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Abstract. In this paper, we propose a new concept named similar-bent function and we present

two general methods to construct balanced sequences with low correlation by using similar-bent

functions and orthogonal similar-bent functions. We find that the bent sequence sets are special

cases of our construction. We also investigate the linear complexity of the new constructed

sequences. If a suitable similar-bent function is given, the sequences constructed by it can have

high linear complexity. As examples, we construct two new low correlation sequence sets. One

constructed based on Dobbertin’s iterative function is asymptotically optimal with respect to

Welch’s bound and the other one is constructed based on Kasami function whose sequences

have a high linear complexity.

Index Terms—similar-bent function, low correlation, binary sequence, p-ary sequence

1 Introduction

Low correlation magnitude, balanceness and high linear complexity are some im-

portant randomness criteria for sequences. The good pseudo-random sequences are

widely used in the engineering applications such as CDMA systems. How to construct

the sequences with randomness properties is an interesting problem in application.

Many sequence sets with low correlation have been reported[1-9]. However, only

a few sequence sets can attain the Welch’s bound or Sidelnokiv’s bound , for example

the Kasami sequences[1], the Gold sequences[2], the Sidelnikov sequences[3], the bent

sequences[4], and the Gold-like sequences[6].

The binary bent functions are Boolean functions on even number of variables

whose Hamming distance to the affine function space is maximum. They have wide

applications in communication, coding and cryptography, etc[10]. Olsen et al.[4] con-

structed a family of binary sequences with optimal correlation based on binary bent

functions. Kumar et al.[11] generalized binary bent functions to p-ary bent functions

and they[5] used these functions to construct p-ary bent sequences.
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In this paper, we propose a new concept named similar-bent function, the maxi-

mum absolute value of whose walsh spectrum is small. We find that the similar-bent

functions and orthogonal similar-bent functions can also be used to construct low

correlation sequence sets. Then we present two methods to construct balanced se-

quence sets with low correlation. In the first method, we use similar-bent function

to construct low correlation sequence set. However, in the second method, we need

orthogonal similar-bent function. The binary bent sequences[4] and p-ary bent se-

quences[5] are the special cases of the first construction. When the form of the similar-

bent function is given, we get a formula to compute the linear complexity of the new

constructed sequences. Of course, the formula is also valid for bent sequences. As ex-

amples, we construct two sequence sets based on Dobbertin’s iterative function and

Kasami function. The set constructed by Dobbertin’s iterative function has the pa-

rameters (2n−1, 2
n
2 , 2

n
2 + 2

3n
8
+ 3

2 + 2
n
4
+1), which is asymptotically optimal with respect

to Welch’s bound. The other one is a (2n − 1, 2
n
2 , 2

n
2
+1 + 1) low correlation sequence

set, whose sequences have a high linear complexity n+ n2
n−2
4 .

2 Preliminaries

In this section we firstly review some notations and well known results, then we

introduce the similar-bent functions.

2.1 Notations

Some notations throughout this paper are defined as follows:

• p is a prime;

• ω = exp(2π
√
−1
p

);

• m is a positive integer and n = 2m;

• For a finite field Fpk , F∗pk denotes Fpk \ {0};
• α is a primitive element of Fpn and β is a primitive element of Fpm ;

• For two positive integers k|l, the trace function Trlk(x) from Fpl to Fpk is defined

by Trlk(x) =
∑ l

k
−1

i=0 x
pik ;

• For a positive integer s =
∑m−1

i=0 sip
i where 0 ≤ si < p, let M(s) =

∏m−1
i=0 (si + 1)

and w(s) =
∑k−1

i=o si, where w(s) is called the p-adic weight of s;

• For a p-ary periodic sequence u, its linear complexity, denoted by LC(u), is the

length of the shortest linear feedback shift register (LFSR) that can generate it.

• For a complex number c, c denotes the conjugate number of c.
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2.2 Sequence and Sequence Set

Let u = (u0, u1, · · · , uN−1) be a sequence of period N over Fp. Let Nx = |{i : ui =

x, 0 ≤ i ≤ N − 1}|, then u is called balanced if maxx∈Fp Nx −minx∈Fp Nx ≤ 1.

The cross-correlation function of two p-ary periodic sequences u = (u0, u1, · · · , uN−1)
and v = (v0, v1, · · · , vN−1) is defined by

Cu,v(τ) =
N−1∑
i=0

ωui−vi+τ , τ ∈ ZN .

If the sequences u and v are identical, then it is called the autocorrelation function

of sequence u, and we denote it by Cu(τ).

Let u be a p-ary sequence with period N such that N |pm − 1. Let f(x) =∑pm−1
i=1 cix

i ∈ Fpm [x] be a function from Fpm to Fp. Then f(x) is called the polynomial

representation of the sequence u, if f(x) satisfies f(βi) = ui for 0 ≤ i < pm − 1.

The following results link the linear complexity of the sequence with its polynomial

representation.

Lemma 1. [10, Theorem 6.3] Let u be a sequence with period N |pm − 1 and f(x) =∑pm−1
i=1 cix

i be its polynomial representation. Then LC(u) = w(f), where w(f) = |{ci 6=
0|1 ≤ i ≤ pm − 1}|.

Lemma 2. [10, Theorem 3.17] Let f(x) =
∑pm−1

i=0 cix
i ∈ Fpm [x] be a function from

Fpm to Fp. Let g(x) = f(Trnm(x)). Then w(g) =
∑

ci 6=0M(i), where w(g) is the number

of the nonzero coefficients of g(x).

Let V be a sequence set containing K sequences with period N . Let θV denote

the upper bound of the maximum out-of-phase autocorrelation and cross-correlation

magnitude. Then the set V is called an (N,K, θV ) sequence set. Usually, we say that

V is a low correlation sequence set if θV ≤ c
√
N where c is a small constant.

The following lower bound of the maximum correlation magnitude of a sequence

set is due to Welch[12].

Lemma 3. Let V be a sequence set containing K sequences with period N . Let θV =

max{|Cu,v(τ)| : u, v ∈ V, 0 ≤ τ ≤ N − 1, and τ 6= 0 if u = v}. Then

θ2V
N
≥ N(K − 1)

NK − 1
.

For a low correlation sequence set V with parameters (N,K, θV ). If K ≥
√
N and

limN→∞
θV√
N

= 1, then we call that the set V is asymptotically optimal with respect

to Welch’s bound.
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2.3 Two-Tuple Balance Function

Let f(x) be a function from Fpn to Fpm with f(0) = 0. Let Tf (λ) be a set defined

as follows

Tf (λ) = {(f(x), f(λx))|x ∈ Fpn}, for λ ∈ Fpn .

f(x) is a 2-tuple balance function if it satisfies the following two conditions:

(1) For λ 6∈ Fpm , any pair (u, v) ∈ F2
pm occurs once in Tf (λ).

(2) For 1 6= λ ∈ F∗pm , there exists some v 6= 1 such that (u, vu) occurs pm times in

Tf (λ) for every u ∈ Fpm .

Zierler had the following result on the two-tuple balance function.

Lemma 4. [10, Theorem 5.7] Trnm(x) is a two-tuple balance function from Fpn to Fpm.

2.4 Similar-Bent Function

Let f(x) and g(x) be two functions from Fpk to Fp. Then their correlation function

is defined by

Cf,g(λ) =
∑
x∈F

pk

ωf(x)−g(λx), λ ∈ Fpk .

We call that f(x) is an orthogonal function if Cf,f (λ) = 0 holds for all λ 6= 1.

For a function f(x) from Fpk to Fp, its walsh transformation is a complex-valued

function over Fpk , which is defined by

Wf (λ) =
∑
x∈F

pk

ωTr
k
1 (λx)−f(x), λ ∈ Fpk .

The linearity of f is maxλ∈Fpm |Wf (λ)|, denoted by LS(f). We call f(x) a bent function

if LS(f) =
√
pk. If p = 2, we know that the walsh transformation of f(x) is an

integer-valued function. So there doesn’t exist bent function when p = 2 and k is an

odd integer. And at this time we call f(x) a near bent function if Wf (λ) ∈ {0,±2
k+1
2 }

holds for all λ ∈ Fpk .

Definition 1. Let f(x) be a function from Fpk to Fp. If there exists a constant c

which is independent of k such that LS(f) ≤
√
cpk, then we call f(x) a similar-bent

function.

It is clear that bent functions and near bent functions are subclasses of similar-

bent functions. And the well known Gold function, Kasami function, Welch function
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and Niho function etc.[13] are examples of orthogonal similar-bent functions. Their

definitions are given in the follows. We can see more results about the constructions

of bent functions and near bent functions in the papers [14-15].

Let k be an odd integer and f(x) = Trk1(xd) be a function from F2k to F2. If

d = 2i + 1 with gcd(i, k) = 1 and 1 ≤ i ≤ k−1
2

, then we call that f(x) is Gold function.

If d = 22i−2i+1 with gcd(i, k) = 1 and 1 ≤ i ≤ k−1
2

, then we call that f(x) is Kasami

function. If d = 2
k−1
2 + 3, then we call that f(x) is Welch function. If d = 2i + 2

i
2 − 1

with i = k−1
2

be an even integer or d = 2i + 2
3i+1
2 − 1 with i = k−1

2
be an odd integer,

then we call that f(x) is Niho function.

Another interesting class of similar-bent functions are the Dobbertin’s iterative

functions, which is a class of balanced Boolean functions with high nonlinearity pre-

sented in 1995[16].

Dobbertin’s Construction: Let k be an odd integer and l = 2t · k ≥ 4 such

that t ≥ 1. The Boolean function f(x, y) over Fl2 is defined by

f(x, y) =

 f0(x, y), if x 6= 0;

g1(y), if x = 0,
(1)

where x, y ∈ F
l
2
2 , f0(x, y) is a l-variable normal bent function and g1(y) is generated

by an iterative procedure as

gi(x, y) =

 fi+1(x, y), if x 6= 0;

gi+1(y), if x = 0,
(2)

where x, y ∈ F
l

2i+1

2 The process stops at i = t− 1. And gt(y) be a balanced k-variable

Boolean function with LS(gt) ≤ 2
k+1
2 .

3 Some Lemmas

In this section, we give some lemmas which are important for our constructions.

Lemma 5. Let f(x) be a function from Fpm to Fp. Let h1(x) = Trn1 (γ1x)+f(Trnm(x)),

h2(x) = Trn1 (γ2x) + f(Trnm(x)) , where γ1 ∈ Fpn \ Fpm, ε ∈ Fpm, and γ2 = γ1 +

ε. Then the two functions h1(x) and h2(x) have the following correlation magnitude

distribution:
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|Ch1(x),h2(x)(λ)| =



pn, when λ = 1 and ε = 0;

0, when λ = 1 and ε 6= 0;

0, when 1 6= λ ∈ F∗pm ;

≤ LS(f)2, when λ ∈ Fpn \ Fpm .

(3)

Proof. It is trivial to verify the first identity. In the following, we assume that ε 6= 0

or λ 6= 1.

When λ ∈ F∗pm , we have

h2(λx) = Trm1 (λTrnm(γ1x) + λεTrnm(x)) + f(λTrnm(x)).

Since γ1 6∈ Fpm and Trnm(x) is a two-tuple balance function, we get

Ch1(x),h2(x)(λ) =
∑
x∈Fpn

ωh1(x)−h2(λx)

=
∑

u,v∈Fpm

ωTr
m
1 (u)+f(v)−Trm1 (λu+λεv)−f(λv)

=
∑
v∈Fpm

ω−Tr
m
1 (λεv)+f(v)−f(λv)

∑
u∈Fpm

ωTr
m
1 ((1−λ)u)

= 0.

When λ 6∈ Fpm , then λγ2 and λ can be expressed as λγ2 = b00γ1 + b01, λ =

b10γ1 + b11, where bij(0 ≤ i, j ≤ 1) ∈ Fpm and b10 6= 0. So we have

h2(λx) = Trm1 (b00Tr
n
m(γ1x) + b01Tr

n
m(x)) + f(b10Tr

n
m(γ1x) + b11Tr

n
m(x)).

Hence

Ch1(x),h2(x)(λ) =
∑
x∈Fpn

ωh1(x)−h2(λx)

=
∑

u,v∈Fpm

ωTr
m
1 (u)+f(v)−Trm1 (b00u+b01v)−f(b10u+b11v)

=
∑
v∈Fpm

ω−Tr
m
1 (b01v)+f(v)

∑
u∈Fpm

ω−f(b10u+b11v)+Tr
m
1 ((1−b00)u)

=
∑
v∈Fpm

ω−Tr
m
1 (b01v)+f(v)

∑
w∈Fpm

ω−f(w)+Tr
m
1 ((1−b00)b−1

10 w−(1−b00)b
−1
10 b11v)

=
∑
v∈Fpm

ω−Tr
m
1 ((b01+(1−b00)b−1

10 b11)v)+f(v)
∑
w∈Fpm

ω−f(w)+Tr
m
1 ((1−b00)b−1

10 w)

= Wf (b01 + (1− b00)b−110 b11)Wf ((1− b00)b−110 ).

The result thus follows. �
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Lemma 6. Let f(x) be an orthogonal function from Fpm to Fp, h1(x) = Trn1 (γ1x) +

f(Trnm(x)) and let h2(x) = Trn1 (γ2x) + f(Trnm(x)) , where γ1 ∈ Fpn \ Fpm, ε ∈ Fpm
and γ2 = εγ1. Then the two functions h1(x) and h2(x) have the following correlation

magnitude distribution:

|Ch1(x),h2(x)(λ)| =



pn, when λ = 1 and ε = 1;

0, when λ = 1 and ε 6= 1;

0, when 1 6= λ ∈ F∗pm ;

≤ LS(f)2, whenλ ∈ Fpn \ Fpm .

(4)

Proof. This proof is similar to the proof of Lemma 5. We also assume that ε 6= 1 or

λ 6= 1 in the following.

When λ ∈ F∗pm , we have

h2(λx) = Trm1 (λεTrnm(γ1x)) + f(λTrnm(x)).

Note that f(x) is orthogonal, thus

Ch1(x),h2(x)(λ) =
∑
x∈Fpn

ωh1(x)−h2(λx)

=
∑

u,v∈Fpm

ωTr
m
1 (u)+f(v)−Trm1 (λεu)−f(λv)

=
∑
v∈Fpm

ωf(v)−f(λv)
∑
u∈Fpm

ωTr
m
1 ((1−λε)u)

= 0.

When λ 6∈ Fpm , then λγ2 and λ can be expressed as λγ2 = b00γ1 + b01, λ =

b10γ1 + b11, where bij(0 ≤ i, j ≤ 1) ∈ Fpm and b10 6= 0. So we have

h2(λx) = Trm1 (b00Tr
n
m(γ1x) + b01Tr

n
m(x)) + f(b10Tr

n
m(γ1x) + b11Tr

n
m(x)).

Hence

Ch1(x),h2(x)(λ) =
∑
x∈Fpn

ωh1(x)−h2(λx)

= Wf (b01 + (1− b00)b−110 b11)Wf ((1− b00)b−110 ).

We finish the proof. �
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4 Construction Based On Similar-Bent Function

Construction I: Let f(x) be a similar-bent function from Fpm to Fp and LS(f) ≤
√
cpm. For any given γ ∈ Fpn \Fpm , then we can construct a sequence set V I

f,γ = {sε|ε ∈
Fpm}, where the sequence sε = (sε,0, sε,1, · · · ) is defined by

sε,i = Trn1 ((γ + ε)αi) + f(Trnm(αi)). (5)

Theorem 1. Let V I
f,γ be the sequence set defined in Construction I. Then V I

f,γ is a

(pn − 1, pm, cpm + 1) low correlation sequence set.

Proof. Let hε(x) = Trn1 ((γ+ε)x)+f(Trnm(x)) for ε ∈ Fpm . Then hε(x) is the polynomial

representation of the sequence sε. For any two sequence sε1 , sε1 ∈ V I
f,γ, we have that

Csε1 ,sε2 (τ) = Chε1 (x),hε2 (x)(α
τ )− 1.

Then ones can get the following results from Lemma 5.

(1) If ε1 6= ε2, then |Cε1,ε2(τ)| ≤ LS(f)2 + 1 ≤ cpm + 1 holds for all 0 ≤ τ < pn − 1;

(2) If ε1 = ε2, then |Cε1,ε2(τ)| ≤ LS(f)2 + 1 ≤ cpm + 1 holds for all 0 < τ < pn − 1.

The theorem then follows. �

Theorem 2. Let V I
f,γ be the sequence set defined in Construction I. Then all the

sequences in the set V I
f,γ are balanced.

Proof. Let hε(x) be the function as defined in the proof of Theorem 1. We only need

to prove that the function hε(x) is balanced for any given ε ∈ Fpm . Note that Trnm(x)

is a two-tuple-balance function, we have

∑
x∈Fpn

ωhε(x) =
∑

u,v∈Fpm

ωTr
m
1 (u)+f(v) = 0 =

p−1∑
i=0

Niω
i,

whereNi denotes #{x ∈ Fpn|hε(x) = i}. Since {1, ω1, · · · , ωp−2} are linear independent

in Z[ω], we have N0 = N1 = · · · = Np−1. The proof is now finished. �

Theorem 3. Let f(x) =
∑pm−1

i=1 cix
i be a similar-bent function from Fpm to Fp, and

V I
f,γ be the sequence set defined in Construction I. Then all of the sequences in the

set V I
f,γ have the same linear complexity n+

∑
w(i)>1,ci 6=0M(i), where w(i) denotes the

p-adic weight of i.
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Proof. For any given sequence sε ∈ V I
f,γ, let hε(x) = Trn1 ((γ + ε)x) + f(Trnm(x)) be

its polynomial representation. According to Lemma 1, we only need to prove that

w(hε(x)) = n+
∑

w(i)>1,ci 6=0M(i).

Let f1(x) =
∑m−1

j=0 cpjx
pj and f2(x) =

∑
w(i)>1 cix

i. Then we have

hε(x) = Trn1 ((γ + ε)x) + f(Trnm(x))

= Trn1 ((γ + ε)x) + f1(Tr
n
m(x)) + f2(Tr

n
m(x))

=
m−1∑
j=0

[
Trnm((γ + ε+ cp

m−j

pj
)x)
]pj

+ f2(Tr
n
m(x)).

Note that Lemma 2 and γ + ε+ cp
m−j

pj
6= 0 holds for 0 ≤ j ≤ m− 1, thus

w(hε(x)) =
m−1∑
j=0

M(pj) + w(f2(x))

= 2m+
∑

w(i)>1,ci 6=0

M(i)

= n+
∑

w(i)>1,ci 6=0

M(i).

We are done. �

Olsen, Scholtz, and Welch[4] constructed a family of binary sequences called bent

sequences. Subsequently, Kumar, Scholtz and Welch[5] generalized this construction

to p-ary sequence. Their results are introduced in the following theorem.

Theorem 4. Let n = 2m and α be a primitive element of Fpn. Let (η1, η2, · · · , ηm)

be a basis of Fpm over Fp and γ ∈ Fpn \ Fpm. Let f(x1, x2, · · · , xm) be a bent function

from Fmp to Fp. Let ei = (ei,1, · · · , ei,m) run through over all the elements of Fmp as i

varies between 1 and pm. Then a family of binary sequences is defined by

V = {sei(t)|1 ≤ i ≤ pm},

where sei(t) = f(trn1 (η1α
t), · · · , trn1 (ηmα

t)) +
∑m

j=1 ei,jtr
n
1 (ηjα

t) + trn1 (γαt). The size of

the family is pm and the bound of the correlation magnitude is pm + 1.

There are few reports about the linear complexity of bent sequences. Kumar and

Scholtz[17] researched the linear complexity of the binary bent sequences. They have

the following results.
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Theorem 5. Let k > 1 be a positive integer, n = 2m = 4k and 2 < d ≤ k. Let

f(x1, x2, · · · , xm) be a bent function from Fm2 to F2 with algebraic degree d. Let u be a

bent sequence constructed by using f(x). Then the linear complexity of u satisfies the

following equation

LC(u) ≤
d−1∑
i=1

(
n

i

)
+

(
m

d

)
2d −

b(d−1)/2c∑
i=1

(
m

i

)
.

And there exist bent sequences constructed by using bent function of algebraic degree

d, whose linear complexity can achieve the lower bound

LC(u) ≥
(
m

d

)
2d +

1

2

d−1∑
i=2

(
m

i

)
2i + n.

The above bent function can also be regarded as defined over Fpm because Fpm
and Fmp are isomorphic. In Construction I, if f is a binary bent(p-ary bent) function,

then we get binary bent (p-ary bent) sequences. Thus our construction includes bent

sequences as subclasses. But if the function f in Construction I is not a bent function,

we may get new sequence sets. The following is an example.

Example 1. Let k > 1 be an odd integer and m = 2k. Let f(x) be the Dobbertin’s

iterative function[16] from F2m to F2. Let V I
f,γ be the sequence set defined in Construc-

tion I. According to Theorem 9 in [16], we can get that maxλ∈F2m
|Wf (λ)| ≤ 2k + 2

k+1
2 .

Then V I
f,γ is a (2n − 1, 2m, 2

n
2 + 2

3n
8
+ 3

2 + 2
n
4
+1) low correlation sequence set. And V I

f,γ

is asymptotically optimal with respect to Welch’s bound.

5 Construction Based On Orthogonal Similar-Bent Function

Construction II: Let f(x) be an orthogonal similar-bent function from Fpm to

Fp and LS(f) ≤
√
cpm. For any given γ ∈ Fpn \Fpm , then we can construct a sequence

set V II
f,γ = {sε|ε ∈ Fpm}, where the sequence sε = (sε,0, sε,1, · · · ) is defined by

sε,i = Trn1 (γεαi) + f(Trnm(αi)). (6)

The following theorem comes from Lemma 6.

Theorem 6. Let V II
f,γ be the sequence set defined in Construction II. Then V II

f,γ is a

(pn − 1, pm, cpm + 1) low correlation sequence set.

Theorem 7. Let V II
f,γ be the sequence set defined in Construction II. Then all the

sequences in the set V II
f,γ are balanceable.
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Proof. Let hε(x) = Trn1 (γεx) + f(Trnm(x)) for ε ∈ Fpm . Then hε(x) is the polynomial

representation of the sequence sε. Note that f(x) is orthogonal, so we have∑
x∈Fpn

ωh0(x) =
∑
x∈Fpn

ωf(Tr
n
m(x)) =

∑
v∈Fpm

pmωf(v) = 0.

Then s0 is balanceable. The proof for the other sequences is similar to the proof

Theorem 2. �

Theorem 8. Let f(x) =
∑pm−1

i=1 cix
i be an orthogonal similar-bent function from Fpm

to Fp, and V II
f,γ be the sequence set defined in Construction II. Except for s0, all the

other sequences in the set V II
f,γ have the same linear complexity and their linear com-

plexity is n +
∑

w(i)>1,ci 6=0M(i), where w(i) denotes the p-adic weight of i. And the

linear complexity of s0 is
∑

ci 6=0M(i).

Proof. This proof is similar to the proof of Theorem 3. We omit it here. �

As we know, Gold function, Kasami function, Welch function and Niho function

etc. are all orthogonal similar-bent functions. We can use these functions to construct

sequence sets and get their corresponding parameters. However, the sequences con-

structed based on Kasami function may have better linear complexity, as the following

example shows.

Example 2. Let m be an odd integer, f(x) = Trm1 (axd) be the Kasami function from

F2m to F2, where d = 22i − 2i + 1, gcd(i,m) = 1. Then LS(f) = 2
m+1

2 . Let V II
f,γ be

the sequence set defined in Construction II. Then V II
f,γ is a (2n − 1, 2m, 2m+1 + 1) low

correlation sequence set. The linear complexity of s0 is m2i+1, and other sequences’

linear complexity is n+m2i+1. Especially, if we let i = m−1
2

, then the linear complexity

of these sequences can attain n+ n2
n−2
4 except for s0.

Remark 1. We can easily verify that the sequence set V I
f,γ is different from V II

f,γ con-

structed by the same similar-bent function.

6 Conclusion

Based on similar-bent functions and orthogonal similar-bent functions, we give

two constructions of low correlation sequence set. And all the new constructed se-

quences are balanceable. In the first construction, we can get the bent sequences if

we choose bent function as the similar-bent function. But we can get new sequence
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sets if we choose other similar-bent functions. A formula for computing the linear

complexity of these sequences is given. If a suitable similar-bent function is cho-

sen, the new sequences can have a high linear complexity. As examples, we give two

new sequence sets. One is constructed by Dobbertin’s iterative function, which is a

(2n−1, 2m, 2
n
2 +2

3n
8
+ 3

2 +2
n
4
+1) low correlation sequence set and is asymptotically opti-

mal with respect to Welch’s bound. The other one is constructed by Kasami function,

which is a (2n − 1, 2m, 2
n
2
+1 + 1) low correlation sequence set.
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