
Highly-Parallel Montgomery Multiplication

for Multi-core General-Purpose Microprocessors

Selçuk Bakt�r1 and Erkay Sava³2

1 Bahçe³ehir University
Department of Computer Engineering

Istanbul, Turkey
selcuk.baktir@bahcesehir.edu.tr

2 Sabanc�University
Faculty of Engineering & Natural Sciences

Istanbul, Turkey
erkays@sabanciuniv.edu

Abstract. Popular public key algorithms such as RSA and Di�e-Hellman
key exchange, and more advanced cryptographic schemes such as Pail-
lier's and Damgård-Jurik's algorithms (with applications in private in-
formation retrieval), require e�cient modular multiplication with large
integers of size at least 1024 bits. Montgomery multiplication algorithm
has proven successful for modular multiplication of large integers. While
general purpose multi-core processors have become the mainstream on
desktop as well as portable computers, utilization of their computing re-
sources have been largely overlooked when it comes to performing com-
putationally intensive cryptographic operations. In this work, we propose
a new parallel Montgomery multiplication algorithm which exhibits up to
39% better performance than the known best serial Montgomery mul-
tiplication variant for the bit-lengths of 2048 or larger. Furthermore,
for bit-lengths of 4096 or larger, the proposed algorithm exhibits better
performance utilizing multiple cores available. It achieves speedups of up
to 81%, 3.37 times and 4.87 times for the used general-purpose micro-
processors with 2, 4 and 6 cores, respectively. To our knowledge, this is
the �rst work that shows with actual implementation results that Mont-
gomery multiplication can be practically parallelized on general-purpose
multi-core processors.

Key Words: Montgomery multiplication, RSA, multi-core architectures,
general-purpose microprocessors, parallel algorithms.

1 Introduction & Motivation

Many public key cryptosystems such as RSA, Di�e-Hellman, elliptic curve
cryptography and recently pairing-based cryptography utilize multiplica-
tion as the most important operation which dominates the execution time.
Therefore, the e�ciency of multiplication operation determines the prac-
ticality and in some cases the feasibility of cryptographic applications.

Developing faster multiplication algorithms for larger numbers becomes
the focal point of many research activities due to the ever increasing need
for higher security levels. Emergence of multi-core processors on common
desktop, notebook and server computers with no additional cost proclaim
both the research opportunity and motivation for developing parallel al-
gorithms for cryptographic applications.

Paillier encryption scheme [12], based on a setting similar to RSA,
provides one of the most e�cient and practical homomorphic encryp-
tion algorithms. Due to the fact that Paillier encryption scheme leads
to message expansion after encryption Damgård and Jurik [3] generalize
the algorithm for applications that require multiple encryption such as
computationally-private information retrieval (CPIR) [10] and multi-hop
homomorphic encryption scheme that encrypts already encrypted mes-
sages introduced in the scenario given in [6]. Especially in CPIR [10], for
instance, the binary tree which aims to privately extract one data item
out of a total of 256 eventually leads to a modular multiplication where
the modulus size is 8192-bit for 80-bit security. For 128-bit security level,
we have to perform multiplication operations with numbers as large as
24576-bit3 for the same application.

Multi-core processors can be e�ectively put into use in executing par-
allelized multiplication operations of large numbers for accelerating afore-
mentioned cryptographic applications. So far, the research on the subject
has been focused on multi-core architectures [15], speci�cally built for
multiplication operations of moderate size such as 1024 or 2048 bits, since
inter-core communication dominates the overall computation in general-
purpose multi-core processors for these bit lengths. However, we �nd out
that this tendency starts changing for bit sizes of 2048-bit and higher if
an e�cient parallel multiplication algorithm is used.

Our Main Contributions:

� We present for the �rst time a practical parallel Montgomery multi-
plication algorithm [11] for general-purpose multi-core processors and
present e�cient implementation results.

� As in the case of single-core or hardware implementations, we show
that the Montgomery multiplication algorithm turns out to render very
e�cient implementations on general-purpose multi-core processors due
to its inherent parallelism. Our Montgomery multiplication algorithm

3 Recommendation for Key Management, Special Publication 800-57 Part 1 Rev. 3,
NIST, 05/2011.

demonstrates up to 39% better timing performance than the most
common Montgomery multiplication algorithm in single-core software
implementations for operand sizes of 2048-bit and larger.

� We analyze the timing performance of our algorithm on multi-core im-
plementations on general-purpose multi-core processors. Using multi-
core processors with 2, 4 and 6 cores, for operand sizes of 4096-bit and
larger, we obtained speedups of up to 81%, 3.37 times and 4.87 times,
respectively, compared with the most commonly used Montgomery
multiplication algorithm.

2 Mathematical Background

2.1 Montgomery Multiplication

In many cryptographic algorithms, a chain of multiplication operations
need to be performed at a time. The RSA algorithm [14] and the Di�e-
Hellman key exchange scheme [4], and more recently the generalization
of Paillier's probabilistic public-key scheme (with applications in private
information retrieval) [3], require computing a sequence of modular multi-
plications of large integer operands, e.g. at least 1024 bits in length. Hence,
e�cient implementation of modular multiplication is crucial. For instance,
in the RSA algorithm, an exponentiation is computed by a chain of
modular multiplication and squaring operations [14]. Modular multiplica-
tion/squaring is normally achieved by an integer multiplication/squaring
followed by a modular reduction by a prede�ned modulus.

In algorithms such as RSA, where the prede�ned modulus is a random
number, the required modular reduction of the result of an integer mul-
tiplication is more costly than the multiplication itself. The Montgomery
residue representation and the resulting Montgomery multiplication algo-
rithm have proven useful in reducing this complexity [11, 9]. In this repre-
sentation, modular reductions are partially avoided and thus the overall
computation is simpli�ed.

In Montgomery multiplication, �rstly the operands are converted to
their respective Montgomery residue representations, then the desired se-
quence of operations are performed using Montgomery multiplication, and
�nally the result is converted back to the normal integer representation.
The Montgomery multiplication algorithm, given with Algorithm 1, com-
putes A·B·2−m for the input operands A andB which are the Montgomery
residue representations of the two integers X and Y such that A = X ·2m
and B = Y · 2m. Note that Algorithm 1 keeps the residue representation

intact, i.e., A · B · 2−m ≡ (X · Y) · 2m (mod n) which allows for further
computations avoiding extra operations.

Algorithm 1 explains the general Montgomery multiplication algo-
rithm. A detailed analysis of di�erent Montgomery multiplication algo-
rithms can be found in [1]. Among these Montgomery multiplication al-
gorithms, the Coarsely Integrated Operand Scanning (CIOS) Method is
considered the fastest one in most processor platforms and described in
Section 2.2.

Algorithm 1 Montgomery multiplication

Input: A,B ∈ Zn where n is an odd integer, n′ = −n−1 mod 2m where m = ⌈log2 n⌉ .
Output: A ·B · 2−m mod n .
1: t← A ·B
2: t← (t+ (t · n′ mod 2m) · n)/2m
3: if t ≥ n then

4: Return t− n
5: else
6: Return t
7: end if

2.2 Coarsely Integrated Operand Scanning (CIOS) Method

for Montgomery Multiplication

Among all the Montgomery multiplication algorithms listed in [1], the
CIOS method, presented below with Algorithm 2, requires the least stor-
age and has the best timing performance, and therefore it is the most
preferred Montgomery multiplication algorithm.

Algorithm 2 CIOS method for Montgomery multiplication

Input: A,B ∈ Zn where n is an odd integer, n′ = −n−1 mod 2s.w where w is the
processor word size and s = ⌈⌈log2 n⌉ /w⌉ .

Output: A ·B · 2−s·w mod n .
1: for i = 0→ s− 1 do
2: C ← 0
3: for j = 0→ s− 1 do
4: (C, S)← tj + aj · bi + C
5: tj ← S
6: end for

7: ts ← S
8: ts+1 ← C
9: C ← 0
10: m← t0 · n′

0 mod 2w

11: (C, S)← t0 +m · n0

12: for j = 1→ s− 1 do
13: (C, S)← tj +m · nj + C
14: tj−1 ← S
15: end for

16: (C, S)← ts + C
17: ts−1 ← S
18: ts ← ts+1 + C
19: end for

20: if [ts ts−1 ts−1 · · · t0]2w ≥ n then

21: Return [ts ts−1 ts−1 · · · t0]2w − n
22: else
23: Return [ts−1 ts−1 · · · t0]2w
24: end if

All the Montgomery multiplication algorithms listed in [1], including
the CIOS method, are word-based, inherently serial algorithms and do
not allow parallelization in software realizations on general-purpose pro-
cessors. In this work, we investigate the parallelization of Montgomery
multiplication on general-purpose multi-core processors.

3 General-Purpose Multi-Core Architectures and Parallel

Programming

The last decade experienced an important paradigm shift in processor
design towards multi-core architectures. Hitting the so-called power wall
and exhausting means for instruction level parallelism (ILP) as a result
of decades long research and development [13] intensi�ed the focus on the
exploitation of thread-level parallelism through multi-core architectures
which are made possible by the famous Moore's law. Nowadays, not only

desktop computers or workstations but also almost all notebook comput-
ers and even some smart phones are shipped with multi-core processors.
In the foreseeable future, this trend will continue with ever increasing mo-
mentum and we will see many-core processors that feature tens of cores
of identical general-purpose and/or di�erent specialized architectures.

CPU Core

L1 Cache

CPU Core

L1 Cache

L2 Shared Cache

 Back side interconnection

Dual-core

processor

 Front side interconnection

Shared Memory

Chipset

Fig. 1. Architecture of a dual-core general-purpose processor.

In Figure 1, a simple dual-core processor with two identical general-
purpose processor cores is illustrated. Each core features a local cache
memory which is referred as level one (L1) cache since it stands at the top
of the memory hierarchy. The second level cache (L2 cache) and the main
memory are shared by the processor cores. Many general-purpose multi-
core architectures have similar organizations independent of the number
of cores and cache levels. Therefore, the multi-core architectures are con-
sidered to be in the category of shared memory multiprocessor systems,
where the cores are synchronized through the shared memory and do not
interact directly otherwise. Cores operate on the local (private) data in
their L1 cache memories independently when operations assigned to the

cores are independent. However, L1 caches are synchronized through con-

sistency protocols [13], which are implemented in hardware and therefore
transparent to application developer, when cores require each other's data
or need to process the same shared data. An e�cient parallel program tries
to minimize the number of synchronization points allowing cores to work
independently for durations as long as possible.

OpenMP (Open Multi-Processing)4 provides the necessary application
programming interface (API) for parallel programming in shared mem-
ory multi-processor systems. It features many library routines, compiler
directives, and environment variables to support multi-threaded applica-
tion development, whereby threads can be scheduled on individual cores
by the developer. OpenMP API can be pro�tably utilized to accelerate
cryptographic operation on multi-core processors. In this work, we utilize
OpenMP for the parallel implementation of our proposed Montgomery
multiplication algorithm.

4 Montgomery Multiplication Utilizing Multi Cores

All algorithms commonly proposed for Montgomery multiplication are
word based algorithms, which perform the required partial product com-
putations and modular reductions interleaved together and on a word by
word basis, yielding the serial nature of these algorithms. In order to par-
allelize Montgomery multiplication, for two and three core architectures,
bipartite [7, 8] and tripartite [16] Montgomery multiplication algorithms,
respectively, were proposed. In [15, 2, 5], specialized multi-core hardware
architectures are proposed for parallel implementation of the Montgomery
multiplication algorithm. However these algorithms are intended for hard-
ware based implementations and not targeted for general purpose micro-
processors. In [2], the authors give a theoretical analysis of possible paral-
lelizations of the SOS version of Montgomery multiplication given in [1],
and implementation results on prototype multi-core systems using soft-
core processors on FPGA devices. The proposed design in [2] utilizes fast
communication between the utilized softcores and local memories both of
which are speci�cally tailored to the proposed parallel implementation of
the Montgomery multiplication algorithm. Therefore, their approach rep-
resents a hybrid architecture that takes advantage of both software and
hardware. In this section, we propose a novel parallel Montgomery multi-
plication algorithm which is speci�cally designed for software realizations

4 OpenMP Tutorial at Supercomputing 2008, http://openmp.org/wp/2008/10/openmp-
tutorial-at-supercomputing-2008/ (Last accessed on 26 February 2012.)

and thus is suitable for general-purpose microprocessors. For our parallel
Montgomery multiplication algorithm, we exploit the inherent parallelism
in integer multiplication.

4.1 Inherent Parallelism in Integer Multiplication

Remember the integer multiplication operation shown in Figure 2. As
shown in Figure 2, integer multiplication has an inherent parallelism which
could be exploited by running the multiple cores available on a processor
in parallel. Note in Figure 2 that the partial products required for integer
multiplication can be computed in parallel and then accumulated to give
us the actual product.

Fig. 2. Inherent parallelism in the integer multiplication A × B. Note that A can be

represented as [as−1 as−2 · · · a0] in base 2

⌈
log2 A

s

⌉
.

We give the following algorithm for parallel integer multiplication on
general-purpose multi-core processors.

4.2 Parallel Montgomery Multiplication

We adapt the inherent parallelism of Algorithm 3 to the original Mont-
gomery multiplication algorithm given with Algorithm 1 for application on
multi-core processors. The resulting parallel Montgomery multiplication
algorithm is given with Algorithm 4 below.

On a multi-core processor, one can also parallelize the additions given
on lines 4 to 6 (required for the accumulation of the partial products) of
Algorithm 3. When the number of cores available is a power of 2, this

Algorithm 3 Parallel Integer Multiplication
Input: Integers A = [as−1 as−2 · · · a0]d and B of size m = d · s bits where s is the

number of cores available.
Output: ParallelMultiply(A,B) = A ·B .
1: for i = 0 to s− 1 do
2: ti ← ai ·B · 2i·d {performed at core i+ 1 in a multi-core implementation}
3: end for

4: for i = 1 to s− 1 do
5: t0 ← t0 + ti
6: end for

7: Return (t0)

Algorithm 4 Parallel Montgomery multiplication

Input: A,B ∈ Zn where n is an odd integer and n′ = −n−1 mod 2m where m =
⌈log2 n⌉ .

Output: A ·B · 2−m mod n .
1: t← ParallelMultiply(A,B) {Algorithm 3}
2: u← ParallelMultiply(t, n′) mod 2m {Algorithm 3}
3: u← ParallelMultiply(u, n) {Algorithm 3}
4: u← (u+ t)/2m

5: if u ≥ n then

6: Return (u− n)
7: else
8: Return (u)
9: end if

partial product accumulation can be achieved in a binary tree fashion, as
shown below, with at most ⌈log2 s⌉ steps where s is the number of cores
available.

for i = 1 to log2 s
for j = 0 to

s
2i
− 1

tj ← tj + tj+ s

2i

end for

end for

In the above setting, all the cores are exploited as evenly as possible with
the maximal utilization which would result in the minimal latency. How-
ever, this optimal chain of additions would not always be possible. In the
rest of this section, we provide some addition chains for e�cient imple-
mentations of Algorithm 4 on processors with 2, 4 and 6 cores as examples.

Partial Product Accumulation on a 2-Core Processor:

For performing the integer multiplication A×B on 2 cores, the operand A

is divided into two equal parts as [a1 a0] in base 2

⌈
log2 A

2

⌉
and the partial

products a0 × B and a1 × B are computed simultaneously on separate
cores. Finally, these partial products are accumulated as given below.

Fig. 3. Computation and accumulation of the partial products for the integer multi-
plication A × B on 2 cores. Note that A is divided into two equal parts and denoted

as [a1 a0] in base 2

⌈
log2 A

2

⌉
.

Partial Product Accumulation on a 4-Core Processor:

On a 4-core processor, for performing the integer multiplication A × B,
the operand A is divided into four equal parts as [a3 a2 a1 a0] in base

2

⌈
log2 A

4

⌉
and the partial products a0 ×B, a1 ×B, a2 ×B and a3 ×B are

computed simultaneously on separate cores. Finally, these partial prod-
ucts are accumulated with the optimal addition chain given below.

Fig. 4. Computation and accumulation of the partial products for the integer multipli-
cation A×B with 4 cores. A is divided into four equal parts and denoted as [a3 a2 a1 a0]

in base 2

⌈
log2 A

4

⌉
.

Partial Product Accumulation on a 6-Core Processor:

On 6-core processor, for performing the integer multiplication A×B, the
operand A is divided into six equal parts as [a5 a4 a3 a2 a1 a0] in base

2

⌈
log2 A

6

⌉
and the partial products a0 ×B, a1 ×B, a2 ×B, a3 ×B, a4 ×B

and a5×B are computed simultaneously on separate cores. Finally, these
partial products are accumulated with the addition chain given below.

Fig. 5. Partial product computation and accumulation of the partial products for the
integer multiplication A×B with 6 cores. A is divided into six equal parts and denoted

as [a5 a4 a3 a2 a1 a0] in base 2

⌈
log2 A

6

⌉
.

5 Timing Performance

We implemented our algorithm for the operand sizes of 1024, 2048, 4096,
8192, 16384 and 32768 bits on general-purpose multi-core processors using
OpenMP and obtained the timings. We used 2, 4 and 6 core general-
purpose processors for our implementations and made use of the e�cient
addition chains given with Figures 3, 4 and 5, respectively. The timing
graphs for the implementation of our proposed Montgomery multiplication
algorithm, as well as the CIOS method, on 2, 4 and 6 core general-purpose
processors can be seen in Figures 6, 7 and 8, respectively. Detailed timings
and achieved speedups (compared to the CIOS method) can be found in
Tables 1, 2 and 3 (in Appendix).

We observe in Figures 3, 4 and 5 that our algorithm performs signi�-
cantly better than the CIOS method, and furthermore e�ciently utilizes
multiple cores for improved performance, for growing operand sizes. As
seen in Tables 1, 2 and 3, it achieves up to 81%, 3.37 times and 4.87
times speedups for the used general-purpose microprocessors with 2, 4
and 6 cores, respectively. For the operand sizes of 2048 bit and smaller,
the multi-core performance of our algorithm is worse than its single-core
performance due to the overhead from using the OpenMP library.

On the 2 and 4 core processors, the single-core performance of our
algorithm is better than the CIOS method for operand sizes of 2048 bit
and larger (see Tables 1 and 2 in Appendix). Whereas, on the 6 core
processor, the single-core performance of our algorithm performs better
starting with the larger operand size of 4096 bit (see Table 3 in Appendix).

Fig. 6. Timings for the CIOS and Parallel Montgomery multiplication algorithms on
the 2-core Intel Dual-Core Pentium E6500 processor running at 2.93 GHz and with
2.96 GB of RAM.

Fig. 7. Timings for the CIOS and Parallel Montgomery multiplication algorithms on
the 4-core Intel Core 2 Quad processor Q8300 running at 2.5 GHz and with 4 GB of
RAM.

Fig. 8. Timings for the CIOS and Parallel Montgomery multiplication algorithms on
the 6-core Intel Xeon W3670 processor running at 3.2 GHz and with 8 GB RAM.

This discrepancy is most possibly due to the fact that the addition chains
used for the partial product accumulations on 2 and 4 core processors
(given in Figures 3 and 4, respectively) are optimal whereas the one used
for the 6-core processor (as given in Figure 5) is not optimal. On the used
2, 4 and 6 core general-purpose processors, the single-core performance of
our algorithm is up to 39%, 26% and 17% better, respectively, compared
to the CIOS method.

6 Conclusion

In this work, we presented for the �rst time an e�cient parallel Mont-
gomery multiplication algorithm for software implementations on general-
purpose multi-core processors. Our algorithm exhibits good timing per-
formance in both single-core and multi-core implementations. We identify
the utilization of our algorithm for e�cient implementation of classical
cryptographic schemes such as RSA and Di�e-Hellman, as well as more
advanced schemes such the Damgård-Jurik's algorithm, as future work.

References

1. Ç. K. Koç, T. Acar, and B. Kaliski. Analyzing and comparing montgomery mul-
tiplication algorithms. IEEE Micro, pages 26�33, 1996.

2. Zhimin Chen and Patrick Schaumont. A parallel implementation of montgomery
multiplication on multicore systems: Algorithm, analysis, and prototype. IEEE
Trans. Comput., 60:1692�1703, December 2011.

3. Ivan Damgård and Mats Jurik. A generalisation, a simpli�cation and some appli-
cations of paillier's probabilistic public-key system. In Proceedings of the 4th In-
ternational Workshop on Practice and Theory in Public Key Cryptography: Public
Key Cryptography, PKC '01, pages 119�136, London, UK, 2001. Springer-Verlag.

4. W. Di�e and M. E. Hellman. New Directions in Cryptography. IEEE Transactions
on Information Theory, IT-22:644�654, 1976.

5. Junfeng Fan, Kazuo Sakiyama, and Ingrid Verbauwhede. Montgomery modular
multiplication algorithm on multi-core systems. 2007 IEEE Workshop on Signal
Processing Systems, 10:261�266, 2007.

6. Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. i-hop homomorphic en-
cryption and rerandomizable yao circuits. In Tal Rabin, editor, CRYPTO, volume
6223 of Lecture Notes in Computer Science, pages 155�172. Springer, 2010.

7. Marcelo E. Kaihara and Naofumi Takagi. Bipartite modular multiplication. In Pro-
ceedings of Cryptographic Hardware and Embedded Systems - CHES 2005, number
3659 in Lecture notes in Computer Science, pages 201�210. Springer-Verlag, 2005.

8. Marcelo E. Kaihara and Naofumi Takagi. Bipartite modular multiplication
method. IEEE Transactions on Computers, 57(2):157�164, 2008.

9. Ç. K Koç and T. Acar. Montgomery Multplication in GF (2k). Design, Codes, and
Cryptography, 14(1):57�69, 1998.

10. Helger Lipmaa. First CPIR protocol with data-dependent computation. In Proceed-
ings of the 12th international conference on Information security and cryptology,
ICISC'09, pages 193�210, Berlin, Heidelberg, 2010. Springer-Verlag.

11. P. L. Montgomery. Modular Multiplication without Trial Division. Mathematics
of Computation, 44(170):519�521, April 1985.

12. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In IN ADVANCES IN CRYPTOLOGY - EUROCRYPT 1999, pages 223�
238. Springer-Verlag, 1999.

13. David A. Patterson and John L. Hennessy. Computer Organization and Design:
The Hardware / Software Interface. Morgan Kaufmann, Elsevier, 4th edition, 2012.
(Revised printing).

14. R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Sig-
natures and Public-Key Cryptosystems. Communications of the ACM, 21(2):120�
126, February 1978.

15. Kazuo Sakiyama, Lejla Batina, Bart Preneel, and Ingrid Verbauwhede. Multi-
core Curve-Based Cryptoprocessor with Recon�gurable Modular Arithmetic Logic
Units over GF (2n). IEEE Transactions on Computers, 56:1269�1282, 2007.

16. Kazuo Sakiyama, Miroslav Knezevic, Junfeng Fan, Bart Preneel, and Ingrid Ver-
bauwhede. Tripartite modular multiplication. Integration, 44(4):259�269, 2011.

A Timings

Operand Size (in bits)

1024 2048 4096 8192 16384 32768

Algorithm time (ms)

Montgomery-CIOS (Single Core) 0.0091 0.0341 0.1488 0.6564 2.3043 8.7010

Parallel Montgomery on Single Core 0.0121 0.0321 0.1222 0.4708 1.8675 7.4530
Speedup: −25% 6% 22% 39% 23% 17%

Parallel Montgomery on 2 Cores 0.0372 0.0635 0.1227 0.3620 1.2953 5.0640
(with OpenMP support) Speedup: −75% −46% 21% 81% 78% 72%

Table 1. Timings (in ms) for the CIOS and Parallel Montgomery multiplication algorithms on the 2-core
Intel Dual-Core Pentium E6500 processor running at 2.93 GHz and with 2.96 GB of RAM.

Operand Size (in bits)

1024 2048 4096 8192 16384 32768

Algorithm time (ms)

Montgomery-CIOS (Single Core) 0.0103 0.0402 0.1692 0.7321 2.6929 10.1625

Parallel Montgomery on Single Core 0.0111 0.0382 0.1499 0.5835 2.2798 9.0456
Speedup: −7% 5% 13% 26% 18% 12%

Parallel Montgomery on 4 Cores 0.0448 0.0554 0.0866 0.2394 0.8044 3.0140
(with OpenMP support) Speedup: −77% −27% 95% ×3.06 ×3.35 ×3.37

Table 2. Timings (in ms) for the CIOS and Parallel Montgomery multiplication algorithms on the 4-core
Intel Core 2 Quad Processor Q8300 running at 2.5 GHz and with 4 GB of RAM.

Operand Size (in bits)

1024 2048 4096 8192 16384 32768

Algorithm time (ms)

Montgomery-CIOS (Single Core) 0.0077 0.0298 0.1267 0.5168 2.0259 7.6476

Parallel Montgomery on Single Core 0.0102 0.0314 0.1152 0.4432 1.7449 6.8921
Speedup: −24% −5% 10% 17% 16% 11%

Parallel Montgomery on 6 Cores 0.0432 0.0381 0.0682 0.1331 0.4390 1.5712
(with OpenMP support) Speedup: −82% −22% 86% ×3.88 ×4.62 ×4.87

Table 3. Timings for CIOS and Parallel Montgomery multiplication algorithms on a 6-core Intel Xeon W3670
processor running at 3.2 GHz and with 8 GB RAM.

