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Abstract

In this paper, we generalize some existing results on Boolean functions to the g-ary
functions defined over Z,, where ¢ > 2 is an integer, and obtain some new characterization
of g-ary functions based on spectral analysis. We provide a relationship between Walsh-
Hadamard spectra of two p-ary functions f and g (for p a prime) and their derivative Dy .
We provide a relationship between the Walsh-Hadamard spectra and the decompositions of
any two p-ary functions. Further, we investigate a relationship between the Walsh-Hadamard
spectra and the autocorrelation of any two g-ary functions.
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1 Introduction

In recent years, the Walsh-Hadamard spectrum has become an important tool for research
in cryptography, especially in the design and characterization of cryptographically signifi-
cant Boolean functions used in various type of cryptosystems. Xiao and Massey [14] have
provided some results on spectrum characterization of correlation immune functions. Sarkar
and Maitra [7] have generalized these results and showed that the Walsh-Hadamard spec-
trum of an n-variable, m correlation immune function is divisible by 2!, Recently, Sarkar
and Maitra [8], and Zhou et al. [16] have provided some interesting results based on spectral
analysis of Boolean functions.

A function from FJ to [y is called a Boolean function. Several authors have proposed
various generalizations of Boolean functions and have analyzed the effect of the Walsh-
Hadamard spectrum on them. Kumar et al. [5] have generalized the notion of classical
bent functions by considering functions from Zj to Z,, where ¢ > 2 and n are positive
integers. These functions are also known as ¢-ary functions [12]. The g-ary functions are of
special interest in cryptography and coding theory. According to Siegenthaler [10], it is not
possible to construct an n-variable Boolean function with algebraic degree more than one
and correlation immunity n — 1, whereas it is possible to construct such g-ary functions.
For example, the function f(x,y) = x + y® from Z2 to Zs has algebraic degree 3 and
correlation immunity 1. Thus, the g-ary functions can achieve better cryptographic bounds
than Boolean functions.

The additive group Z,, the ring of integers modulo g, is isomorphic to U, = {1,&,...,£771},
the multiplicative group of complex ¢*" roots of unity. We denote the set of all g-ary func-
tions by By, 4. The Walsh-Hadamard spectrum of any f € B, 4 is a complex-valued function
from Zy to C, the set of complex numbers, and defined as follows

V&?(lﬂ _ j{: ff(x}+<x,u>’

xXELY
where < x, u > denotes the usual inner product in Zj.
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A function f € B, 4 is generalized bent (or g-ary bent) if [Wy(u)| = 1 for every u € Zj.
The Boolean bent functions were introduced by Rothaus [6]. It is to be noted that the
generalized bent functions exist for every value of ¢ and n, except when n is odd and ¢ = 2
mod 4, whereas Boolean bent functions exist only for even n [5]. For more results on g-
ary bent functions we refer to [1-4, 13]. Generalized bent functions are widely applicable in
Code-Division Multiple-Access (CDMA) communications systems [9].

The derivative of f,g € By, 4 at a € Zy is defined as Dy 4(a) = f(x) — g(x + a), and for
f =g, Df(a) = f(x) — f(x +a) is called derivative of f at a € Z.

Let f,g € B, 4. Then the sum

Crqla) = Z gf(X)—g(x-FOé)7

xEZg

is called the cross-correlation between the function f and g at « € Zy. Moreover, for f = g,
the sum Cy r(a) = Cy(v) is called the autocorrelation of f at a.
The sum-of-squares-of-modulus indicator (SSMI) [11] of f,g € B,, 4 is defined as

Ofg = Z |Cf,g(04)|2a

€Ly
and in particular, for f = g, the sum-of-squares-of-modulus indicator (SSMI) [11] of f € B,, 4
is defined as
ap= Y [Cs(a).
Q€LY
The following result is an important property and is extensively used in the paper.

Lemma 1. [11, Lemma 2.1] Let o € Zy. Then

Z €<O¢, x> _ {qn, ifa =0, (1)

0, otherwise .
XELY

The following Lemma provides a relationship between the crosscorrelation and the au-
tocorrelation of f, g € By, 4.

Lemma 2. [11, Corollary 3] Let f,g € B, 4. Then

org= Y [Crg(a) =D Cr(a)Cy(a).

QGZZJL aEZg

2 Main Results

In the following Lemma, we generalize a result of Sarkar and Maitra [8, Corollary 3.3
(obtained for p = 2) to the p-ary functions, where p is a prime. Further, in Theorem 1
we provide a relationship between Walsh-Hadamard spectra of the derivative Dy 4(a) and
f,g € B, . This result is a generalization of [15, Theorem 1].

Throughout the paper p is considered to be a prime.

Lemma 3. Let f,g,h € B, such that h(x) = f(x) — g(x). Then

Wh(B) = in > Wila+ B)Wy(a), ¥ B € Zy.

p €Ly
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Proof. Using Lemma 1, for any 8 € Z;, we have

Z Wy(a+ B)W, Z Z ¢l () +<atBx> Z g9y —<ay>
a€Zn a€Zn xeLn yezy
— Z ¢F =9 +<hx> Z glax-y>
xX,yEeLy ey
=p" Z efG)=g(+<Bx> _ yn Z ghix)+<B.x>
x€LR x€LD
= p" Wi (8).

This completes the proof.

Theorem 1. Let f,g € By, and 8 € Z;,. Then

WDf g(e) — n Z £<a e>Wf(a+6) ( ) and

p oLy

Wi(a+ B)Wy(a) = Y £ Wp, ()(8).

ecZn
Proof. Let ge = g(e + x). Then we have
Weo (@) = =" We(a).
From Lemma 3, replacing ¢ by ge and h by Dy 4(e), we have
Wo; 4(e) (B Z W (a + B)Ws, (o)
a€zZn

Combining equations (5) and (6), we obtain (3).
Now, from Lemma 1 and (3), we have

5 W 0l8) = T € S R 970

eEZ;l eEZ" xEZ"
72fo+ﬁ Z§<exa>
p xGZ" EEZ"
— Wy(a+ B)W,(a).

In particular, if f = g and 8 = 0 in (3), then we have the following corollary.

Corollary 1. If f € B, p, then the autocorrelation of f is given by

Crle) = — Y &5 Wy (o).

p aEly

By putting e = 0 in Corollary 1 we obtain

> Wil =p™,

a€Ly

which is known as Parseval’s identity in the generalized setup.

In Theorem 2 and Theorem 3 below, we generalize the results of Zhou et. al [16, Lemma

3 and Theorem 6] (obtained for p = 2) to the p-ary functions.
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Theorem 2. Let f,g € By, p, where p is a prime, and V' be a subspace of Z;, with dim V)=
k. Then for any (B € Z;;, we have

ZWf a+B)W p* Z Wp; ,(e) (B

aeV ecVL

where V+ denotes the dual of V, ie., V: = {x € Zy :Vy e V,x-y =0}
Proof. From Theorem 1, we have

S Wi+ BW,la) =Y DT e =Wy o) (B)

acV aeV e€Zy

- Z W, ,(e)(B) Z gm<me>

eeZ;‘ acV

=p" Z Wb, ,(e)(B)-

ecVL

In particular, if f = g, then we have the following corollary.

Corollary 2. Let f,g € By, and V be the subspace of Z with dim(V') = k. Then

> Wrla+B)IP =p* Y &P Wp,e)(0), V B € Z.

aeV ecV -+

Let W be a subspace of Zj; with dim(W) = k. The decomposition of f with respect to
W is the sequence {f, : a € V'}, where V' is a subspace such that Z; is the direct sum of W
and V, and f, is the function of k variables from W to Z,, defined as f,(x) = f(a+ x) for
any x € W [16]. In the following theorem, we investigate a relationship between the Walsh-
Hadamard spectrum of f, g € B,, ;, and the Walsh-Hadamard spectrum of the decompositions
of f and g with respect to a subspace V' of Zj.

Theorem 3. Let W be a subspace of Zy with dim(W) =k, and {f, :a € V} and {g, : a €
V'} be the decompositions of f and g with respect to W. Then

> Wi(@W(a) =p* > Wy, (0)W,, (0)

aeWL acV

Proof. For any e € Z, we have

Crgle) =Y lEmolte) = N = N " ¢felmgulcte) = N = N f(atx)mglatxte)

zELy acV xeW acV xeWw

From Theorem 2, for 3 = 0, we have

S Wr@W,(a)=p* > Crgle)=p" Y | Y /@ -slete

aeWt ecW ecW \z€eZp

:pk Z (Z Z gf(a+x)g(a+x+e)> :pk Z Z gf(aer) Z gfg(aerJre) (9)

ecW \aeV xeW acV xeW ecW

=pF Y D elEnd N o) = BN W (0)W, (0).

acV xeW yew acV

In particular, if f = g, then we have the following corollary.
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Corollary 3. Let W be a subspace of Zy, of dimension k and {f, : a € V'} be the decompo-
sition of f with respect to W. Then

ST WP =p"T S Wy, (0)2

aeWL acV

For any o € Zy, where ¢ > 2 is any integer, we have

| W) P= Y €522 Crla) = Y €54 Cy(a). (10)

a€ly a€ly

In particular, if & = 0 then

| W5 (0) IP= > Cyla)

a€Ly

In the following theorem, we provide a relationship between the Walsh-Hadamard spec-
trum and the autocorrelation of any two g-ary functions.

Theorem 4. Let f,g € By, 4. Then for any B € Z;, we have

ST I Wia) P Wla+8) P=q" Y Cpla)Cola)e=>>. (11)

QEZZL ann

Proof. From (10), for any 3 € Z;, we have

D AWH@) PIWyla+B) P= " Y €57 Cpla) Y €570 Cy(0)

a€Ly Q€LY a€LY beZy

Z Z Z Of £< a+b,a>+<b,3>

aGZ” aGZ” bGZ“

Z Z Cf £<b B> Z £< a+b,a>

aEZ" bEZ" aEZ"

_ q Z Cf §<a,[3>

a€Ly

In particular, if f = g, then we have the following corollary.

Corollary 4. Let f € By, 4. Then for any 8 € Zy, we have

I W) PIWila+8) P=g¢" > | Cpla) [P €547, (12)

aEZZL aEZ"

Further, if B =0, then

S I Wia) [*=¢" Y [ Cs(a) P=q"oy.

oy a€Zy

If 3 =01in (11), then by using Lemma 2 we obtain the following corollary which appears
in [11, Theorem 6 (a)].

Corollary 5. Let f,g € B, 4. Then

*Z | Wi(a) 2] Wy(a)

Q€LY
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A function f € B, 4 is called g-ary semi-bent if for any a € Z7 (i) | Wy(a) |€ {0, =)
for odd n, and (it) | Wy(a) |€ {O,q%} for even n.

Theorem 5. Let f1 € B, 4 and fo € B, 4, where v and s are odd positive integers. Then a
function f € By4s,4 expressed as

F@rgsy ey @Tpg1, Ty ooy x1) = f1(@r, ooy 21) + fo(Trasy ooy Trg1),
18 q-ary semi-bent if f1 and fo both are g-ary semi-bent functions.
Proof. Let (u,v) € Zj x Z3. We compute,

Wi(u,v) = Z éf(x,y)+<u,x>+<v,y>

(x,y)EZY X 73

= D hbrme BT RS < Wy ()W (v),

x€eZ; YEZ

(13)

Since fi and fa both are g-ary semi-bent, therefore Wy, (u)| € {O,q%} and Wy, (v)| €
r+s542

{0,¢"= }. This implies that Wi, v)| = Wy, (0)|[Wy,(v)| € {0, =z}, forall (u,v) €
Zq x L. Hence f is g-ary semi-bent.

In the following theorem, we provide a relationship on crosscorrelation between two g-ary
functions on (n 4 1)-variables in terms of their crosscorrelation on n-variables.

Theorem 6. Let f,g € B, 11,4 such that

f(x,xng1) = fi(X) + Tnp1, 9% Tng1) = 01(X) + T,

where f1,91 € By,q. Then the crosscorrelation between f and g is

Crg(Wupni1) =& 1Cyy g, (0).

Further, if f € By 4 is any bent function then the autocorrelation of f is given by

qn’ qu = Oa
0, otherwise .

Cstunin) = {
Proof. We have

Cro(Wtnyy) = E gf(xaxnﬂ)—g(x+u79€n+1+un+1)
X, Tnt1 €LY XZLq

E gfl(x)+w7z+1791 (x+u)—Znt1—Unt1

Xy Tn+41 EZZ'XZq (14)

= £un+1 Z ¢h (x)—g1(x+u)

X,Tp41 GZ;’; X ZLq

= Cfl 291 (u) .

Hence, |Cyq(u, unt1)| = [Cf, g, (n)]. The second part follows from (14) by setting f = g
(that iS7 f1 = 91)
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