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Abstract. Tate pairing computation consists of two parts: Miller step and final
exponentiation step. In this paper, we investigate how to accelerate the final expo-
nentiation step. Consider an order r subgroup of an elliptic curve defined over Fq
with embedding degree k. The final exponentiation in the Tate pairing is an expo-
nentiation of an element in Fqk by (qk − 1)/r. The hardest part of this computation

is to raise to the power λ := ϕk(q)/r. Write it as λ = λ0 +λ1q+ · · ·+λd−1q
d−1 in the

q-ary representation. When using multi-exponentiation techniques with precomputa-
tion, the final exponentiation cost mostly depends on κ(λ), the size of the maximum
of |λi|.
In many parametrized pairing-friendly curves, the value κ is about

(
1− 1

ρϕ(k)

)
log q

where ρ = log q/ log r, while random curves will have κ ≈ log q. We analyze how this

small κ is obtained for parametrized elliptic curves, and show that
(

1− 1
ρϕ(k)

)
log q is

almost optimal in the sense that for all known construction methods of parametrized
pairing-friendly curves it is the lower bound. This method is useful, but has a limi-
tation that it can only be applied to only parametrized curves and excludes many of
elliptic curves.

In the second part of our paper, we propose a method to obtain a modified Tate
pairing with smaller κ for any elliptic curves. More precisely, our method finds an

integer m such that κ(mλ) =
(

1− 1
ρϕ(k)

)
log q efficiently using lattice reduction.

Using this modified Tate pairing, we can reduce the number of squarings in the final

exponentiation by about
(

1− 1
ρϕ(k)

)
times from the usual Tate pairing. We apply

our method to several known pairing friendly curves to verify the expected speedup.

Key words: Tate pairing, bilinear maps, final exponentiation, optimal pairing, pairing-
friendly curves, elliptic curves, Miller length

1 Introduction

Non-degenerate bilinear pairings have played a key role in public-key cryptography since they
have been used to construct identity-based encryption schemes [2] and one-round three-way
key exchange protocols [12]. Because the performance of pairing-based cryptosystems relies
heavily on the efficiency of pairing computation, the development of efficient pairings has
been an important mathematical issue in cryptographic research areas.

The desired pairings are obtained from the Weil and Tate pairings defined on the rational
points on elliptic curves over finite fields. Especially the most widely used pairing is the Tate
pairing. When given an elliptic curve E defined over a finite field Fq and two points P and

Q on E(Fq), the value of the Tate pairing at (P,Q) is given by e(P,Q) = fr,P (Q)
qk−1
r where

fr,P ∈ Fqk [x, y] where k is the embedding degree. The algorithm that computes Tate pairing
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consists of two steps. One is to compute fr,P (Q) using Miller’s algorithm, called the Miller

step [15], and the other is to exponentiate by qk−1
r , called the final exponentiation step.

There have been numerous works on shortening the loop of Miller’s algorithm, including
Ate pairings [10], R-ate pairings [14], and optimal pairings [24], to name a few (For more
variants of Tate pairings, refer to [24]). Especially, in [24], Vercauteren suggested a method
to obtain a shortest Miller length for any pairing-friendly elliptic curves, called optimal
pairings. On accelerating the final exponentiation step, however, only little work has been
done [21].

On supersingular curves, the final exponentiation is relatively easy compared to the
Miller step. On ordinary curves, however, the final exponentiation step takes about 40–50%
of the whole Tate pairing computation [1]. The final exponentiation in Tate pairing is an
exponentiation of an element in Fqk by (qk − 1)/r. The hardest part of this computation
is to raise power by λ := ϕk(q)/r. Write it as λ = λ0 + λ1q + · · · + λd−1q

d−1 in the
q-ary representation. When using Multi-exponentiation technique, one can compute the
exponentiation by λ with log2 q squarings and (log2 q)/w+ 2dw multiplications with O(2dw)
storage. In this paper, we focus on how to reduce the number of squaring, which is directly
related to κ(λ), the size of maxi |λi|.

Interestingly, we observed that for most existing families of pairing-friendly curve κ(λ) is
much less than log q, for instance about (log q)/2 for k = 6 and about 3(log2 q)/4 for k = 12.
Thus our concerns in this work have two folds: One is to investigate when parameterized
families of pairing-friendly curves have small κ(λ)’s and establish a formula of the smallest
κ(λ), and the other is to find a general way to speed-up the final exponentiation, that is,
how to reduce κ(λ) for any given pairing parameters.

Our contributions: Consider an order r subgroup of an elliptic curve E(Fqk) with em-
bedding degree k, and let ρ = log q/ log r. First, by analyzing previous construction meth-
ods, we give a sufficient condition that parametrized pairing-friendly elliptic curves have

κ(λ) =
(

1− 1
ρϕ(k)

)
log q. Furthermore, we show that this is the lower bound of κ(λ) under a

certain condition, which is satisfied by all the known construction methods of parametrized
pairing-friendly elliptic curves. Second, we propose a method to obtain a modified Tate pair-
ing with smaller κ for any elliptic curves. More precisely, our method finds an integer m with

gcd(m, r) = 1 such that κ(mλ) = 1
d logϕk(q)/r, which is about

(
1− 1

ρϕ(k)

)
log q, efficiently

using lattice reduction. 1 In this case, ē(P,Q) := e(P,Q)m defines a non-degenerate bilinear
pairing. Using this modified Tate pairing, we can reduce the number of squarings in the final

exponentiation by
(

1− 1
ρϕ(k)

)
times from the usual Tate pairing. We verify our argument

by applying to the parameters suggested by Dupont, Enge, and Morain [6] and by Park and
Lee [19].

Outline of the paper: This paper is organized as follows. In Section 2, we briefly introduce
some backgrounds of pairings, pairing-friendly curves, and exponentiation method we use
to analyze the number of squarings in the final exponentiation step. In Section 3, we give
the analysis on parameterized families of paring-friendly curves in the sense of the final
exponentiation-efficiency. In Section 4 we propose a general method to accelerate the final
exponentiation and present examples in Section 5. Finally we conclude in Section 6.

1 In [13], Kim showed that the minimum value of κ(mλ) is about
(

1− 1
ρϕ(k)

)
log q when m runs

though all the integers relatively prime to r. It is interesting that this bound almost equals the
lower bound in the first part.
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2 Preliminaries

Throughout this paper, we denote log2(·) by log(·).

2.1 Pairings

Let E be an elliptic curve defined over Fq where q = pn for some prime p and a positive
integer n. For any extension field L of Fq, E(L) denotes the set of L-rational points on E,
i.e., the points with coordinates in L, together with the point at infinity ∞. Then E(L)
forms a group with identity ∞. Let #E(L) be the order of this group. Now consider a
large prime r dividing #E(Fq). Let k be an embedding degree, i.e., the smallest positive
integer such that r | qk − 1. Consider the r-torsion subgroup E(Fqk)[r]. The Tate pairing is
a well-defined non-degenerate bilinear map

〈·, ·〉 : E(Fqk)[r]× E(Fqk)/rE(Fqk)→ F∗qk/(F
∗
qk)r(

P,Q+ rE(Fqk)
)

7→ 〈P,Q〉r = fr,P (D),

where D is a divisor equivalent to (Q)− (∞) and fr,P is a function with divisor

div(fr,P ) = r(P )− (rP )− (r − 1)(∞).

Since the image of the pairing is represented by a coset element, to avoid this one can use
the reduced Tate pairing

e(P,Q) = fr,P (D)(q
k−1)/r.

Futhermore, if (u∞fr,P ) (∞) = 1 for some uniformizer u∞ at ∞, we say that fr,P is nor-
malized. In the case that fr,P is normalized one can simply work with point Q instead of
using divisor D

e(P,Q) = fr,P (Q)(q
k−1)/r.

From now on, we call the function fr,P Miller function and always assume that it is normal-
ized.

Miller algorithm computes Miller function in log r operations, called Miller length. As
in [10, 14, 24], Miller length can be further reduced by defining new pairings based on the
Tate pairing. All those variations of the Tate pairing have Miller length at least log r/ϕ(k).
On this line of research, Vercauteren defined the notion of optimal pairings which achieves
log r/ϕ(k) Miller length and proposed an algorithm to obtain a pairing with optimal Miller
length for any parametrized pairing-friendly elliptic curve. The notion of pairing-friendly
curves will be introduced in the next subsection.

2.2 Pairing-Friendly Elliptic Curves

For the security of pairing-based cryptosystems, the discrete logarithm problems (DLP) in
the group E(Fq) and in the multiplicative group F∗qk must be infeasible. To avoid DL attack

on E(Fq), r must be sufficiently large where r is the largest prime dividing #E(Fq). And
qk should be chosen large enough so that index calculus attack is infeasible. So k needs
to be large enough to avoid index calculus attack but small enough for efficient pairing
implementation in extension field arithmetic. Thus in pairing-based cryptography one must
find elliptic curves with sufficiently large subgroup of order r and small embedding degree
k. We call them pairing-friendly curves. Formal definition is as follows.

Definition 1 ([7]). Suppose that E is an elliptic curve defined over a finite field Fq. E is
said to be pairing-friendly if
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– there is a prime r ≥ √q dividing #E(Fq), and
– the embedding degree of E with respect to r is less than (log2 r)/8.

In the construction of pairing-friendly curves, one first find t, r, q such that there exists
an elliptic curve E defined over Fq that has trace t and a subgroup of order r with prescribed
embedding degree k, then uses the complex multiplication method to find an elliptic curve
equation.

Definition 2 ([7]). Let t(x), q(x), r(x) be polynomials with rational coefficients where q(x) =
p(x)n for some polynomial p(x) and some positive integer n. If there is an elliptic curve E
defined over Fq(x0) with trace t(x0) that has a subgroup of order r(x0) for some integer x0,
then we say that E is a curve in family (t, r, q) or (t, r, q) parameterizes a family of elliptic
curves with embedding degree k. Here p(x) and r(x) represent primes.

In ordinary pairing friendly curves defined over an extesion field Fpn with n > 1, result
values of the Tate pairing could be contained in a smaller embedding field (for example,
Fpk in the worst case) than expected, i.e., Fpnk [9]. To avoid this potential security loss
of the DLP in the embedding field ordinary pairing friendly elliptic curves are prefered to
be defined over a prime field Fp. Thus, in the remainder of this paper, we deal with only
ordinary elliptic curves defined over a prime field.

2.3 Exponentiation Method

The final exponent appearing in the Tate pairing is of the form (pk − 1)/r. The exponent
splits into

(pk − 1)/r = [(pk − 1)/Φk(p)] · [Φk(p)/r],

where Φk(x) is the k-th cyclotomic polynomial. By definition of the cyclotomic polynomial

(pk − 1)/Φk(p) =
∏

j|k,j 6=k

Φj(p).

Note that Φj(x) is a polynomial in x with coefficients in {−1, 0, 1} for j < 105 [11]. Thus
raising to the exponent Φj(p) takes only a few Frobenius mapping and some inversions in
field arithmetic. Furthermore one can replace an inversion with a few Frobenius mappings
and multiplications [1]. Hence, the exponentiation by (pk − 1)/Φk(p) can be done easy. In
this paper, we focus on the exponentiation by Φk(p)/r.

Define λ := Φk(p)/r and express λ as base p representation λ =
∑`−1
i=0 λip

i where l =
dlogp λe. Then

gλ = gλ0(gp)λ1 · · · (gp
`−1

)λ`−1

where the element g to be exponentiated is not a fixed element, but depends on the input
P and Q. Without any notification all the exponentiation in this paper is considered to be
computed using multi-exponentiation. Note that calculating gp

i

can be done easily using
Frobenius map when g is an element of a finite field with characteristic p.

When ignoring p-power computation, computing gλ takes at most (log2 p) squarings and
(log2 p) multiplications to compute the exponentiation. Note that 2` − `− 1 multiplications

are required to compute gi0(gp)i1 · · · (gp`−1

)i`−1 where ij ∈ {0, 1}, j = 0, 1, . . . , l − 1 for
precomputation. In fact the number of squarings is related with the bit length of λi’s. More
precisely, an exponentiation by λ requires maxi(log2 λi) squarings. Furthermore, if we use
the width w sliding window method, the number of multiplications reduces to (1/w) · log p
with 2dw precomputed elements stored. This leads us to a natural question, that is, how to
reduce the maximum size of λi.
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3 Polynomial representation of the base-p coefficients

For any given integer λ, the coefficients of λ in the base-p representation have almost same
size with base p on average. In this case, an exponentiation by λ has almost log2 p squarings.
However for many families of pairing friendly curves the number of squarings is quite smaller
than log2 p.

As an instance, let us consider the final exponentiation step of the BN family of curves
which has embedding degree k = 12. The final exponent λ(x) is equal to (p(x)4 − p(x)2 +
1)/r(x). Write λ(x) as the base-p(x) representation, say λ(x) = λ0(x)+λ1(x)p(x)+λ2(x)p(x)2+
λ3(x)p(x)3, where

λ3(x) = 1,
λ2(x) = 6x2 + 1,
λ1(x) = −36x3 − 18x2 − 12x+ 1,
λ0(x) = −36x3 − 30x2 − 18x− 2.

For the choice of x = −4647714815446351873, p is 254-bit and both λ0 and λ1 are 192-bit
(i.e., λ0, λ1 ≈ p192/254). Thus the required number of squarings are 192, not 254. Roughly
speaking, this comes from the fact that λ0(x) and λ1(x) has small coefficients so that they
are close to X3 rather than X4 for a large number X.

The above example shows that the polynomial representations of λ(x) may give advan-
tages in the final exponentiation step. In this section we examine polynomial representations
of coefficients and investigate the conditions of coefficients under which the final exponen-
tiation is efficiently computable. This gives another view point on parameterized families of
pairing-friendly curves.

Through this section, we use notations df , LC(f), and ||f ||∞ for a polynomial f(x) =
f0 + f1x + · · · + fnx

n which denote the degree of f , the leading coefficient fn of f , and
max{|f0|, . . . , |fn|}, respectively. Sometimes we simply write f as a evaluated value of |f(x)|
at x = X.

As indicated above the size of the value of f(x) at x = X for large X is determined by
its degree. The following lemma asserts this.

Lemma 1. Suppose f(x) = fnx
n + · · ·+ f1x+ f0, fn 6= 0. For any given ε > 0, if |x| = X

is large so that X ≥ K
ε|fn| > 1, then

(1− ε)|fn|Xn ≤ |f(x)| ≤ (1 + ε)|fn|Xn.

Here, K := |fn−1|+ · · ·+ |f1|+ |f0|.

Proof. Let |f(x)| = |x|n ·
∣∣∣fn + fn−1

x + · · ·+ f0
xn

∣∣∣, then by triangle inequality,

Xn

(
|fn| −

∣∣∣∣fn−1x + · · ·+ f0
xn

∣∣∣∣) ≤ |f(x)| ≤ Xn

(
|fn|+

∣∣∣∣fn−1x + · · ·+ f0
xn

∣∣∣∣) .
From the assumption∣∣∣∣fn−1x + · · ·+ f0

xn

∣∣∣∣ ≤ |fn−1|+ · · ·+ |f0|X
=
K

X
≤ ε · |fn|.

Thus
(1− ε)|fn|Xn ≤ |f(x)| ≤ (1 + ε)|fn|Xn.

ut

If the X = |x| is sufficiently large i.e. ε is close to 0, then |f(x)| becomes asymptotically
close to |fn|Xn. Thus by the lemma we can regard |f(X)| as |LC(f)| · |X|df .
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Lemma 2. Let (p(x), r(x), t(x)) be a family of pairing friendly curves with embedding degree
k. Let ϕ := ϕ(k) and λ(x) := Φk(p(x))/r(x). And let λ0(x)+λ1(x)p(x)+ · · ·λϕ−1(x)p(x)ϕ−1

be the base-p(x) representation of λ(x). If X−αi ≤ |LC(λi)| ≤ Xαi and X−β ≤ |LC(p)| ≤
Xβ for αi, β > 0, then the number of squarings, denoted by κ, to exponentiate by λ(x) is
bounded as follows,

maxi{dλi} − αi
dp + β

log p ≤ κ ≤ maxi{dλi}+ αi
dp − β

log p.

Proof. By the assumption, for sufficiently large X

X−αi ≤ |LC(λi)| ≤ Xαi ,

X−β ≤ |LC(p)| ≤ Xβ .

We have

Xdλi−αi ≤ |λi(x)| ≤ Xdλi+αi ,

Xdp−β ≤ |p(x)| ≤ Xdp+β .

Thus

dλi − αi
dp + β

≤ log λi
log p

≤ dλi + αi
dp − β

.

Since κ = maxi log λi, the remains of proof is obvious. ut

Note that if αi and β are sufficiently small so that |λi(x)| ≈ Xdλi and |p(x)| ≈ Xdp ,

then we may assume that κ ≈ maxi{dλi}
dp

log p. Thus Lemma 2 implies that if the coefficients

of λi(x) and p(x) are well-bounded then family accelerates the computation of final expo-
nentiation step. This let us consider the specific class of families of pairing-friendly curves
as below.

Definition 3. Let (p(x), r(x), t(x)) be a family of pairing friendly curves. Let k be the em-
bedding degree and λ(x) := Φk(p(x))/r(x). Let λ(x) = λ0(x)+λ1(x)p(x)+· · ·λϕ−1(x)p(x)ϕ−1

be the polynomial representations of coefficients in the base p. If κ is equal to
maxi{dλi}

dp
log p

then we say that the family is final-exponent friendly (FE-friendly).

We note that in many existing families λi(x)’s have small coefficients. Before precisely
analyzing the final exponentiation-efficiency of polynomial representations, we give an al-
most alternative expression of polynomial representations. The expression is useful to have
some intuition on in which condition the polynomial representations show the superior final
exponentiation-efficiency to numerical representations.

Recall that r is prime that divides the order of elliptic curve group #E(Fp) = p+ 1− t
where t is the trace of Frobenius map. Thus we can write p+1−t = hr i.e., p = hr+(t−1) =
hr + u for some cofactor h. By Hasse’s bound, |u+ 1| < 2

√
p.

Lemma 3. Let p(x) = h(x)r(x) + u(x), then

p(x)i − u(x)i

r(x)
= h(x)

i−1∑
j=0

p(x)j · u(x)i−j−1

= h(x)(p(x)i−1 + u(x)p(x)i−2 + · · ·+ u(x)i−1),

for i > 1 and p(x)i−u(x)i
r(x) = h(x) for i = 1.
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Proof. In the proof we abbreviate polynomial f(x) simply to f . The proof uses an induction
on i. If i = 1 then it is obvious. For i > 1, note that

pi+1 − ui+1

r
=
p(pi − ui) + ui(p− u)

r
.

By induction hypothesis, the remains of proof is obvious. ut

Let f(x), g(x) be polynomials with rational coefficients. We denote bybf(x)/g(x)c the

quotient when f(x) divided by g(x). For example, bax
2+bx+c
x c = ax + b. Now we have an

alternative expression of polynomial representations.

Lemma 4. Let λ(x) := Φk(p(x))
r(x) , then

λ(x) = h(x)

(
p(x)ϕ−1 +

⌊
Φk(u(x))

u(x)ϕ−1

⌋
p(x)ϕ−2 + · · ·+

⌊
Φk(u(x))

u(x)

⌋)
+
Φk(u(x))

r(x)
.

Proof. Let Φk(x) := xϕ + aϕ−1x
ϕ−1 + · · · + a1x + a0, where ϕ := ϕ(k). Simply write f(x)

as f .

Φk(p)

r
=
pϕ + aϕ−1p

ϕ−1 + · · ·+ a1p+ a0
r

=
(pϕ − uϕ) + aϕ−1(pϕ−1 − uϕ−1) + · · ·+ a1(p− u)

r
+
Φk(u)

r

Using Lemma 3, the remains of proof is just calculations. ut

We should note that λ(x) in the above lemma is not the perfect base-p representation

since the degree of bΦk(u(x))u(x)i c may exceed or be equal to the degree of p(x) for some i.

However, when ϕ = 2 or some specific cases overflow does not happen. Now let us analyze
the case ϕ = 2, i.e., k = 3, 4, 6. Let Φk(x) = x2 + ax+ b, where a, b ∈ {0,±1}. From Lemma
4, we see that

Φk(p(x))/r(x) = h(x)p(x) + {h(x)(u(x) + a) + (u(x)2 + au(x) + b)/r(x)}.

Note that du < dr ≤ dp and

deg{h(x)(u(x) + a) + (u(x)2 + au(x) + b)/r(x)} = max{dh + du, 2du − dr}
= dh + du

= (dp − dr) + du

≤ dp − 1,

where the second equality comes from

(dh + du)− (2du − dr) = dh + dr − du = dp − du ≥ 0.

Thus if we let λ1(x)p(x)+λ0(x) be the base-p representation of Φk(p(x))/r(x), then λ1(x) =
h(x) and λ0(x) = h(x)(u(x) + a) + (u(x)2 + au(x) + b)/r(x). So, families of the embedding
degree k with ϕ(k) = 2 yields the efficient final exponentiation step if LC(h) and LC(hu) =
LC(h)LC(u) are both small.

For a larger ϕ(k), it seems hard to control LC(λi)’s because of huge coefficients explosion
and frequent overflows occuring in the computation of Φk(u(x))/(u(x)i)’s and Φk(u(x))/r(x)
of Lemma 4. However, one can expect that if ϕ(k), ||q||∞, ||r||∞, and ||u||∞ are small enough,
so LC(λi)’s are.

Now we are in a position to describe the lower bound of the number of squarings in the
final exponentiation for the polynomial representations.
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Theorem 1. Suppose (p(x), r(x), t(x)) is a family of FE-friendly curves. Let ρ := dp/dr.
If max{dλi : i = 0, 1, . . . , ϕ− 1} ≥ dp − dr

ϕ , then

κ ≥
(

1− 1

ρϕ

)
log p(x).

Proof. By Definition 3, κ =
maxi{dλi}

dp
log p ≥ dp− drϕ

dp
log p ≥

(
1− 1

ρϕ

)
log p. ut

At first sight the bound in Theorem 1 may look unnatural. However, this bound is captured
in most cases. More precisely, with high probability maxi{dλi} = dp − 1 in most cases.
And all known methods to construct the family of pairing friendly curves use a irreducible
polynomial r(x) to define the extexstion field L := Q[x]/(r(x)) in order that it contains
Q(ζk) with k-th primitive root of unity ζk. Thus all the known families of curves satisfy
dr ≥ ϕ(k).Then,

κ =
dp − 1

dp
log p =

(
1− 1

dp

)
log p =

(
1− 1

ρdr

)
log p ≥

(
1− 1

ρϕ

)
log p.

However, if maxi{dλi} = dp −N for N ≥ 2, the bound can be overcome. For example,
in the case that dr = ϕ, we have

κ =

(
1− N

ρϕ

)
log p <

(
1− 1

ρϕ

)
log p.

But the case that maxi{dλi} ≤ dp−2 looks quite exceptional. To the best of our knowledge,
there is no known family of curves which overcomes the bound in Theorem 1. We leave
finding this family of curves as a further research work.

Example 1. Consider the BN family of curves again. BN curve has k = 12 and ρ = 1. The

number of squarings is expected to be
(

1− 1
ϕ(12)

)
log p = (3/4) log p. In fact as seen in the

front of this section, the required squarings are 192 ≈ 3
4 · 254.

Example 2. Consider the cyclotomic family of curves given by [7] (Construction 6.2) with
embedding degree k.

r(x) = Φ4k(x),
t(x) = −x2 + 1,
p(x) = 1

4

(
x2k+4 + 2x2k+2 + x2k + x4 − 2x2 + 1

)
.

Let us compute Φk(p)/r using Lemma 4, then Φk(u)/r = 1 and

maxi{dλi} = dh + (ϕ(k)− 1)du
= (2k + 4− ϕ(4k)) + (ϕ(k)− 1) · 2
= 2k + 2 < 2k + 4.

In this case, maxi{dλi} = dp − 2. However the number of squarings is expected to be
maxi{dλi}

dp
log p =

(
1− 1

ρϕ(k)

)
log p = k+1

k+2 log p.

Remark 1. Although one exponentiate by λ using addition chain as described in [21], the
number of squarings has no much difference with multi-exponentiation method. Since in the
addition chain method, one computes maxi{dλi} numbers of exponentiation by x, thus total
number of squarings is maxi{dλi}(log x) ≈ (maxi{dλi}/dp) log p which is exactly same with
maxi log λi, the number of squarings when multi-exponentiation is used.
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4 Reducing the size of base p coefficients

In this section, we propose a general method to reduce κ in computing the final exponenti-
ation by λ := Φk(p)/r. The main idea is to reduce the maximum size of coefficients of base
p representation of λ since κ depends on the maximum bit length of λi’s. Since the pairing
e(P,Q)m also defines a non-degenerate bilinear pairing map with m relatively prime to r,
we use the exponent mλ instead of λ. Using lattice basis reduction algorithm one can find
mλ whose coefficients in base p representation are small. Throughout this section p, r, t are
integers not polynomials.

Observations Since the reduced Tate pairing is non-degenerate, the map ē also defines
non-degenerate bilinear pairing

ē(P,Q) = e(P,Q)m = fr,P (Q)m(pk−1)/r,

if gcd(r,m) = 1. Let g := fr,P (Q)(p
k−1)/Φk(p), then ē(P,Q) = gmλ. We want to find mλ

with gcd(r,m) = 1 such that

mλ =

d−1∑
i=0

vip
i

where vi’s are as small as possible. (The choice of d will be given later.) With abuse of

notations, we write
∑d−1
i=0 vip

i = (v0, v1, . . . , vd−1).

Reducing the coefficients of base p representation Motivated by [24], mλ with small
coefficients in base p representation can be obtained by using lattice basis reduction algo-
rithm. Let L be the lattice of dimension d spanned by rows of the matrix

L :=


λ 0 0 · · · 0
−p 1 0 · · · 0
−p2 0 1 · · · 0

...
...

−pd−1 0 · · · 0 1

 .

It is easily verified that v := (v0, v1, · · · , vd−1) ∈ L if and only if
∑d−1
i=0 vip

i = mλ for some
integer m. Now finding mλ with small coefficients reduces to find the short vector in lattice
L. By Minkowski’s theorem [16] there is a shortest vector v in L satisfies ||v||∞ ≤ |det(L)|1/d
where ||v||∞ = max{|vi| : i = 0, 1, . . . , d− 1}. Then there exists mλ =

∑d−1
i=0 vip

i with

max{|vi|} ≤ |det(L)|1/d = |λ|1/d =

(
Φk(p)

r

)1/d

≈ (pϕ(k)−1/ρ)1/d.

Since Φk(p) ≡ 0 mod λ, any powers pi for i ≥ ϕ(k) can be represented by a linear
combination of 1, p, . . . , pϕ(k)−1 modulo λ and since Φk(p) = rλ has small coefficietnts in
base p representation to avoid degenerate pairing maps, it sufficies to consider the lattice with

dimension d = ϕ(k). Thus κ reduces to at most [(ρ · ϕ(k)− 1)/dρ] log p =
(

1− 1
ρϕ(k)

)
log p.

Finding a shortest vector in L Finding a short vector in a given lattice L can be
done using LLL algorithm. Let {b1,b2, . . . ,bd} be an ordered basis of lattice L. Then LLL
algorithm returns the reduced basis {b̄1, b̄2, . . . , b̄d} where ||b̄1|| ≤ ||b̄2|| ≤ · · · ≤ ||b̄d||. In
particular, ||b|| denotes the Euclidean norm. The lemma below shows that LLL algorithm
has good property.
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Lemma 5. Let {b̄1, b̄2, . . . , b̄d} be a LLL reduced basis for lattice L and λ1 be a length of
the shortest vector in L. Then ||b̄1|| ≤ 2(d−1)/2 · λ1

This means that LLL algorithm can be used to find almost shortest vector for low
dimensional lattice. Especially, for a lattice whose dimension is less than or equal to 4, a
shortest vector can be always found quite efficiently [8, 23, 22, 18].

m is relatively prime to r mλ with small coefficients in base p representation can
be obtained efficiently using LLL algorithm. For nondegeneracy of the pairing m must be
relatively prime to r. This is equivalent that m is not a multiplie of r since r is prime. The
following lemma asserts this property.

Lemma 6. Let λ := Φk(p)/r and ϕ := ϕ(k). Suppose that r is a prime larger than 2ϕ(ϕ+1)

and p is a prime larger than 3. If mλ =
∑ϕ−1
i=0 vip

i with |vi| ≤ λ1/ϕ and assume that m = n·r
for some integer n, then n must be 0.

Proof. We will use the inequality (p− 1)ϕ ≤ Φk(p) ≤ (p+ 1)ϕ for all k. First observe that(
p

p− 1

)ϕ
·
(
p+ 1

p− 1

)
≤ 2ϕ+1 < r1/ϕ

from p/(p− 1) < (p+ 1)/(p− 1) ≤ 2 and r > 2ϕ(ϕ+1). From this

p+ 1

r1/ϕ
· pϕ

p− 1
< (p− 1)ϕ.

Then

|n|Φk(p) = |mλ| = |
∑ϕ−1
i=0 vip

i| ≤
∑ϕ−1
i=0 λ

1/ϕpi < λ1/ϕ · p
ϕ

p−1 ≤
(

(p+1)ϕ

r

)1/ϕ
· p

ϕ

p−1

= p+1
r1/ϕ
· p

ϕ

p−1 < (p− 1)ϕ ≤ Φk(p).

Hence |n|Φk(p) < Φk(p) and n must be 0. ut

In the pairing based cryptosystem, for the 80-bit security r is usually chosen to be 160
bits prime. In this case, if d = ϕ(k) ≤ 12 then r is always larger than 2d(d+1). Thus the
assumption in lemma holds.

Let mΦk(p)
r :=

∑ϕ(k)−1
i≤0 λiq

i. Then [13, Theorem 4.4.1] have shown that maxi |λi| ≥
1

ϕ(k)

(
Φk(p)
r

)1/ϕ(k)
. Then we have maxi{log |λi|} ≥ 1

ϕ(k) log
(
Φk(p)
r

)
− logϕ(k). This means

that
(

1− 1
ρϕ(k)

)
log p is the almost optimized number of squarings in the final exponentia-

tion step.

5 Examples

In this section we give some examples investigated by lattice basis reduction. All results
satisfy the Minkowski’s bounds well as we have shown that theoretically. Our approach
using lattice reduction reduces the number of squarings nicely for the curves which are not
in the family.

First and second example show the case when our method is applied to DEM curves
which is not in the family.
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Example 3. Dupont, Enge, and Morain proposed some parameters for pairing-friendly curves
in [6]. The following p and r parameterize the pairing-friendly curve for k = 5:

p = 91600022435668881297760819108273609(117 bits),
r = 1040375393410195481(60 bits).

Then the final exponent is of the form λ = (p4 + p3 + p2 + p+ 1)/r = a0 + a1p+ a2p
2 + a3p

3

where
a0 = 48298402242066861357969209793319103(116 bits),
a1 = 68283809547505356824804028665198693(116 bits),
a2 = 53294610661059016732355697881722241(116 bits),
a3 = 88045164289610560(57 bits).

Note that the maximum bit length of a0, a1, a2, a3 is 116 bits. The naive implementation
takes totally 115 squarings and 118 multiplications. However, our method finds mλ = b0 +
b1p+ b2p

2 + b3p
3 where

b0 = −2868147363431539633026293965700(102 bits),
b1 = −179610012117759028207462943(88 bits),
b2 = 89797974551946435080337006(87 bits),
b3 = 14058171382122118208099(74 bits),
m = 159670.

The implementation requires total 101 squarings and 96 multiplications. Consequently our
method reduces the number of squarings by 12% and the number of multiplications by
18.6%.

Example 4. Another example in [6] proposes parameters of the curves for k = 10:

p = 265838773006906750756458394131391985334144469091740860612401985800
108057326350300019063611949402010036257572717554080849369(407 bits),

r = 25621456065075422729511299019214902729542591998892393498858941(204 bits)

where λ = (p4 − p3 + p2 − p + 1)/r. The naive implementation requires 405 squarings and
367 multiplications. When our method is applied to the λ, computing the final exponent
needs 354 squarings and 339 multiplications with

m = 6737887339674329614098947765614834417013174705.

Thus our method reduces the number of squarings by 12.5% and the number of multiplica-
tions by 7.6%.

Next example shows the case when the lattice basis reduction is applied to the families of
curves.

Example 5. Consider the BN curves with x = −4647714815446351873.

p = 16798108731015832284940804142231733909889187121439069848933715
426072753864723(254 bits),

r = 16798108731015832284940804142231733909759579603404752749028378
864165570215949(254 bits).

Let λ = (p4−p2+1)/r = a0+a1p+a2p
2+a3p

3, then a0 and a1 have 192 bits. So the number
of squarings is 192. After the lattice basis reduction we get mλ = b0 + b1p + b2p

2 + b3p
3

where b0 and b2 have 190 bits with

m = 129607518034317099886745702645398241283.
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As we have noted in previous section, BN curve already attains Minkowski’s bound. The
example shows that there is no noticeable difference by lattice reduction for FE-friendly
curves.

Example 6. In [19], they proposed the method to find the parameters of pairing friendly
curves which has minimal security loss against Cheon’s attack on strong DH [5].

p = 16811764514730282268993358329982630298018340963958676861798575079
8949133918522866373(277 bits),

r = 74487215395349057461202296544008109428525919192764227273563956816
535141597060317(266 bits).

In this case, λ = (p4 − p2 + 1)/r = a0 + a1p + a2p
2 + a3p

3 and a0, a1 have 220 bits. The
reduction shows that the maximum bit length of mλ is 210 bits, so reduces the number of
squarings by 4.5%.

6 Conclusion

In this paper we have suggested a general method for reducing the number of squarings

by
(

1− 1
ρϕ(k)

)
log p in the calculation of final exponentiation for the Tate pairing. We also

have shown that if the maximum of degree of λi(x) is greater than deg p − deg r/ϕ(k),
then the required number of squarings in the final exponentiation step is bounded below by

Minkowski’s bound
(

1− 1
ρϕ(k)

)
log p. All the known families have this low bound, however

it remains open whether one can construct a family of curves whose computation cost for
squarings in the final exponentiation is much less than the Minkowski’s bound.
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