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Abstract. In this work we deal with the problem of how to squeeze multiple ciphertexts

without losing original message information. To do so, we formalize the notion of decompos-

ability for public-key encryption and investigate why adding decomposability is challenging.
We construct an ElGamal encryption scheme over extension fields, and show that it supports

the efficient decomposition. We then analyze security of our scheme under the standard DDH

assumption, and evaluate the performance of our construction.

1. Introduction

ElGamal encryption is one of fundamental public-key cryptosystems. One of its main ad-
vantages is that it is simple and efficient, but also that its chosen-plaintext security is clearly
understood. Security overhead in terms of bandwidth, however, often becomes obstacles against
its publicly wide use. ElGamal ciphertexts are typically at least as many bits as the prime
modulus p. If the plaintext size is small comparatively to the size of p (as we can see in many
practical scenarios), the relative size overhead becomes worse.

For example, assuming p is a 2048-bit prime, in a hybrid encryption scenario where a sym-
metric key size is 256-bit, the size overhead of ElGamal is roughly ten times the plaintext size.
The situation becomes worse, as more computational power and more powerful mathematical
analytic methods become available in the future, which results in a longer public key size. More
specifically, let consider the case where a server should receive from multiple clients each shared
secret-key encrypted under hybrid encryption. If the number of clients grows linearly in the
above example, the size overhead also increases linearly. Thus, efficiency can be improved if a
router is given an accessory to compress multiple ciphertexts. It might be possible to improve
efficiency by optimizing a particular encryption algorithm. Instead, we focus on the way where
anyone can have ability to optimize bandwidth overhead. As an immediate application of our
proposal we can consider the case in which needs to aggregate ciphertexts from multiple sources,
for example, a network of low-cost sensor nodes that send sensitive data over the internet to a
recipient.

In this work, we study how to reduce unused spaces in ElGamal encryption. The unused space
results from imbalance between the real plaintext size used during encryption and the prescribed
plaintext size that a ciphertext can cover. We call this unutilized space ciphertext overhead – the
size difference between a ciphertext and its embedded plaintext. When a single sender generates
multiple ciphertexts, there are several ways to reduce the ciphertext overhead. (Refer to Related
work for details.) On the other hand, ciphertext overhead considerably increases in a distributed
setting where each ciphertext is generated by a different sender on a relatively small plaintext
in the size. We focus on how to decrease the ciphertext overhead in the setting where multiple
ciphertexts are generated from distributed senders to the same receiver.
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1.1. Our Contributions. We show how to efficiently compress multiple ciphertexts and how
to efficiently decompress each individual plaintexts. We define the notion of decomposability
over semantically secure encryption to formalize decompression of a compressed ciphertext. We
construct an ElGamal variant over extension fields to support efficient decomposability. We
define message rate in order to measure the compression efficiency and analyze the message rate
of our constructions.

1.2. Related Work. In a setting of a single arbitrary message, compact encryption [29, 1, 2]
schemes can be a solution. Compact encryption allows to have an optimal ciphertext overhead
in this setting. One of well-known compact encryption schemes is as follows: given a group
G of prime order p with a generator g and a public/secret key pair (y = gx, x), a ciphertext
for a plaintext m is (gr,m ⊕H(yr)) where a random r is chosen from Z×q and a hash function

H : G → {0, 1}|m|. The ciphertext overhead contains only one group element, regardless of
the size of the plaintext. Moreover, when multiple ciphertexts are generated by a sender in
sequence, the compact encryption scheme allows an optimal ciphertext overhead. When a new

plaintext mi is given, a sender computes (· · · ((H(yr)⊕m1)⊕m22|m1|)⊕ · · · )⊕mi2
∑i−1

j=1 |mj | by

using H : G → {0, 1}
∑i

j=1 |mj |. Then it is clear the compact encryption scheme has an optimal
ciphertext overhead. Given multiple ciphertexts generated from distributed sources, however,
the size is not optimal any more because the overhead increases linearly with the number of
messages. Moreover, it is not clear how to compress ciphertexts because the group structure is
broken by the hash function.

Gentry [13] proposed a scheme to compress Rabin ciphertexts and signatures (among other
things) down to about (2/3) logN bits while ordinarily, RSA and Rabin ciphertexts are logN
bits, where N is a composite modulus.

An encoding scheme proposed by Catagnos and Chevallier-Mames [11] may be used to com-
press multiple ciphertexts. However, an input plaintext size should be prohibitively small (e.g.,
at most up to 10 bits). Further, Johnson et al. [20] used as a message encoding a hash function
from a bit string to a prime number for obtaining homomorphic signature.

1.3. Organization. The rest of this paper is organized as follows. In Section 2 we formally
define the notion of decomposability. Section 3.1 describes an ordinary ElGamal encryption
scheme is decomposable but inefficient. In Section 3.2, we give an ElGamal encryption scheme
that satisfies both decomposability and efficiency. In Section 4, we further analyze that our
decomposable encryption scheme runs efficiently.

2. Preliminaries

In this section, we remind the background regarding public-key homomorphic encryption,
introduce a new notion called decomposability, and then describe the security model.

Notation. For n ∈ N, [n] denotes the set {1, . . . , n}. If A is a probabilistic polynomial-time
(PPT) machine, we use a← A to denote making A produce an output according to its internal

randomness. In particular, if U is a set, then r
$←− U is used to denote sampling from the uniform

distribution on U . For an integer a, |a| denotes the bit length of a.
We denote by λ a security parameter. A function g : N → R is called negligible if for every

positive polynomial µ(·) there is an integer N such that g(n) < 1/µ(n) for all n > N . We use
standard asymptotic (O, o) notation to denote the growth of positive functions. We say that

f(n) = Õ(g(n)) if f(n) = O(g(n) logc n) for some fixed constant c.

2.1. The Model. This section gives a formal definition of decomposability in a public key
setting. We start with the definition of public key encryption.

2



Public-Key Encryption. A public-key encryption scheme E = (KeyGen,Enc,Dec) consists
of the following algorithms:

• KeyGen is a randomized algorithm that takes a security parameter λ as input, and outputs
a secret key sk and a public key pk; pk defines a plaintext space P and a ciphertext space
C.

• Enc is a randomized algorithm that takes pk and a plaintext m ∈ P as input, and outputs
a ciphertext c ∈ C.

• Dec takes sk and c ∈ C as input, and outputs the plaintext m.

We say that an encryption scheme is correct if, for any key-pair (pk, sk)←− KeyGen(1λ) and any
m ∈ P, it is the case that: m← Decsk(Encpk(m)).

Decomposability. Informally speaking, a public-key encryption E is decomposable if we
can efficiently recover all original messages from a decrypted ciphertext which is obtained by
compression of other multiple ciphertexts. Here compression should be efficient. A formal
definition is as follows:

Definition 1 (Decomposability). Let k, ` ∈ N. Let E = (KeyGen,Enc,Dec) be a public-key
encryption scheme as defined above. Let T1 be a set of polynomial-time computable functions from
Ck to C∪ {⊥} and T2 a set of polynomial-time computable functions from P to P` ∪ {⊥} where
P ⊂ P and ⊥ is a distinguished symbol indicating transformation failure. Then, decomposable
encryption is given by a tuple of PPT algorithms (KeyGen,Enc,Dec,T1,T2) having the properties
below.

(1) Easy to compress: For any vector of ciphertexts c = (c1, . . . , ck) and for some T1 ∈ T1,
T1(c) outputs another ciphertext C ∈ C or ⊥ where ci = Encpk(mi).

(2) Easy to decompose: For any plaintext M = Decsk(T1(c)) ∈ P with some vector of
ciphertexts c and for some T2 ∈ T2, T2(M) outputs a set of messages m = {m1, . . . ,m`}
or ⊥ where mi ∈ P.

(3) Correctness: For any vector of plaintexts m = (m1, . . . ,mk) be a vector of input mes-
sages, and any vector of ciphertexts c = (c1, . . . , ck) with ci = Encpk(mi), there exists a
pair of (T1,T2) ∈ (T1, T2) such that (m1, . . . ,mk) = T2 ◦ Dec ◦ T1(c).

When getting an understanding of the meaning of the definition above, one should notice that
since the output of decomposing loses the order of original messages, it should not be interpreted
as a vector. Correctness of decomposability is ensured only as a set.

We can consider T1 as a function to transform multiple ciphertexts to a single ciphertext such
that corresponding plaintexts are obliviously combined into a single plaintext M . On the other
hand, the transformation T2 can be considered as a function to decode the single plaintext M
into a set {m1, . . . ,mk}. When an encryption scheme has a decomposable property, we call it a
decomposable encryption scheme.

We notice that decomposability is meaningful only if the output size of T1 is “shorter”
than its input size. As an example, an encryption scheme using T1 as concatenation (de-
noted by ‖) can be also decomposable: given an encryption scheme we define T1 : Ck → C
as (Encpk(m1), . . . ,Encpk(mk)) 7→ Encpk(m1) ‖ · · · ‖ Encpk(mk), and T2 : P → Pk as m1 ‖ · · · ‖
mk 7→ (m1, . . . ,mk), respectively. However, since the output size of the first transformation T1

is the same as the input size, decomposability does not help to compress the size of ciphertexts.
From now on, we consider only non-trivial schemes to reduce the size overhead.
Security. The semantic security game for a decomposable encryption scheme is similar to the
original semantic-security game for an encryption scheme [14], except that additional transforma-
tions T1,T2 are publicly given and the adversary sends to the challenger two challenging vectors
of plaintexts of his choice. To distinguish from the semantic security of an encryption scheme
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denoted by IND-CPA, we denote the semantic security for decomposable encryption d-IND-CPA
and define the d-IND-CPA game as follows:

Experiment Expd-IND-CPA
A (1λ) :

(1) (pk, sk) ←− KeyGen(1λ) and (T1,T2)
$←− (T1, T2), and then pk and (T1,T2) are given to

A.

(2) (m0,m1)← A where m0 = (m0,1, . . . ,m0,k) and m1 = (m1,1, . . . ,m1,k) for each mi,j ∈
P, i ∈ {0, 1}, and for all j ∈ [k]

(3) Choose b
$←− {0, 1} and compute cb = (Encpk(mb,1), . . . ,Encpk(mb,k)).

(4) b′ ← A(m0,m1, cb) where b′ ∈ {0, 1}
(5) The output of the experiment is 1 if b′ = b and 0 otherwise.

We say that a decomposable encryption E scheme is d-IND-CPA secure if the advantage of

an adversary A defined as
∣∣∣Pr[1← Expd-IND-CPA

A (1λ)]− 1
2

∣∣∣ is negligible for all PPT machines A.

Note that the IND-CPA game for the underlying encryption is a special case of k = 1.
The d-IND-CPA security of decomposable encryption is implied by the IND-CPA security for

the underlying encryption. Namely, an algorithm A that wins the d-IND-CPA game above with
advantage ε can be used to construct an algorithm B that breaks the IND-CPA security of the
underlying encryption with advantage ε

2k . More specifically, when A makes a challenge query
(m0,m1), B chooses a random index j, makes the challenge query (m0,j ,m1,j), and receives
cb,j from the IND-CPA challenger. B picks a random bit b′ and responds to A with a vector
of ciphertexts (cb′,1, . . . , cb,j , . . . , cb′,k) hoping that b = b′. If A outputs b∗ and b∗ = b′ then B
outputs b′. Otherwise, B outputs a random bit. Since the probability that the j-th element is
a correct target (A distinguishes with a non-negligible probability by the hybrid argument) and
b = b′ is 1

2k , the adversary B has the advantage ε
2k .

2.2. Cryptographic Assumption. Let Gq be a cyclic group of prime order q, and let g be
its generator. We assume that the DDH problem are hard in Gq. For example, Gq could be
a subgroup of order q in the group of modular residues Z×p such that q|p − 1, |p| = 2048, and
|q| = 256, or it can be a group of points on an elliptic curve with order q for |q| = 256. For more
examples of groups, where the DDH assumption is assumed to hold, see [7].

Definition 2. The DDH problem is (ε, t)-hard in Gq, if for every algorithm D running in time
t we have:∣∣∣Pr

[
α, β

$←− Zq
∣∣D(g, gα, gβ , gαβ) = 1

]
− Pr

[
α, β, γ

$←− Zq
∣∣D(g, gα, gβ , gγ) = 1

]∣∣∣ ≤ ε.
3. Our Decomposable Encryption Scheme

In this section, we construct a decomposable encryption scheme from multiplicative homo-
morphic ElGamal encryption. We describe our construction in two steps: In Section 3.1, solely
for presentation purposes, we explain how ElGamal encryption over a prime field is possibly
converted into a decomposable encryption scheme. The resulting scheme helps to understand
intuition of our construction and why message encoding/decoding algorithms are additionally
needed. However, the first scheme is not efficient enough to be practical because of its inefficient
transformation. In Section 3.2, we construct our proposed scheme based on another ElGamal
variant, ElGamal encryption over an extension field. Similar techniques in Section 3.1 are used
to have decomposability. Interestingly, unlike the first scheme, the resulting scheme is efficient
and does not incur any inefficient transformation. However, security of ElGamal encryption over
an extension field should be carefully examined because different types of attack can be applied.
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3.1. Basic but Inefficient Scheme. An IND-CPA secure ElGamal is defined on a subgroup
in which the DDH assumption holds. Let p, q be primes such that p − 1 = sq for some s. The
size of p and q are determined by a security parameter. Given g, a generator of a subgroup Gq,
the public/secret key pair is (y = gx, x) for x

$←− [q − 1], and P = Gq and C = (Gq)2. For
any message m̃ ∈ Gq, the encryption algorithm is Encpk(m̃) = (gr, m̃yr) (mod p) = (u, v) with

r
$←− [q − 1]. Given a ciphertext c = (u, v) ∈ (Gq)2, the decryption algorithm is Decsk(c) = vu−x

(mod p) ≡ m̃.
To integrate decomposability into this ElGamal encryption scheme, we define two transfor-

mations T1 and T2. For T1, we utilize multiplicative homomorphism embedded in ElGamal

encryption as follows: T1(c1, . . . , ck) =
∏k
i=1 ci where ci = (gri , m̃iy

ri) with random ri. Let

C =
∏k
i=1 ci =

(
g
∑k

i=1 ri ,
(∏k

i=1 m̃i

)
· y

∑k
i=1 ri

)
. Then given M̃ = Decsk(C) it is natural to

relate T2 with a factoring algorithm of an integer M̃ . However, unless all mi’s are primes,
factorization cannot determine a unique set of plaintexts.

To cope with this problem, we consider a map from a given message to a prime number.1

We define a bijective map Ψ : P → Pω which converts a message m̃ ∈ P into a prime number
m ∈ Pω ⊂ P, where Pω is a set of primes equal to or less than ω bits for some ω ∈ N. The resulting
encryption algorithm is Encpk(m̃) = (gr,myr) where m = Ψ(m̃). The map Ψ is discussed in
more detail later in this section.

Correctness in decomposability is provided because a prime factorization determines a unique
set of plaintexts, {m1, . . . ,mk} for some k and the set of original messages {m̃1, . . . , m̃k} are
extracted through Ψ−1 to each mi. It is obvious that this construction is a decomposable
encryption scheme for a set of primes Pω and some k < log p

ω . The decomposable encryption

scheme is correct with k < log p
ω since m1 · · ·mk ≤ 2kω < p, and so m1 · · ·mk = m1 · · ·mk

(mod p).
In the following we describe our techniques to construct a bijective map Ψ.

Message Encoding and Decoding. We assign a message to a prime number by using
a small-sized random padding and checking whether the padded message is a prime number.
Namely, we append a padding γ to the message m̃, and then check whether m = m̃ ‖ γ is a
prime number. When we define m̃ ‖ γ = m̃2|γ|+γ, the size of γ is determined by the distribution
of primes. Let π(x) be the number of primes equal to or less than x. Huxley [19] proved that

(3.1) π(x+ ∆(x))− π(x) ∼ ∆(x)

log x

is true for almost all x if ∆(x) = x1/6+ε (ε > 0 fixed). (See [28] for a survey on this topic.) This
result implies that there exists at least a prime number if |γ| = dω6 e. (e.g., if ω = 32 and |γ| = 6

then ∆(x)
log x = 2; when we increase the |γ| by 8, we can expect to have eight primes at least.) The

follow lemma shows that our encoding algorithm runs well with high probability.

Lemma 1. Let x be the maximum value of messages and γ be a padded message as defined in
above. Let ρ > 0 and define s = d|γ| log(1/ρ)e. Then the procedure outputs a prime number in
Gq with probability at least 1− ρdlog xe.

Proof. Assume that the procedure runs s times. The probability that all s trials do not give

any prime number is at most
(

1− log x
∆(x)

)s
<
(
e− log x/∆(x)

)d|γ| log(1/ρ)e
= edlog x log ρe = ρdlog xe

1 A technique mapping messages to primes has been used by Kim et al. [26] for private set intersection which
runs on additive homomorphism by using Paillier encryption.
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by ∆(x) = |γ| and Equation (3.1). Hence the procedure outputs at least a prime number with
probability 1− ρdlog xe as required. �

The inverse map of Ψ is clear by simply removing the random padding.

Although we construct a decomposable encryption scheme as above, it is not practical due to
the inefficiency of T2 based on factorization. More specifically, trial division by primes demands a
complexity of

√
p for extracting a prime factor mi. The expected time for Pollard’s rho algorithm

to find a factor mi of M is O(
√
mi) [9]. If for any prime factor mi of M , mi − 1 is smooth with

respect to some relatively small bound B, we can use Pollard’s p-1 factoring algorithm whose
running time for finding the factor mi is O(ωB/ logB) [30]. When one fails to factor a given
message using Pollard’s p-1 algorithm, we can apply the elliptic curve factoring algorithm whose
expected running time is Lmi

[ 1
2 ,
√

2] [27]. For example, recovering 128-bit messages from its

compression would take 264.
Thus, this construction could be practical only for small-sized messages. In the next section, we

construct a decomposable encryption scheme which efficiently covers medium or large messages.

3.2. Our Efficient Construction. In the multiplicative homomorphic encryption, decompos-
ability can be added by utilizing multiplicative homomorphism as T1 and a factoring algorithm
as T2, and defining an encoding/decoding scheme for correct message recovery. The challenge
is how to combine all these algorithms efficiently, while preserving the security of an encryption
scheme. To have efficient T1 and T2 transformations we consider the following facts:

• The ring of polynomials over a finite field is unique factorization domains (UFD) in
which every non-zero element is uniquely written as a product of irreducible elements.

• Factoring a given polynomial over a finite field into irreducibles is carried out efficiently.

Thus, we examine an ElGamal encryption scheme over extension fields which satisfy the above
properties and construct efficient transformations on it. Interestingly, ElGamal encryption over
extension fields is also used for a different application of privacy-preserving set union. However,
we notice that the security analysis in [18] is not rigorous and misses even attacks executable in
extension fields.

In the following we overview the ElGamal encryption scheme over extension fields, demonstrate
efficient transformations and encoding/decoding schemes, respectively, and discuss about the
security of ElGamal encryption over extension fields focusing on the attack overlooked in [18].

Overview of ElGamal over Extension Fields. The description of the ElGamal encryp-
tion scheme over extension fields consists of the following algorithms.

• KeyGen(1λ): The key generation algorithm chooses a large prime p and n such that
pn − 1 = sq for some prime q and an integer s. Then select an irreducible polynomial

f(X) ∈ Fp[X] of degree n and a generator g(X) from Gq where g(X) = h(X)
pn−1

q ,
where h(X) is a generator of (Fp[X]/〈f(X)〉)×. It computes y(X) ≡ g(X)x mod f(X)
where a secret key x is randomly chosen from [pn − 2]. publishes a public key pk =
〈Gq, g(X), y(X), f(X)〉.

• Encpk(M(X)): Encryption with the public key pk and message M(X) = (X −m) ∈ Gq
proceeds as follows. First, a random value r ∈ [q − 1] is chosen. The ciphertext is then
published as:

C(X) = (u(X), v(X)) := (g(X)r mod f(X),M(X) · y(X)r mod f(X)) .

• Decsk(C(X)): Suppose that a ciphertext C(X) is encrypted with a public key pk and
we have a secret key. Then, the ciphertext can be decrypted as:

M(X) ≡ v(X)u(X)−x (mod f(X)).
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To make ElGamal encryption semantically secure, a subgroup where the DDH assumption
holds should be used: if a generator of (Fp[X]/〈f(X)〉)× is used, this ElGamal encryption scheme
is not IND-CPA secure since it is easy to test elements of the multiplicative group. In fact, in
this setting if messages are small, the ElGamal encryption scheme is subject to the Boneh-Joux-
Nguyen attack [8]. Thus, we use the subgroup Gq, as above, generated by g(X) = h(X)s.

We note that there exists a sufficiently small number s such that pn − 1 = sq. Furthermore,
when n is prime, we have that pn − 1 = (p − 1)Φn(p) where Φn(p) is the n-th cyclotomic
polynomial. Assuming the Bateman-Horn conjecture [4, 5], the number of primes of the form
(pn − 1)/(p− 1) = Φn(p) not exceeding x, denoted by H(x), is given by

H(x) ∼ 0.76 · · ·
∫ x1/2

2

(log u)−2du.

Thus we know that the probability that Φn(p) is prime for an integer p� x is not small.

Message Encoding and Decoding. For a message m̃ ∈ Fp we take the smallest positive

integer γ such that (X − m̃ ‖ γ)q ≡ 1 mod f(X), where (m̃ ‖ γ) denotes m̃2|γ| + γ ∈ Fp.
Assuming the linear polynomials of order q are uniformly distributed over all linear polynomials
in Fp[X]/〈f(X)〉, the expected number of trials becomes s. Thus we know that the encoding
process can be performed efficiently and its output is an irreducible element in Gq. Alternatively,
we can directly use (X − m̃)s ∈ Gq when s is sufficiently smaller than n. However, this method
is less efficient than the random-padding technique due to the condition k < n

sω in terms of
message rate. For the discussion about message rate refer to the next section.

Decoding is straightforward by using a constant term in each linear polynomial after removing
the random padding of fixed size.

Transformations. We take T1 as multiplication on C since the ElGamal encryption scheme
is multiplicatively homomorphic. When the transformation T2 is given by factoring polynomials
over a finite field Fp, we have polynomial-time algorithms for factoring in Fp[X], which is a key
difference from the ElGamal encryption given in Section 3.1.

Lemma 2. Let Pω be a set of irreducible polynomials of degree less than or equal to ω in Fp[X].
The ElGamal encryption scheme given in Section 3.2 is decomposable on Pω for k < n

ω .

Proof. The proof is straightforward from the the fact that Fp[X], the ring of polynomials over a
field Fp, is a UFD, and there exist efficient transformations T1 and T2. �

3.3. Security Analysis. In this section we show that the ElGamal encryption on extension
fields is IND-CPA secure, so that our decomposable construction is d-IND-CPA secure.

As mentioned above, the ElGamal encryption is secure against the Boneh-Joux-Nguyen at-
tack [8]. Let v(X) = M(X) ·y(X)r be the second component of a ciphertext from the encryption
algorithm. The Boneh-Joux-Nguyen attack works only if an adversary can make y(X)rq ∈ Gs
by raising v(X) to the power of q and manage to compute discrete logarithms in Gs. However,
as y(X)rq ∈ Gq and Gq has a large prime order, the adversary cannot efficiently find the random
exponent r.

Next we should check our encryption scheme would be subject to index calculus attacks, since
we moved from the multiplicative group of a prime field to the multiplicative group of an extension
field. Recall that the encryption scheme works on such a subgroup Gq of the multiplicative group
(Fp[X]/〈f(X)〉)× ∼= F×pn . During parameter selection, p is a prime such that pn − 1 = sq for a
small even number s and a large prime number q. Note that p is not a prime power and the
extension degree n is a prime number. Then we can see that an attacker has complexity of√
q to compute discrete logarithms in Gq using a square-root algorithm directly in Gq, such as

Pollard’s rho algorithm. We have two efficient methods of calculating the index calculus: the
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number field sieve method [15] in a prime field and the function field sieve method [3] in a finite
field with a large extension degree. However, the function field sieve by Adleman can efficiently
extract discrete logarithms over finite fields of small characteristic. In the case of a medium-size
characteristic, we should consider variations of the number field sieve method and the function
field sieve method [21, 22]. In particular, they are efficient when log p < O(

√
n log n) holds.

Using medium-sized values of prime p with large-size subgroup prevents from being affected by
these algorithms. Moreover, Gower [16, §1.3] pointed out that when p is a prime, the attacker
will not be able to mount the Granger-Vercauteren attack [17].

Finally we check whether the ElGamal variant on extension fields is IND-CPA secure and the
decomposable construction relying on this variant is secure.

Theorem 1. The ElGamal scheme on extension fields given in Section 3.2 is IND-CPA secure
assuming the DDH assumption holds in a cyclic subgroup Gq of (Fp[X]/〈f(X)〉)×.

Proof. We prove security by defining two hybrid experiments Game0 and Game1 where Game0

is the real IND-CPA game.

Game0. Fix an efficient adversary A. To make things more precise and more concrete, we give
an algorithmical description of the attack game as follows:

α
$←− Zq, y(X) = g(X)α

M0(X),M1(X)←− A(r̃, y(X)) where r̃ is sampled uniformly at random from some set

b
$←− {0, 1}, β $←− Zq, u(X) = g(X)β , t(X) = y(X)β , v(X) = Mb(X) · t(X)

b′ ← A(r̃, y(X), u(X), v(X))

It is clear that this algorithm faithfully represents the IND-CPA game. If we define E0 to be
the event that b = b′, then the adversarys advantage is |Pr[E0]− 1/2|.
Game1. We now make one small change to the above game. Namely, instead of computing t(X)
as y(X)β , we compute it as g(X)γ for randomly chosen γ ∈ Zq. We can describe the resulting
game algorithmically as follows:

α
$←− Zq, y(X) = g(X)α

M0(X),M1(X)←− A(r̃, y(X)) where r̃ is sampled uniformly at random from some set

b
$←− {0, 1}, β $←− Zq, u(X) = g(X)β , γ

$←− Zq, t(X) = y(X)γ , v(X) = Mb(X) · t(X)

b′ ← A(r̃, y(X), u(X), v(X))

Let E1 be the event that b = b′ in Game1. We first show that Pr[E1] = 1/2.

Claim 1. Pr[E1] = 1/2

In this claim we would like to prove that the adversarys output b′ is independent of the chal-
lenger’s bit b. It is enough to show that b, r̃, y(X), u(X), v(X) are mutually independent, which
implies that b and b′ ← A(r̃, y(X), u(X), v(X)) are independent. If b, r̃, y(X), u(X) are fixed,
then so are M0(X),M1(X), since they are determined by r̃, y(X). Moreover, the conditional
distribution of t(X) is the uniform distribution on Gq, and hence from this, we see that the
conditional distribution of v(X) = Mb(X) · t(X) is the uniform distribution on Gq.

Claim 2. Let ε be an advantage of an efficient algorithm which distinguishes between a DDH
tuple and a random tuple. Then, |Pr[E0]− Pr[E1]| = ε.

We know that ε is negligible under the DDH assumption. The proof of this is essentially the
observation that in Game0, the tuple 〈y(X), u(X), t(X)〉 is of the form 〈g(X)α, g(X)β , g(X)αβ〉,
while in Game1, it is of the form 〈g(X)α, g(X)β , g(X)γ〉, and so the adversary should not tell the
difference, under the DDH assumption. More precisely, our distinguishing algorithm D works as
follows:
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Distinguishing Algorithm D(y(X), u(X), t(X))
M0(X),M1(X)←− A(r̃, y(X))

b
$←− {0, 1}, v(X) = Mb(X) · t(X)

b′ ← A(r̃, y(X), u(X), v(X))
if b = b′ then output 1; otherwise output 0

If the input to D is of the form 〈g(X)α, g(X)β , g(X)αβ〉, then computation proceeds just as
in Game0, and therefore

Pr
[
α, β

$←− Zq
∣∣D (g(X)α, g(X)β , g(X)αβ

)
= 1
]

= Pr [E0] .

If the input to D is of the form 〈g(X)α, g(X)β , g(X)γ〉, then computation proceeds just as in
Game1, and therefore

Pr
[
α, β, γ

$←− Zq
∣∣D (g(X)α, g(X)β , g(X)γ

)
= 1
]

= Pr [E1] .

From this, it follows that the advantage of D is equal to |Pr[E0]− Pr[E1]|.
Combining Claim 1 and Claim 2, we see that |Pr[E0]− Pr[E1]| = ε, and this is negligible.

That completes the proof of security of the ElGamal encryption on extension fields. �

The following theorem states that the decomposable encryption scheme satisfies the d-IND-
CPA security.

Theorem 2. Assuming the DDH problem is intractable, the decomposable encryption based on
ElGamal variant is d-IND-CPA secure.

Proof. As we discussed in Section 2.1, the security of our decomposable encryption scheme is
naturally implied by the security of the above ElGamal encryption. �

4. Performance Analysis

In this section, we analyze efficiency of our decomposable encryption schemes in terms of
message rate and computation efficiency. To estimate compression efficiency, we define message
rate and give an analysis on message rate. Then we analyze the efficiency of transformations
used in Section 3.2. We also present the whole computational complexity of the decomposable
encryption scheme given in Section 3.2.

4.1. Compression Efficiency. We analyze how our scheme effectively compresses given multi-
ple ciphertexts. For this purpose, we define message rate. Roughly speaking, the message rate
is the percentage of plaintexts that occupies an output ciphertext of T1 when a decomposable
encryption scheme works correctly.

Definition 3 (Message Rate). The message rate, denoted by MR, over the ciphertext with
respect to T1 is the total bits of plaintexts contained in ciphertexts T1 takes as input divided by
the total number of bits it produces as output:

MR =
logVP

logVC

where VP is the total number of bits of messages in (c1, . . . , ck) given to T1 as input and VC is
the total number of bits T1 gives as output in C.

We first compute the message rate of the ElGamal-based decomposable construction given
in Section 3.1. We demand that k < log p

ω+|γ| for correctly recovering the original messages. We

can easily see that the message rate of this construction becomes kω
2 log p . For example, let p be
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a 1024-bit prime, ω a 32-bit message, and |γ| a 10-bit random padding. Since k ≤ 24, in this
setting MR = 768

2048 = 0.375.
When a decomposable encryption is used by the ElGamal encryption in Section 3.2, we require

that k < n because ω = 1. Its message rate becomes k log m̃
2n log p . For a fair comparison, let m̃ be a

32-bit message, p be a 42-bit prime, and n be a 27-bit prime. Then we have k ≤ 26. Hence, this
decomposable encryption scheme has MR = 832

2268 ≈ 0.367.
Now let us consider the transmission of k ElGamal ciphertexts without use of a decomposable

encryption scheme. For simplicity, suppose that all plaintexts are of the same size ω. We
then see that the message rate MR in this setting is ω

2 log p . If the same values above, i.e.,

ω = 32 and log p = 1024, are used, we have MR = 32
2048 ≈ 0.016. Hence a decomposable

ElGamal encryption scheme allows us to have the message rate 23 times higher than an ordinary
ElGamal encryption scheme. This means that we can utilize bandwidth more efficiently with a
decomposable encryption scheme.

Remark 1. If k is larger than n, the messages can not be recovered from the compressed cipher-

text, since
∏k
i=1(X −mi) 6=

∏k
i=1(X −mi) mod f(X). When there are more than k ciphertexts,

one way we can use is to compress after partitioning them into groups of k or less elements. We
conjecture that a decomposable encryption scheme using an IND-CPA secure encryption has the
message rate less than 1

2 due to the random part of its underlying encryption.

4.2. Computation Efficiency. The major bottleneck of our decomposable encryption scheme
described in 3.2 is the transformation T2, which factors a given polynomial of degree n into
irreducibles. Milestones in the development of polynomial-time algorithms for factoring in Fp[X]
are the algorithms of Berlekamp [6], Cantor & Zassenhaus [10], von zur Gathen & Shoup [34]
and Kaltofen & Shoup [24]. See the surveys [33, 23, 32]. A straightforward implementation
of Berlekamp’s algorithm [6] uses O(n3 + n1+o(1) log p) operations in Fp. Presently, there are

practical algorithms that factor degree n polynomials over Fp in Õ(n2 + n log p) operations,
and sub-quadratic algorithms that rely on fast matrix multiplication [24]. When the Cantor-
Zassenhaus algorithm [10] is used, it requires an expected number of O(n2+o(1) log p) operations
in Fp. One of the asymptotically fastest algorithms for factoring polynomials, due to von zur

Gathen and Shoup [34], requires an expected number of O(n2+o(1) + n1+o(1) log p) operations
in Fp. Further, Umans [31] proposed randomized algorithms for factoring degree n univariate

polynomials over Fp that use O(n1.5+o(1) +n1+o(1) log p) field operations, when the characteristic
is small.

In our decomposable encryption scheme, the encryption algorithm requires two exponentia-
tions in Fpn . Since two exponentiations involve a constant number of multiplications over Fpn , it

takes O(nlog2 3) using Karatsuba method [25] or Õ(n) by fast Fourier transform [12]. Therefore,
the total computational complexity is bounded by O(n2+o(1) log p).

5. Conclusion and Further Work

In this work we gave an answer to the problem of how to squeeze multiple ciphertexts without
losing original message information. We present the notion of decomposability for public-key
homomorphic encryption and construct an efficient ElGamal encryption over extension fields to

support decomposability. Our scheme on a subgroup of order q in Fpn is efficient when pn−1
q is

small.
An interesting question is to find an encoding algorithm of a message into an order q group

even when the cofactor pn−1
q is large. Another open problem is to find an upper bound of the

message rate and further design the “optimal” encryption scheme that achieves this rate.
10
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