of rQ indirectly in terms of
other values known to C. From equations (11), (12) and (19),

C3= r(hY + Z)

= r

(
h

h∗
(Q + yP)−Q + z̃P

)

=
(

h

h∗
− 1

)
rQ +

(
h

h∗
y + z̃

)
rP

=
(

h

h∗
− 1

)
rQ +

(
h

h∗
y + z̃

)
rP

Rearranging, we obtain

rQ =
(

h

h∗
− 1

)−1 [
C3 −

(
h

h∗
y + z̃

)
C1

]
(20)

Observe that all values in the RHS of equation (20) is available to C. Hence rQ can be computed
using equation (20). Hence rQ can be computed using equation (20). Thus, ê(C1, Q)s = ê(aP, rQ)
can be computed even without knowing s. Hence, the glass box decryption queries can be perfectly
answered by C. That is C can give perfect training to A.
Challenge: On getting sufficient training from C in Phase I interaction, A gives C two messages
m0,m1 of equal length. C computes the ciphertext C∗ by performing the following steps:

– Set
C∗

1 = cR = cP (21)

cR is the input to the hard problem.
– Compute

C∗
2 = mδ ⊕H1(γ) (22)

Here, δ ∈ {0, 1} is a random bit and γ is an input to the hard problem
– Compute

C∗
3 = yC∗

1 + z̃C∗
1 (23)

– Compute
C∗

4 = (ĥ− h̃)x−1 (24)

Where, ĥ = H2(C∗
1 , C∗

2) and h̃ was chosen by C at setup time. x is one of the private keys known
to C.

– The challenge ciphertext C∗ = 〈C∗
1 , C∗

2 , C∗
3 , C∗

4 〉 is send to A.

Lemma 1. The challenge ciphertext C∗ = 〈C∗
1 , C∗

2 , C∗
3 , C∗

4 〉 is a valid and properly formed cipher-
text.

Proof: Since C∗
1 = cP , we should show that

C∗
3 = c(hY + Z) (25)

Where, h = H3(c(ĥP + tX)) and C∗
4 = t = (ĥ− h̃)x−1 Now,

c(ĥP + tX)= c(ĥP + C∗
4X)

= c(ĥP + (ĥ− h̃)x−1xP) (From equation (24)
= c(ĥP + ĥP − h̃P)
= h̃(cP) = β (From equation (9))

Therefore,
h = H3(c(ĥP + tX)) = H3(β) = h∗ (26)

From equations (23) and (26) we conclude that C∗ = 〈C∗
1 , C∗

2 , C∗
3 , C∗

4 〉 as defined above will be a
valid/consistant ciphertext, if we show C∗

3 = c(h∗Y +Z). C∗
3 was computed as yC∗

1 + z̃C∗
1 in equation

(23). Thus we have to show that:

c(h∗Y + Z) = yC∗
1 + z̃C∗

1 (27)

In fact,

c(h∗Y + Z)= c[Q + yP −Q + z̃P] (From equations (11) and (12))
= y(cP) + z̃(cP)
= yC∗

1 + z̃C∗
1

This completes the proof that C∗ = 〈C∗
1 , C∗

2 , C∗
3 , C∗

4 〉 is a valid/consistant ciphertext. #
Phase II: After receiving the challenge ciphertext C∗, A is allowed to perform further glass box
decryption oracle queries, with the constraint that, A should not query the decryption of C∗.
Guess: Recall that the instance of the hard problem 〈R, aR, bR, cR, γ〉 are used by C as P = R,
Q = bR and α = ˆe(aR, bR) = ê(P,Q)s while setting the system. When constructing the challenge
ciphertext C∗

1 = cR = rP and C∗
2 = mδ⊕H2(γ). If mδ were correctly identified by A, the implicitly,

by the collision resistant property of H2, γ = αr = αc = ê(P,Q)ac = ê(R, bR)ac = ê(R,R)abc

Thus, C obtains the solution to the DBDH problem instance with almost the same advantage of
A. "

5 Conclusion

The security industry is constantly facing newer challenges due to advancement in technology and in
the understanding of the software systems. Side channel attacks, key leakages [12] etc are among new
kinds of threats and these mechanisms provide adversary many information that are not captured by
the CCA2 attack model. Thus, looking beyond the CCA2 security in a formal way to counter newer
kind of threats is an important area of research. RAM scrapers allows one to obtain many values
other than the output when we execute an algorithm. Specifically, when a decryption algorithm
is run, RAM scrapers may expose to adversary several values depending on the secret key and
these values may enhance the breaking powers of adversary significantly. We refer the process of
obtaining intermediate values in addition to the output as glass box execution and RAM scrappers
have made the glass box execution a reality. We have initiated the study of security under glass
box decryption. We have shown that if glass box decryption is available, we can break even the
CCA2 secure systems, indicating the fact that IND-CCA2 security with glass box decryption attack
is strictly stronger than IND-CCA2 attack. We have showed that one of the popular transformations
that successfully construct a CCA2 secure system, fails to provide security against powerful RAM
scrapers. Finally, we have proposed two schemes and proved them to be secure against this attack
under the random oracle model and standard model respectively.

References

1. Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits and cryptography
against memory attacks. In Theory of Cryptography, TCC 2009, volume 5444 of Lecture Notes in
Computer Science, pages 474–495. Springer, 2009.

2. Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient public-key cryptography in the
bounded-retrieval model. In Advances in Cryptology - CRYPTO 2009, volume 5677 of Lecture Notes in
Computer Science, pages 36–54. Springer, 2009.

3. Wade Baker at al. 2010 data breach investigations report,
http://www.verizonbusiness.com/resources/reports/rp 2010-data-breach-report en xg.pdf, 2010.

4. Dan Boneh and Jonathan Katz. Improved efficiency for cca-secure cryptosystems built using identity-
based encryption. In Topics in Cryptology - CT-RSA 2005, volume 3376 of Lecture Notes in Computer
Science, pages 87–103. Springer, 2005.

5. Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based encryp-
tion. In Advances in Cryptology - EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer
Science, pages 207–222. Springer, 2004.

6. Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack. In Advances in Cryptology - CRYPTO ’98, volume 1462 of Lecture Notes in
Computer Science, pages 13–25. Springer, 1998.

7. Eiichiro Fujisaki and Tatsuaki Okamoto. How to enhance the security of public-key encryption at
minimum cost. In Public Key Cryptography, Second International Workshop on Practice and Theory in
Public Key Cryptography, volume 1560 of Lecture Notes in Computer Science, pages 53–68. Springer,
1999.

8. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption
schemes. In Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference,
volume 1666 of Lecture Notes in Computer Science, pages 537–554. Springer, 1999.

9. Ali Juma and Yevgeniy Vahlis. Protecting cryptographic keys against continual leakage. In Advances in
Cryptology - CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages 41–58. Springer,
2010.

10. Eike Kiltz and John Malone-Lee. A general construction of ind-cca2 secure public key encryption. In
Cryptography and Coding, 9th IMA International Conference, volume 2898 of Lecture Notes in Computer
Science, pages 152–166. Springer, 2003.

11. Eike Kiltz and Krzysztof Pietrzak. Leakage resilient elgamal encryption. In Advances in Cryptology -
ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer Science, pages 595–612. Springer, 2010.

12. Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In Advances in Cryptology
- CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages 18–35. Springer, 2009.

13. Ravi Sethi. Programming Languages - Concepts and Constructs (Second Edition). Addison-Wesley
Publishing, 1996.

