
Approaches for the performance increasing of
software implementation of integer multiplication

in prime fields

Vladislav Kovtun
Chair of Information Security
National Aviation University

Kiev, Ukraine
vladislav.kovtun@nrjetix.com

Andrew Okhrimenko
Chair of Information Security
National Aviation University

Kiev, Ukraine
andrew.okhrimenko@gmail.com

Authors have proposed the approach to increase performance of software implementation of finite field
multiplication algorithm, for 32-bit and 64-bit platforms. The approach is based on delayed carry mechanism of
significant bit in sum accumulating. This allows to avoid the requirement of taking into account the significant bit carry
at the each iteration of the sum accumulation loop. The delayed carry mechanism reduces the total number of additions
and gives the opportunity to apply the modern parallelization technologies.

Keywords: integer multiplication, software implementation, elliptic curve cryptosystem, cryptography, finite
field, parallelism.

I. INTRODUCTION
The cryptographic transformations with public key has passed a long way since their

introduction by Diffie and Hellman [1] to modern cryptosystems on algebraic curves, but the only
things remains unchanged - operations in the number field ()pGF . The integer multiplication takes the
special place in number field operations, see fig. 1. Among the important problems of future
development public key cryptosystems is the increasing of performance of software and hardware
implementation. One of the approaches to the improvement cryptosystems performance is an
increasing of performance of finite field arithmetics to be exact the multiplication.

Encryption/ decryption Digital signature
generation and verification Key exchangeCryptographic transformations

Scalar multiplication of elliptic curve point

Point addition Point doubling

mov, mul, shr, shl, add, sub ...

Addition Substruction Squaring Inversion

Arithmetic in elliptic curve
point group

Arithmetic in finite field

CPU commands

Multiplication

Fig. 1. Operation hierarchy of elliptic curve cryptosystem
It should be noted that the problem of the speed-up of arithmetic operation in number fields was

deeply investigated by many scientists that is testified by significant number of publications in this
area [2-8]. Except the arithmetic operations algorithms, are of interest the approaches to the
architecture of the software libraries [9-18] with field operations, which allows decreasing
significantly the overheads on fields operations in whole.

Publication analysis [2-7], allows to extract the most effective multiplication algorithms Comba
[2, 3] and Karatsuba [3, 8, 10]. However, the Comba algorithm shows better results in performance
tests (benchmark) of software implementations on modern platforms [3-9]. In article [8] describes the
Karatsuba-Comba multiplication (KCM) algorithm for the RISC processors. The KCM algorithm is
an interesting symbiosis of Comba and Karatsuba algorithms, where Karatsuba algorithm is used for
the machine word multiplication only. As a result, the main goal of this article is a suggesting

approaches to increase the effectiveness of software implementation of finite field ()pGF number
multiplication (squaring) via a well-known Comba algorithm [2, 3, 8]. Among other things, such kind
of investigations is evoked by the need to confirm the performance of software implementations of
well-known algorithms with continuous development of modern 32-bit and 64-bit platforms. It is
significant that during last ten years the direction of the multi-core processors and multiprocessor
systems has been developed [8, 9].

II. MULTIPLICATION ALGORITHM-PROTOTYPE DESCRIPTION AND ITS MODIFICATION
The Comba algorithm [2] based on a main loops p. 2, p. 3 and nested loops p. 2.1, p.3.1. In the low
level of hierarchy, in loops p. 2.1and p. 3.1 computes 64-bit integer product ()()64uv which splits on
two 32-bit integer ()32u and ()32v .

The sum accumulation occurs in 32-bit temporary variables 0r , 1r and 2r , on each iterations p. 2.1.2,
p. 2.1.3.

The final result assignment and temporary variables 0r , 1r and 2r changing, occurs on each
iteration on p. 2.2.

Algorithm. Comba’s integer multiplication

Input: integers ()pba GF∈, , 32=w , an w2
log= .

Output: bac ⋅=

1. () 032
0 ←r , () 032

1 ←r , () 032
2 ←r .

2. For 0←k , 12 −< nk , ++k do
2.1. For 0←i , ni < , ++i do
2.1.1. For 0←j , nj < , ++j

2.1.1.1. If ()kji ==+

2.1.1.1.1. ()() () ()323264
ji bauv ⋅← .

2.1.1.1.2. () () ()3232
0

32
0 vrr +← , () () () carryurr ++← 3232

1
32

1 , 0←carry .

2.1.1.1.3. () () carryrr +← 32
2

32
2 , 0←carry .

2.2. () ()32
0

32 rck ← , () ()32
1

32
0 rr ← , () ()32

2
32

1 rr ← , () 032
2 ←r .

3. () ()32
0

32
12 rc n ←− .

4. Return ()c .

Consider the main drawbacks of Comba’s algorithm:

• In nested loops p. 2.1 and p. 3.1 there is a sum accumulation with carry in 32-bit temporary
variables 0r , 1r and 2r , p. 2.1.2, p. 2.1.3 and p. 3.1.2, p. 3.1.3:
2.1.2. () () ()3232

0
32

0 vrr +← , () () () carryurr ++← 3232
1

32
1 , 0←carry .

2.1.3. () () carryrr +← 32
2

32
2 , 0←carry .

In this case there are 3 additions of 32-bit integer (includes 2 additions with carry), 3
assignments 32-bit variables 0r , 1r и 2r . The sum accumulation with carry takes place in
each iteration of loop p. 2.1.

• In nested loops p. 2.1 and p. 3.1, for the sum accumulation, for 32-bit variables 0r , 1r and

2r the transfers are considered, using the assembler code for the implementation of addition
operation with carry. That in turn doesn’t allow to pair and parallelize [11], as a result we
observe an ineffective processor resource using.

• Loops p. 2 and p. 3 cannot be effectively parallelized due to high internal linkage code
because of carry consideration.

Algorithm does not take into account a possibility of using modern processors support of 64-bit
operations.
It is easy to obtain a computational complexity for the Comba’s algorithm:

()()
() () =−+++

−++= −++

32323232

2
11

2
132

124631

14

assignassignaddmul

nn
assign

Comba
mul

InIII

nnII

()
() 32

323232232

124

6314

assign

assignaddmulassign

In

IIInI

−+

+++=

where 32
assignI - an assignment operation of 32-bit integers, 32

addI - an addition operation of 32-bit

integers, 32
mulI - a multiplication operation of 32-bit integer.

Fig. 2 illustrates the drawbacks of algorithm for 3=n and its impact on computational
complexity of algorithm.

In upper part of figure there are two big numbers a and b represented by three 32-bit integers
()012 ,, aaaa = and ()012 ,, bbbb = , where ia and ib have a machine word bit size. Algorithm

iterations are presented under the solidus. It should be noted that algorithm Comba implements long
multiplication technique, known from school, with small difference: the multiplier part ia ni ,1=

multiply on all parts of other multiplier jb nj ,1= , in case of fulfillment the condition ()kji ==+
(in columns).

Fig. 2. Graphic interpretation of Comba algorithm

Such approach does not lead to strings addition (multiplication of intermediate results) as a long
multiplication, but to columns addition. That allows to find a part of resulting product ic (under the
solidus). As shown in the fig. 2, each multiplication is accompanied by the sum accumulation with a
carry.

The computational complexity for 3=n , will be:
()++++= 32323232 63194 assignaddmulassign

Comba
mul IIIII 32323232 2797820 addmulassignassign IIII ++=+ .

Now let’s consider the approaches suggested by the authors addressed to eliminate the
drawbacks:

• The modern 32-bit processors effectively implement the addition operations of 32-bit and
64-bit integers, using 64-bit or 32-bit commands. That allows to implement a carry
accumulation by addition of 32-bit variables in 64-bit variable-accumulator, that save the
carry accounting and correction requirements after the addition with variables 0r , 1r and 2r .
An accumulated carry will be accounted in the final iterations of the loops in p.2 and p.3.

• Modern processors have multi-core architecture; that allows them to execute several
instruction flows at the same time. This property brings to parallel execute of iterations in
loop p.2 and p.3 by the OpenMP library [11-13].

Following notations are to be introdused: through ()64t will symbolized 64-bit variables, and
through ()32t - 32-bit variables; operation ()

()()64
32hi t extracts 32 the most significant bits in 64-bit

variable, and operation ()
()()64

32low t extracts 32 the least significant bits in 64-bit variable.

Algorithm. Modified Comba’s integer multiplication
Input: целое ()pba GF∈, , 32=w , an w2

log= , 12 −= nnk .
Output: bac ⋅=
1. () 064

0 ←r , () 064
1 ←r , () 064

2 ←r .
2. For 0←k , nk < , ++k do
2.1. For 0←i , kj ← , ki ≤ , ++i , −−j do
2.1.1. ()() () 323264

ji bauv ⋅← .

2.1.2. () () ()3264
0

64
0 vrr +← , () () ()3264

1
64

1 urr +← .
2.2. () ()

()
()()64

032
64

1
64

1 hi rrr +← , () ()
()

()()64
132

64
2

64
2 hi rrr +← .

2.3. ()
()

()()32
032

32 low rck ← , ()
()

()()32
132

64
0 low rr ← , ()

()
()()32

232
64

1 low rr ← , () 064
2 ←r .

3. For nk ← , 1←l , nkk < , ++k , ++l do
3.1. For li ← , lkj −← , ni < , ++i , −−j do
3.1.1. ()() () 323264

ji bauv ⋅← .

3.1.2. () () ()3264
0

64
0 vrr +← , () () ()3264

1
64

1 urr +← .
3.2. () ()

()
()()64

032
64

1
64

1 hi rrr +← , () ()
()

()()64
132

64
2

64
2 hi rrr +← .

3.3. ()
()

()()32
032

32 low rck ← , ()
()

()()32
132

64
0 low rr ← , ()

()
()()32

232
64

1 low rr ← , () 064
2 ←r .

4. ()
()

()()32
032

32 low rcnk ← .
5. Return ()c .

It is not difficult to get a computational complexity of modified Comba algorithm:

()()
()
()() =++−+

++

−++= −++

326432|64

6432|6432

2
11

2
164.

11212

221

14

assignassignadd

assignaddmul

nn
assign

CombaMod
mul

IIIn

III

nnII

()
()()326432|64

6432|6432264

11212

2214

assignassignadd

assignaddmulassign

IIIn

IIInI

++−+

+++=
,

where 32
assignI - an assignment operation of 32-bit integers, 64

assignI - an assignment operations of

64-bit integers, 32
addI - an addition operation of 32-bit integers, 32|64

addI - an addition operation of 32-bit
and 64-bit integers, 32

mulI - a multiplication of 32-bit integers.
Fig. 3, 4 illustrate the algorithm 2 for 3=n ; computational complexity for this case will be:

3232|643264. 528927 assignaddmulassign
CombaMod

mul IIIII +++= .

Fig. 3. Graphic interpretation of loop 2 in Modified Comba algorithm

c3c4c5

Hi(a2*b1) Lo(a2*b1)

Hi(a1*b2) Lo(a1*b2)

Hi(a2*b2) Lo(a2*b2)

r0r1

r2

r0r1

r0r1

r2

c

Fig. 4. Graphic interpretation of loop 3 in Modified Comba algorithm

Comparison with the other algorithms. For the relevant comparison of attained results, the
authors reviewed well-known software math libraries [14-24] for public key cryptography.
According to the review results the software library GMP was chosen as an etalon [14]. It should be
noted that GMP uses Karatsuba multiplication algorithm for the integer multiplication [2]. The
comparison of software implementations will be carrying out by comparing average time execution
of software implementation of Comba, modified Comba algorithms and implemented in GMP library
for one million iterations.

The performance measurement of algorithm software implementation is proposed to be
conducted for the fields from [25], except ()82pGF field. These fields recommended for the usage
in cryptographic application for the different security levels provisioning. In table 1 we will indicate
the brief definition of fields and prime modules.

Fields for which perfmormance measurements are made Table 1

Field Prime modulo
GF(p82) 5000000000000000008503491
GF(p164) 24999999999994130438600999402209463966197516075699
GF(p192) 6277101735386680763835789423 176059013767194773182842284081
GF(p224) 26959946667150639794667015087019630673557916260026308143510066298881

GF(p256) 1157920892103562487626974469494075735300861434152903141955336313088670
97853951

GF(p320) 4271974071841820164790042159200669057836414062331724137933565193825968
686576267080087081984838097

GF(p384) 3940200619639447921227904010014361380507973927046544666794690527962765
939911326356939895 6308152294913554433653942643

GF(p521)
6864797660130609714981900799081393217269435300143305409394463459185543
1833976553942450577463332171975329639963713633211138647686124403803403
72808892707005449

The proposed modified algorithm Comba and its prototype – algorithm Comba have been
implemented in C++, compiled with Microsoft Visual Studio 2010 in Release Win32 configuration
with Maximize Speed parameter and SSE2 instruction support.

The etalon library GMP v4.1.2 compiled with Microsoft Visual Studio .NET but instrumental
application compiled with Microsoft Visual Studio 2010 in Release Win32 configuration with
Maximize Speed parameter and SSE2 instruction support.

Tested by mainstream mobile platform with Intel Core i3 350M CPU and desktop platform with
Intel Pentium Dual Core E5400.

Performance measurement timings for the different algorithms, implementations and CPU are
shown in Table 2.

Running time of multiplication software implementation without modulo reduction Table 2

Field Time, µs
Core i3 Pentium Dual Core

Mod. Comba Comba GMP4.1 Mod. Comba Comba GMP4.1
GF(p82) 0,075 0,120 0,121 0,0687 0,119 0,125
GF(p164) 0,21 0,393 0,4 0,209 0,363 0,407
GF(p192) 0,276 0,393 0,41 0,289 0,363 0,414
GF(p224) 0,343 0,69 0,549 0,364 0,59 0,522
GF(p256) 0,422 0,875 0,638 0,456 0,744 0,648
GF(p320) 0,6973 1,278 0,97 0,686 1,053 0,969
GF(p384) 0,961 1,75 1,38 0,94 1,45 1,36
GF(p521) 1,63 2,8 2,663 1,486 2,41 2,643

As can be seen from the timing in Table 2, the proposed modification of the algorithm Comba
allowed to reach the advantage of 1.5 times above the GMP. Classical implementation of algorithm
Comba appeared to be the slowest, that is confirmed by the theoretical estimation (contains a larger
number of addition and assignment operations). In addition, proposed software implementations of
multiplication algorithms arreared to be more efficient on Dual Pentium CPU with higher frequency
then on Core i3 CPU with several instruction streams. These implementations of multiplication
algorithms do not support parallelization, thus a more powerful multicore CPU Core i3 with 4
instructions processing flows was not able to realize its full potential.
Conclusions. Following the results of the research next conclusions can be drawn:

1. Proposed approach of delayed carry, allows to increase the performance of software
implementation of Comba integer multiplication algorithm by 1.5-2 times and surpass the
performance of the popular math library GMP v4.1.2, average by 1.5 times.

2. Modified multiplication Comba algorithm is more preferred than Karatsuba algorithm [2]
which used in GMP library, because implementation of modified Comba algorithm is faster than
Karastuba [2] implementation in GMP for the modern hardware platform (32 & 64-bit).

3. Delayed carry mechanism allows to apply different parallelization techniques to the modified
Comba algorithm, for example OpenMP [28], Intel Threading Blocks [30], OpenCL [29].

Recently, the microprocessors development is directed at increasing the number of instruction
processing flows. Thus suitable algorithms should be developed for perspective microprocessors
should develop for efficient parallelization implementation by perspective micro.

nVidia company, proposes GPU with more than 256 cores and suitable CUDA Toolkit [27]
which allows to implement valid multithread applications. A great part of attention is pied already to
this direct and this article is another illustration [9]. A further research course will focus on
investigation and effective parallelization of algorithms for arithmetic operations with integers.

References
[1] Diffie W., Hellman M. E., “New directions in cryptography,” IEEE Transactions on Information Theory, vol. IT-22,

pp. 644–654, 1976.
[2] Comba P. G. Exponentiation cryptosystems on the IBM PC // IBM Systems Journal. –Vol. 29(4). -1990. -pp. 526–

538.
[3] Brown M., Hankerson D., Lopez J., Menezes A. Software implementation of the NIST elliptic curves over prime

fields // Research Report CORR 2000–55. Department of Combinatorics and Optimization, University of Waterloo.
–Canada: Waterloo, Ontario, 2000. –21p.

[4] Hong S-M., Oh S-Y., Yoon H. New Modular Multiplication algorithms for fast modular exponeniation // Advances
in Cryptology-Proceedings of Eurocrypt ’96. –Springer-Verlag. -1996. –pp.166-177.

[5] Avanzi R. M. Aspects of hyperelliptic curves over large prime fields in software implementations // Cryptology
ePrint Archive. –Report 2003/253. –2003. –23p. Available at: http://eprint.iacr.org

[6] Paar C. Implementation options for finite filed arithmetic for elliptic curve cryptosystems // Worchester Polytechnic
Institute. –ECC’99. –1999. –31p. Available at: http://www.ece.wpi.edu/research/crypto.html

[7] Gaubatz G. Versatile Montgomery multiplier architectures. Master thesis: electrical and computer engineering. –
2002. –Worcester polytechnic institute. –101p.

[8] Johann Großschadl, Roberto M. Avanzi, Erkay Sava, Stefan Tillich. Energy-Efficient Software Implementation of
Long Integer Modular Arithmetic // Advances in Cryptology-Prociding in CHES’2005. –Springer-
Verlag. -2005. -LNCS 3659. -pp.75-90.

[9] Giorgi P. Izard T, Tisserand A. Comparison of Modular Arithmetic Algorithms on GPUs. URL: http://hal-
lirmm.ccsd.cnrs.fr/lirmm-00424288/fr/

[10] Weimerskirch A., Paar C. Generalizations of the Karatsuba Algorithm for Efficient Implementations. // Cryptology
ePrint Archive. –Report 2006/224. –2006. –17p. Available at: http://eprint.iacr.org

[11] Intel® 64 and IA-32 Architectures Optimization Reference Manual. Order Number: 248966-025. Available at:
http://intel.com

[12] The OpenMP API Specification for Parallel Programming. Available at: http://openmp.org
[13] OpenMP in Visual C++. Available at: http:// http://msdn.microsoft.com/en-us/library/tt15eb9t.aspx
[14] The GNU Multiply Precision Library (GMP). URL: http://gmplib.org
[15] LiDIA. URL: https://www.cdc.informatik.tu-darmstadt.de/en/cdc
[16] Multiprecision Unsigned Number Template Library (MUNTL). URL: http://mktmk.narod.ru/eng/muntl/muntl.htm
[17] TinyECC: A Configurable Library for Elliptic Curve Cryptography in Wireless Sensor Networks. URL:

http://discovery.csc.ncsu.edu/software/TinyECC
[18] Galois Field Arithmetic Library. URL: http://www.partow.net/projects/galois/
[19] MPFQ: Fast Finite Fields Library. URL: http://mpfq.gforge.inria.fr/
[20] BBNUM. URL: http://www.iw-net.org/index.php?title=Bbnum_library

[21] FLINT: Fast Library for Number Theory. URL: http://www.flintlib.org
[22] Multiprecision Integer and Rational Arithmetic C/C++ Library (MIRACL). URL: http://indigo.ie/~mscott
[23] LibTom Projects: LibTomMath, TomsFastMath. URL: http://libtom.org
[24] Abusharekh A., Gaj K. Comparative Analysis of Software Libraries for Public Key Cryptography // Software

Performance Enhancement for Encryption and Decryption, SPEED’2007. June 11-12, 2007.
[25] Giorgi P., Imbert L., Izard T. Multipartite Modular Multiplication. Preprint. URL: http://hal.archives-

ouvertes.fr/lirmm-00618437/fr/
[26] National Institute of Standards and Technology, Recommended Elliptic Curves for Federal Government Use,

Appendix to FIPS 186-2, 2000. –43p.
[27] NVIDIA. NVIDIA CUDA Programming Guide 2.0. 2008.
[28] OpenMP. The OpenMP® API specification for parallel programming. Available at: http://openmp.org
[29] OpenCL - The open standard for parallel programming of heterogeneous systems. Available at:

http://www.khronos.org/opencl
[30] Intel Threading Blocks. Available at: http://software.intel.com/en-us/articles/intel-tbb

