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Abstract. A protocol has everlasting security if it is secure against adversaries
that are computationally unlimited after the protocol execution. This models the
fact that we cannot predict which cryptographic schemes will be broken, say, several
decades after the protocol execution. In classical cryptography, everlasting security
is difficult to achieve: even using trusted setup like common reference strings or
signature cards, many tasks such as secure communication and oblivious transfer
cannot be achieved with everlasting security. An analogous result in the quantum
setting excludes protocols based on common reference strings, but not protocols us-
ing a signature card. We define a variant of the Universal Composability framework,
everlasting quantum-UC, and show that in this model, we can implement secure com-
munication and general multi-party computation using signature cards as trusted
setup.
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1 Introduction

Everlasting security. Computers and algorithms improve over time and so does the
ability of an adversary to break cryptographic complexity assumptions and protocols. It
may be feasible to make a good estimate as to which computational problems are hard
today, and which encryption schemes unbroken. But it is very difficult to make more
than an educated guess as to which cryptographic schemes will be secure, say, ten years
from now. Key length recommendations (e.g., [ECR11, NIS11, BB11]) can only be made
based on the assumption that progress continues at a similar rate as today; unexpected
algorithmic progress and future technologies like quantum computers can render even
the most paranoid choices for the key length obsolete.

This situation is very problematic if we wish to run cryptographic protocols on highly
sensitive data such as medical or financial data or government secrets. Such data often
has to stay confidential for many decades. But an adversary might intercept messages
from a protocol that is secure today, store them, and some decades later, when the
underlying cryptosystems have been broken, decrypt them. For highly sensitive data,
this would not be an acceptable risk.

One way out is to use protocols with unconditional (information-theoretical) security
that are not based on any computational hardness assumptions. For many tasks, however,
unconditionally secure protocols simply do not exist (in particular if we cannot assume
an majority of honest participants). A compromise is the concept of everlasting security.
In a nutshell, a protocol is everlastingly secure if it cannot be broken by an adversary
that becomes computationally unlimited after the protocol execution. This guarantees
that all assumptions need only to hold during the protocol execution, sensitive data is
not threatened by possible future attacks on today’s schemes. We only need to reliably
judge the current state of the art, not future technologies.

Unfortunately, also for everlasting security, we have strong impossibility results. It
is straightforward to see that everlastingly secure public key encryption is not possible,
symmetric encryption needs keys as long as the transmitted messages, and most secure
multi-party computations (MPC) are impossible (e.g., oblivious transfer, see Section 4).

Quantum cryptography. Since the inception of quantum key distribution (QKD) by
Bennett and Brassard [BB84], it has been known that quantum cryptography can achieve
tasks that are impossible in a classical setting: a shared key can be agreed upon between
two parties such that even a computationally unlimited eavesdropper does not learn that
key. Classically, this is easily seen to be impossible. Crépeau and Kilian [CK88] showed
how, given only a commitment scheme, we can securely realize an oblivious transfer
(OT), which in turn, using ideas from Kilian [Kil88] can be used to implement arbitrary
unconditionally secure MPC. Classically, given only a commitment, it is impossible to
construct arbitrary unconditionally secure MPC (or even everlastingly secure ones, see
Section 4). Initial enthusiasm was, however, dampened by strong impossibility results.
Mayers [May97] showed that it is impossible to construct an unconditionally secure
commitment from scratch. Similar impossibilities hold for OT and many other function
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evaluations (Lo [Lo97]). So the goal to get unconditionally secure MPC is not achievable,
even with quantum cryptography.

Also, the usefulness of QKD has been challenged (e.g., by Bernstein [Ber09], who
also raises other concerns than the following). To run a QKD protocol, an authenticated
channel is needed. But how to implement such a channel? If we use a public key
infrastructure for signing messages, we lose unconditional security and thus the main
advantage of QKD. If we use shared key authentication, a key needs to be exchanged
beforehand. (And, if we exchange an authentication key in a personal meeting, why not
just exchange enough key material for one-time pad encryption – storage is cheap.)

Everlasting quantum security. A simple change of focus resolves the problems de-
scribed in the previous paragraph. Instead of seeing the goal of quantum cryptography
in achieving unconditional security, we can see it as achieving everlasting security. For
example, if we run a QKD protocol and authenticate all messages using signatures and a
public key infrastructure, then we do not get an unconditionally secure protocol, but we
do get everlasting security: only the signatures are vulnerable to unlimited adversaries,
but breaking the security of the signatures after the protocol execution does not help
the adversary to recover the key. (Experience and the discussion on composition below
show that one has to be careful: we need to check that signatures and QKD indeed play
together well and compose securely. We answer this positively in Section 5: we achieve
everlastingly secure universally composable security.)

What about secure MPC? Recall that for constructing unconditionally secure MPC
in the quantum setting, the only missing ingredient was a commitment. Once we have a
commitment, unconditionally secure MPC protocols exist [Unr10]. Unconditionally se-
cure commitments do not exist, but everlastingly secure ones do! Consider a statistically
hiding commitment. That is, the binding property may be subject to computational
assumptions, but the hiding property holds with respect to unlimited adversaries. Such
a scheme is in fact everlastingly secure. Being able to break the binding property of
a commitment after the protocol end is of no use – the recipient of the commitment
is not listening any more. And the hiding property, i.e., the secrecy of the committed
data, holds forever. So a statistically hiding commitment is in fact everlastingly secure.
It seems that we have all ingredients for everlastingly secure quantum MPC. The next
paragraph, however, shows that the situation is considerably more subtle.

We stress that the neither the concept of everlasting security nor the idea of combining
it with quantum cryptography is original to this paper. For example, [ABB+07] already
suggested to combine QKD with computational authenticated, albeit without proof or
analysis of composition problems.

Everlasting security and composition – a cautionary tale. As discussed above,
statistically hiding commitments are in fact everlastingly secure, and there are quan-
tum protocols that construct unconditionally secure OT (among other things). Thus,
composing a statistically hiding commitment with such a protocol will give us an ever-
lastingly secure OT in the bare model (i.e., not using any trusted setup). But it turns out
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that this reasoning is wrong! Lo’s impossibility of OT [Lo97] can be easily modified to
show that unconditional OT is impossible, even if we consider only passive (semi-honest)
adversaries. But everlasting security implies unconditional security against passive ad-
versaries: A passive adversary is one that during the protocol follows the protocol (and
thus in particular is computationally bounded) but after the protocol may perform un-
limited computations. Thus Lo’s impossibility excludes the existence of everlastingly
secure OTs.

What happened? The problem is that although statistically hiding commitments are
everlastingly secure on their own, they lose their security when composed. Composition
problems are common in cryptography, but we find this case particularly instructive: The
commitment does not lose its security only when composed with some contrived protocol,
but instead in a natural construction. And not only does a particular construction break
down, we are faced with a general impossibility. And the resulting protocol is insecure
in a strong sense: an unlimited adversary can guess either Alice’s or Bob’s input. (As
opposed to a situation where the“break”consists solely of the non-existence of a required
simulator.)

One may be tempted to suggest that the failure is not related to the everlasting se-
curity, but to the non-composability of the commitments. Damg̊ard and Nielsen [DN02]
present commitment schemes that are universally composable (we elaborate on this no-
tion below, it is a security notion that essentially guarantees “worry-free” composition),
that only need a predistributed common reference strings (CRS), and that are statisti-
cally hiding.1 Yet, when using these commitments to get everlastingly secure OT, we
run into the same problem again: We would get an everlastingly secure OT using a
CRS, but a generalization of Lo’s impossibility shows that no everlastingly secure OT
protocols exist even given a CRS (see Section 4).2

Quantum everlasting universal composability. The preceding paragraph shows
that, in the setting of everlasting security, it is vital to find definitions that guarantee
composability. One salient approach is the Universal Composability (UC) framework by
Canetti [Can01]. In the UC framework, we compare a protocol π against a so-called
ideal functionality F which describes what π should ideally do. (E.g., F could be a
commitment functionality that registers the value Alice commits to, but forwards it to
Bob only when Alice requests an open.) We say π UC-emulates F if for any adversary
Adv (that attacks π) there is a simulator Sim (that“attacks”F) we have that no machine
Z (the environment) can distinguish π running with Adv (real model) from F running
with Sim (ideal model). The intuition behind this is that Adv can perform only attacks
that can be mimicked by Sim. Since F is secure by definition, Adv can perform no
“harmful” attacks. A salient property of the UC framework is that UC secure protocols

1The schemes given in [DN02] were only shown secure classically. But we think it likely that similar
protocols can be constructed in the quantum setting, too.

2That Damg̊ard and Nielsen’s commitment does not compose well in an everlasting security setting
was already observed in [MQU10]. Their example, however, only shows insecurity when composing with
contrived protocols.
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can be composed in arbitrary ways (universal composition). By tweaking the details of
the definition, we get various variants of UC: If Z, Sim, Adv are polynomial-time, we
have computational UC. If they are unlimited, statistical UC (modeling unconditional
security). Unlimited quantum machines lead to the definition of statistical quantum-UC
[Unr10].

Müller-Quade and Unruh [MQU10] showed that the UC framework can also be
adapted to the setting of everlasting security: We quantify over Z, Sim, Adv that are
polynomial-time, but we say that Z distinguishes the real and ideal model if the distribu-
tion of Z’s output is not statistically indistinguishable. That is, a protocol is considered
insecure if one can distinguish real and ideal model when being polynomial-time during
the protocol, but unlimited afterwards (statistical indistinguishability means that no
unlimited machine can distinguish).

The ideas from [MQU10] can be easily adapted to the quantum case. In Section 3, we
introduce everlasting quantum UC (eqUC). Here Z, Sim, Adv are quantum-polynomial-
time machines (representing the fact that adversaries are limited during the protocol
run), but we require that the quantum state output by Z in the real and ideal model is
trace-indistinguishable (two quantum states are trace-indistinguishable if no unlimited
quantum machine can distinguish them). The eqUC security notion inherits all com-
posability properties from the UC notion. Also, protocols that are secure with respect
to statistical classical or statistical quantum UC are also eqUC-secure. In particular,
known quantum protocols for constructing MPC from commitments [Unr10] are also
eqUC secure.3 Thus, if we find an eqUC-secure commitment protocol, we immediately
get eqUC-secure MPC protocols by composition.

Everlasting quantum-UC commitments. The problem of everlasting UC commit-
ments in the classical setting was already studied in [MQU10]. Their protocol uses a
signature card as trusted setup.4 Here a signature card is a trusted device (modeled as
a functionality) such that the owner of the card can sign messages, everyone can access
the public key, and no-one (not even the owner) can get the secret key.5 Their protocol
is, however, only known to be secure in the classical setting. In fact, when we try to
prove the protocol secure in a quantum setting, we stumble upon an interesting difficulty
in the interplay of zero-knowledge proofs of knowledge and signature schemes.

A core step in the protocol is that Alice performs a proof of knowledge P showing
that she knows a certain signature σ. In the security proof, we then show that Alice must
have obtained σ from the signature card: Assume Alice successfully performs P without
requesting σ first. Since P is a proof of knowledge, there is an extractor E (using Alice
and indirectly the signing oracle as a black box) that returns a valid witness, i.e., the

3Note that the definition of statistical UC requires the simulator to be polynomial-time if the adversary
is, hence the implication from statistical quantum UC to eqUC is trivial. And statistical classical UC
implies statistical quantum UC by [Unr10].

4It is impossible to construct UC commitments without using some trusted setup such as a CRS
[CF01]. [MQU10] shows that for everlasting UC, even a CRS is not sufficient.

5The last property is mandated, e.g., by the German signature card law [Sig01].
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signature σ. Since E returns the signature without requesting it from the signing oracle,
we have a contradiction to the unforgeability of the signature scheme.

It seems that the same reasoning applies against quantum adversaries if we use
quantum proofs of knowledge instead. Unfortunately, this is not the case. In a quantum
proof of knowledge (as defined by Unruh [Unr12]), an extractor with black box access to
the prover executes both the prover (modeled as a unitary operation) as well as its inverse
(i.e., the inverse of that unitary). This is the quantum analogue of classical rewinding.
So the extractor E will invoke not only the signing oracle, but also its inverse! But
unforgeability will not guarantee that there are no forgeries when the adversary accesses
the inverse of the signing oracle. Hence the security proof fails.

To avoid this problem, we need a new protocol which does not require rewinding in
the same places of the security proof where we use the unforgeability of the signature
scheme. We present such a protocol; it is considerably more involved than the one from
[MQU10]. We believe that our approach is of independent interest because it shows one
way around the limitations of quantum proofs of knowledge.

Bounded quantum storage model. We quickly compare the concept of everlasting
security in this paper with the bounded quantum storage model (BQSM; [DFSS05]).
The BQSM achieves very similar goals. Security in the BQSM guarantees that the
protocol cannot be broken by an adversary that has limited quantum memory during the
protocol execution and unlimited quantum memory after the execution. The BQSM is
thus analogous to everlasting security as discussed here, except that it considers quantum
memory where we consider computational power. The advantage of the BQSM over our
model is that when using a BQSM protocol, we only need to make assumptions about
the power of the adversary (its quantum memory). In contrast, in our model we need to
assume that the computational power is limited and that certain mathematical problems
are hard. In our view, the main disadvantage of the BQSM is that it might be useful only
for a limited time: currently, we may assume a small limit on the adversary’s quantum
memory. Should quantum technology advance, though, quantum memory might become
cheap, and at that point BQSM protocols must not be used any more. In contrast, with
everlasting security as in this paper, if an assumption we use in a protocol is broken, it
is likely that there still are other assumptions that can be used – we can then fix the
protocol by switching the underlying problem. Also, BQSM protocol tend to have a
high communication complexity, and composition is more involved (in particular when
we wish for universal composability [Unr11]). Then again, our approach requires trusted
setup (signature cards). An interesting goal would be protocols that are simultaneously
secure in our model and the BQSM.

In the classical setting, the bounded storage model can also be used [Mau92] but has
very high communication complexity (quadratic in the memory bound). [HN06] shows
that if we combine bounded storage with temporary computational assumptions, then
in the random oracle model we can achieve lower communication complexity (but they
also show impossibilities when not using the random oracle model). In contrast, our
work uses quantum communication and temporary computational assumptions, but no
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bounded storage.

Further related work. [CDMS04] also considers the problem of using an uncondi-
tionally hiding computationally binding commitment to construct a quantum OT (as
opposed to using directly a functionality). They show that with such a commitment,
OT can be realized (no impossibility results are given). However, their OT protocol only
computationally hides the sender’s inputs (although one may be tempted to assume
otherwise as the commitments that are used are unconditionally hiding). In fact, our
impossibility results imply that their OT cannot be everlastingly secure.

Organization & contribution. In Section 3 we present the everlasting quantum UC
model and the corresponding composition theorem. In Section 4 we show the impossi-
bility of everlastingly secure OT in the classical and the quantum setting using various
functionalities. In Section 5 we show that using signature cards or a public key infras-
tructure, an everlastingly quantum-UC-secure secure channel can be implemented. In
Section 6 we show how to implement arbitrary everlastingly quantum-UC-secure multi-
party computation using signature cards.

2 Preliminaries

General. A nonnegative function µ is called negligible if for all c > 0 and all sufficiently
large k, µ(k) < k−c. A nonnegative function f is called overwhelming if f ≥ 1 − µ for
some negligible µ. Keywords in typewriter font (e.g., environment) are assumed to be
fixed but arbitrary distinct non-empty words in {0, 1}∗. ε ∈ {0, 1}∗ denotes the empty
word. Given a sequence x = x1, . . . , xn, and a set I ⊆ {1, . . . , n}, x|I denote the sequence
x restricted to the indices i ∈ I.

Quantum systems. We can only give a terse overview over the formalism used in
quantum computing. For a thorough introduction, we recommend the textbook by
Nielsen and Chuang [NC00, Chap. 1–2]. A (pure) state in a quantum system is described
by a vector |ψ〉 in some Hilbert space H. In this work, we only use Hilbert spaces of the
form H = C

N for some countable set N , usually N = {0, 1} for qubits or N = {0, 1}∗

for bitstrings. We always assume a designated orthonormal basis {|x〉 : x ∈ N} for each
Hilbert space, called the computational basis. The basis states |x〉 represent classical
states (i.e., states without superposition). Given several separate subsystems H1 =
C
N1 , . . . ,Hn = C

Nn , we describe the joint system by the tensor product H1⊗· · ·⊗Hn =
C
N1×···×Nn . We write 〈Ψ| for the linear transformation mapping |Φ〉 to the scalar product
〈Ψ|Φ〉. Consequently, |Ψ〉〈Ψ| denotes the orthogonal projector on |Ψ〉. We set |0〉+ := |0〉,
|1〉+ := |1〉, |0〉× := 1√

2
(|0〉 + |1〉), and |1〉× := 1√

2
(|0〉 − |1〉). For x ∈ {0, 1}n and

θ ∈ {+,×}n, we define |x〉θ := |x1〉θ1 ⊗ · · · ⊗ |xn〉θn .
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Mixed states. If a system is not in a single pure state, but instead is in the pure state
|Ψi〉 ∈ H with probability pi (i.e., it is in a mixed state), we describe the system by a
density operator ρ =

∑

i pi|Ψi〉〈Ψi| over H. This representation contains all physically
observable information about the distribution of states, but some distributions are not
distinguishable by any measurement and thus are represented by the same mixed state.
The set of all density operators is the set of all positive6 operators H with trace 1, and
is denoted P(H). Composed systems are descibed by operators in P(H1 ⊗ · · · ⊗ Hn).
In the following, when speaking about (quantum) states, we always mean mixed states
in the density operator representation. A mapping E : P(H1) → P(H2) represents a
physically possible operation (realizable by a sequence of unitary transformations, mea-
surements, and initializations and removals of qubits) iff it is a completely positive trace
preserving map.7 We call such mappings superoperators. The superoperator Eminit on
P(H) with H := C

{0,1}∗ and m ∈ {0, 1}∗ is defined by Eminit(ρ) := |m〉〈m| for all ρ. By
TD(ρ, ρ′) we denote the trace distance between ρ and ρ′. Intuitively, the trace distance
is the probability with which an unlimited distinguisher can distinguish ρ and ρ′ with a
single measurement.

Composed systems. Given a superoperator E on P(H1), the superoperator E ⊗ id
operates on P(H1 ⊗ H2). Instead of saying “we apply E ⊗ id”, we say “we apply E to
H1”. If we say “we initialize H with m”, we mean “we apply Eminit to H”. Given a state
ρ ∈ P(H1⊗H2), let ρx := (|x〉〈x|⊗ id)ρ(|x〉〈x|⊗ id). Then the outcome of measuring H1

in the computational basis is x with probability tr ρx, and after measuring x, the quantum
state is ρx

tr ρx
. Since we will only perform measurements in the computational basis in

this work, we will omit the qualification “in the computational basis”. The terminology
in this paragraph generalizes to systems composed of more than two subsystems.

Classical states. Classical probability distributions P : N → [0, 1] over a countable
set N are represented by density operators ρ ∈ P(CN ) with ρ =

∑

x∈N P (x)|x〉〈x|
where {|x〉} is the computational basis. We call a state classical if it is of this form.
We thus have a canonical isomorphism between the classical states over C

N and the
probability distributions over N . We call a superoperator E : P(CN1) → P(CN2)
classical iff if there is a randomized function F : N1 → N2 such that E(ρ) =
∑

x∈N1
y∈N2

Pr[F (x) = y] · 〈x|ρ|x〉 · |y〉〈y|. Classical superoperators describe what can be

realized with classical computations. An example of a classical superoperator on P(CN )
is Eclass : ρ 7→

∑

x〈x|ρ|x〉 · |x〉〈x|. Intuitively, Eclass measures ρ in the computational
basis and then discards the outcome, thus removing all superpositions from ρ.

6We call an operator positive if it is Hermitean and has only nonnegative eigenvalues.
7A map E is completely positive iff for all Hilbert spaces H′, and all positive operators ρ on H1 ⊗H′,

(E ⊗ id)(ρ) is positive.
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3 Everlasting Quantum UC

We now present our everlasting quantum-UC-framework. Our definition is based on the
modeling of UC in the quantum case from [Unr10]. For a reader familiar with their
definition: The new concepts in this section are the definition of QExec (page 10), of
trace-indistinguishability (page 10), and of everlasting quantum-UC (Definition 3).

3.1 The basic model

Machine model. A machine M is described by an identity idM in {0, 1}∗ and

a sequence of superoperators E
(η)
M (η ∈ N) on Hstate ⊗ Hclass ⊗ Hquant with

Hstate ,Hclass ,Hquant := C
{0,1}∗ (the state transition operators). The index η in E

(η)
M

denotes the security parameter. The Hilbert space Hstate represents the state kept by
the machine between invocations, and Hclass and Hquant are used both for incoming
and outgoing messages. Any message consists of a classical part stored in Hclass and a
quantum part stored in Hquant . If a machine id sender wishes to send a message with clas-
sical part m and quantum part |Ψ〉 to a machine id rcpt , the machine id sender initializes
Hclass with (id sender , id rcpt ,m) and Hquant with |Ψ〉. (See the definition of the network
execution below for details.) The separation of messages into a classical and a quantum
part is for clarity only, all information could also be encoded directly in a single register.
If a machine does not wish to send a message, it initializes Hclass and Hquant with ε.

A network N is a set of machines with pairwise distinct identities containing a ma-
chine Z with idZ = environment. We write idsN for the set of the identities of the
machines in N.

We call a machine M quantum-polynomial-time if there is a uniform8 sequence of

quantum circuits Ck such that for all k, the circuit Ck implements the superoperator E
(η)
M .

Network execution. The state spaceHN of a networkN is defined as HN := Hclass⊗
Hquant ⊗

⊗

id∈idsNH
state
id with Hstate

id ,Hclass ,Hquant := C
{0,1}∗ . Here Hstate

id represents

the local state of the machine with identity id and Hclass and Hquant represent the state
spaces used for communication. (Hclass and Hquant are shared between all machines.
Since only one machine is active at a time, no conflicts occur.)

A step in the execution of N is defined by a superoperator E := E
(k)
N

operating
on HN. This superoperator performs the following steps: First, E measures Hclass in
the computational basis and parses the outcome as (id sender , id rcpt ,m). Let M be the

machine in N with identity id rcpt . Then E applies E
(η)
M to Hstate

idrcpt
⊗ Hclass ⊗ Hquant .

Then E measures Hclass and parses the outcome as (id ′
sender , id

′
rcpt ,m

′). If the outcome

could not be parsed, or if id ′
sender 6= id rcpt , initialize H

class with (ε, environment, ε) and
Hquant with ε. (This ensures that the environment is activated if a machine sends no or
an ill-formed message.)

8A sequence of circuits Ck is uniform if a deterministic Turing machine can output the description
of Ck in time polynomial in k.
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The output of the network N on input z and security parameter η is described by the
following algorithm: Let ρ ∈ P(HN) be the state that is initialized to (ε, environment, z)
in Hclass , and to the empty word ε in all other registers. Then repeat the follow-

ing indefinitely: Apply E
(k)
N

to ρ. Measure Hclass . If the outcome is of the form
(environment, ε, out), return out and terminate. Otherwise, continue the loop. The
probability distribution of the return value out is denoted by ExecN(η, z).

Furthermore, by QExecN(η, z), we denote the state of the environment after sending
out . That is, QExecN(η, z) is the density operator resulting from tracing out all systems
except Hstate

environment from ρ.

Corruptions. To model corruptions, we introduce corrupted parties, special machines
that follow the instructions given by the adversary. When invoked, the corrupted
party PC

id with identity id measures Hclass and parses the outcome as (id sender , id rcpt ,m).
If id sender = adversary, Hclass is initialized with m. (In this case, m specifies
both the message and the sender/recipient. Thus the adversary can instruct a cor-
rupted party to send to arbitrary recipients.) Otherwise, Hclass is initialized with
(id , adversary, (id sender , id rcpt ,m)). (The message is forwarded to the adversary.) Note
that, since PC

id does not touch the Hquant , the quantum part of the message is forwarded.
Given a network N, and a set of identities C, we write NC for the set resulting from

replacing each machine M ∈ N with identity id ∈ C by PC
id .

Security model. A protocol π is a set of machines with environment, adversary /∈
ids(π). We assume a set of identities partiesπ ⊆ ids(π) to be associated with π. partiesπ
denotes which of the machines in the protocol are actually protocol parties (as opposed
to incorruptible entities such as ideal functionalities).

An environment is a machine with identity environment, an adversary or a simulator
is a machine with identity adversary (there is no formal distinction between adversaries
and simulators, the two terms refer to different intended roles of a machine).

In the following we call two networks N,N′ if there is a negligible function µ such
that for all z ∈ {0, 1}∗ and k ∈ N, |Pr[ExecN(η, z) = 1] − Pr[ExecN′(η, z) = 1]| ≤ µ(k).
We speak of perfect indistinguishability if µ = 0.

We call two networks N,N′ trace-indistinguishable if there is a negligible function µ
such that for all z ∈ {0, 1}∗ and k ∈ N, TD(QExecN(η, z),QExecN′(η, z)) ≤ µ(k). We
speak of perfect trace-indistinguishability if µ = 0.

Definition 1 (Statistical quantum-UC-security) Let protocols π and ρ be given.
We say π statistically quantum-UC-emulates ρ iff for every set C ⊆ partiesπ and for
every adversary Adv there is a simulator Sim such that for every environment Z, the
networks πC∪{Adv,Z} (called the real model) and ρC∪{Sim,Z} (called the ideal model)
are indistinguishable. We furthermore require that if Adv is quantum-polynomial-time,
so is Sim.

Definition 2 (Computational quantum-UC-security) Let protocols π and ρ be
given. We say π computationally quantum-UC-emulates ρ iff for every set C ⊆ partiesπ
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and for every quantum-polynomial-time adversary Adv there is a quantum-polynomial-
time simulator Sim such that for every quantum-polynomial-time environment Z, the
networks πC ∪ {Adv,Z} and ρC ∪ {Sim,Z} are indistinguishable.

We can now define everlasting quantum-UC-security. The fact that in this definition,
we require the networks to be trace-indistinguishable (i.e., even an unlimited machine
cannot distinguish the output states of Z in real and ideal model), models the fact that
in everlasting security, we allow unlimited computations after the protocol execution.
During the protocol execution, environment, adversary, and simulator are quantum-
polynomial-time.

Definition 3 (Everlasting quantum-UC-security) Let protocols π and ρ be given.
We say π everlastingly quantum-UC-emulates (short eqUC-emulates) ρ iff for every set
C ⊆ partiesπ and for every quantum-polynomial-time adversary Adv there is a quantum-
polynomial-time simulator Sim such that for every quantum-polynomial-time environ-
ment Z, the networks πC ∪ {Adv,Z} and ρC ∪ {Sim,Z} are trace-indistinguishable.

Note that although ExecπC∪{Adv,Z}(η, z) may return arbitrary bitstrings, we only com-
pare whether the return value of Z is 1 or not. This effectively restricts Z to returning
a single bit. This can be done without loss of generality (see [Can01] for a discussion of
this issue; their arguments also apply to the quantum case) and simplifies the definition.

In our framework, any communication between two parties is perfectly secure since
the network model guarantees that they are delivered to the right party and not leaked to
the adversary. To model a protocol with insecure channels instead, one would explicitly
instruct the protocol parties to send all messages through the adversary. Authenticated
channels can be realized by introducing an ideal functionality (see the next section) that
realizes an authenticated channel. For simplicity, we only consider protocols with secure
channels in this work.

Lemma 1 Let π and ρ be protocols. If π statistically quantum-UC-emulates ρ, then
π eqUC-emulates ρ. If π eqUC-emulates ρ, then π computationally quantum-UC-
emulates ρ.

If non-uniformly quantum one-way functions and non-uniformly quantum pseudo-
random generators exist, these implications are strict.

Proof. The implications are immediate from the definitions.
To show that the implications are strict, let f be a non-uniform quantum one-way

function, and let G : {0, 1}ℓ → {0, 1}ℓ+1 be a non-uniform quantum pseudo-random
generator (here ℓ may depends on the security parameter).

Consider the following one-party protocols: In π1, Alice outputs f(m) for uniformly
randomm ∈ {0, 1}η to the environment. When receivingm′ with f(m′) = f(m) from the
environment it answers with 1. In ρ1, Alice outputs a f(m) for uniformly random m ∈
{0, 1}η to the environment. π1 does not statistically UC-emulate ρ1: the distinguishing
environment just sends a preimage of f(m) to Alice. But π1 eqUC-emulates ρ1: for

11



adversary Adv, we use simulator Sim := Adv, a polynomial-time environment will make
Alice send 1 only with negligible probability. Thus the first implication is strict.

Consider the following one-party protocols: In π2, Alice sends r := G(m) for uni-
formly random m ∈ {0, 1}ℓ to the environment. In ρ2, Alice sends a uniformly random
r ∈ {0, 1}ℓ+1. π2 does not eqUC-emulate ρ2: In ρ2, with probability at least 1

2 , r will
not be in the range of G, so to distinguish the environment just outputs r in its final
output. But π2 computationally quantum-UC-emulates ρ2, since the environment can-
not distinguish between pseudo-random and random r. Thus the second implication is
strict. �

3.2 Ideal functionalities

In most cases, the behavior of the ideal model is described by a single machine F , the so-
called ideal functionality. We can think of this functionality as a trusted third party that
perfectly implements the desired protocol behavior. For example, the functionality FOT

for oblivious transfer would take as input from Alice two bitstringsm0,m1, and from Bob
a bit c, and send to Bob the bitstring mc. Obviously, such a functionality constitutes a
secure oblivious transfer. We can thus define a protocol π to be a secure OT protocol
if π quantum-UC-emulates FOT where FOT denotes the protocol consisting only of one
machine, the functionality FOT itself. There is, however, one technical difficulty here.
In the real protocol π, the bitstring mc is sent to the environment Z by Bob, while in
the ideal model, mc is sent by the functionality. Since every message is tagged with the
sender of that message, Z can distinguish between the real and the ideal model merely
by looking at the sender of mc. To solve this issue, we need to ensure that F sends the
message mc in the name of Bob (and for analogous reasons, that F receives messages
sent by Z to Alice or Bob). To achieve this, we use so-called dummy-parties [Can01] in
the ideal model. These are parties with the identities of Alice and Bob that just forward
messages between the functionality and the environment.

Definition 4 (Dummy-party) Let a machine P and a functionality F be given. The
dummy-party P̃ for P and F is a machine that has the same identity as P and has
the following state transition operator: Let idF be the identity of F . When activated,
measure Hclass . If the outcome of the measurement is of the form (environment, idP ,m),
initialize Hclass with (idP , idF ,m). If the outcome is of the form (idF , idP ,m), initialize
Hclass with (idP , environment,m). In all cases, the quantum communication register is
not modified (i.e., the message in that register is forwarded).

Note the strong analogy to the corrupted parties (page 10).
Thus, if we write π quantum-UC-emulates F , we mean that π quantum-UC-emulates

ρF where ρF consists of the functionality F and the dummy-parties corresponding to
the parties in π. More precisely:

Definition 5 Let π be a protocol and F be a functionality. We say that π sta-
tistically/computationally quantum-UC-emulates F if π statistically/computationally
quantum-UC-emulates ρF where ρF := {P̃ : P ∈ partiesπ} ∪ {F}.
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For more discussion of dummy-parties and functionalities, see [Can01].
Using the concept of an ideal functionality, we can specify a range of protocol tasks

by simply defining the corresponding functionality. Below, we give the definitions of
various functionalities. All these functionalities are classical, we therefore do not explic-
itly describe when the registers Hclass and Hquant are measured/initialized but instead
describe the functionality in terms of the messages sent and received.

Definition 6 (Commitment) Let A and B be two parties. The functionality

FA→B,ℓ
COM behaves as follows: Upon (the first) input (commit, x) with x ∈ {0, 1}ℓ(k) from

A, send committed to B. Upon input open from A send (open, x) to B. All communi-
cation/input/output is classical.

We call A the sender and B the recipient.

Definition 7 (Oblivious transfer (OT)) Let A and B be two parties. The function-

ality FA→B,ℓ
OT behaves as follows: When receiving input (s0, s1) from A with s0, s1 ∈

{0, 1}ℓ(k) and c ∈ {0, 1} from B, send s := sc to B. All communication/input/output is
classical.

We call A the sender and B the recipient.

Definition 8 (Coin toss) Let A and B be two parties. Let D be a distribution on
{0, 1}∗. The functionality FA,B,D

CT behaves as follows: After having received init from
both A and B, a value r is chosen according to D, and then r is sent to A, B, and Adv.
All communication/input/output is classical.

We write FA,B,ℓ
CT for the special case where D is the uniform distribution on {0, 1}ℓ.

Definition 9 (CRS) Let A and B be two parties. Let D be a distribution on {0, 1}∗.
The functionality FD

CRS ( common reference string) behaves as follows: In its first acti-
vation, a bitstring r is chosen according to D. Whenever receiving getcrs from a party
P , the bitstring r is sent to P . All communication/input/output is classical.

Definition 10 (EPR functionality) Let A and B be two parties. The functionality
FA,B
EPR behaves as follows: In its first activation, an EPR pair is chosen and stored in

quantum registers XA,XB . When receiving getepr from P ∈ {A,B} for the first time,
XP is sent to P .

Definition 11 (Signature card) Let S = (KG,Sign,Verify) be a signature scheme.
Let A be a party. Then the functionality FS,A

SC ( signature card for scheme S with owner

A) behaves as follows: Upon the first activation, FS,A
SC chooses a verification/signing key

pair (pk , sk ) using the key generation algorithm KG(1λ). Upon a message (getpk) from
a party P or the adversary, it sends pk to P or the adversary, respectively. Upon a
message (sign,m) from A FS,A

SC computes σ ← Sign(pk ,m) and sends (pk , σ) to A.
All communication/input/output is classical.
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Definition 12 (Public key infrastructure) Let KG be a distribution on {0, 1}∗ ×
{0, 1}∗. The functionality FA,D

PKI behaves as follows: In its first activation, a pair (pk , sk)
is chosen according to KG. Whenever receiving getkey for a party P 6= A or from Adv,
it sends to P or Adv, respectively. Whenever getting getkey from A, it sends (pk , sk)
to A.

Definition 13 (One-use authenticated channel) The functionality FA→B
auth behaves

as follows: When receiving the first message m from some party A, then m is sent
to Adv. Then, when receiving deliver from Adv, m is sent to B. All communica-
tion/input/output is classical.

Definition 14 (One-use secure channel) The functionality FA→B
secchan behaves as fol-

lows: When receiving the first message m from some party A, then |m| is sent to
Adv. Then, when receiving deliver from Adv, m is sent to B. All communica-
tion/input/output is classical.

Definition 15 (Key exchange) Let A and B be two parties. Let ℓ be an integer. The

functionality FA,B,ℓ
KE behaves as follows: When receiving init from A (for the first time),

a uniformly random K ∈ {0, 1}ℓ is chosen (except if A or B is corrupted, in this case the
adversary is asked for K). Then K is sent to A and B. All communication/input/output
is classical.

The following definition allows to construct functionalities out of simpler ones. For
example, a multi-use authenticated channel from A to B would be (FA→B

auth )∗, and a
bidirectional one would be (FA→B

auth )∗ + (FB→A
auth )∗.

Definition 16 (Combined functionalities) Given functionalities F1 and F2, we de-
fine F1 +F2 to be the functionality that internally simulates F1 and F2. Upon message
(i,m) with i = 1, 2, m is sent to Fi. When Fi sends m, the message is forwarded as
(i,m).

Given a functionality F , we defined F∗ to be the functionality that internally simu-
lates an instance Fsid for every bitstring sid (initialized upon first use). Upon message
(sid ,m), m is sent to Fsid . When Fsid sends m, the message is forwarded as (sid ,m).

3.3 Elementary properties of UC-security

Lemma 2 (Reflexivity, transitivity) Let π, ρ, and σ be protocols. Then π eqUC-
emulates π. If π eqUC-emulates ρ and ρ eqUC-emulates σ, then π eqUC-emulates σ.

Proof. For any quantum-polynomial-time adversary Adv and any set C, with Sim :=
Adv, we have that πC ∪ {Adv,Z} and πC ∪ {Sim,Z} are equal and hence perfectly
trace-indistinguishable for all Z. If Adv is quantum-polynomial-time, so is Sim = Adv.
Thus π eqUC-emulates ρ.

Assume that π eqUC-emulates ρ and ρ eqUC-emulates σ. Fix a quantum-polynomial-
time adversary Adv and a set C. Then there is a quantum-polynomial-time simulator
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Figure 1: Completeness of the dummy-adversary: proof steps

Sim such that for all quantum-polynomial-time Z, πC ∪ {Adv,Z} and ρC ∪ {Sim,Z}
are trace-indistinguishable. Furthermore, for the quantum-polynomial-time adver-
sary Adv′ := Sim, there is a quantum-polynomial-time simulator Sim′ such that
ρC ∪ {Sim,Z} = ρC ∪ {Adv′,Z} and σC ∪ {Sim′,Z} are trace-indistinguishable for all
quantum-polynomial-time Z. From the triangle inequality of the trace-distance, we have
that trace-indistinguishability is transitive. Hence πC ∪ {Adv,Z} and σC ∪ {Sim′,Z}
are indistinguishable for all quantum-polynomial-time Z. Thus π eqUC-emulates σ. �

Dummy-adversary. In the definition of UC-security, we have three entities interact-
ing with the protocol: the adversary, the simulator, and the environment. Both the
adversary and the environment are all-quantified, hence we would expect that they do,
in some sense, work together. This intuition is backed by the following fact which was
first noted by Canetti [Can01]: Without loss of generality, we can assume an adversary
that is completely controlled by the environment. This so-called dummy-adversary only
forwards messages between the environment and the protocol. The actual attack is then
executed by the environment.

Definition 17 (Dummy-adversary Advdummy) When activated, the dummy-adver-
sary Advdummy measures Hclass ; call the outcome m. If m is of the form (environment,
adversary,m′), initialize Hclass with m′. Otherwise initialize Hclass with (adversary,
environment,m). In all cases, the quantum communication register is not modified (i.e.,
the message in that register is forwarded).

Note the strong analogy to the dummy-parties (Definition 4) and the corrupted parties
(page 10).

Lemma 3 (Completeness of the dummy-adversary) Assume that π eqUC-
emulates ρ with respect to the dummy-adversary (i.e., instead of quantifying over all
adversaries Adv, we fix Adv := Advdummy ). Then π eqUC-emulates ρ.

Proof. Assume that π eqUC-emulates ρ with respect to the dummy-adversary. Fix a
quantum-polynomial-time adversary Adv. We have to show that there exists a quantum-
polynomial-time simulator Sim such that for all quantum-polynomial-time environments
Z we have that π ∪ {Adv,Z} and ρ ∪ {Sim,Z} are trace-indistinguishable.

15



For a given quantum-polynomial-time environment Z, we construct a quantum-
polynomial-time environment ZAdv that is supposed to interact with Advdummy and
internally simulates Z and Adv, and that routes all messages sent by the simulated Adv
to π through Advdummy and vice versa. Then π∪{Adv,Z} and π∪{Advdummy ,ZAdv} are
perfectly trace-indistinguishable. (Cf. networks (I) and (II) in Figure 1.) Since π eqUC-
emulates ρ with respect to the dummy-adversary, we have that π ∪ {Advdummy ,ZAdv}
and ρ∪ {Sim′,ZAdv} are indistinguishable for some quantum-polynomial-time Sim′ and
all Z. (Cf. networks (II) and (III).) Since Advdummy is quantum-polynomial-time, so
is Sim′. We construct a quantum-polynomial-time machine Sim that internally sim-
ulates Sim′ and Adv (network (IV)). Then ρ ∪ {Sim′,ZAdv} and ρ ∪ {Sim,Z} are
perfectly trace-indistinguishable. Summarizing, π ∪ {Adv,Z} and ρ ∪ {Sim,Z} are
trace-indistinguishable for all quantum-polynomial-time environments Z. Thus π eqUC-
emulates ρ. �

3.4 Universal composition

For some protocol σ, and some protocol π, by σπ we denote the protocol where σ
invokes (up to polynomially many) instances of π. That is, in σπ the machines from σ
and from π run together in one network, and the machines from σ access the inputs
and outputs of π. (That is, σ plays the role of the environment from the point of view
of π. In particular, Z then talks only to σ and not to the subprotocol π directly.)
A typical situation would be that σF is some protocol that makes use of some ideal
functionality F , say a commitment functionality, and then σπ would be the protocol
resulting from implementing that functionality with some protocol π, say a commitment
protocol. (We say that σF is a protocol in the F-hybrid model.) One would hope that
such an implementation results in a secure protocol σπ. That is, we hope that if π eqUC-
emulates F and σF eqUC-emulates G, then σπ eqUC-emulates G. Fortunately, this is
the case:

Theorem 1 (Universal Composition Theorem) Let π, ρ, and σ be quantum-
polynomial-time protocols. Assume that π eqUC-emulates ρ. Then σπ eqUC-emulates σρ.

If we additionally have that σ eqUC-emulates G, from the transitivity of eqUC-emulation
(Lemma 2), it immediately follows that σπ eqUC-emulates G.

The composition guarantee given by Theorem 1 is often called universal compos-
ability. One should not confuse universal composability with UC-security. Although
UC security implies universal composability, it has been shown by Hofheinz and Unruh
[HU05, HU06, Unr06] that – in the classical setting at least – universal composability is
a strictly weaker notion than UC security.

Proof of Theorem 1. Our goal is to prove that under the assumptions of Theorem 1,
σπ eqUC-emulates σρ. Since σ is quantum-polynomial-time, σ invokes at most a poly-
nomial number n of instances of its subprotocol π or ρ. Since π eqUC-emulates ρ, there
is a quantum-polynomial-time simulator Sim′ such that for all quantum-polynomial-
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time environments Z we have that π ∪ {Advdummy ,Z} and ρ ∪ {Sim′,Z} are trace-
indistinguishable. In the following, we call Sim′ the dummy-simulator.

Let a quantum-polynomial-time adversary Adv be given (that is supposed to at-
tack σπ). We construct a simulator Sim that internally simulates the adversary Adv and
n instances Sim′

1, . . . ,Sim
′
n of the dummy-simulator Sim′. The simulated adversary Adv

is connected to the environment and to the protocol σ, but all messages between Adv
and the i-th instance πi of π are routed through the dummy-simulator-instance Sim′

i

(which is then supposed to transform these messages into a form suitable for instances
of ρ). The simulator Sim is depicted by the dashed box in network (II) in Figure 2.

We have to show that for any quantum-polynomial-time environment Z we have that
σπ ∪ {Adv,Z} and σρ ∪ {Sim,Z} are trace-indistinguishable (networks (I) and (II) in
Figure 2).

For this, we construct a hybrid environment Zσ,i. (Zσ,i is depicted as the dashed
box in network (III) in Figure 2.) This environment internally simulates the machines
Z, Adv, the protocol σ, instances π1, . . . , πi−1 of the real protocol π, and instances
Sim′

i+1, . . . ,Sim
′
n and ρi+1, . . . , ρn of the dummy-simulator Sim′ and the ideal protocol ρ,

respectively. The communication between Z, Adv, and σ is directly forwarded by Zσ,i.
Communication between Adv and the j-th protocol instance is forwarded as follows:
If j < i, the communication is simply forwarded to πj. If j > i, the communication
is routed through the corresponding dummy-simulator Sim′

j (which is then supposed
to transform these messages into a form suitable for ρj). And finally, if j = i, the
communication is passed to the adversary/simulator outside of Zσ,i. Communication
between σ and the instances of π or ρ is directly forwarded.

We will now show that there is a negligible function µ such that
TD(QExecπ∪{Advdummy ,Zσ,i}(η, z),QExecρ∪{Sim′,Zσ,i}(η, z)) ≤ µ(k) for any security pa-
rameter η and any i = 1, . . . , n. For this, we construct an environment Zσ which
expects as its initial input a pair (i, z), and then runs Zσ,i with input z. Since
π ∪ {Advdummy ,Z} and ρ ∪ {Sim′,Z} are trace-indistinguishable for all quantum-
polynomial-time environments Z, there exists a negligible function µ such that the
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trace-distance of QExecπ∪{Advdummy ,Zσ,i}(η, z) = QExecπ∪{Advdummy ,Zσ}(η, (i, z)) and
QExecρ∪{Sim′,Zσ,i}(η, z) = QExecρ∪{Sim′,Zσ}(η, (i, z)) is bounded by µ(k) for all i, k, z.

The game QExecπ∪{Advdummy ,Zσ,i}(η, z) is depicted as network (III) in Figure 2 (except
that we wrote πi instead of π). Observe that QExecρ∪{Sim′,Zσ,i+1}(η, z) (note the changed
index i+1) contains the same machines as QExecπ∪{Advdummy ,Zσ,i}(η, z) (when unfolding
the simulation performed by Zσ,i into individual machines) except for the difference that
the communication with the i-th instance of π is routed through the dummy-adversary
Advdummy . However, the latter just forwards messages, so π ∪ {Advdummy ,Zσ,i} and
ρ ∪ {Sim′,Zσ,i+1} are perfectly trace-indistinguishable.

Using the triangle inequality for the trace-distance, it follows that
TD(QExecπ∪{Advdummy ,Zσ,n}(η, z),QExecρ∪{Sim′,Zσ,1}(η, z)) is bounded by n · µ(k)
which is negligible. Moreover, QExecπ∪{Advdummy ,Zσ,n}(η, z) and QExecσπ∪{Adv,Z}(η, z)
describe the same game (up to unfolding of simulated submachines and up to
one instance of the dummy-adversary). Similarly, QExecρ∪{Sim′,Zσ,1}(η, z) and
QExecσρ∪{Sim,Z}(η, z) describe the same game (up to unfolding of simulated subma-
chines). Thus TD(QExecσπ∪{Adv,Z}(η, z),QExecσρ∪{Sim,Z}(η, z)) is negligible and thus
σπ ∪ {Adv,Z} and σρ ∪ {Sim,Z} are trace-indistinguishable. Furthermore, since Adv
and Sim′ are quantum-polynomial-time, so is Sim.

Since this holds for all Z, and the construction of Sim does not depend on Z, we
have that σπ eqUC-emulates σρ. �

4 Impossibilities

In Section 6, we show that by using signature cards and a quantum channel, we can
construct general everlastingly secure MPC protocols. The question arises whether both
signature cards and quantum channels are needed. We answer this question positively by
showing that (a) in the classical setting, most typical trusted setup (including signature
cards) is not sufficient to implement everlasting OT and that (b) in the quantum setting,
typical trusted setup such as a CRS is not sufficient to implement everlasting OT. The
impossibilities even apply if we do not try to achieve UC security but only to implement
a stand-alone OT.

4.1 Classical impossibilities

We first give a short overview of our technique. The basic observation underlying our
impossibility result is that a protocol that is everlastingly secure is also secure against
unlimited passive adversaries. This is due to the fact that a passive adversary follows
the protocol during the protocol execution (and is thus polynomial-time) and only after
the protocol execution performs an unlimited computation. Thus if an unlimited passive
adversary could break the protocol, the protocol would not be everlastingly secure either.

We call a functionality F passively-realizable if there is a protocol that realizes F
with respect to unlimited passive adversaries. We show that the following functionalities
are passively-realizable: the coin-toss FCT, the common reference string FCRS, the public
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key infrastructure FPKI, the commitment FCOM, and the signature card FSC.
Assume now an everlastingly secure OT protocol π that uses a passively-realizable

functionality F . Then π is also secure against passive unlimited adversaries. Let ρ be
the protocol that realizes F (passively). Then π′, resulting from replacing F by ρ, will
still be an OT secure against passive unlimited adversaries. (Here, of course, we have
to be careful with our definition of passively realizing a functionality – the notion needs
to compose such that π′ is still secure.) But π′ does not use any functionality, and we
know that no OT protocol in the bare model can be secure against unlimited passive
adversaries.

Concluding, we get:

Theorem 2 (Simplified, see Corollary 1) There is no everlastingly secure OT pro-
tocol which only uses arbitrarily many instances of FCT (coin-toss), FCRS (common
reference string), FCOM (commitment), FPKI (public key infrastructure), and FSC (sig-
nature cards).

We now present the details of the above argumentation:
For a set C of machine identities and a network N of classical machines, let

ExecC
N
(η, z) denote the random variable describing the (classical) states of the machines

in C ∪ {environment} after the execution of N.
A non-erasing dummy-party is defined like a dummy-party, except that it stores all

messages it gets and sends in its state. (This only makes sense in a classical setting,
of course.) A non-erasing machine is a machine that stores all messages it sends and
receives and all its intermediate states in its state. For a functionality F , we write
ρ′F := {P̃ ′ : P ∈ partiesπ} ∪ {F} where P̃ ′ denotes the non-erasing dummy-party for
P . (Cf. Definition 5.) We call a protocol non-erasing if it consists only of non-erasing
machines. We call a protocol π functionality-free if partiesπ = idsπ (i.e., all machines
are parties).

We first define the notion of passively-realizable functionalities. Roughly, a func-
tionality is passively-realizable if there is a protocol that implements this functionality
with respect to passive adversaries. We will show that any such passively-realizable
functionality is essentially useless for implementing everlastingly secure OT in a classical
setting.

Definition 18 Fix classical protocols π and ρ with partiesπ = partiesρ. We say π
passively-emulates ρ iff:
• For any (possibly unbounded) environment Z, Exec∅

π∪{Z}(η, z) and Exec∅
ρ∪{Z}(η, z)

are statistically indistinguishable.
• There exists a probabilistic function SA such that for any (possibly unbounded)

environment Z, the random variables ExecAπ∪{Z}(η, z) and S̄A(Exec
A
ρ∪{Z}(η, z)) are

statistically indistinguishable. Here S̄A := id × SA denotes the function that is the
identity on Z’s state and applies SA to A’s state.

• The same with B instead of A.
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We call a functionality F passively-realizable if there is a (possibly unbounded) non-
erasing functionality-free protocol π such that π passively-emulates ρ′F .

Lemma 4 The following functionalities are passively-realizable: FCT (coin-toss), FCRS

(common reference string), FCOM (commitment), FPKI (public key infrastructure), FSC

(signature cards).

Proof. For each of the functionalities listed in the lemma, we need to give a protocol
satisfying Definition 18.

For FCT, the protocol πFCT
consists of Alice choosing the random value r and sending

it to Bob. The function SA takes the state of the Alice-dummy-party which contains
the coins r, and produces the state that Alice would have after choosing r at random
and sending it to Bob. The function SB takes the state of the Bob-dummy-party which
contains the coins r, and produces the state that Bob would have after receiving r from
Alice.

For FCRS, the situation is analogous to FCT.
For FCOM, the protocol πFCOM

is the following: Upon input (commit, x), Alice sends
committed to Bob. Upon a later input open, Alice sends (open, x) to B. When receiving
committed or (open, x) from Alice, Bob outputs committed or (open, x), respectively,
to the environment. The function SA replaces the outgoing messages committed and
(open, x) in Alice’s state by (commit, x) and open, respectively. The function SB does
not change the messages received/sent by Bob.

For FKG,A
PKI , the protocol πFPKI

is the following: A selects (pk , sk) according to KG.
When a party P requests the public key, A sends the public key to that party. In
addition to pk , sk which are obtained from FPKI, the function SA needs to compute the
randomness used by KG to compute (pk , sk). This randomness is sampled uniformly
from all possible values that lead to (pk , sk).

For FS,A
SC , the protocol πFPKI

is the follows. A selects (pk , sk) according to the
key generation algorithm of S and produces all signatures on its own. When another
party requests the public key, A provides it. As with FPKI, SA needs to produce the
randomness that was used to produce the keys and the signatures, this randomness is
sampled randomly from those randomnesses that lead to the keys and signatures that
were produced by FSC. �

Definition 19 (Minimally secure OT) We call a two-party protocol π a minimally
secure OT if the following properties hold:
• Correctness: If Alice and Bob are honest, and Alice has input m0,m1 ∈ {0, 1}, and
Bob has input c ∈ {0, 1}, then Bob gets output mc with overwhelming probability.
• Alice-security: For any adversary B∗ we have that B∗ cannot guess both Alice’s

inputs with overwhelming probability. More precisely, let Alice get uniformly dis-
tributed inputs m0,m1 ∈ {0, 1} and c ∈ {0, 1}. Let the output of B∗ be (m∗

0,m
∗
1)

after interacting with Alice. Then Pr[(m∗
0,m

∗
1) = (m0,m1)] is not overwhelming.

• Bob-security: For any adversary A∗ we have that A∗ cannot distinguish between
Bob with input 0 and Bob with input 1. More precisely, let Alice get uniformly
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distributed inputs m0,m1 ∈ {0, 1} and c ∈ {0, 1}. Let Pc be the probability that A∗

outputs 1 when interacting with Bob. Then |P0 − P1| is negligible in the security
parameter.

We distinguish between minimally secure everlasting OT in which we only consider
adversaries A∗ and B∗ that are computationally bounded during the protocol execution
and unlimited afterwards, and minimally secure passive OT in which the adversaries A∗

and B∗ are unbounded but passive (semi-honest).9

Lemma 5 There is no functionality-free minimally secure passive OT protocol.

The fact is well-known, but we are not aware of a reference. Lemma 5 does follow
directly from the quantum case (Lemma 9 below), though.

Lemma 6 If F and G are passively-realizable then F+G and F∗ are passively-realizable.

Proof. Let πF and πG be the non-erasing functionality-free protocols that passively-
emulate ρ′F and ρ′G , respectively. It is easy to see that then πF + πG (the non-erasing
functionality-free protocol constructed by combining each party of πF with the corre-
sponding party of πG) passively-emulates ρ′F+G , and similarly π∗F passively-emulates
ρ′F∗ . �

Lemma 7 There is no minimally secure passive OT protocol which only uses passively-
realizable functionalities (even if we allow it to use several different passively-realizable
functionalities and arbitrarily many instances of each).

Proof. By Lemma 6, it is sufficient to show that there is no minimally secure passive OT
protocol ρ which only uses a single instance of a passively-realizable functionality F .

Fix a protocol ρ using a single instance of a passively-realizable functionality F . We
will show that ρ is not a minimally secure passive OT protocol.

Let πF be the non-erasing functionality-free protocol that passively-emulates F by
Definition 18. Let σ be the protocol resulting from ρ by replacing invocations of F by
invocations of the subprotocol πF . Then also σ is non-erasing and functionality-free.
Then by Lemma 5, σ is not a minimally secure passive OT protocol.

Thus, one of the three conditions from Definition 19 is not satisfied.
Assume that the Alice-security is not fulfilled. That is, there is a passive adversary

B∗ that guesses Alice’s inputs with overwhelming probability. More formally: Let Z be
the environment that chooses uniformly random m0,m1, c ∈ {0, 1} and provides these
values to Alice and Bob and that keeps just (m0,m1) as its final state. Then there is a
probabilistic function f such that

for (stZ , stB)← (ExecBσ∪{Z}(η, z)) we have stZ = f(stB) with overwhelming probability.
(1)

9Here, we interpret the notion of a passive adversary so that it behaves exactly like an honest party
would do, except that it may compute data from its state after the protocol execution. In particular, a
passive adversary cannot even change the inputs of the corrupted parties.
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Now, since πF passively-emulates F , and since we can consider the machines in σ
that are not part of the subprotocol πF as part of a new environment Z ′ (simulating
the original Z and those machines), we have that there is a function SB such that
ExecBσ∪{Z} and S̄B(Exec

B
ρ∪{Z}) are statistically indistinguishable. (Here S̄B is defined as

in Definition 18.)
With (1), we get that for (stZ , stB) ← (ExecBρ∪{Z}(η, z)) we have stZ = f(SB(stB))

with overwhelming probability.
This, however, implies that ρ is not a minimally secure passive OT protocol (because

it breaks the Alice-security of ρ).
If we assume that the Bob-security of σ is not fulfilled, we analogously get that the

Bob-security of ρ is not fulfilled. (By corrupting Alice instead of Bob.) And finally if
the correctness of σ is not fulfilled, the correctness of ρ is not fulfilled.

Since σ is not minimally secure, it follows that one of the three properties is not
fulfilled, and thus ρ is not minimally secure, either. �

Theorem 3 There is no polynomial-time minimally secure everlasting OT protocol
which only uses passively-realizable functionalities (even if we allow it to use several
different passively-realizable functionalities and arbitrarily many instances of each).

Proof. For a polynomial-time protocol, any passive adversary is computationally
bounded during the protocol execution (since he only has to execute the protocol). Thus
the adversaries considered in minimally secure everlasting OT are a superset of those
considered in minimally secure passive OT. �

Corollary 1 There is no polynomial-time minimally secure everlasting OT protocol
which only uses arbitrarily many instances of FCT (coin-toss), FCRS (common refer-
ence string), FCOM (commitment), FPKI (public key infrastructure), and FSC (signature
cards).

Proof. Immediate from Theorem 3 and Lemma 4. �

4.2 Quantum impossibilities

The impossibility in the quantum case follows similar lines. However, the classical notion
of passive adversaries does not make sense in the quantum case. (A passive adversary
copies all data, this is not possible in the quantum case.) To solve this issue, we consider
only protocols that perform no measurements (unitary protocols). Any protocol can be
transformed into such a protocol at the expense of additional quantum memory. We
call a functionality F quantum-passively-realizable if there is a unitary protocol π that
realizes F with respect to passive unlimited adversaries (that follow the protocol exactly
and do not even copy information). Notice that the requirement that π has to be unitary
has the effect that the protocol cannot just throw away information. Thus an adversary
that is passive will still have some information left over after the protocol execution.
The following functionalities turn out to be quantum-passively-realizable: coin toss FCT,
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predistributed EPR pairs FEPR, public key infrastructure FPKI (assuming the secret key
is uniquely determined by the public key). However, signature cards and commitments
are not! (The reason being that signature cards and commitments do not allow to
commit/sign superpositions of messages and thus enforce measurements. This cannot
be realized with a unitary protocol.)

Then we can proceed as in the classical case: Assume an everlasting quantum OT
protocol π using a quantum-passively-realizable functionality F . This protocol is also
secure against unlimited passive adversaries (in the above sense). By replacing F by the
protocol ρ that realizes F , we get a quantum OT protocol π′ not using any functionality
that is secure against unlimited passive adversaries. But Lo [Lo97] shows that such
protocols do not exist. Thus we get:

Theorem 4 (Simplified, see Corollary 2) There is no quantum-polynomial-time ev-
erlastingly secure OT protocol which only uses arbitrarily many instances of FCT (coin-
toss), FCRS (common reference string), FEPR (predistributed EPR pair), FPKI (public
key infrastructure; assuming that the secret key is uniquely determined by the public key).

We now present the details of the above argumentation:
For a set C of machine identities and a network N of machines, let QExecC

N
(η, z)

denote the joint state of the machines in C ∪ {environment} after the execution of N.
A unitary machine is a machine whose state transition operator is unitary. We call

a protocol unitary if it consists only of unitary machines.
In order to get a result analogous to the classical impossibility result from Theorem 3,

we need a definition analogous to the classical notion of passive realizability. The classical
notion of passive (semi-honest) behavior does not make sense in the quantum setting,
a machine cannot store copies of its state in every step of the interaction. Instead, we
opt for the next best thing: we require machines to be unitary. This implies that they
will not be able to destroy information (though they can lose some information if the
protocol requires them to send it to some other machine).

Definition 20 Fix quantum protocols π and ρ with partiesπ = partiesρ. We say π
quantum-passively-emulates ρ iff:
• For any (possibly unbounded) environment Z, QExec∅

π∪{Z}(η, z) and

QExec∅
ρ∪{Z}(η, z) are trace-indistinguishable.

• There exists a superoperator EA such that for any (possibly unbounded) environment
Z, the random variables QExecAπ∪{Z}(η, z) and ĒA(QExecAρ∪{Z}(η, z)) are trace-

indistinguishable. Here ĒA := id⊗EA denotes the superoperator that is the identity
on Z’s state and applies EA to A’s state.

• The same with B instead of A.
We call a machine P̃ u a unitary dummy party for F and P if P̃ u is unitary and

{P̃ u,F} is indistinguishable from {P̃ ,F} where P̃ is the dummy party for F and P .
We call a functionality F quantum-passively-realizable if there is a (possibly

unbounded) unitary functionality-free protocol π and for each P ∈ partiesπ there
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|0k〉 f output

|0ℓ〉 H⊗ℓ • •

|0ℓ〉 • to Bob

|0k〉 f to Bob for output

where •

f

applies
|x, y〉 7→
|x, f(x)⊕ y〉

Figure 3: Circuit for computing a CRS

exists a unitary dummy-party P̃ u for F and P such that π quantum-passively-
emulates {F , P̃ u (P ∈ partiesπ)}.

Lemma 8 The following functionalities are quantum-passively-realizable: FCT (coin-
toss), FCRS (common reference string), FEPR (predistributed EPR pair), FPKI (public
key infrastructure; assuming that the secret key is uniquely determined by the public key).

Notice that FCOM and FSC are not listed here. These are not quantum-passively-
realizable, even though they are passively-realizable. In fact, as we show below, quantum-
passively-realizable functionalities are useless for implementing everlastingly secure OT,
but commitment is sufficient for constructing even statistically secure OT protocols
[BBCS91] (see [Unr10] for a proof in the quantum-UC-setting). And in Section 6 we
show that with signature cards we can construct everlastingly secure OTs.

Proof. For each of the functionalities F listed in the lemma, we need to give a protocol
πF satisfying Definition 20.

For FEPR, the protocol πFEPR
consists of Alice producing an EPR pair and sending

the second half of it to Bob (over a secure channel). Since for producing an EPR pair,
no ancillae or measurements are needed, the states of Alice and Bob after outputting
their halves of the EPR pairs are empty. Thus the superoperators EA and EB (as in
Definition 20) can be chosen to be the identity, and the unitary dummy parties Ãu and
B̃u to be machines that just forward their outputs (without measuring).

For FD
CRS, let f be a function and ℓ be an integer such that f(r) is distributed

according to D for a uniformly chosen r ∈ {0, 1}ℓ. Let k be then length needed for
encoding outputs of D. Alice evaluates the quantum circuit described in Figure 3. Then
she outputs the first register as CRS, keeps the second, and sends the third and fourth
register to Bob. Bob outputs the fourth register as CRS and keeps the third. We use
dummy parties Ãu and B̃u that use CNOT to “copy” the CRS. More precisely, before
forwarding the CRS from FCRS to Z, Ãu applies U : |x, y〉 7→ |x, x⊕ y〉 to the CRS and
a fresh |0k〉-initialized quantum register.

Consider the case that Alice is corrupted. In this case, in the ideal model, the joint
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state consisting of Alice’s and Bob’s output (the CRS) and Alice’s state is:

ρI =
∑

d

D(d) · |d〉〈d| ⊗ |d〉〈d| ⊗ |d〉〈d|

where D(d) denotes the probability that D assigns to d. In the real model, that state is

ρR =
∑

r

2−ℓ|f(r)〉〈f(r)| ⊗ |f(r)〉〈f(r)| ⊗ |r〉〈r|.

We need to find a superoperator EA such that (id ⊗ id ⊗ EA)ρ
I = ρR. This is satisfied

by any superoperator EA that maps |d〉〈d| to
∑

r:f(r)=d
1

|{r:f(r)=d}| |r〉〈r|. This shows that
πFCRS

quantum-passively-emulates FCRS in the case of corrupted Alice. The case of
corrupted Bob is analogous.

For FCT, the proof is analogous to that for FCRS.

For FKG,A
PKI , the proof is analogous to that for FCRS, except that we use two different

functions fA, fB for computing Alice’s and Bob’s output. fA(r) is distributed like the
output (pk , sk) of the key generation, fB(r) is the first component of fA(r). Since we
assume that the secret key sk can be computed (inefficiently) from the public key pk ,
we have that fA(r) and fB(r) contain the same information about r. �

Definition 21 (Minimally secure quantum OT) We introduce two further vari-
ants of the definition of minimally secure OT (Definition 19): In minimally secure
quantum everlasting OT, we consider quantum adversaries A∗ and B∗ that are com-
putationally bounded during the protocol execution and unlimited afterwards. In mini-
mally secure quantum-passive OT the quantum adversaries A∗ and B∗ are unbounded
but passive, more precisely, A∗ and B∗ behave like Alice and Bob, respectively, during
the protocol execution, and may apply an arbitrary measurement to their state after the
protocol execution for determining their output.

Lemma 9 There is no functionality-free minimally secure passive OT protocol.

This was shown in [Lo97] (although no formal statement of the actual result was
given).

Lemma 10 If F and G are quantum-passively-realizable then F+G and F∗ are quantum-
passively-realizable.

Proof. Let πF and πG be the unitary functionality-free protocols that quantum-passively-
emulate ρF and ρG, respectively. It is easy to see that then πF + πG (the unitary
functionality-free protocol constructed by combining each party of πF with the corre-
sponding party of πG) quantum-passively-emulates ρF+G , and similarly π∗F quantum-
passively-emulates ρF∗ . �
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Lemma 11 There is no minimally secure quantum-passive OT protocol which only uses
quantum-passively-realizable functionalities (even if we allow it to use several different
quantum-passively-realizable functionalities and arbitrarily many instances of each).

Proof. By Lemma 10, it is sufficient to show that there is no minimally secure quantum-
passive OT protocol ρ which only uses a single instance of a quantum-passively-realizable
functionality F .

Fix a protocol ρ using a single instance of a quantum-passively-realizable functional-
ity F . We will show that ρ is not a minimally secure quantum-passive OT protocol.

Let πF be the unitary functionality-free protocol that passively-emulates F by
Definition 20. Let σ be the protocol resulting from ρ by replacing invocations of F
by invocations of the subprotocol πF . Then also σ is unitary and functionality-free.
Then by Lemma 9, σ is not a minimally secure quantum-passive OT protocol.

Thus, one of the three conditions from Definition 19 is not satisfied.
Assume that the Alice-security is not fulfilled. That is, there is a quantum-passive

adversary B∗ that guesses Alice’s inputs with overwhelming probability. More formally:
Let Z be the environment that chooses uniformly randomm0,m1, c ∈ {0, 1} and provides
these values to Alice and Bob and that keeps just (m0,m1) as its final state. Then there
is a measurementM such that

for (stZ , ρB)← (QExecBσ∪{Z}(η, z)) we have stZ =M(ρB) with overwhelming probability.
(2)

Note that here we can treat Z’s output as a classical value stZ because it consists only
of the values m0,m1. M(ρB) denotes the measurement outcome after applying M to
Bob’s output state ρB.

Now, since πF quantum-passively-emulates F , and since we can consider the ma-
chines in σ that are not part of the subprotocol πF as part of a new environment Z ′

(simulating the original Z and those machines), we have that there is a superoperator
EB such that QExecBσ∪{Z} and ĒB(QExecBρ∪{Z}) are trace-indistinguishable. (Here ĒB is
defined as in Definition 20.)

With (2), we get that for (stZ , ρB)← (QExecBρ∪{Z}(η, z)) we have stZ =M(EB(stB))
with overwhelming probability.

This, however, implies that ρ is not a minimally secure quantum-passive OT protocol
(because it breaks the Alice-security of ρ).

If we assume that the Bob-security of σ is not fulfilled, we analogously get that the
Bob-security of ρ is not fulfilled. (By corrupting Alice instead of Bob.) And finally if
the correctness of σ is not fulfilled, the correctness of ρ is not fulfilled.

Since σ is not minimally secure, it follows that one of the three properties is not
fulfilled, and thus ρ is not minimally secure, either. �

Theorem 5 There is no quantum-polynomial-time minimally secure quantum everlast-
ing OT protocol which only uses quantum-passively-realizable functionalities (even if we
allow it to use several different quantum-passively-realizable functionalities and arbitrar-
ily many instances of each).
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Proof. For a quantum-polynomial-time protocol, any quantum-passive adversary is com-
putationally bounded during the protocol execution (since he only has to execute the
protocol). Thus the adversaries considered in minimally secure quantum everlasting OT
are a superset of those considered in minimally secure quantum-passive OT. �

Corollary 2 There is no quantum-polynomial-time minimally secure everlasting OT
protocol which only uses arbitrarily many instances of FCT (coin-toss), FCRS (common
reference string), FEPR (predistributed EPR pair), FPKI (public key infrastructure; as-
suming that the secret key is uniquely determined by the public key).

Proof. Immediate from Theorem 5 and Lemma 8. �

5 Everlasting quantum key distribution

The first application of quantum everlasting security we present in this paper is a new
view on quantum key distribution (QKD). Instead of thinking of QKD as a method
for getting unconditionally secure message transmission (but then being stuck with the
problem of how to realize authenticated channels), we can combine QKD with a compu-
tationally secure authenticated channel to get everlastingly secure message transmission.
This was already suggested in [ABB+07, Section 3.1], but no formal statement or proof
was given, and composition was not considered. The first step is to implement an au-
thenticated channel from, say, a signature card. (All results in this section also hold
with a normal public key infrastructure instead of a signature card.)

Lemma 12 (Authenticated channels from signature cards) Let S be a non-
uniformly quantum existentially unforgeable signature-scheme. Then there is a
polynomial-time classical protocol π using one instance of FS,A

SC such that π eqUC-
emulates (FA→B

auth )∗.

Proof. The protocol π is the following: For each value sid , upon the first input (sid ,m)
with that sid , Alice obtains a signature σ on (sid ,m) from FSC and sends (sid ,m, σ) to
Bob. (Subsequent inputs (sid ,m) with the same sid are ignored.) When Bob receives
a message (sid ,m, σ), he checks whether σ is a valid signature on (sid ,m). If so, he
outputs (sid ,m).

We claim that this protocol π eqUC-emulates (FA→B
auth )∗. We only show the case with

no corruptions (i.e., both Alice and Bob are honest), the other cases are trivial (when
sender or recipient are corrupted, Fauth does not provide any guarantees anyway).

Fix a quantum-polynomial-time environment Z and a quantum-polynomial-time ad-
versary Adv. The real model then consists of Z, honest Alice A, honest Bob B, the
signature card FSC and the adversary who intercepts the communication between A and
B (and who may communicate with Z and can get the public key from FSC). The envi-
ronment Z provides input (sid ,m) to Alice which triggers session sid of the protocol π,
and the environment also gets Bob’s output (sid ,m). (Cf. Figure 4 (a).)
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(sid ,m) (sid ,deliver)
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Figure 4: Networks occurring in the proof of Lemma 12.

The ideal model consists of Z, dummy parties Ã and B̃ who forward in-
puts/outputs to and from (FA→B

auth )∗, and simulator Sim which we will describe below.
(Cf. Figure 4 (b).)

We have to show that the real and the ideal model are trace-indistinguishable.
Without loss of generality, we assume that Z sends only one message (sid ,m) for

each sid to F∗
auth. More messages would be ignored anyway.

We use the following quantum-polynomial-time simulator Sim: Sim internally sim-
ulates the machines A, B, and Adv and forwards communication between them. Com-
munication between Adv and Z is forwarded to the external Z. Whenever Sim gets a
message (sid ,m) from F∗

auth (meaning that Alice submitted the message m for delivery),
Sim gives input (sid ,m) to the simulated A. When the simulator B outputs (sid ′,m′) for
some sid ′, then Sim sends (sid ′, deliver) to F∗

auth (causing the message to be delivered
that was scheduled for sending in the session sid of F∗

auth).
It is easy to see that the real and ideal model behave identically as long as the

following holds in the ideal model: Whenever the simulated B outputs (sid ′,m′), then
the session sid ′ of F∗

auth holds the message m′ for delivery.
Hence, we have to show that with overwhelming probability, when B outputs

(sid ′,m′), then (sid ′,m′) was sent to F∗
auth by Z at some earlier point. (And that the

message m′ was not delivered yet in session sid ′, but that follows immediately from the
construction of Bob: he only outputs one message (sid ′,m′) for each value for sid ′.)

Thus, assume that Bob outputs (sid ′,m′) such that (sid ′,m′) was never sent to F∗
auth.

By construction of Bob, this means that he got a message (sid ′,m′, σ) where σ is a valid
signature on (sid ′,m′). And by construction of Alice, no signature on (sid ′,m′) has been
requested from FSC (as Alice only requests such a message after input (sid ′,m′) to FSC).
Thus Bob got a valid signature on a message that was never signed, in contradiction
to the existential unforgeability of S. Hence Bob will output (sid ′,m′) that was not
sent to F∗

auth only with negligible probability, hence real and ideal model are trace-
indistinguishable, and security follows. �
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Lemma 13 (Authenticated channels from a PKI) Let S be a quantum existen-
tially unforgeable signature-scheme. Let KG denote the key-generation algorithm of S.
There is a polynomial-time classical protocol π using one instance of FA,KG

PKI and FB,KG
PKI

each such that π eqUC-emulates (FA→B
auth )∗.

Proof. Analogous to the proof of Lemma 12, except that Alice signs the messages herself
(using the secret key from FPKI). �

Lemma 14 (Key exchange from authenticated channels) Let A and B be two
parties. Let ℓ be an integer. Then there is a polynomial-time protocol π using
polynomially-many instances of FA→B

auth and FB→A
auth such that π eqUC-emulates FA,B,ℓ

KE .

Proof. This was shown to holds for statistical quantum-UC-security (in a slightly different
but equivalent model) in [RK05, BOHL+05]. Since statistical quantum-UC-security
implies everlasting quantum-UC-security, the lemma follows. �

Lemma 15 (Secure channel from key-exchange) Then there is a polynomial-time
classical protocol π using an instance of FA,B,η

KE such that π eqUC-emulates FA→B
secchan.

Proof. [RMQS05] show that a protocol π exists that statistically classically UC em-
ulates FA→B

secchan. [Unr10] shows that a statistical classical UC security implies statisti-
cal quantum-UC-security. Finally, statistical quantum-UC-security implies everlasting
quantum-UC-security. �

Corollary 3 (Secure channels from signature cards) Let S be a quantum existen-
tially unforgeable signature-scheme. There is a polynomial-time protocol π using one in-
stance of FA,S

SC and FB,S
SC each such that π eqUC-emulates (FA→B

secchan)
∗+(FB→A

secchan)
∗. (I.e.,

we have a bidirectional multi-message secure channel.)

Proof. By composing the protocols from Lemma 14 and Lemma 15, we get a protocol
π′ that uses polynomially-many instances of FA→B

auth and FB→A
auth and that eqUC-emulates

(FA→B
secchan)

∗+(FB→A
secchan)

∗. Instead of polynomially-many instances of FA→B
auth and FB→A

auth , we
can just use one instance of (FA→B

auth )∗ and (FB→A
auth )∗ each. Composing π′ with the proto-

col from Lemma 12 (one instance for realizing (FA→B
auth )∗ and one for realizing (FB→A

auth )∗),

we get a protocol π using one instance of one instance of FA,S
SC and FB,S

SC each and that
eqUC-emulates (FA→B

secchan)
∗ + (FB→A

secchan)
∗. �

6 Everlasting quantum multi-party computation

Classical everlasting UC commitments. In the classical setting, Müller-Quade and
Unruh [MQU10] presented a protocol that everlastingly classical-UC-emulates (called
“long-term UC-emulates” there, ecUC-emulates in the following) the commitment func-
tionality FCOM and that uses a signature card FSC. There protocol cannot be proven
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secure in the quantum setting (at least we do not know how), but it is instructive to
understand their protocol before we present ours.10

In order for a commitment protocol to be everlastingly UC secure, we need to achieve
the following: Obviously, it needs to be statistically hiding and computationally binding.
Furthermore we need that the protocol is extractable: a simulator who controls the
signature card can find out what value Alice committed to. And the protocol needs to
be equivocal: a simulator who controls the signature card can cheat the binding property
and open to a different value. The simulators need to behave in a way that is statistically
indistinguishable from the honest behavior of the parties.

The difficulty lies in the extractability. If the committed value can be extracted by the
simulator from the interaction, then it must be somehow contained in that interaction,
and an unlimited entity can extract it. But that would contradict the statistical hiding
property. The approach is to use the signature card FA

SC. When Alice wishes to commit
to a value m, we force her to obtain a signature on m. Since the simulator controls FSC,
and since Alice can only sign using FSC (even the owner of the signature card does not
know the secret key), the simulator will learn m. How do we force Alice to sign m? First,
Alice commits to m using a commitment COM. Then Alice obtains a signature σ on
(m,u) from FSC where u is the opening information for COM(m). And then Alice proves
that she knows a signature σ on (m,u) for some u that opens COM(m) asm. (Here COM
is statistically hiding, and the proof is a statistically witness-indistinguishable argument
of knowledge.)

Commit to m: A B
c := COM(m)

Proof: I know signature σ on (m,u) s.t. u opens c as m
or I know the secret key of FSC

We now have extractability: Alice can only succeed in the proof if she gets a signature
on (m,u). But then all the simulator has to do is to check which query (m,u) to FSC

opens the commitment c, and then he knows m. (We explain the “or I know the secret
key”-part in a moment.) In the open phase, we cannot just send u, then we would not
have equivocality. Instead, Alice proves that she could open c as m:

Open: A B
m

Proof: I know u that opens c as m
or I know the secret key of FSC

Now, if the simulator wishes to equivocate, he simply commits to 0, and later he
produces a fake proof that he can open c as m. To produce this fake proof, we have
added the “or I know the secret key sk”-part. Since the simulator knows sk (he controls
FSC), he can always perform the proof using sk as witness. (While Alice, not knowing
sk , is forced to prove the part of the statement before the “or”.)

10[MQU10] actually first construct a ecUC zero-knowledge proof and use that one to construct an
ecUC commitment. For clarity, we present and discuss a direct construction instead. An analogous
discussion applies to their original zero-knowledge protocol.
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Difficulties in the quantum case. Now assume we wish to prove the above protocol
secure in the quantum case. Then instead of an argument of knowledge, we need to
use a quantum argument of knowledge. But then we run into problems when showing
extractability. To show extractability, we need to show that Alice cannot perform the
first proof without first sending (m,u) to FSC. To do so, consider an execution where
Alice performs the proof without sending (m,u) to FSC. We can then consider Alice
as a prover AO with access to a signing oracle O. Applying the extractor E from the
argument of knowledge to Alice, we get that EAO

outputs a witness to the statement
that is proven. I.e., either a signature on (m,u) or the secret key sk of O. Since EAO

has only black-box access to O, and since AO and thus also EAO

never signs (m,u),
both possibilities contradict the existential unforgeability of the signature scheme. This
reasoning works in the classical case. In the quantum case (following [Unr12]), however,

the extractor EAO

, while rewinding, does the following: It applies both U and U−1 where
U is the unitary transformation describing the operation of AO. Thus, indirectly EAO

invokes not only O, but also its inverse. Existential unforgeability makes no statement
in this case. It could well be that given access to the inverse of O, we can efficiently
construct forgeries or even extract the secret key.

Note: At a first glance, it might seem that invoking the inverse of O is not a problem
due to the following reasoning. An oracle O implementing a function f(x) is usually
modeled as a unitary mapping |x〉|y〉 to |x〉|y ⊕ f(x)〉. That unitary is self-inverse, so
applying O−1 is equivalent to applying O.

However, if the signing oracle O is modeled in this way, then it can be queried on
superposition. Instead, O should measure the message to be signed first. This could
be realised by copying the message (using CNOTs) into fresh ancillae bits. But then
O is not self-inverse any more. Furthermore, to formulate the existential unforgeability,
O additionally needs to keep track of all messages that were signed (otherwise it is not
possible to define a “fresh” forgery). Applying the inverse of O will remove messages
from this list, making the notion of a fresh message meaningless.

Another (quantum) view on the problem. It has been pointed out (by an anony-
mous reviewer) that in the quantum case, the problem is actually the following: Using a
standard unconditionally hiding commitment scheme fails to achieve everlasting security
when using it to construct an OT. But this is not due to composability issues, but to the
fact that commitment schemes do not force the committer to commit to a classical value,
allowing commitments to superpositions instead. In contrast, an ideal commitment func-
tionality would not allow the commit to occur in superposition. This also matches what
we do in our quantum-secure protocol below: The signature card forces the committed
message to be classical.

We believe this view to be correct, too. Indeed, our protocol would not work if the
signature card would allow the adversary to sign superpositions of messages. Yet, this
view only partially explains the situation: Even in the purely classical case described
above, standard commitments are not sufficient. But in the classical case, the possi-
bility of committing to superpositions obviously cannot be the reason for the problem,
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Setup: A B
k0

ck := COMB(k0)

k1

k0

Proof 1: ck opens as k0 or I know a signature on msg1.

Commit to m: A B
cm := COMH(m) (open info: um)

FSC

σ: Signature on (m,um)

cσ := COMX(crs , (σ,m, um)) csk := COMX(crs , 0)

Open: A B
m

Proof 2: cσ contains (σ,m, um)
s.t. σ is signature on (m,um) and um opens cm as m.

Or: csk contains the secret key of FSC.

Figure 5: The commitment protocol based on signature cards – overview. Proof 1 is
a witness indistinguishable argument of knowledge, proof 2 is a statistically witness
indistinguishable argument.

indicating that composition is at least part of the problem. In fact, we believe that
non-composition and the possibility to commit to superpositions might actually be two
sides of the same coin. For example, composition usually requires extractability, i.e., the
fact that the adversary can only commit to values he knows. But if the adversary can
commit to superpositions, he cannot know what he commits to. It would be interesting
(but beyond the scope of this work) to explore this connection further.

Our approach. To solve this problem, we need to construct a new protocol in whose
security proof we do not need to rewind the signing oracle. A protocol overview is
given in Figure 5. We now explain the intuition behind the protocol. As explained
above, the main challenge is the extractability of the protocol: Alice commits to m
using a commitment scheme COMB, the unveil information is um. We need to make
sure that Alice is forced to sign (m,um) in order to complete the protocol. We cannot
just perform a proof of knowledge that Alice knows such a signature σ on (m,um) – it
might be that Alice proves that she knows a signatures without actually knowing it. To
force Alice to actually know the signature, we use the following approach: During the
commit phase, Alice commits to (σ,m, um) using a commitment scheme COMX. (cσ :=
COMX((σ,m, um)).) And additionally, we let Alice prove (“proof 2” in Figure 5) that
the resulting commitment cσ indeed contains a valid signature σ on (m,um). However,
we seem to have the same problem as before: How do we guarantee that Alice knows the
content of the resulting commitment cσ? We cannot use rewinding for the same reason
as before. Instead, we use a so-called dual-mode commitment for cσ. A dual-mode
commitment COMX depends on a public parameter crs : If crs is honestly chosen, then
COMX is statistically hiding (we need this as otherwise the overall protocol would not
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be statistically hiding and thus not everlastingly secure). But crs can also be chosen in
a special way together with a trapdoor td such that using td , we can efficiently compute
(σ,m, um) given cσ = COMX(crs , (σ,m, um)).

Then we can prove extractability of the eqUC commitment protocol roughly as fol-
lows:
1. For extracting, the simulator looks at the list of signing queries to FSC and finds a

suitable pair (m,um). We need to show that if Alice opens successfully, there must
have been such a signing query for (m,um) during the commit phase.

2. To show that, consider a game consisting of an execution with corrupted Alice and
that simulator. We change the game such that instead of picking crs honestly, we
pick it together with a trapdoor td . (We discuss below how to do that.)
Note: the new game will only be computationally indistinguishable from the preceding
one. But this does not contradict everlasting security: we are in a side-arm of the
proof in order to bound the probability of a certain event (“Alice opens without signing
(m,um)”). The extracting simulator will still be statistically indistinguishable from
an honest recipient of the commitment since the extracting simulator just passively
looks at the signing queries.

3. We use the soundness of “proof 2” to show that cσ contains with overwhelming prob-
ability a valid signature σ on (m,um). (In the full proof, we need to additionally
exclude that Alice proves the alternative option that csk contains the secret key.)
Note: we do not claim at this point that Alice knows σ, we only show that whatever
is extracted from cσ using td is a valid signature on (m,um). In particular, we do not
use the unforgeability of the signature scheme in this step.

4. Now we use the unforgeability: We have derived that extracting cσ using td produces
a signature on (m,um). If this would be the case without having sent (m,um) to FSC,
we would have produced a forgery, contradicting unforgeability.

5. So Alice always signs (m,um), hence the simulator from Step 1 succeeds with over-
whelming probability in extracting.

One thing is missing in this description: How to pick crs in a way that we can choose it
together with a trapdoor in Step 2? For this, we have the setup phase in Figure 5. Here
crs is chosen using a coin toss that is designed such that Bob, if he knows a signature
on a special message msg1, can cheat and choose crs arbitrarily. In Step 2, this allows
us to pick crs together with a trapdoor by requesting a signature msg1 from FSC. (Here
msg1 is an arbitrary fixed bitstring, but syntactically different from all other messages
occurring in the protocol.)

Notice that “proof 1” in the coin toss protocol needs to be “of knowledge” (more
precisely, a witness-indistinguishable argument of knowledge). However, we do not run
into problems with the combination of rewinding and unforgeability this time, because
during the execution of “proof 1”, the signature card is not accessed by the honest verifier
Alice. (And thus the signing oracle is not accessed by the extractor at all.)

Thus, the protocol from Figure 5 is extractable.

Finally, we need to see how to achieve equivocality. Fortunately, this is easy: The
equivocating simulator commits to the secret key sk of FSC in the commitment csk (he
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knows it since he controls FSC) and commits to 0 in cσ. Then, in the open phase, to
open as an arbitrary m, the simulator just performs “proof 2” using the fact that csk
indeed contains sk . Thus the protocol is equivocal, too. (No fake CRS is needed in this
case.)

The actual proof of eqUC-security can be nicely structured as a sequence of game
transformation and is presented in the next section.

6.1 Protocol description and proof

We fix the following notation for interactive commitment schemes: If COM is a com-
mitment scheme, we denote by (c, u) ← COMC,R(1

η ,m) an execution of the commit
phase with sender C and recipient R where C commits to the message m. After the
protocol execution, both C and R know the value c (e.g., c could be the protocol tran-
script), intuitively c represents the commitment itself. Furthermore, C gets the value u,
the opening information. We assume that the opening phase consists of C sending (m,u),
and R verifying the open phase via a deterministic function COMVerify(c,m, u). For
commitments that take a public parameter crs , we add this parameter as an additional
argument to COMC,R and COMVerify.

We now give a definition of dual-mode commitments. The definition is close to that
of dual-mode commitments in [DFL+09]. The main difference is that we additionally
require that the honestly chosen CRS is uniformly chosen from a set CRS . As discussed in
[DFL+09], dual-mode commitments (also according to our definition) can be constructed
from Regev’s cryptosystem [Reg09].
Definition 22 A dual-mode commitment COM is an interactive commitment with a
public common reference string crs and which has the following properties:

• The common reference string crs is chosen from a set CRS such that one can
efficiently sample elements of CRS that are statistically indistinguishable from uni-
form, and such that CRS is endowed with an arbitrary group operation ∗ (e.g.,
CRS could be {0, 1}n or Zn for some n). The operation ∗ is efficiently computable,
and inverses with respect to ∗ are efficiently computable.

• Statistical hiding: For crs chosen uniformly from CRS, COM is statistically hid-
ing.

• Fake-CRS: There is an algorithm (crs , td) ← COMFakeCRS(1η) such that crs
is non-uniformly quantum-computationally indistinguishable from being uniformly
distributed on CRS.

• Extractability: There is an efficient algorithm COMExtract such that for any
non-uniform quantum-polynomial-time A, we have that the following probability is

34



negligible:

Pr[∃u,m. (m 6= m′ ∧ COMVerify(crs , c,m, u) = 1) :

(crs , td)← COMFakeCRS(1η),

c← COMA,R(crs),

m′ ← COMExtract(td , c)]

Here c← COMA,R(crs) stands, in abuse of notation, for a commit phase between
the adversary A and an honest recipient R. The value c is the value R gets at the
end of the commit phase.

Furthermore, we will need a signature scheme S that has some (very natural) ad-
ditional properties besides quantum existential unforgeability. First, we will need de-
terministic verification. This just means that the verification algorithm is not ran-
domized. Second, we will need that S has a matchingKeys-predicate. This means
that there is a predicate matchingKeys that can be decided in deterministic polyno-
mial time, and such that for pk , sk chosen according to the key generation algorithm,
we have matchingKeys(pk , sk) = 1 with overwhelming probability. And given pk as
chosen by the key generation, a quantum polynomial-time algorithm outputs sk with
matchingKeys(pk , sk) = 1 only with negligible probability. (Intuitively, this just means
that there is a well-defined concept of whether a given secret key matches a given public
key.)

Theorem 6 (Commitments from signature cards) Let A and B be parties. Let ℓ
be an integer. Assume the existence of (all computational assumptions against non-
uniform adversaries): quantum-computationally witness-indistinguishable quantum argu-
ments of knowledge, statistically witness-indistinguishable quantum arguments,11 statis-
tically hiding quantum-computationally binding commitments, quantum-computationally
hiding perfectly binding commitments, dual-mode commitments. Assume that S is a
quantum existentially unforgeable signature scheme with deterministic verification and
with matchingKeys-predicate.

Then there is a protocol π using secure channels and one instance of FA,S
SC such that

π eqUC-emulates (FA→B,ℓ
COM )∗.

(Here (FA→B,ℓ
COM )∗ is the functionality consisting of many instances of FA→B,ℓ

COM . I.e.,
we can perform many commitments using a single signature card.)

Proof. Fix a bitstrings msg1. We assume that tuples are encoded such that msg1

is distinct from any tuple. Let COMB denote a perfectly binding and quantum-
computationally hiding commitment scheme. Let COMH denote a statistically hiding

11Quantum-computational witness-indistinguishability is defined analogously to the computational
witness-indistinguishability (as in, e.g., [Gol01]). Quantum arguments and quantum arguments of knowl-
edge are defined like quantum proofs [Wat09] and quantum proofs of knowledge [Unr12], except that we
consider only quantum-polynomial-time provers instead of unlimited provers.
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Parties: The sender Alice A and the recipient Bob B.
Protocol phases: There are three phases, the setup phase, the commit phase, and the
open phase. The setup phase is executed only once (before the first commit phase), the
resulting value crs is shared between all instances of the protocol.
Inputs: The commit phase (for instance sid) is triggered by Alice getting input
(sid , commit,m) with m ∈ {0, 1}ℓ. The open phase (for instance sid) is triggered by
Alice getting input (sid , open). The setup phase has no inputs but is implicitly triggered
by the first commit phase (i.e., by the first input (sid , commit,m)). Bob gets no inputs.
Setup phase:
S1. Bob picks k0 ∈ CRS uniformly at random (or statistically indistinguishable from

uniform).
S2. Bob commits to k0 using COMB, i.e., we execute (ck, uk)← COMBB,A(1

η , k0).
S3. Alice picks k1 ∈ CRS uniformly at random (or statistically indistinguishable from

uniform) and sends k1 to Bob.
S4. Bob sends k0 to Alice.
S5. Bob proves that ck contains k0. That is, Bob and Alice execute WIAOKct . The

statement proven is (pk , ck, k0) where pk is the public key of the signature card. Bob
uses the witness (uk, 0).

S6. Alice and Bob set crs := k0 ∗ k1 where ∗ is the group operation on CRS .
Commit phase:
C1. Alice commits to m using COMH, i.e., we execute (cm, um)← COMHA,B(m).

C2. Alice obtains a signature σ on (m,um) from FA,S
SC .

C3. Alice commits to (σ,m, um) and 0 using COMX. That is, we execute (cσ , uσ) ←
COMXA,B(crs , (σ,m, um)) and (csk , usk )← COMXA,B(crs , 0).

C4. Bob outputs committed.
Open phase:
O1. Alice sends m.
O2. Alice proves that cσ contains a valid triple (σ,m, um). That is, Alice and Bob

execute SWIAcom . The statement proven is (crs , pk , cm, cσ , csk ). Alice uses the
witness (σ, 0, um, uσ, 0).

O3. Bob outputs (open,m).

Rct := {(pk , ck, k0), (u, σ) : COMBVerify(ck, k0, u) = 1 ∨Verify(pk , σ, msg1) = 1}

Rcom := {(crs , pk , cm, cσ , csk ,m), (σ, sk , um, uσ , usk ) :

(COMHVerify(cm,m, um) = 1 ∧ COMXVerify(crs , cσ , (σ,m, um), uσ) = 1

∧Verify(pk , σ, (m,um)) = 1)

or (COMXVerify(csk , sk , usk ) = 1 ∧matchingKeys(pk , sk) = 1)}

Figure 6: The commitment protocol based on signature cards.

WIAOKct is a quantum-computationally witness-indistinguishable quantum argument of
knowledge for the relation Rct . SWIAcom is a statistically witness-indistinguishable ar-
gument for the relation Rcom . COMH is a statistically hiding quantum-computationally
binding commitment. COMB is a quantum-computationally hiding perfectly binding
commitment. COMX is a dual-mode commitment.
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quantum-computationally binding commitment scheme. Furthermore, let COMX be a
dual-mode commitment. Let CRS denote the set from which the parameter of COMX is
chosen. We assume that the message space of COMH contains {0, 1}ℓ, that the message
space of COMX is chosen large enough to commit on triples (σ,m, u) where m ∈ {0, 1}ℓ,
u is the opening information of (c, u) ← COMH(m), and σ is a signature on (m,u),
and that the message space of COMX is large enough to commit to the secret key of
the signature card. Finally, we assume that the message space of COMB contains CRS .
(Notice that the message space can be assumed to be arbitrarily large, because we can
just concatenate several commitments of smaller message space to get a bigger one.)

Let Verify be the verification algorithm of S. We define the following NP-relations
Rct and Rcom :

Rct := {(pk , ck, k0), (u, σ) : COMBVerify(ck, k0, u) = 1 ∨Verify(pk , σ, msg1) = 1}

Rcom := {(crs , pk , cm, cσ , csk ,m), (σ, sk , um, uσ , usk ) :

(COMHVerify(cm,m, um) = 1 ∧ COMXVerify(crs , cσ , (σ,m, um), uσ) = 1

∧Verify(pk , σ, (m,um)) = 1)

or (COMXVerify(csk , sk , usk ) = 1 ∧matchingKeys(pk , sk) = 1)}

Let WIAOKct be a quantum-computationally witness-indistinguishable quantum ar-
gument of knowledge for the relation Rct . Let SWIAcom be a statistically witness-
indistinguishable quantum argument for the relation Rcom .

We describe our commitment protocol π in Figure 6. We claim that π is a eqUC-
secure commitment protocol (that allows to perform many commitments), i.e., π eqUC-

emulates (FA→B,ℓ
COM )∗.

Corrupted Bob. We first show security in the case of Bob being corrupted. The real
and ideal model in this case are as follows:

In the real model, we have the environment Z, the adversary Adv, the honest party A
(Alice), the corrupted party BC . A and BC can communicate with the signature card
FSC (only A can sign). The adversary controls the corrupted party BC , so effectively
he controls the communication between Alice and Bob and can get the public key from
FSC via BC . The environment provides Alice’s inputs (sid , commit, v) and (sid , open).
In the following, we omit the argument sid for readability. One should, however, always
keep in mind that several the commit and open phase of several sessions can be running
concurrently (but only one setup phase). See Figure 7 (a).

In the ideal model, we have the environment Z, the simulator Sim (to be defined
below), the dummy-party Ã, the corrupted party BC , and the commitment functionality
FCOM. The inputs (commit, v) and open of FCOM are provided by the dummy-party B̃
and thus effectively by the environment Z. The simulator Sim controls the corrupted
party BC and hence gets the outputs committed and (open, v) of FCOM. See Figure 7 (b).

Fix a quantum-polynomial-time adversary Adv. To show security, we need to find
a quantum-polynomial-time simulator Sim such that, for any quantum-polynomial-time
environment Z, the real model and the ideal model are trace-indistinguishable.
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(a)

Z A BC Adv

FSC(commit,v)

open

pk

(b)

Z Ã FCOM BC Sim
(commit,v)

open

(commit,v)

open

committed

(open,v)

committed

(open,v)

Figure 7: Networks occurring in the case of corrupted Bob.

To show that the real and the ideal model are trace-indistinguishable, we start with
the real model, and change the machines in the real model step-by-step until we end up
with the ideal model. In each step, we show that the network before and after that step
are trace-indistinguishable. We describe the simulator Sim in the last step of the proof.

As the simulator will have to simulate the messages sent by Alice, but does not know
the committed message m before the open phase, the simulator will have to “cheat” in
the commitment by first committing to an arbitrary value and later opening this value
as m (equivocality). In order to arrive at such a simulator, we step-by-step transform
Alice in the honest execution into an Alice that also “cheats”, this Alice can then be used
directly to construct the simulator in the end.

Thus, for the following sequence of games, fix a quantum-polynomial-time environ-
ment Z and a quantum-polynomial-time adversary Adv. In slight abuse of notation,
we call two games trace-indistinguishable if the states output by Z in both games are
trace-indistinguishable.

We describe the differences between the games in terms of changes of the behavior
of Alice. It is understood that all these changes apply to all sessions of the protocol.

Game 1. An execution of the real model as in Figure 7 (a). ⋄

Game 2. Like Game 1, except that in step C3, Alice executes (csk , usk ) ←
COMXA,B(crs , sk) instead of (csk , usk ) ← COMXA,B(crs , 0). (Here sk is the secret
key maintained by the ideal functionality FSC.) ⋄

Notice that in this game, Alice is not a valid protocol machine because her behavior
depends on sk which is a local variable of FSC. It is, however, not necessary that Game 2
is a valid protocol execution in our model as long as it is well-defined. The final game in
our sequence (involving a simulator), will again be a valid execution in the ideal model.

From the statistical hiding property of dual-mode commitments, it follows that there
exists a negligible function µ1 and a set H ⊆ CRS of common reference strings (where
H may depend on the security parameters) such that: |H|/|CRS | ≥ 1−µ1(η) (i.e., with
overwhelming probability, a CRS in H will be chosen) and for any fixed crs ∈ H, we
have that COMX(crs , ·) is statistically hiding (with trace-distance at most µ1).

Let PH
i denote the probability that WIAOKct in step S5 succeeds and for the crs

computed in step S6 of the setup phase in the execution of Game i it holds that crs /∈ H.
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Then if PH
1 is negligible, Game 1 and Game 2 are trace-indistinguishable (notice that

the opening information usk is never used).

Game 3. Like Game 2, except that in step O2, in the SWIAcom , Alice uses the witness
(0, sk , 0, 0, usk ) instead of (σ, 0, um, uσ, 0). ⋄

Both (0, sk , 0, 0, usk ) instead of (σ, 0, um, uσ, 0) are valid witnesses for the statement
(crs , pk , cm, cσ , csk ,m). Thus the statistical witness-indistinguishability of SWIAcom im-
plies that Game 2 and Game 3 are trace-indistinguishable. (Since several instances of
the SWIAcom are executed, we use a standard hybrid-argument.)

Game 4. Like Game 3, except that in step C3, Alice executes (cσ, uσ) ←
COMXA,B(crs , 0) instead of (cσ , uσ)← COMXA,B(crs , (σ,m, um)). ⋄

Analogous to the trace-indistinguishability of Game 1 and Game 2, we have that if
PH
3 is negligible, Game 3 and Game 4 are trace-indistinguishable (notice that due to the

change of witness in Game 3, the opening information uσ is never used).

Game 5. Like Game 4, except that step C2 is omitted. (I.e., Alice does not obtain the
signature σ.) ⋄

Notice that in Game 4, the signature σ is never used. (We removed it from the
witness of SWIAcom in Game 3, and from the commitment cσ in Game 4.) Thus the
output state of Z in Game 4 and Game 5 are equal.

Game 6. Like Game 5, except that in step C1 of the commit phase, Alice executes
(cm, um)← COMHA,B(0) instead of (cm, um)← COMHA,B(m). ⋄

Since the opening information um is never used (we removed it from the witness
in Game 3, and from the commitment cσ in Game 4, and from the message sent to
FSC in Game 5), and since COMH is statistically hiding, Game 5 and Game 6 are trace-
indistinguishable. (Since several instances of the COMH are executed, we use a standard
hybrid-argument.)

Notice that in Game 6, Alice uses the value m only during the open phase. We
can thus construct a simulator Sim that does the following: It internally simulates the
modified Alice from Game 6 together with the ideal functionality FSC. When Sim gets
the message committed from FCOM (this happens if Z sends (commit,m) to Alice), he
invokes the modified Alice with input (commit, ∗). When Sim gets the message (open,m)
from FCOM, he puts the correct value of m into Alice’s state (m instead of ∗) invokes the
Alice with input open. Communication of Alice with Bob is forwarded to the environment
(as the dummy adversary Adv would do in the real model and Game 6).

Game 7. An execution of the ideal model as in Figure 7 (b) using the simulator Sim we
just defined. ⋄

Game 7 executes the same steps as Game 6. The only difference is that some com-
putations are performed by different machines (e.g., Sim takes over the computations of
FSC and Alice). Thus Z’s output state in Game 6 and Game 7 are identical.

Thus, if PH
1 and PH

3 are negligible, then Game 1 and Game 7 trace-indistinguishable,

and hence π eqUC-emulates (FA→B,ℓ
COM )∗ in the case of corrupted Bob.
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It remains to show that PH
1 and PH

3 are negligible. We show this for PH
1 , the case for

PH
3 is completely analogous. Assume that PH

1 is non-negligible. The following sequence
of games will then lead to a contradiction.

Game 8. Like Game 1, except that we abort the game after the setup phase (i.e., after
step S6). ⋄

Whether crs ∈ H holds is determined at the end of the setup phase. Thus aborting
after the setup phase does not change whether crs ∈ H holds. Hence PH

1 = PH
8 and

thus PH
8 is non-negligible.

Since COMB is perfectly binding, there is a (not necessarily efficiently computable)
function fB that extracts the committed value a commitment. More precisely, for any
c, m, and u, we have COMBVerify(c,m, u) = 1 =⇒ fB(c) = m. (If c cannot be opened,
then the value of fB(c) does not matter to us.)

Since k1 is chosen uniformly from CRS after ck has been chosen, and since
|H|/|CRS | is overwhelming, we have that Pr[fB(ck) ∗ k1 ∈ H : Game 8] is over-
whelming. Furthermore, since crs = k0 ∗ k1, by definition of PH

8 , we have that
Pr[k0 ∗ k1 /∈ H ∧WIAOKct succeeds : Game 8] is non-negligible. Together, this gives
that Pr[k0 6= fB(ck) ∧WIAOKct succeeds : Game 8] is non-negligible.

Observe that the the execution of Game 8 can be split into two phases as follows:
The first phase consists of an execution of the real model until step S4 inclusive. We
denote the execution of the first phase by an efficient algorithm G0. G0 uses a signing
oracle O whenever FSC produces a signature. G0 returns the values pk , ck, k0 and its
final state ρ0.

The second phase consists of the execution of WIAOKct with honest verifier (using
statement (pk , ck, k0)) and some efficient, potentially malicious prover P ∗(ρ0) (that in-
cludes all machines in the game except for Alice). Note that in the second phase the
signature card is never used for signing. (Only Alice can sign, and the protocol does
not instruct Alice to sign during the setup phase.) Thus P ∗ does not need access to O.
Furthermore, without loss of generality, we can assume P ∗ to be unitary. We can thus
reformulate Game 8 as follows:

Game 9. Let O be a signing oracle. Let V denote the honest verifier of WIAOKct .
Execute (ρ0, pk , ck, k0) ← GO

0 . Execute ok ← 〈P ∗(ρ0), V (pk , ck, k0)〉. (That is, ok
represents V ’s output.) ⋄

(The notation 〈A,B〉 denotes the output of B after an interaction between A
and B.) Then Pr[k0 6= fB(ck) ∧ ok = 1 : Game 9] = Pr[k0 6= fB(ck) ∧
WIAOKct succeeds : Game 8] is non-negligible.

Game 10. Execute (ρ0, pk , ck, k0)← GO
0 . Execute (u, σ) ← EP ∗

(ρ
(pk ,ck,k0)
0 ). Here E is

the extractor of WIAOKct . ⋄

For any value of pk , ck, k0, let ρ
(pk ,ck,k0)
0 be the state output by GO

0 when GO
0 out-

puts pk , ck, k0. And let Prpk ,ck,k0 denote the probability that GO
0 outputs these values

pk , ck, k0. Since WIAOKct is a quantum argument of knowledge, there is an integer

40



d ≥ 1 and a negligible function µ such that for all pk , ck, k0

Pr[((pk , ck, k0), (u, σ)) ∈ Rct : (u, σ)← EP ∗

(ρ
(pk ,ck,k0)
0 )]

≥
(

Pr[ok = 1 : ok ← 〈P ∗(ρ0), V (pk , ck, k0), ]〉
)d
− µ (3)

We abbreviate the first probability by Pr
(pk ,ck,k0)
E and the second as Pr

(pk ,ck,k0)
V . Averag-

ing over the different possible values of (pk , ck, k0), we get

Pr[k0 6= fB(ck) ∧ ((pk , ck, k0), (u, σ)) ∈ Rct : Game 10]

=
∑

(pk ,ck,k0)
k0 6=fB(ck)

Prpk ,ck,k0 Pr
(pk ,ck,k0)
E

(3)

≥
∑

(pk ,ck,k0)
k0 6=fB(ck)

Prpk ,ck,k0
(

Pr
(pk ,ck,k0)
V

)d
− µ

(∗)

≥
(

∑

(pk ,ck,k0)
k0 6=fB(ck)

Prpk ,ck,k0 Pr
(pk ,ck,k0)
V

)d
− µ

≥
(

Pr[k0 6= fB(ck) ∧ ok = 1 : Game 9]
)d
− µ (4)

Here (∗) uses Jensen’s inequality. Since we have shown above that Pr[k0 6= fB(ck)∧ok =
1 : Game 9] is non-negligible, with (4) we get that Pr[k0 6= fB(ck)∧((pk , ck, k0), (u, σ)) ∈
Rct : Game 10] is non-negligible, too.

By definition of fB, we have that if k0 6= fB(ck), then COMBVerify(ck, k0, u) = 0.
Thus k0 6= fB(ck)∧((pk , ck, k0), (u, σ)) ∈ Rct implies Verify(pk , σ, msg1) = 1 by definition
of Rct . Thus Pr[Verify(ok , σ, msg1) = 1 : Game 10] is non-negligible.

In Game 10, the signing oracle O is only queried by GO
0 . By construction of G0, this

means that O only signs messages that Alice would send to FSC. Alice never sends msg1
to FSC (since msg1 is distinct from any tuple (m,um).). Thus in Game 10, the message
msg1 is never sent to the signing oracle O. Thus the existential quantum-unforgeability
of S implies that Pr[Verify(ok , σ, msg1) = 1 : Game 10] is negligible. Thus we reached
a contradiction. Hence our assumption that PH

1 is non-negligible (see the paragraph
before Game 8) was wrong. Hence PH

1 is negligible. Analogously we show that PH
3

is negligible. After Game 7 we concluded, that if PH
1 and PH

3 are negligible, π eqUC-

emulates (FA→B,ℓ
COM )∗ in the case of corrupted Bob.

Thus we have shown that π eqUC-emulates (FA→B,ℓ
COM )∗ in the case of corrupted Bob.

Corrupted Alice. First, we describe the structure of the real and the ideal model in
the case that the party A (Alice) is corrupted:

In the real model, we have the environment Z, the adversary Adv, the corrupted
party AC , and the honest party B (Bob). AC and B can communicate with the signa-
ture card FSC (only AC can sign). The adversary controls the corrupted party AC , so
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(commit,v)
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(open,v)

committed
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Figure 8: Networks occurring in the case of corrupted Alice.

effectively he controls the communication between Alice and Bob and can access FSC in
Alice’s name. The environment gets Bob’s outputs (sid , committed) and (sid , open, v).
In the following, we omit the argument sid for readability. One should, however, always
keep in mind that several the commit and open phase of several sessions can be running
concurrently (but only one setup phase). See Figure 8 (a).

In the ideal model, we have the environment Z, the simulator Sim (to be defined
below), the corrupted party AC , the dummy-party B̃, and the commitment functionality
FCOM. The inputs (commit, v) and open of FCOM are provided by the corrupted party
AC and thus effectively by the simulator Sim. The environment Z controls the dummy-
party B̃ and hence gets the outputs committed and (open, v) of FCOM. See Figure 8 (b).

Fix a quantum-polynomial-time adversary Adv. To show security, we need to find
a quantum-polynomial-time simulator Sim such that for any environment Z, the real
model and the ideal model are trace-indistinguishable.

Before we will describe the simulator Sim, we first investigate the real model further.
In an execution of the protocol, for a given session id sid , we call a pair (m,u) sid -valid
if COMHVerify(cm,m, u) = 1 where cm is the commitment from C1 in session sid . We
call a triple (σ,m, u) sid -valid if (m,u) is sid -valid and Verify(pk , σ, (m,u)) = 1 where
pk is the public key of FSC. Let sigqueries denote the list of messages that have been
sent to the FSC for signing. (Notice that one list sigqueries is shared between all sessions
because it is not possible to tell which signing query belongs to which session.)

ExtrFail denotes the following event: In some session sid , Bob accepts the opening
phase (i.e., Bob accepts the proof SWIAcom ) with opened message m, and there either
is no sid -valid pair (m̃, ũ) in sigqueries, or the first sid -valid pair (m̃, ũ) in sigqueries
has m̃ 6= m.

Assuming that ExtrFail occurs only with negligible probability in the real model, then
we can easily construct a simulator Sim for the ideal model. Sim simulates Adv, Bob and
FSC internally. The communication between Adv and the environment is forwarded by
Sim. When B outputs committed, the simulator looks for the first sid -valid pair (m′, u)
in sigqueries and sends (commit,m′) to FCOM.

By construction of Sim, we immediately have that the real model and the ideal model
are trace-indistinguishable if ExtrFail occurs with negligible probability in the real model.

Thus, all we have to show is that Pr[ExtrFail] is negligible in the following game.
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Game 11. An execution of the real model as in Figure 8 (a). ⋄

To bound Pr[ExtrFail : Game 11], we again construct a sequence of games.

Game 12. Like Game 11, except that in step S5, Bob computes σmsg1 ← Sign(sk , msg1)
using the secret key sk of FSC and then uses (0, σmsg1) as witness for the WIAOKct . ⋄

Notice that in this game, Bob is not a valid protocol machine because her behavior
depends on sk which is a local variable of FSC. It is, however, not necessary that Game 12
is a valid protocol execution in our model as long as it is well-defined.

Since WIAOKct is quantum-computationally witness indistinguishable, and both the
witness (uk, 0) used by the Bob in Game 11 as well as the witness (0, σmsg1) used by Bob
in Game 12 are valid witnesses with respect to Rct for the statement (pk , ck, k0), we have
that

∣

∣Pr[ExtrFail : Game 11]− Pr[ExtrFail : Game 12]
∣

∣ is negligible.

Game 13. Like Game 12, except that in step S2, Bob executes (ck, uk) ←
COMBB,A(1

η , 0) instead of (ck, uk)← COMBB,A(1
η, k0). ⋄

Since the commitment COMB is quantum-computationally hiding, and its opening in-
formation uk is never used (we removed it from the witness of the WIAOKct in Game 12),
we have that

∣

∣Pr[ExtrFail : Game 12]− Pr[ExtrFail : Game 13]
∣

∣ is negligible.

Game 14. Like Game 13, except that instead of choosing k0 ∈ CRS already in step S1,
Bob chooses k0 only in step S4 as follows: He chooses crs ′ ∈ CRS uniformly at random
and computes k0 := crs ′ ∗ k−1

1 where k−1
1 is the inverse of k1 with respect to the group

operation ∗. ⋄

Since ∗ is a group operation on CRS , k0 := crs ′ ∗ k−1
1 has the same distribution as a

uniformly chosen k0 ∈ CRS . Hence
∣

∣Pr[ExtrFail : Game 13]− Pr[ExtrFail : Game 14]
∣

∣ is
negligible (a negligible error may be introduced if we can only efficiently pick elements
from CRS with almost uniform distribution).

Notice that the value crs = k0 ∗ k1 that is computed in step S6 equals the value crs ′

chosen by Bob in step S4.

Game 15. Like Game 14, except that in step S4, instead of choosing crs ′ ∈ CRS
uniformly, Bob computes (crs ′, td)← COMFakeCRS(1η).

Furthermore, in each session, after getting cσ and csk in step C3, Bob computes
(σ∗,m∗, u∗m) := COMXExtract(td , cσ) and sk∗ := COMXExtract(td , csk ). ⋄

The fake-CRS property of dual-mode commitments (Definition 22) implies that crs
as chosen in Game 14 and in Game 15 are quantum-computationally indistinguishable.
(Since σ∗,m∗, u∗m, sk

∗ are never used, the fact that Bob additionally computes these val-
ues has no effect.) Hence

∣

∣Pr[ExtrFail : Game 14]− Pr[ExtrFail : Game 15]
∣

∣ is negligible.
Summarizing, we have that |Pr[ExtrFail : Game 11] − Pr[ExtrFail : Game 15]| is

negligible. Thus, to show that Pr[ExtrFail : Game 11] is negligible (which then concludes
the proof), we have to show that Pr[ExtrFail : Game 15] is negligible.

For the remainder of the proof, all probabilities refer to Game 15. E.g., Pr[ExtrFail]
means Pr[ExtrFail : Game 15].

We define the following events:
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• UnsoundSWIAcom: The statement proven in the SWIAcom is not true. More pre-
cisely, in some session sid , Bob accepts an execution of SWIAcom in step O2 with
statement s := (crs , pk , cm, cσ , ssk ,m) such that no witness w with (s,w) ∈ Rcom

exists.
• ExtractSK: Bob extracts a valid secret key csk . Formally, in some session sid ,

matchingKeys(pk , sk∗) = 1.
• SigForge: Bob extracts a forged signature from cσ. More precisely, in some session

sid , Verify(pk , σ∗, (m∗, u∗)) = 1 and (m∗, u∗) /∈ sigqueries.
• COMHBreak: For some session id sid , there are two sid -valid pairs
(m1, u1), (m2, u2) ∈ sigqueries with m1 6= m2.
• COMXWrongExtr: The commitment cσ or csk can be opened to a value differ-

ent from what Bob extracted. More precisely, in some session sid , there ex-
ist ũ, m̃ such that (a) COMXVerify(crs , cσ , m̃, ũ) = 1 and m̃ 6= (σ∗,m∗, u∗m) or
(b) COMXVerify(crs , csk , m̃, ũ) = 1 and m̃ 6= sk∗.

The event UnsoundSWIAcom occurs only with negligible probability since SWIAcom

is a quantum argument.
If matchingKeys(pk , sk∗) = 1, sk∗ could be used to produce arbitrary signatures

(that pass verification with respect to pk). This contradicts the quantum unforgeability
of S. Thus ExtractSK occurs only with negligible probability.

In Game 15, the secret key sk of FSC is only used to sign the messages sent to FSC

and to sign the message msg1. Thus, if SigForge occurs, a signature of a message (m∗, u∗)
has been produced that was never honestly signed (we have (m∗, u∗) 6= msg1 since msg1
is distinct from any pair). Since S is quantum existentially unforgeable, this happens
only with negligible probability. Hence SigForge occurs with negligible probability.

By definition of sid-valid pairs, (m1, u1), (m2, u2) ∈ sigqueries with m1 6= m2 contra-
dicts the quantum-computational binding property of COMH. Thus COMHBreak has
negligible probability.

Since (σ∗,m∗, u∗m) = COMXExtract(td , cσ), and sk∗ = COMXExtract(td , csk ), and
(crs ′, td) = COMFakeCRS(1η), and crs ′ = crs , we have that the the extractability of
COMX (as defined in Definition 22) implies that COMXWrongExtr has negligible proba-
bility.

We proceed to show that in any execution, the following holds:

¬UnsoundSWIAcom ∧ ¬ExtractSK ∧ ¬SigForge

∧ ¬COMHBreak ∧ ¬COMXWrongExtr =⇒ ¬ExtrFail (5)

To show (5), assume an execution in which ¬UnsoundSWIAcom, ¬ExtractSK,
¬SigForge, ¬COMHBreak, and ¬COMXWrongExtr hold. Fix some session sid . Let
ExtrFailsid denote the event that ExtrFail occurs in session sid . If the SWIAcom from
session sid is not accepted by Bob, we trivially have ¬ExtrFailsid . Thus we can assume
that the SWIAcom is accepted by Bob. By definition of Rcom , ¬UnsoundSWIAcom then
implies that one of the following holds:
(a) There are values σ, um, uσ such that COMHVerify(cm,m, um) = 1 and

COMXVerify(crs , cσ , (σ,m, um), uσ) = 1 and Verify(pk , σ, (m,um)) = 1.

44



(b) There are values sk , usk such that COMXVerify(csk , sk , usk ) = 1 and
matchingKeys(pk , sk) = 1.

Since we have ¬COMXWrongExtr, this implies that one of the following holds:
(a’) m = m∗ and COMHVerify(cm,m

∗, u∗m) = 1 and Verify(pk , σ∗, (m∗, u∗m)) = 1.
(b’) matchingKeys(pk , sk∗) = 1.
Case (b’) would contradict ¬ExtractSK. Hence we have COMHVerify(cm,m

∗, u∗m) = 1
and Verify(pk , σ∗, (m∗, u∗m)) = 1. Since ¬SigForge holds, Verify(pk , σ∗, (m∗, u∗m)) = 1
implies (m∗, u∗m) ∈ sigqueries. COMHVerify(cm,m

∗, u∗m) = 1 implies that (m∗, u∗m) is
sid -valid. Then, since ¬COMHBreak, there is no sid -valid pair (m2, u2) ∈ sigqueries
with m∗ 6= m2. Thus, there is a sid -valid pair (m̃, ũ) in sigqueries, and the first such
pair satisfies m̃ = m∗ = m. Hence we have ¬ExtrFailsid . Since this holds for any session
sid , we have shown (5).

Since UnsoundSWIAcom, ExtractSK, SigForge, COMHBreak, and COMXWrongExtr

happen with negligible probability, by (5) ExtrFail occurs with negligible probability. As
shown above, this implies that the real and the ideal model are trace-indistinguishable.
Hence π eqUC-emulates (FA→B,ℓ

COM )∗ in the case of corrupted Alice. �

6.2 Two-party computation

Corollary 4 (Everlasting two-party computation) Let A and B be parties. Let G
be a well-formed12 classical probabilistic-polynomial-time functionality involving A and
B. Under the conditions from Theorem 6, there is a protocol πG using one instance of
FA,S
SC such that πG eqUC-emulates G∗.

Proof. In [IPS08], it is shown that there is a classical protocol using polynomially-many
instances of FA→B,1

OT and FB→A,1
OT that statistically classical-UC-emulates G∗.

In [Wul07], it is shown that there is a classical protocol using one instance of FB→A,1
OT

that statistically classical-UC-emulates FA→B,1
OT (OT reversal).

By composing the protocols from [IPS08] and [Wul07], we get a protocol π1 that uses
polynomially-many instances of FB→A,1

OT and statistically classical-UC-emulates G∗.
In [Unr10] it is shown that statistical classical-UC-security implies statistical

quantum-UC-security. Thus π1 statistical quantum-UC-emulates G∗.
In [Unr10], it is shown that there is a protocol using polynomially-many instances of

FA→B
COM that statistically quantum-UC-emulates FB→A,1

OT .
By composing π1 and the protocol from [Unr10], we get a protocol π2 that uses

(FA→B
COM )∗ and statistically quantum-UC-emulates G∗ and thus eqUC-emulates G∗.
By composing the protocl π2 with the protocol from Theorem 6, we get a protocol

π using a single instance of FA,S
SC and that eqUC-emulates G∗. �

12Well-formedness describes certain technical restrictions stemming from the proof by Ishai et
al. [IPS08]: Whenever the functionality gets an input, the adversary is informed about the length of
that input. Whenever the functionality makes an output, the adversary is informed about the length of
that output and may decide when this output is to be scheduled.
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6.3 Improvements & future work

(a) Give protocols for multi-party computation. We have only discussed two-party com-
putation. Corollary 4 can easily be extended to multi-party computation by running
an instance of the protocol from Theorem 6 for each pair of parties. But then we end
up with a protocol where every party needs one signature card for each communi-
cation partner. To get eqUC multi-party computation with only one signature card
per party, we need to show that a signature card can be shared between instances of
the protocol that run with different communication partners (we have only analysed
the case where it is shared between different instances with the same communica-
tion partner). We foresee no difficulties, but the analysis becomes somewhat more
complex because one needs to make sure that the argument of knowledge from the
setup phase (Step S5) in one instance does not run concurrently with the signing in
the commit phase (Step C2) of another instance – otherwise we will again have the
problem that we rewind a prover that accesses the signing oracle.

(b) With our protocol, the signature card must be used exclusively by our protocol.
No guarantees are made if the same signature card is used in other protocols. For
example, if we wish to implement the secure channels in the two-party computation
protocol using the QKD-based protocol from Corollary 3, we end up with a protocol
that needs two signature cards for Alice instead of one. Also, in many cases a user
cannot get several signature cards (for example if the signature card is part of his
national ID document).
To cope with these cases, we need to make sure that the protocol stays secure even
if the signature card is also used by other protocols. This can be achieved by adapt-
ing the GUC model [CDPW07] to the everlasting quantum-UC case. In the GUC
model (or equivalently UC with catalysts [HUMQ07]), the trusted setup used by
the protocol (the signature card in our case) can concurrently be accessed by other
protocols. Of course, our protocol immediately becomes insecure in this case. For
example, Bob might obtain a signature on msg1 through some other protocol and use
this to cheat in the setup phase. This can be avoided by not using a fixed message
msg1 but letting Alice choose what message m1 is to be signed instead. And addi-
tionally we need to make sure that Bob cannot obtain a signature on m1 after Alice
announces m1. This can be achieved by using the locking approach from [HUMQ07]:
they show how to get GUC security with signature cards by implementing a locking
mechanism that restricts access by other protocol instances in critical protocol steps.
(In our case, the lock would need to be in place starting from the point where Alice
announces m1 till the end of the proof in Step S5.)
Notice that this approach will also immediately solve the problem described in (a):
The GUC composition theorem allows us to share the same signature card between
different instances of the protocol, even when they run with different communication
partners.

(c) Can the original protocol from [MQU10] be shown secure in the quantum setting?
Perhaps any quantum unforgeable signature scheme is still unforgeable when the
adversary is given access to the inverse of the signing oracle?
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Symbol index

H Usually denotes a Hilbert space 7
P(H) Set of density operators over H 8
E Usually represents a superoperator 8
Eminit Superoperator initializing system with |m〉 8
TD(ρ, ρ′) Trace distance between ρ and ρ′ 8
Eclass Superoperator measuring in computational basis 8
idM ID of machine M 9

E
(η)
M State transition operator of machine M on security parameter η 9
η Security parameter 9
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Hstate Hilbert space containing machine state 9
Hclass Hilbert space for messages, classical part 9
Hquant Hilbert space for messages, quantum part 9
N Usually refers to a network 9
idsN Machine IDs in network N 9

E
(k)
N

State transition operator of network N 9
ExecN(η, z) Final output of the environment in network N 10
QExecN(η, z) Final state of the environment in network N 10
partiesπ Parties in protocol π (corruptible machines) 10
environment Machine ID of the environment 10
adversary Machine ID of the adversary (or simulator) 10
Adv Usually denotes an adversary 10
Sim Usually denotes a simulator 10
Z Usually denotes an environment 10
F Usually denotes an ideal functionality 12
G Usually denotes an ideal functionality 12

FA→B,ℓ
COM Commitment functionality from A to B, ℓ bit 13

FA→B,ℓ
OT OT functionality from A to B, ℓ bit 13
D Usually denotes a distribution

FA,B,D
CT Coin-toss functionality for A and B (with distribution D) 13
FD
CRS CRS (distribution D) 13

FA,B
EPR Predistributed EPR pair 13

S Usually denotes a signature scheme

FS,A
SC Signature card functionality (owner A, signature scheme S) 13

pk Usually denotes a public verification key
sk Usually denotes a secret signing key

FA,D
PKI Public-key infrastructure (for user A, key-generation KG) 14
FA→B
auth One-use authenticated channel (from A to B) 14
FA→B
secchan Secure channel functionality 14

FA,B,ℓ
KE Key exchange functionality for A and B (ℓ bit key) 14
F + G Combination of two functionalities 14
F∗ Arbitrarily many instances of F 14
Advdummy Dummy-adversary 15
∗ Group operation on CRS 34
matchingKeys(pk , sk ) Returns 1 if sk is the secret key for pk 35
〈A,B〉 Interaction between machines A and B, returns B’s output 40
sigqueries Messages signed by FSC 42
ExtrFail Event: Extraction fails 42
UnsoundSWIAcom Event: SWIAcom proves wrong statement 44
ExtractSK Event: Bob extracts sk from csk 44
SigForge Event: Bob extracts a forged signature from cσ 44
COMHBreak Event: cm opened to two different values 44
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COMXWrongExtr Event: Extracting cσ or csk yields the wrong value 44
|Ψ〉 A quantum state named Ψ
〈Ψ| The dual of |Ψ〉
C Complex numbers
N Natural numbers without 0

Index

adversary, 10

dummy, 15
authenticated channel, 11

channel
authenticated, 11

insecure, 11

secure, 11
classical state, 8

classical superoperator, 8
commitment

dual-mode, 34

functionality, 13
common reference string, 13

composed systems, 8

composition theorem, 16
computational basis, 7

computational quantum UC, 10, 11
computationally quantum-UC-emulate,

10

corrupted party, 10
corruption, 10

CRS, see common reference string

density operator, 8
distance

trace, 8
dual-mode commitment, 34

dummy-adversary, 15

completeness of, 15
dummy-party, 12

non-erasing, 19

empty word, 7

emulate

computationally quantum-UC-, 10
eqUC, 11
everlastingly quantum-UC-, 11
passively-, 19
quantum-passively-, 23
statistically quantum-UC-, 10

environment, 10
eqUC-emulate, 11
everlastingly quantum-UC-emulate, 11

free
functionality-, 19

functionality, 12
commitment, 13
OT, 13

functionality-free, 19

hybrid model, 16

ideal model, 10
ideal functionality, see functionality
identity

of a machine, 9
indistinguishability

of networks, 10
perfect, 10
perfect trace-, 10
trace-, of networks, 10

insecure channel, 11

machine, 9
non-erasing, 19
unitary, 23

minimally secure OT, 20
mixed state, 7
model
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hybrid, 16
ideal, 10
real, 10

negligible, 7
network, 9
non-erasing

machine, 19
protocol, 19

non-erasing dummy-party, 19

oblivious transfer, see OT
operator

density, 8
super-, 8

OT
functionality, 13
minimally secure, 20

overwhelming, 7

party, 10
corrupted, 10
dummy-, 12
non-erasing dummy-, 19

passively-emulate, 19
quantum-, 23

passively-realizable, 20
quantum-, 23

perfect indistinguishability, 10
perfect trace-indistinguishability, 10
polynomial-time

quantum-, 9
protocol, 10

non-erasing, 19
unitary, 23

pure state, 7

quantum-passively-emulate, 23
quantum-passively-realizable, 23
quantum-polynomial-time, 9
quantum-UC

computational, 10, 11
statistical, 10

quantum-UC-emulate
computationally, 10

everlastingly, 11

statistically, 10

real model, 10

realizable

passively-, 20

quantum-passively-, 23

reflexivity, 14

secure channel, 11

secure OT

minimally, 20

signature card, 13

simulator, 10
state

classical, 8

mixed, 7

pure, 7

state transition operator, 9

statistical quantum UC, 10
statistically quantum-UC-emulate, 10

superoperator, 8

classical, 8

trace distance, 8

trace-indistinguishability

of networks, 10

perfect, 10

transitivity, 14

UC

computational quantum, 10, 11

statistical quantum, 10

UC-emulate

computationally quantum-, 10
everlastingly quantum-, 11

statistically quantum-, 10

unitary

(machine), 23

protocol, 23

Universal Composability, see UC

word

empty, 7
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