
New results on nonexistence of generalized bent

functions

Yupeng Jiang and Yingpu Deng

Key Laboratory of Mathematics Mechanization,
Academy of Mathematics and Systems Science,

Chinese Academy of Sciences, Beijing 100190, P.R. China
E-mail: {jiangyupeng,dengyp}@amss.ac.cn

Abstract

We get two kinds of new results on nonexistence of generalized bent
function. The first one is Based on Feng’s results by using Schmidt’s
field descent method. For the second kind, considering special property
of the fieldQ(ζ23e), We get new nonexistence results of generalized bent
functions with type [3, 2 · 23e].
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1 Introduction

Let q and n be positive integers, q ≥ 2, Zq = Z/qZ, ζq = e
2πi
q . A function

f : Zn
q → Zq is called a generalized bent function(GBF) if the equality∣∣∣∣∣∣

∑
x∈Zn

q

ζf(x)−x·λ
q

∣∣∣∣∣∣ = q
n
2

holds for every λ ∈ Zn
q , where x · y stands for the dot product. We call [n, q]

the type of such function f . Denote F (λ) =
∑

x∈Zn
q
ζ
f(x)−x·λ
q . The above

equation is
F (λ)F (λ) = qn.

If f is a GBF, then it is easy to prove that∑
λ∈Zn

q

F (λ)F (λ+ µ) =

{
0 if µ ̸= 0,
q2n if µ = 0.
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The conception of a bent function (for q = 2) was presented by Rothaus
[15] in 1976, and generalized by Kumar et al. [10] in 1985. Being a fam-
ily of functions with maximum nonlinearity, bent functions draw much at-
tention and are widely investigated. They have been extensively studied
for their applications in cryptography, coding theory and combinatorial de-
sign. In a cryptography system, functions with large nonlinearity values are
usually employed to resist linear crpto-analysis and correlation-attack, so
the security of system can be increased. In a code-division multiple-access
communication system, we need a family of periodic sequences which have
small correlation values between distinct codes and small auto-correlation
values to distinguish users and provide self-synchronization capacity. Bent
sequences generated by bent functions have such properties and are widely
used [13]. Bent functions lead to vectors with maximum distance from the
first order Reed-Muller code. In combinatorial design, Dillon [3] showed that
bent functions are the characteristic fucntions of elementary Hadarmard dif-
ference sets.

Rothaus proved that there exists a bent function of type [n, 2] if and only
if n is even. Later, Kumar et al. constructed a GBF for all cases of even n
or q ̸≡ 2 (mod 4). There are many materials about the construction of bent
functions, for a survey see [8]. On the other hand, to prove the nonexistence
of some kind of GBF is also important. So far there is no GBF constructed
in the case n is odd and q ≡ 2 (mod 4). Several nonexistence results of GBF
have been proved.

Let q = 2N , then N is odd. There are no GBF of the following types.

(1) [10] There exists an integer s ≥ 1 such that

2s ≡ −1 (mod N).

(2) [14] n = 1, N = 7.

(3) [2] n = 1, N = pe where e ≥ 1, p is a prime, p ≡ 7 (mod 8) and p ̸= 7.

(4) [9] n = 1, N has prime factorization that N =
∏t

i=1 p
ei
i and for each

i there exists si ≤ 1 such that

psii ≡ −1 (mod
N

peii
).

Feng and his co-workers also get nonexistence results. We give in the
following. All the cases pi is prime, and n satisfies some condition similar
to the first case.
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(a) [4] N = pe, p ≡ 7 (mod 8) and n < m
s where m is the smallest

odd positive integer such that x2 + py2 = 2m+2 has Z-solution and
s = ϕ(N)

2f , f is the order of 2 (mod N).

(b) [4] N = pe11 pe22 , p1 ≡ 3 (mod 4), p2 ≡ 5 (mod 8), (p1p2 ) = −1.

(c) [5] N = pe11 pe22 , p1 ≡ 3 (mod 4), p2 ≡ 2λ + 1 (mod 2λ+1), (p1p2 ) = −1,

( 2
p2
)4 ̸= 1.

(d) [11] N = p1p2, p1 ≡ p2 ≡ 7 (mod 8), (p1p2 ) = −1.

(e) [11] N = p1p2, p1 ≡ 3 (mod 8), p2 ≡ 7 (mod 8), (p1p2 ) = −1.

(f) [11] N = p1p2, p1 ≡ 3 (mod 8), p2 ≡ 7 (mod 8), (p2p1 ) = −1.

(g) [6] N = p1p2, p1 ≡ 2λ + 1 (mod 2λ+1), λ ≥ 3, p2 ≡ 7 (mod 8),
(p1p2 ) = 1, (p2p1 )4 ̸= 1, ( 2

p2
) ̸= 1.

(h) [6] N = p1p2, p1 ≡ 5 (mod 8), p2 ≡ 3 (mod 4), (p1p2 ) = 1, (p2p1 )4 ̸= 1.

In fact, Feng proved there is no element in the ring Z[ζq] with magnitude
q

n
2 . This gives a chance to use Schmidt’s field descent method [16] to get

new result on nonexistence of GBF.
We also develop a method to prove that there is no GBF with type

[3, 2 ·23e]. As there are elements in Z[ζ23e ] with magnitude (2 ·23e)
3
2 , Feng’s

method doesn’t work here.

2 Results based on Feng’s

In this section, we introduce the field descent method in [16] and then to
get new results of nonexistence of generalized bent functions.

2.1 Field descent method

Definition 1. Let m,n be positive integers, and let m =
∏t

i=1 p
ci
i be the

prime power decomposition of m. For each prime divisor q of n let

mq :=

{ ∏
pi ̸=q pi if m is odd or q = 2,

4
∏

pi ̸=2, q pi otherwise.

Let D(n) be the set of prime divisors of n. Define F (m,n) =
∏t

i=1 p
bi
i

to be the minimum multiple of
∏t

i=1 pi such that for every pair (i, q), i ∈
{1, . . . , t}, q ∈ D(n), at least one of the following conditions is satisfied:
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(a) q = pi and (pi, bi) ̸= (2, 1),

(b) bi = ci,

(c) q ̸= pi and qOmq (q) ̸≡ 1 (mod pbi+1
i ).

Here Omq(q) means the order of q modulo mq.

According to the definition, we know that for fixed m, F (m,n) depends
only on the set D(n), so we have F (m, n) = F (m,nt) for ∀ t ≥ 1. bi is the
smallest integer satisfies at least one of the three conditions for all q ∈ D(n)
and 1 ≤ bi ≤ ci.

We have the following important theorem.

Theorem 1. Assume XX = n for X ∈ Z[ζm], where n and m are positive
integers. Then

Xζjm ∈ Z[ζF (m,n)]

for some j ∈ Z.

As XζjmXζjm = XX = n, this theorem says that if there is an element
in Z[ζm] satisfying XX = n, then there is an element in Z[ζF (m,n)] with the
same magnitude. We can use this to get new results on non-existence of
GBF.

2.2 New nonexistence results

First we introduce a lemma in [11]. For a prime p and positive integers e,
n, we use pe∥n means pe|n and pe+1 ̸ |n.

Lemma 1. Soppose that K = Q(ζN ), 2 ̸ |N and

(1) p is an odd prime factor of N and pm∥N ,

(2) there exists an integer s such that ps ≡ −1 (mod N
pm ).

If there exists α ∈ Z[ζN ] such that αᾱ = pM(M ∈ Z), then there exists
β ∈ Z[ζN ] such that ββ̄ = M .

In the same article, the authors gave examples that there is no GBF with
type [n, 2p1p2](n = 1, 3, 5) with (p1, p2) have the following values (p1, p2) =
(239, 383), (263, 463), (263, 479), (311, 359), (359, 191), (367, 383), (463, 479),
(479, 271). All are in the class (d) of §1.
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Let N = p1p2, K = Q(ζN ), As all the above cases have Legendre symbol
(p1p2 ) = −1, so that ps1 ≡ −1 (mod p2) for some integer s. If there is a GBF
with type [n, 2p1p2], then there exists

α ∈ Z[ζN ], αᾱ = (2N)n.

By the above lemma, there exists

β ∈ Z[ζN ], ββ̄ = (2p2)
n.

They in fact proved that(Theorem2.1 in [11]) for every

α ∈ Z[ζN ], αᾱ ̸= (2p2)
n, n = 1, 3, 5 (∗)

Theorem 2. Let n, (p1, p2) be as the above, there is no GBF with type
[n, 2pe1p2] for all e ≥ 1.

Proof. Let M = pe1p2, If there exists GBF with type [n, 2M ], we have

γ ∈ Z[ζM ], γγ̄ = (2M)n.

Using the above lemma repeatedly, we can get

δ ∈ Z[ζM ], δδ̄ = (2p2)
n.

By Theorem 1, there is

β ∈ Z[ζF (M,(2p2)n)], ββ̄ = (2p2)
n.

We are going to prove that F (M, (2p2)
n) = p1p2, so a contradiction to (∗).

As p2∥M , by the definition of F (M, (2p2)
n), p2∥F (M, (2p2)

n). we only need
to determine the power index of p1. Since M is odd, we have

M2 = p1p2, Mp2 = p1.

Using a computer, we have

p1∥2OM2
(2) − 1, p1∥p

OMp2
(p2)

2 − 1

for all the above (p1, p2), so F (M, (2p2)
n) = p1p2. Here we only give the

calculation for the first pair (p1, p2) = (239, 383).

O239·383(2) = 22729, O239(383) = 119.

239∥222729 − 1, 239∥383119 − 1.

So we finish the proof.
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Remark 1. We in fact prove that there is no element in Z[ζM ] with magni-
tude (2M)

n
2 . In the above theorem, we only choose all (p1, p2) of the class

(d). For other cases in Feng et al.’s articles, as we only need to determine
the index t1, t2 such that

pt11 ∥2
OM2

(2) − 1, pt21 ∥p
OMp2

(p2)

2 − 1.

when p1∥M2 and p1∥Mp2 . Numbers satisfies m2|aϕ(m) − 1 are quite rare,
with ϕ the Euler function. There are only 104 such numbers for a = 2 [1].
It is reasonable to believe for these cases t1 = t2 = 1, so we may get more
nonexistence results.

Theorem 3. (p1, p2) as the above, there is no GBF with type [1, 2pe1p
3
2] and

[1, 2pe1p
5
2] for all e ≥ 1.

Proof. We first prove the case [1, 2pe1p
3
2]. Just as the proof of Theorem 2, if

such a GBF exists, then there is

α ∈ Z[ζF (pe1p
3
2,2p

3
2)
], αᾱ = 2p32.

By the definition of F (m,n), compare to the case F (pe1p2, (2p2)
3), we only

need one more step to determine the index

pt2∥2Op1p2 (2) − 1.

By a computer, it is easy to find that for all the (p1, p2), we have t = 1.
So we have F (pe1p

3
2, 2p

3
2) = p1p2 and α ∈ Z[ζp1p2 ], then 2α2α = (2p2)

3, a
contradiction to (∗). For the case [1, 2pe1p52], using the same method, we have

α ∈ Z[ζp1p2 ], αᾱ = 2p52.

Then 4α4α = (2p2)
5, contradict to (∗).

Remark 2. For the same reason of Remark 1, it is believed that for other
cases in Feng et al.’s articles, we can get similar results.

3 Type [3, 2 · 23e]
In this section, we are going to prove that there is no GBF with type [n, 2 ·
23e], n = 1, 3. The n = 1 case is proved by Feng in [4](class (a) in §1).
First we consider when e = 1. Here is some facts obaut the cyclotomic
field K = Q(ζ23), which can be seen in many textbooks about algebraic
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number theory, such as [7] and [12]. There is a unique quadratic number
field L = Q(

√
−23) included in K. Let OK and OL denote their rings of

algebraic integers respectively. Notice that the order of 2 mod 23 is 11, then
we have the following prime ideal factorizations

2OL = p1p2 p1 = (2,
1−

√
−23

2
)OL, p2 = (2,

1 +
√
−23

2
)OL

2OK = P1P2 P1 = (2,
1−

√
−23

2
)OK ,P2 = (2,

1 +
√
−23

2
)OK

23 is ramified in K with ramification index 22.
√
−23OK = P11 P = (1− ζ23)OK

It is easy to check that p1 and p2 are not principal ideals, and there cubic
is.

p31 =
3 +

√
−23

2
OL p32 =

3−
√
−23

2
OL

Recalling the definition of ideal norm N , we have a homomorphism from
the ideal class group of K to the ideal class group of L and N (Pi) = p11i for
i = 1, 2, as the idea class of pi has order 3, which is relatively prime to 11,
so Pi is not principal, and

P3
1 =

3 +
√
−23

2
OK P3

2 =
3−

√
−23

2
OK

Lemma 2. If α ∈ Z[ζ23] then αᾱ ̸= 46. Moreover if αᾱ = (46)3, then α
must have the form

α =
√
−23

3 · 3±
√
−23

2
· (±ζi23).

Proof. If αᾱ = 46. then we have the following prime ideal factorization

(αOK)(ᾱOK) = P1P2P
22.

If Pt|αOK , then Pt|ᾱOK , so P11|αOK , and

α√
−23

∈ Z[ζ23],
α√
−23

OK = P1 or P2.

contradict to that Pi is not principal. So αᾱ ̸= 46.
If α ∈ OK with αᾱ = 463. For the same reason

β =
α

√
−23

3 ∈ Z[ζ23], (βOK)(β̄OK) = P3
1P

3
2.
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We have βOK = P3
1 or P3

2, if not we can get βOK = 2P1 or 2P2, contradic-

tion with that Pi is not principal. We assume β = 3±
√
−23
2 u with u a unit

in OK , then uū = 1. For any Galois automorphism σ of K, we have

σ(u)σ(u) = σ(u)σ(ū) = 1,

so u is a root of unity and have the form of ±ζi23. Then

α =
√
−23

3 · 3±
√
−23

2
· (±ζi23).

We finish the proof.

From the above Lemma, we know that there is no GBF of type [1, 46].
If f is a GBF of type [3, 46], then for every λ ∈ Z3

46,

F (λ) =
√
−23

3 · 3±
√
−23

2
· (±ζi23).

There are 7 elements in the additive group of Z3
46 with order 2, such as

v = (23, 0, 0). We have the following lemma.

Lemma 3. If v ∈ Z3
46 is an element of order 2, then for every λ ∈ Z3

46, we
have

F (λ) = ±F (λ+ v).

Proof. As v is of order 2, for x ∈ Z3
46, we have ζx·v46 = ±1. So

F (λ) + F (λ+ v) =
∑
x∈Z3

46

ζ
f(x)−xλ̇
46 (1 + ζ−xv̇

46 ) = 2α ∈ P1 ∩P2

for some α ∈ Z[ζ23]. Then F (λ) ∈ Pi ⇔ F (λ + v) ∈ Pi. By the above
Lemma, we have F (λ+ v) = F (λ) · (±ζi23) for some 0 ≤ i < 23. Then

F (λ) + F (λ+ v) = F (λ)(1± ζi23) ∈ P1 ∩P2

By results in algebraic number theory, if i ̸= 0,

(1− ζi23)OK = P

and 1 + ζi23 is a unit. F (λ)(1 ± ζi23) can’t both be in P1 and P2, so i = 0
and we finish the proof.
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Let v1 = (23, 0, 0), v2 = (0, 23, 0), v3 = (23, 23, 0). Notice that

vi + vj = vk,

if {i, j, k} is a permutation of {1, 2, 3}. Define

Ni = {x ∈ Z3
46 | F (x) = F (x+ vi)}

Mi = {x ∈ Z3
46 | F (x) = −F (x+ vi)}.

Let ni, mi denote the cardinality of Ni, Mi, so ni +mi = (46)3.

Lemma 4. ni = mi = 4 · (23)3.

Proof. As
∑

x∈Z3
46
F (x)F (x+ vi) = 0. By the above lemma,

F (x)F (x+ vi) =

{
(46)3 if x ∈ Ni,
−(46)3 if x ∈ Mi.

so (ni −mi) · (46)3 = 0 then ni = mi = 4 · (23)3.

Now consider the following 4 sets

T1 = N1 ∩N2 = {x ∈ Z3
46 | F (x) = F (x+ v1) = F (x+ v2)}

T2 = N1 ∩M2 = {x ∈ Z3
46 | F (x) = F (x+ v1) = −F (x+ v2)}

T3 = M1 ∩N2 = {x ∈ Z3
46 | F (x) = −F (x+ v1) = F (x+ v2)}

T4 = M1 ∩M2 = {x ∈ Z3
46 | F (x) = −F (x+ v1) = −F (x+ v2)}

Denote their cardinalities by t1, t2, t3, t4. We have the following lemma.

Lemma 5. t1 = t2 = t3 = t4 = 2 · (23)3.

Proof. First it is easy to note that t1 + t2 = n1 = n2 = t1 + t3, so we have
t2 = t3 and then t1 = t4. For our result, we only need to prove t1 = t2. We
define 8 more sets.

W1 = T1 ∩N3 = {x | F (x) = F (x+ v1) = F (x+ v2) = F (x+ v3)}
W2 = T1 ∩M3 = {x | F (x) = F (x+ v1) = F (x+ v2) = −F (x+ v3)}
W3 = T2 ∩N3 = {x | F (x) = F (x+ v1) = −F (x+ v2) = F (x+ v3)}
W4 = T2 ∩M3 = {x | F (x) = F (x+ v1) = −F (x+ v2) = −F (x+ v3)}
W5 = T3 ∩N3 = {x | F (x) = −F (x+ v1) = F (x+ v2) = F (x+ v3)}
W6 = T3 ∩M3 = {x | F (x) = −F (x+ v1) = F (x+ v2) = −F (x+ v3)}
W7 = T4 ∩N3 = {x | F (x) = −F (x+ v1) = −F (x+ v2) = F (x+ v3)}
W8 = T4 ∩M3 = {x | F (x) = −F (x+ v1) = −F (x+ v2) = −F (x+ v3)}
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each with cardinality wi. Notice that

x ∈ W2 ⇐⇒ x+ v1 ∈ W3

⇐⇒ x+ v2 ∈ W5

⇐⇒ x+ v3 ∈ W8

so w2 = w3 = w5 = w8. Notice that N3 = W1 ∪W3 ∪W5 ∪W7, so

w1 + w3 + w5 + w7 = n3.

Also we have M2 = W3 ∪W4 ∪W7 ∪W8, then

w3 + w4 + w7 + w8 = m2.

By the above lemma n3 = m2. so we get w1 = w4. Then

t1 = w1 + w2 = w3 + w4 = t2.

we finish the proof.

Lemma 6. W2 = W3 = W5 = W8 = ∅.

Proof. From the proof of the above lemma, we only need to prove W2 = ∅.
If x ∈ W2, then F (x) = F (x+ v1),

F (x) =
∑

(y1,y2,y3)∈Z3
46

ζ
f(y)−x·y
46 =

( ∑
y1≡0(2)

+
∑

y1≡1(2)

)
ζ
f(y)−x·y
46

F (x+ v1) =
∑

(y1,y2,y3)∈Z3
46

ζ
f(y)−(x+v1)·y
46 =

( ∑
y1≡0(2)

−
∑

y1≡1(2)

)
ζ
f(y)−x·y
46

The sum of the y1 ≡ 1 mod 2 part must be zero, so

F (x) =
∑

y1≡0(2)

ζ
f(y)−x·y
46 .

For the same reason from F (x) = F (x+ v2) and F (x) = −F (x+ v3) we get

F (x) =
∑

y2≡0(2)

ζ
f(y)−x·y
46 .

F (x) =
∑

y1+y2≡1(2)

ζ
f(y)−x·y
46 .
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so we have

F (x) =
( ∑

y1≡0(2)

+
∑

y2≡0(2)

−
∑

y1+y2≡1(2)

)
ζ
f(y)−x·y
46 .

and then
F (x) = 2

∑
y1≡y2≡0(2)

ζ
f(y)−x·y
46 .

which is impossible as F (x) must has the form of
√
−23

3 · 3±
√
−23
2 · (±ζi23)

By Lemma 2.

From the above two lemma, we have t1 = w1 = 2 · (23)3. If x ∈ W1, then
x+ v1, x+ v2 and x+ v3 must also in W1. so w1 ≡ 0 mod 4, contradiction.
Now we have proved there is no GBF of type [n, 46] for n = 1, 3. For general
e, the proof is similar. Again we denote K = Q(ζ23e). Just notice that the
order of 2 mod 23e is 11 · 23e−1 then we have

2OK = P1P2 P1 = (2,
1−

√
−23

2
)OK ,P2 = (2,

1 +
√
−23

2
)OK

As gcd(11 · (23)e−1, 3) = 1, we also get Pi is not principal and its cubic is
principal. We have

Theorem 4. There is no GBF with type [n, 2 · (23)e] for n = 1, 3.

Remark 3. In the proof of Lemma 4 and 5, we only use the property
of GBF. For odd N , if we have F (x) = ±F (x + v) and 2 ̸ |F (x) for all
x ∈ Z3

2N and v with order 2. Then there is no GBF with type [3, 2N ]. For
the n = 3 case, we only use 3 order-2 elements of total 7. For n > 3, if we
use more order-2 elements, the same method may also work, but it must be
too complicated.

4 Conclusion and future work

In this article we give two new kinds of nonexistence of GBF, one based on
the field descent method and Feng et al’s results, and the other based on
the property of the cyclotomic field Q(ζ23e). Since Kumar et al gave the
definition of GBF in 1985 [10], it is almost thirty years and there is no GBF
constructed in the case [n, q] with n odd and q ≡ 2 mod 4. It is believed
that no such GBF exists. Although Feng and some others gave some results,
this question is far from solved.
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