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Abstract. We revisit the problem of building dual-model secure (DMS) hash functions that are simultaneously
provably collision resistant (CR) in the standard model and provably pseudorandom oracle (PRO) in an ideal-
ized model. Designing a DMS hash function was first investigated by Ristenpart and Shrimpton (ASIACRYPT
2007); they put forth a generic approach, called Mix-Compress-Mix (MCM), and showed the feasibility of the
MCM approach with a secure (but inefficient) construction. An improved construction was later presented by
Lehmann and Tessaro (ASIACRYPT 2009). The proposed construction by Ristenpart and Shrimpton requires
a non-invertible (pseudo-) random injection oracle (PRIO) and the Lehmann-Tessaro construction requires a
non-invertible random permutation oracle (NIRP). Despite showing the feasibility of realizing PRIO and NIRP
objects in theory–using ideal ciphers and (trapdoor) one-way permutations– these constructions suffer from several
efficiency and implementation issues as pointed out by their designers and briefly reviewed in this paper.
In contrast to the previous constructions, we show that constructing a DMS hash function does not require any
PRIO or NIRP, and hence there is no need for additional (trapdoor) one-way permutations. In fact, Ristenpart and
Shrimpton posed the question of whether MCM is secure under easy-to-invert mixing steps as an open problem in
their paper. We resolve this question in the affirmative in the fixed-input-length (FIL) hash setting. More precisely,
we show that one can sandwich a provably CR function, which is sufficiently compressing, between two random
invertible permutations to build a provably DMS compression function. Any multi-property-preserving (MPP)
domain extender that preserves CR and PRO can then be used to convert such a DMS compression function
to a full-fledged DMS hash function. Interestingly, there are efficient off-the-shelf candidates for all the three
ingredients (provably CR compression functions, random invertible permutations, and MPP domain extenders)
from which one can choose to implement such a DMS hash function in practice. Further, we also explain the
implementation options as well as a concrete instantiation.

Key words: hash functions, provable security, collision resistance, pseudorandom oracle.

1 Introduction

There have been several attempts to construct provably secure hash functions in the standard model [15, 23,
11, 20, 7, 10]; however, these constructions usually guarantee only specific security properties (mainly the
CR and one-way properties) and they are inappropriate candidates for real-world instantiation of random
oracles, which renders them useless for many practical applications of hash functions [31, 26]. On the other
hand, there are also provably secure hash functions in idealized models whose security, in the sense of the CR
and one-way (OW) properties [9] or the PRO property [12, 5, 14, 6], is proven assuming that their underlying
components are ideal objects (e.g. ideal ciphers or FIL random oracles), but outside these idealized models
their actual security becomes unclear and unproven.

An interesting problem is how to construct a cryptographic hash function that has provable dual-model
security; that is, both provably secure (e.g. in the sense of CR) in the standard model and provably PRO
in an idealized model (e.g. the ideal cipher model).

Ristenpart and Shrimpton initiated an investigation of this problem in [26, 27]. Given a hash function
H that is provably CR in the standard model and has some regularity properties (as defined in [26]), they
showed how to construct a hash function F that inherits the provable CR property of H in the standard
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model while simultaneously being indifferentiable (in the sense of [21]) from an ideal hash function in an
idealized model for the underlying components (i.e. assuming access to some finite idealized primitives such
as an ideal cipher or a FIL random oracle). They presented a generic encapsulation method, called Mix-
Compress-Mix (MCM), which sandwiches H between two injective mixing stages,M1 andM2, to get F (.) =
M2(H(M1(.))). It is proved that if the mixing stages are pseudorandom injection oracles (PRIO) and H is
CR and possesses a suitable regularity property then F will be a pseudorandom oracle. A PRIO is defined
in [26] as a pseudorandom oracle which observes injectivity but there is no associated inversion oracle; i.e., a
PRIO is a “non-invertible” primitive by definition. Unfortunately, an efficient construction for instantiating
a PRIO has turned out to be a non-trivial task. The Tag-and-Encryption (TE) construction was presented
by Ristenpart and Shrimpton as a proof-of-concept, but it is inefficient and suffers from composability
limitations as pointed out by the designers themselves. Furthermore, we note that the Ristenpart-Shrimpton
construction (for F ) needs three primitives: a hash function H (with the CR and regularity properties), a
blockcipher E (to instantiate an ideal cipher), and an additional (complexity-theoretic) primitive; namely,
a trapdoor one-way permutation.

Lehmann and Tessaro presented an improved MCM construction [19] resolving some of the problems of
the Ristenpart-Shrimpton construction. However, the Lehmann-Tessaro construction to build F still needs
three primitives: a hash function H, a blockcipher E, and an additional one-way permutation with some
special constraints imposed on it. The need for an additional one-way permutation is due to the fact that the
Lehmann-Tessaro construction still requires the output mixing stage (M2) to be a PRIO with zero stretch,
which is called a “non-invertible” random permutation (NIRP) oracle in [19]. Let n be the hash size which
is equal to the block size of E in the Lehmann-Tessaro construction. As discussed in [19], their proposed
construction of NIPR requires a one-way permutation P : {0, 1}n → {0, 1}n that satisfies the following
constraints: it must resist to inversion attacks with running time of roughly O(2n/2) and its input/output
length (i.e. n) must equal that of an existing block cipher.

As pointed out by Lehmann and Tessaro [19], one-way permutations on elliptic curves of prime orders [18]
are the only known candidates to satisfy the first condition (security level of O(2n/2)), but their domain/range
does not equal {0, 1}n; hence, they cannot directly be used in this construction (without possibly having to
modify the whole construction and its proof of security). Therefore, a practical implementation for P (and
hence M2) is left unclear and open at the conclusion of [19].

In addition to the aforementioned issues, we note an important limitation of indifferentiability guarantee
of these designs; namely, in both of the previous constructions the indifferentiability is complexity-theoretic
in nature, which is due to using an additional complexity-theoretic primitive by the constructions; namely,
the former uses a trapdoor one-way permutation (in construction of TE) and the latter uses a one-way
permutation (in construction of NIRP). Hence, even if the starting hash function H is an ideal hash (instead
of a CR hash function in the standard model) the provided indifferentiabilty bounds of these constructions
still remain complexity-theoretic due to relying on a computationally secure (trapdoor) one-way permutation.

We notice that the multi-property combiners of [16] can also provide a DMS hash construction, but the
resulting construction doubles the output length of the underlying hash functions and is rather inefficient as
also remarked in [19] (for example, the only combiner from [16] which can be used to construct a DMS hash
function, called “C4P&IRO”, requires 8 calls to its underlying two hash functions plus a pairwise independent
function).

Our Construction. Let π1 : {0, 1}m → {0, 1}m and π2 : {0, 1}n → {0, 1}n be two invertible permutations
with associated inverses π−1

1 and π−1
2 , respectively. Let H : K × {0, 1}m → {0, 1}n be a FIL hash function.

We show that the composition function F = π2 ◦H ◦ π1 defined as F : K×{0, 1}m → {0, 1}n s.t. FK(M) =
π2(HK(π1(M))), for every K ∈ K and M ∈ {0, 1}m, has the following properties:

1. F is PRO if π1 and π2 are random invertible permutations and H is a CR and one-way hash function
with suitable regularity properties.
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2. F inherits all security properties of H in the standard model.

The second property above is straightforward to show noticing that π1 and π2 are easily invertible
permutations (i.e., their inversion permutations are public); for example, these can be built using fixed-key
block ciphers. To get a full-fledged variable-input-length (VIL) hash function F : K′×{0, 1}∗ → {0, 1}n

′
, one

can easily extend the domain of our FIL hash function F using any existing efficient MPP domain extension
transform [5, 6, 1, 2] that can preserve CR, PRO, and several other security notions of interest.

Compared to the previous two constructions, in our method: (1) there is no need for additional complexity-
theoretic primitives, neither a trapdoor one-way permutation as in [26] nor a one-way permutation with spe-
cial constraints yielding to practicality issues as in [19]), (2) indifferentiability can be information-theoretic
if one uses a hash function H whose CR and OW properties are proved information-theoretically in an
idealized model, such as any secure block cipher based hash functions in [28, 9]. The latter is actually a
corollary of the former.

We note that if H is a sufficiently compressing function (e.g. m ≥ 2n) then the OW (preimage resistance)
property is actually implied by the CR property [25], albeit up to the birthday bound (Section 2 provides
some details). The PRO proof for our scheme as well as the PRO proofs of Ristenpart-Shrimpton [27] and
Lehmann-Tessaro [19] schemes are only proving security up to the birthday bound.

Implementation. For an efficient implementation of a DMS hash function according to our proposed
method, one needs three components as follows:

1. An efficient provably CR function with suitable regularity properties, e.g. SWIFFT [20] or VSH∗ [7].
2. Two efficient candidates to instantiate the random invertible permutations for the input and output

mixing stages. There are several efficient and widely-evaluated dedicated designs for random invertible
permutations of different (large) sizes in the literature; for example, the class of permutations Ed in the
JH hash function [32] (which are based on the d-dimensional generalized AES design methodology), the
Keccak-f permutations of the Keccak hash function [8], or the P and Q permutations of the Grøstl
hash function [17]. (JH, Keccak and Grøstl are among the five final-round SHA-3 candidates [22]. Their
indifferentiability proofs assume that these underlying permutations are random.)

3. An efficient MPP domain extender that preserves CR and PRO, e.g. HAIFA [2]. If preservation of other
properties in addition to CR and PRO are also aimed then more powerful MPP transforms [6, 1] should
be be used as HAIFA does not preserve some properties [1].

As a concrete implementation example, one can use SWIFFT with parameters m = 1024 bits and
n = 512 bits as the underlying provably CR function, and the 512-bit permutation P512 and the 1024-bit
permutation Q1024 from the Grøstl compression function [17] as the mixing stages. This yields to a DMS
compression function with input length of 1024 bits and output length of 512 bits. The HAIFA construction
can then be applied to obtain a full-fledged DMS hash function. It is worth noticing that provably secure
hash functions such as SWIFFT (using a reduction from an underlying hard problem) usually do not provide
an ideally expected level of concrete security with respect to the CR and OW properties; i.e., for hash size
of n bits the expected levels of CR and OW security provided by these functions are usually (much) less
than the ideal levels of 2

n
2 and 2n (for the CR and OW properties, respectively). This is similar to the

situation for public key primitives like RSA where one needs to estimate concrete security levels for specific
parameter settings based on the best known algorithms to solve the underlying hard problem. For example,
the currently known algorithms to find collisions and preimages in the SWIFFT function with a 512-bit
hash size have time complexities 2106 and 2448, respectively [20].

Reset Indifferentiability. Our treatment of PROs in this paper is based on the formalization of Coron
et al. in [12] following the original indifferentiability framework of Maurer et al. in [21]. Ristenpart et al.
in Eurocrypt 2011 [29] showed limitations of the indifferentiability composition theorem when applying it
to a general cryptosystem, requiring a security notion that is defined by games involving multiple, disjoint



4 M. R. Reyhanitabar, W. Susilo

adversarial stages. They put forth “reset indifferentiability” as a new stronger notion to handle this issue;
however, to the best of our knowledge it is still an open problem how to design a hash construct (even
an inefficient one) that can satisfy this new stronger notion. As shown in [29] practical (single-pass) hash
functions are not reset indifferentiable.

Organization of the Paper. Section 2 provides the required preliminaries and conventions used through-
out the paper. Formal description of the construction and its security analysis are provided in Section 3.
Section 4 and appendices contain the proofs.

2 Preliminaries

Notations and Conventions. If S is a finite set, x
$← S means that x is chosen from S uniformly at

random; |S| denotes the size of S. X ← Y is used for denoting a normal assignment statement where the
value of Y is assigned to X. The set of all binary strings of length n bits (for some positive integer n)
is denoted as {0, 1}n, the set of all binary strings whose lengths are variable but upper-bounded by N is
denoted by {0, 1}≤N and the set of all binary strings of arbitrary length is denoted by {0, 1}∗. The symbol
⊥ means that the value of a variable is yet undefined, ∧ denotes logical ‘AND’ operation, and ∨ denotes
logical ‘OR’ operation. If S1 and S2 are two sets we denote their union by S1 ∪ S2 and their subtraction
by either S1\S2 or S1 − S2. By i, j < k we mean (i < k) ∧ (j < k). Let A be an adversary that returns a
binary value; by Af(.)(X)⇒ 1 we refer to the event that the adversary A with input X and access to oracle
f(.) returns value 1. By time complexity of an algorithm we mean the running time, relative to some fixed
model of computation plus the size of the description of the algorithm using some fixed encoding method.
We denote the set of all functions with domain {0, 1}m and range {0, 1}n by Func(m,n) and the set of all
permutations over {0, 1}m by Perm(m).

We denote a FIL hash function (or compression function) by H : K×{0, 1}m → {0, 1}n, where m and n
are two positive integers such that n < m, and the keyspace K is a non-empty set of strings. By convention if
|K| = 1 we assume that K = {ε}; i.e., it only consists of the empty string, and in this case we call H a keyless
compression function (which can be simply denoted as a one-argument function H : {0, 1}m → {0, 1}n).
If |K| ≥ 2 we call H a compression function family or a dedicated-key compression function. We use the
notations HK(M) and H(K, M) interchangeably. TimeH denotes the time complexity of computing HK(X)
for any K ∈ K and X ∈ {0, 1}m, plus the time complexity for sampling from K).

As usual in concrete-security definitions, the resource parameterized function Advxxx
H (r) denotes the

maximal value of the adversarial advantage (i.e. Advxxx
H (r) = maxA {Advxxx

H (A)} ) over all adversaries A,
against the xxx property of H, that use resources bounded by r. The resource parameter r, depending on the
notion, may include time complexity (t), length of queries and number of queries that an adversary makes
to its oracles (if any).

CR and OW Properties. Let H : K × {0, 1}m → {0, 1}n be a compression function. The advantage
measures for an adversary A against the CR and OW (or Preimage Resistance) properties are defined as
follows:

– AdvCR
H (A) = Pr

[
K

$← K; (M,M ′) $← A(K) : M 6= M ′ ∧ HK(M) = HK(M ′)
]

– AdvOW
H (A) = Pr

[
K

$← K;M $← {0, 1}m ;Y ← HK(M);M ′ $← A(K, Y ) : HK(M ′) = Y
]

CR provisionally implies OW. From [25] we have AdvOW
H (t) ≤ 2AdvCR

H (t′) + 2n−m, where t′ =
t + cTimeH for some small constant c. This is called a “provisional implication” [25] where the strength of
the implication depends on the amount of compression achieved by the hash function (due to the 2n−m term
in the bound). If the hash function is substantially compressing, e.g., mapping 2n bits to n bits, then the
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implication is a strong one (i.e. AdvOW
H (t) ≤ 2AdvCR

H (t′) + 2−n). That is, a sufficiently compressing CR
function implies an OW function, albeit up to the birthday bound.

Keyless Hash Functions. Our results can be straightforwardly adapted to keyless hash functions, using
the human-ignorance framework of Rogaway [24] when dealing with the CR property for keyless hash
functions.

PRO. The indifferentiability framework [21] captures the definitions for comparing a given object F that
utilizes some public components (e.g. fixed-input-length random oracles or random permutations) in its
construction with an idealized object R. Let F f1,··· ,f` : K × Dom → Rng be a function family that has
access to public oracles f1, · · · , f`. For the purpose of the PRO property [12, 5, 6] the idealized function to
which we compare a member function F f1,··· ,f`

K : Dom → Rng is a random oracle R : Dom → Rng. Let
SR = (S1, · · · , S`) be a simulator that has oracle access to R and exposes interfaces for each of the ` oracles
used by F . The aim of the simulator is to mimic the oracles f1, · · · , f` such that no adversary can tell apart
whether it is interacting with the construction F and oracles (f1, · · · , f`) or with the ideal function R and
the simulator’s subroutines (S1, · · · , S`). Note that the simulator does not get to see adversary’s queries
to the ideal function R. It is assumed that the key K for the hash function is given to the simulator as a
parameter. The PRO advantage of an adversary A is defined as

Advpro
F, S(A) =

∣∣∣Pr
[
K

$← K : AF
f1,··· ,f`
K , f1,··· ,f`(K)⇒ 1

]
− Pr

[
K

$← K : AR, SR(K)(K)⇒ 1
]∣∣∣ .

Regarding the resources, we measure the total number of queries that A makes to its (` + 1) oracles. We
also specify the resources utilized by S, namely, the total number of queries qS made by S to R and the
maximum running time tS . (The values of the simulator’s resources are generally functions of the number
of queries made by an adversary.)

Regularity and Hash Function Balance. Bellare and Kohno [3] introduced a measure of the “amount
of regularity” of a hash function (both keyless and dedicated-keyed ones) called “balance”. They showed
how the success probability of the birthday attack for finding collisions under a hash function H depends
on the hash function balance as well as the size of the range of the hash function and the number of trials.
(In the birthday attack to find collisions for a hash function, adversary simply picks q random points from
the domain of the hash function and computes their hash values hoping that a pair of input points will have
the same hash value.) Let CH(q) be the probability that the birthday attack on hash function H succeeds
in finding a collision in q trials.

In this paper, we only need the definitions for the case of FIL hash functions. First, let’s consider a keyless
compression function H : {0, 1}m → {0, 1}n, where m > n ≥ 1. Let r = 2n and d = 2m. For i = 1, · · · , r let
H−1(Yi) be the set of all preimages of Yi under H; that is, the set of all M ∈ {0, 1}m such that H(M) = Yi,
and let di = |H−1(Yi)| be the size of this set. The balance of H is defined as

µ(H) = log
[

d2

d2
1 + · · ·+ d2

r

]
where logr(.) denote the logarithm in base r. The following results are from [3]:

– 0 ≤ µ(H) ≤ 1; the maximum balance of 1 is achieved when the hash function H is regular (i.e. we have
di = d/r for all i), while the minimum balance of 0 is achieved when H is a constant function.

– CH(q) ≤ q(q−1)
2 )

[
1

rµ(H) − 1
d

]
, or approximately we have CH(q) ≤ 0.5q2

rµ(H) when d ≥ 2r ≥ 4.

The generalization of the balance measure and related results for the case of a dedicated-key hash function
are also provided in [3]. Let H : K × {0, 1}m → {0, 1}n be a dedicated-key hash function. For each fixed
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K ∈ K, let HK : {0, 1}m → {0, 1}n be defined as HK(.) = H(K, .). The definitions for the metric CH(q) and
the balance measure µ(H) for this setting of dedicated-keyed hash function (hash function family) are given

in [3] as CH(q) = 1
|K| .

∑
K∈K CHK

(q) and µ(H) = logr

[
1
|K| .

∑
K∈K

1
rµ(HK )

]−1
; their relation is given by

CH(q) ≤ q(q − 1)
2

[
1

rµ(H)
− 1

d

]
≈ 0.5q2

rµ(H)

We will also use the following two notions of regularity in our proofs:

ε-almost output regularity. A function H : K × {0, 1}m → {0, 1}n is ε-almost output regular if for

any adversary A: |Pr[K $← K,M
$← {0, 1}m ;Y ← HK(M) : A(K, Y ) ⇒ 1] − Pr[K $← K, Y

$← {0, 1}n :
A(K, Y )⇒ 1]| ≤ ε.

∆-regularity [26]. For a function H : K × {0, 1}m → {0, 1}n, let δ(K, Y ) =
∣∣∣∣ |H−1

K (Y )|−2m−n

2m

∣∣∣∣ and ∆K =

max (δ(K, Y )), where the maximum is taken over all values of Y . We say that H is ∆-regular if
∑

K∈K pK∆K ≤
∆, where pK = Pr

[
K = K ′ : K ′ $← K

]
. This is a measure of the average (over keys) maximum deviation

from regularity.

Game-Playing Technique [30, 4]. We use the code-based game-playing framework of [4] in our proof.
A game G is a program (written in pseudocode) that consists of an initialization procedure (Initialize(.)), a
finalization procedure (Finalize(.)), and oracle procedures P1(.), P2(.), · · · , Pn(.) for some n ≥ 1. Adversary
can make calls to the oracle procedures passing in parameters from some finite domain associated to each
oracle. To run game G = (Initialize, P1, P2, · · · , Pn,Finalize) with adversary A, first procedure Initialize
is called with an input string parameter param (in our proof this is an empty string). Then we run A,
passing it any value that was returned by Initialize. When A calls its i-th oracle Pi with a string, we pass
that string to Pi and return to the adversary whatever Pi returns. When A finally halts with some output
out, we pass out to Finalize which generates an output for the game. When the output of the game is the
same as the output of the adversary we delete Finalize. We write Pr[AG ⇒ 1] for the probability that the
adversary A outputs 1 when G is run with A. The notation Pr[GA ⇒ 1] denotes the probability that the
output of game G (i.e. output of its Finalize procedure) is 1 when G is run with A. If there is no Finalize
then Pr[AG ⇒ 1] = Pr[GA ⇒ 1]. The advantage of A in distinguishing two games G and H is defined
as Adv(AG, AH) =

∣∣Pr[AG ⇒ 1]− Pr[AH ⇒ 1]
∣∣. For any three games G, I and H, we have the triangle

inequality Adv(AG, AH) ≤ Adv(AG, AI)+Adv(AI , AH) which is used to bound the adversarial advantage
when a sequence of games is used during the proof. We refer to [4] for further conventions used in the
code-based game-playing framework.

Pointless Queries. We assume that an adversary A does not make redundant (or pointless) queries to
its oracles: (1) a query is redundant if it has been made before; (2) given a permutation oracle Π(.) and
its inverse oracle Π−1(.), a query Π(X) is redundant if A has previously received X in answer to a query
Π−1(Y ); a query Π−1(Y ) is redundant if A has previously received Y in answer to a query Π(X). Disallowing
redundant queries is clearly without loss of generality in the sense that from any arbitrary adversary A that
makes q queries, one can make an adversary B that asks at most q non-redundant queries and achieves the
same advantage as A.

3 Construction Description and Security Analysis

Construction Description. Fig. 1 illustrates our proposed FIL MCM function F : K×{0, 1}m → {0, 1}n,
defined as FK(M) = π2(HK(π1(M))), for M ∈ {0, 1}m and K ∈ K, where π1 : {0, 1}m → {0, 1}m and



Mix-Compress-Mix Revisited 7

Game G0

Procedure Initialize Procedure O0(M)

π1
$← Perm(m) X ← π1[M ]

π2
$← Perm(n) Y ← HK(X)

return K
$← K return Z ← π2[Y ]

Procedure O1(M) Procedure O−1
1 (X)

return X ← π1[M ] return M ← π−1
1 [X]

Procedure O2(Y ) Procedure O−1
2 (Z)

return Z ← π2[Y ] return Y ← π−1
2 [Z]

Y ZM X π2π1 HK

Fig. 1. (Left) FIL MCM construction F using easily invertible permutations as the mixing stages. (Right) Game G0, which is
used in the indifferentiability proof, captures the behavior of the real setting where an adversary A has access to the following
five oracles: O0 which realizes construction F , O1 and O2 which realize two random permutations, and oracles O−1

1 and O−1
2

which realize the inverses of the random permutations, respectively.

π2 : {0, 1}n → {0, 1}n are two permutations with given inverses π−1
1 and π−1

2 , respectively. Game G0 in Fig.
1 describes the oracles which are provided in this real setting for a differentiating adversary.

Simulator Description. Let A be an adversary that wants to differentiate our FIL MCM function FK :
{0, 1}m → {0, 1}n from a truly random function R : {0, 1}m → {0, 1}n. We remind that the output of the
Initialize procedure, i.e. the key K, is given as an input to the adversary and the simulator. As shown in
Fig. 1, in the real setting when A interacts with construction F and its public (permutation) components,
it is provided with five oracles: oracle O0 which realizes F , oracles O1 and O2 which realize two random
permutations, and oracles O−1

1 and O−1
2 which realize the inverses of the random permutations, respectively.

Figure 2 shows Game I0, capturing the behavior of the simulated setting, where oracles O1, O−1
1 , O2 and

O−1
2 are implemented by a simulator S = (Sπ1 ,Sπ−1

1
,Sπ2 ,Sπ−1

2
). The adversary has direct oracle access to

O0 and the simulator does not get to see the adversary’s query-response pairs to this oracle.
The simulator keeps a memory of all previously answered queries and their associated variables in a set

C of commitments. Each member of C is a tuple (M,X, Y, Z) that holds the corresponding values of the
variables in the construction of F as shown in Fig. 1; if a value is yet unknown (not defined yet) it is denoted
by ⊥. On each query, not only S chooses its answer, but also it chooses and stores values of the associated
variables according to the construction of F when this is possible; otherwise, it stores a ⊥ for the value of
a variable that cannot be determined appropriately yet. We describe subroutines of S as shown in Fig. 2 in
the following. We start by explaining Sπ2 (for answering O2(Y ) queries) and Sπ−1

2
(for answering O−1

2 (Z)
queries), as these are the queries that possibly can cause difficulties for the simulator when later answering
some related O1(M) and O−1

1 (X) queries (the difficulty lies in the fact that the simulator can neither invert
the hash function H nor the random function R).

On query O2(Y ), subroutine Sπ2 checks the memory C. If a commitment Z has already been made
specifying how to answer this query Y , it is returned as the answer (at line 040); otherwise, a random M is
chosen and the value Z ← R[M ] is returned as the answer (but M is not revealed to the adversary). The
simulator also does the following two housekeeping actions: set C is updated to include tuple (M,⊥, Y, Z)
(note that the value of X cannot be determined without finding a corresponding preimage of Y under H
which is assumed to be hard; hence, it is left unknown at this point), and the random value M is stored in
a set Pe which is used for recording the (“poisoned”) queries that if are asked later by the adversary, in a
query O1(M), can cause the simulator to fail (return ⊥ at line 020).
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Game I0

Procedure Initialize Procedure O0(M)

000 R $← Func(m, n) 010 return Z ←R[M ]

001 return K
$← K

Procedure O1(M) Procedure O−1
1 (X)

020 if M ∈ Pe then bad← true, return ⊥ 030 if X ∈ Pd then bad← true, return ⊥
021 Z ←R[M ] 031 Y ← HK(X)
022 if ∃ (⊥, X, Y, Z) ∈ C then 032 if ∃ (M ′, X ′, Y, Z′) ∈ C ∧X 6= X ′ then bad← true, return ⊥
023 C ← (C\ {(⊥, X, Y, Z)}) ∪ {(M, X, Y, Z)} 033 if ∃ (M,⊥, Y, Z) ∈ C then
024 Pd ← Pd\ {X}, return X 034 C ← (C\ {(M,⊥, Y, Z)}) ∪ {(M, X, Y, Z)}
025 X

$← {0, 1}m 035 Pe ← Pe\ {M}, return M

026 Y ← HK(X) 036 M
$← {0, 1}m

027 C ← C ∪ {(M, X, Y, Z)} 037 Z ←R[M ]
028 return X 038 C ← C ∪ {(M, X, Y, Z)}

039 return M

Procedure O2(Y ) Procedure O−1
2 (Z)

040 if ∃ (M, X, Y, Z) ∈ C then return Z 050 if ∃ (M, X, Y, Z) ∈ C then return Y

041 M
$← {0, 1}m 051 X

$← {0, 1}m
042 Z ←R[M ] 052 Y ← HK(X)
043 C ← C ∪ {(M,⊥, Y, Z)} 053 C ← C ∪ {(⊥, X, Y, Z)}
044 Pe ← Pe ∪ {M} 054 Pd ← Pd ∪ {X}
045 return Z 055 return Y

Game I1

Procedure Initialize Procedure O0(M)

000 R $← Func(m, n) 110 return Z ←R[M ]

001 return K
$← K

Procedure O1(M) Procedure O−1
1 (X)

120 if M ∈ Pe then bad← true, return ⊥ 130 if X ∈ Pd then bad← true, return ⊥
121 Z ←R[M ] 131 Y ← HK(X)
122 if ∃ (⊥, X, Y, Z) ∈ C then 132 if ∃ (M ′, X ′, Y, Z′) ∈ C ∧X 6= X ′ then bad← true, return ⊥
123 C ← (C\ {(⊥, X, Y, Z)}) ∪ {(M, X, Y, Z)} 133 if ∃ (M,⊥, Y, Z) ∈ C then
124 Pd ← Pd\ {X}, return X 134 C ← (C\ {(M,⊥, Y, Z)}) ∪ {(M, X, Y, Z)}
125 X

$← {0, 1}m 135 Pe ← Pe\ {M}, return M

126 Y ← HK(X) 136 M
$← {0, 1}m

127 C ← C ∪ {(M, X, Y, Z)} 137 Z ←R[M ]
128 return X 138 C ← C ∪ {(M, X, Y, Z)}

139 return M

Procedure O2(Y ) Procedure O−1
2 (Z)

140 M
$← {0, 1}m 150 X

$← {0, 1}m
141 Z ←R[M ] 151 Y ← HK(X)
142 C ← C ∪ {(M,⊥, Y, Z)} 152 C ← C ∪ {(⊥, X, Y, Z)}
143 Pe ← Pe ∪ {M} 153 Pd ← Pd ∪ {X}
144 return Z 154 return Y

Fig. 2. (Top) Game I0 captures the behavior of the simulated setting, where an adversary A has access to the following five
oracles: oracle O0 which realize a random function, oracles O1, O−1

1 , O2 and O−1
2 are implemented by the simulator S in order

to make adversary A unable to differentiable this setting from the real setting. (Bottom) Game I1 captures the behavior of
the simplified simulated setting considering a simplified adversary D, where oracles O1,O−1

1 ,O2 and O−1
2 are implemented by

the simplified simulator S ′.
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On query O−1
2 (Z), subroutine Sπ−1

2
checks the memory C. If a commitment Y has already been made

specifying how to answer this query Z, it is returned as the answer (at line 050); otherwise, a random X
is chosen and the value Y ← HK(X) is returned as the answer. We note that X is not revealed directly to
the adversary; the only information that adversary gets about X is via the returned hash value H(X). The
simulator also performs the following two actions: set C is updated to include the tuple (⊥, X, Y, Z) (note
that the value of M cannot be determined as there is no inversion oracle for R; hence, it is left unknown at
this stage), and the random value X is stored in a set Pd which is used for recording the (poisoned) queries
that if are asked later by the adversary, in a query O−1

1 (X), can cause the simulator to fail (return ⊥ at
line 030).

On query O1(M), subroutine Sπ1 first checks whether M ∈ Pe, i.e. whether it is a (poisoned) query for
which the corresponding value of X was left unknown in an earlier point at line 043. If this is the case then
the simulator fails and aborts (at line 020). Otherwise, it queries R[.] on input M to get Z ← R[M ]. Now
there are two cases. If the condition at line 022 is true, meaning that M may be linked to an existing tuple
in the commitment set C, then the corresponding value for X is returned (line 024), while updating the
commitment set accordingly (line 023) and omitting X from the set of (poisoned) queries Pd. Note that by
the assumption that pointless queries are disallowed, such a returned value X from O1(M) cannot actually
be asked later in a query O−1

1 (X). If the condition at line 022 is not true, then the simulator returns a random
value X (lines 025 and 028), and also computes Y = HK(X) and stores the complete tuple (M,X, Y, Z) in
its commitment set C.

Description of Sπ−1
1

, answering O−1
1 (.) queries in Game I0, is very similar to that of Sπ1 in most parts.

We only note that there is an additional condition at line 032 which can make the simulator fail in this case
(return ⊥ at line 032), and that is if the adversary can make a collision happen under the hash function
H.

Results. We are now ready to state our main result about the indifferentiability of our proposed FIL MCM
construction with invertible mixing stages.

Theorem 1 (Main Theorem). Let π1 : {0, 1}m → {0, 1}m and π2 : {0, 1}n → {0, 1}n be two random
permutations with given associated inverses π−1

1 and π−1
2 , respectively. Let H : K×{0, 1}m → {0, 1}n be a ∆-

regular and ε-almost output regular FIL hash function with balance value µ(H). Let F : K×{0, 1}m → {0, 1}n
be the composed function defined by FK(M) = π2(HK(π1(M))), for every M ∈ {0, 1}m and K ∈ K. Let
A be an adversary that runs in time t and makes at most (q0, q1, q−1, q2, q−2) queries to its five oracles
(O0,O1,O−1

1 ,O2,O−1
2 ), respectively; let q = q0 + q1 + q−1 + q2 + q−2 be the total number of queries. Let S

be the simulator that implements oracles O1,O−1
1 ,O2 and O−1

2 for the adversary A as shown in Game I0 in
Fig. 2. There exist adversaries B and C such that

Advpro
F, S(A) ≤ AdvCR

H (B) + qAdvOW
H (C) + ε +

q

2m
+ q2

(
4

2m
+

3.5
2n

+
1.5

2nµ(H)
+ 2∆

)
where S runs in time tS ≤ c ((q1 + q−1 + q−2)TimeH + qlog q) and makes (q1 + q−1 + q2) oracle queries.
Adversary B runs in time at most tB ≤ t + c (qTimeH + qlog q) and adversary C runs in time tC ≤ t + tS .

ut

4 Proof of Theorem 1

Overview. We use the game-playing technique to bound Advpro
F, S(A) = Adv(AG0 , AI0). The proof is

divided into four lemmas. First, we provide the lemmas and the intuition behind their statements to conclude
the proof of Theorem 1; then, we proceeded to prove the lemmas.

Lemma 1 shows that, without loss of generality, we can simplify the simulator S (underlying oracles
O1,O−1

1 ,O2 and O−1
2 in Game I0) provided that we only consider a certain class of simplified adversaries.
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Namely, we show that the problem of bounding Adv(AG0 , AI0), where A is an arbitrary adversary and S
is the original simulator (in Game I0), can be reduced to bounding Adv(DG0 ,DI1), where D is a simplified
adversary and S ′ is the simplified simulator that implements oracles O1,O−1

1 ,O2 and O−1
2 in Game I1,

shown in Fig. 2. By simplified adversary we mean an adversary which does not ask some specific sequences
of queries, but otherwise is arbitrary. Informally speaking, the assumption that adversary is simplified, in
turn, allows us to simplify the simulator by omitting parts of its code which are responsible for taking care
of those specific sequence of queries. We formally define a simplified adversary in the context of our proof
in this paper in Definition 1.

To bound Adv(DG0 ,DI1), we first specify two sequences of games to move G0 and I1 closer to each
other. Namely, in Lemma 2 we specify a sequence of games I1 → I2 → I3 (shown in Fig. 4) and bound
Adv(DI1 ,DI3), and in Lemma 3 we specify a sequence of games G0 → G1 → G2 → G3 → G4 → G5 (shown
in Fig. 1, Fig. 5 and Fig. 6) and bound Adv(DG0 ,DG5).

Finally, in Lemma 4 we bound Adv(DG5 ,DI3). (The proof of Lemma 4 itself includes further sequences
of games.) The proof of Theorem 1 is then concluded combining the results of these lemmas.

Definition 1 (Simplified Adversary). Let D be a pro adversary against F that makes at most q queries
to all of its five oracles O0,O1,O−1

1 ,O2 and O−1
2 . Let history = {(twi, αi, βi)} denote D’s query/response

transcript where 1 ≤ i ≤ q and twi ∈ {0,+1,−1,+2,−2} specifies the oracle to which the i-th query
was made; i.e., twi = 0 specifies oracle O0, and twi = +1,−1,+2 and −2 specify O1,O−1

1 ,O2 and O−1
2 ,

respectively. (αi, βi) denotes the i-th (query, response) pair when twi = 0,+1,+2 or (response, query) pair
when twi = −1,−2 . That is, using the variable names in Fig. 1, history will include tuples of the following
type: (0,Mi, Zi), (+1,Mi, Xi), (−1,Mi, Xi), (+2, Yi, Zi) and (−2, Yi, Zi). We say that D is a simplified
adversary if the following two conditions hold:

1. history does not contain entries (±1,Mi, Xi) and (2, Yj , Zj) with i < j such that Yj = HK(Xi).
2. history does not contain entries (±1,Mi, Xi), (0,Mj , Zj) and (−2, Yk, Zk) with i, j < k such that

Mj = Mi and Zk = Zj.

where (±1,Mi, Xi) means that either (+1,Mi, Xi) or (−1,Mi, Xi) has been asked by D (note that D only
asks one of these because pointless queries are disallowed). ut

The first condition above means that D will not make a query O2(Y ) such that Y = HK(X) for an
X which either was the response from a previously made query O1(M) or was used in a previous query
O−1

1 (X). The second condition means that D will not make a query O−1
2 (Z) such that Z was previously

received as the answer for a query O0(M) and M was either the response from a previously made query
O−1

1 (X) or was used in a previous query O1(M). Now refer to Fig. 2 where the complete simulated setting
(Game I0) is run with an arbitrary adversary A and the simplified simulated setting (Game I1) is run with
a simplified adversary D. Comparing these two games, it can be seen that line 040 and line 050 of Game I0

(which are responsible for handling the cases in which A may ask queries not conforming the two conditions
in Definition 1) are omitted to get Game I1. Now, as Game I1 is only run with a simplified adversary
D that must respect both of the two conditions in Definition 1, informally speaking, it is expected that
Adv(DG0 ,DI1) = Adv(AG0 , AI0). Lemma 1 provides a formal proof for this intuition. We note that our
definition of a simplified adversary can be seen as an extension of the definition of a “construction-respecting”
adversary from [27].

Lemma 1. Let A be any pro adversary against our construction F that runs in time at most t and makes
at most (q0, q1, q−1, q2, q−2) queries to its five oracles (O0,O1,O−1

1 ,O2,O−1
2 ), respectively. Then we can

construct a simplified adversary D such that

Adv(AG0 , AI0) = Adv(DG0 ,DI1)
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where D runs in time t′ ≤ t+cq(TimeH+log(q)), for a small constant c, and makes at most (q′0, q1, q−1, q2, q−2)
queries to its five oracles, where q′0 = q0 + q1 + q−1. ut

In the following lemmas, D is a simplified adversary.

Lemma 2. Adv(DI1 ,DI3) ≤ AdvCR
H (B) + qAdvOW

H (C) + q
2m , where the resources for adversaries B and

C are as described in Theorem 1. ut

Lemma 3. Adv(DG0 ,DG5) ≤ 1.5q2
(

1
2m + 1

2n

)
+ q2∆ + ε. ut

Lemma 4. Adv(DG5 ,DI3) ≤ q2
(

2.5
2m + 2

2n + 1.5
2nµ(H) + ∆

)
. ut

In the following subsections we prove Lemma 1 and Lemma 2. Proofs of Lemma 3 and Lemma 4 together
with their related games are provided in Appendix.

Putting Pieces Together. Now we are ready to conclude the proof of Theorem 1. Combining lemmas
1–4 we have

Advpro
F, S(A) = Adv(AG0 , AI0) = Adv(DG0 ,DI1)

≤ Adv(DG0 ,DG5) + Adv(DG5 ,DI3) + Adv(DI3 ,DI1)
≤ AdvCR

H (B) + qAdvOW
H (C) + ε + q

2m + q2
(

4
2m + 3.5

2n + 1.5
2nµ(H) + 2∆

)
.

4.1 Proof of Lemma 1

Given an arbitrary adversary A, we construct a simplified adversary D that runs A and includes the checks
done by S in lines 040 and 050 of Game I0. (Note that these checks are done by S to fool any adversary
that might try to distinguish Game G0 and Game I0 by asking queries that disrespect the conditions of
Definition 1). Adversary D, given oracles O′

0,O′
1,O

′−1
1 ,O′

2,O
′−1
2 and the key K, runs A(K) by answering

A’s oracle queries as shown in Fig. 3. If A makes (q0, q1, q−1, q2, q−2) queries to its five oracles (let q =
q0 + q1 + q−1 + q2 + q−2) then D makes (q′0, q1, q−1, q2, q−2) queries to its five oracles where q′0 = q0 + q1 + q−1.
Adversary D runs in time t + cq(TimeH + log(q)) where c is a small constant and c log(q) accounts for the
maximum time required for searching an element in the memory C (note that |C| ≤ q).

Now it remains to show that

Pr
[
DG0 ⇒ 1

]
= Pr

[
AG0 ⇒ 1

]
, and (1)

Pr
[
DI1 ⇒ 1

]
= Pr

[
AI0 ⇒ 1

]
. (2)

By construction of D (see Fig. 3) we have that A’s query/response transcripts will be identical when it
interacts directly with a game or it is run within D unless A asks queries that disrespect (contradict) one of
the conditions required from a simplified adversary in Definition 1. (These types of queries are handled at
lines 30 and 40 of D in Fig. 3.) Now we need to justify that even in the case of such disrespecting queries,
A views identically distributed responses whether it is run within D or directly with the games G0 and I0.
(The proof is essentially an extension of a similar argument in [27] for construction-respecting adversaries.)
Assume that A asks queries that contradict the conditions in Definition 1. That is, we have:

Case 1. (±1,M,X) ∈ historyA and A is making an O2(HK(X)) query (i.e., A disrespects the first condi-
tion in Definition 1), or

Case 2. (±1,M,X) ∈ historyA and (0,M, Z) ∈ historyA, and A is making an O−1
2 (Z) query (i.e., A

disrespects the second condition in Definition 1).
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Adversary D(K)
Run A(K), answering its queries as follows:

on query O0(M):

00 return Z ← O′
0(M)

on query O1(M): on query O−1
1 (X):

10 X ← O′
1(M) 20 M ← O′−1

1 (X)
11 Y ← HK(X) 21 Z ← O′

0(M)
12 Z ← O′

0(M) 22 Y ← HK(X)
13 C′ ← C′ ∪ {(M, X, Y, Z)} 23 C′ ← C′ ∪ {(M, X, Y, Z)}
14 return X 24 return M

on query O2(Y ): on query O−1
2 (Z):

30 if ∃ (M, X, Y, Z) ∈ C′ then return Z 40 if ∃ (M, X, Y, Z) ∈ C′ then return Y
31 return Z ← O′

2(Y ) 41 return Y ← O′−1
2 (Z)

when A halts with output bit b, output b.

Fig. 3. Constructing a simplified adversary D from an arbitrary adversary A.

To justify (1), first we consider Case 1 above. If A is run directly with Game G0 then we have X = π1[M ]
and A receives Z ← π2(HK(π1[M ])) as response for its O2(HK(X)) query. If A is run within D, which in
turn has access to the oracles in Game G0, then the condition at line 30 of Fig. 3 will be true and A receives
a value Z from C′ which is already associated to M (either at line 12 or line 21 in Fig. 3 ) as Z ← O′

0(M).
Now, note that in Game G0 the response for query O′

0(M) is also evaluated as Z ← π2(HK(π1[M ])). So,
the response Z will have identical distributions in the experiments AG0 and DG0 in this case.

Similarly, in Case 2, if A is run directly with Game G0 we have X = π1[M ] (hence, M = π−1
1 [X]),

Y = HK(X), Z = π2[Y ] (hence, Y = π−1
2 [Z]); therefore, A receives Y ← π−1

2 [Z] as response for its O−1
2 [Z]

query. On the other hand, if A is run within D then the condition at line 40 of Fig. 3 will be true and A
receives a value Y from C′ which is already associated to M,X, Z either in lines 10-13 (corresponding to
(+1,M,X) ∈ historyA) or lines 20-23 (corresponding to (−1,M,X) ∈ historyA) in Fig. 3. Now, referring
to the description of D in Fig. 3 and remembering that D is run with Game G0, we have Y = HK(X) (line
11 or line 22), Z ← O′

0(M) (line 12 or line 21), and either X ← O′
1(M) (line 10) or M ← O′−1

1 (X) (line
20). That is, we have X = π1[M ] (or equivalently, M = π−1

1 [X]) and Z = π2 (HK(π1[M ])) = π2[Y ], hence,
Y = π−1

2 [Z]. Therefore, the response Y to the query O−1
2 (Z) will also have identical distributions in the

experiments AG0 and DG0 in Case 2. So, we have Pr
[
DG0 ⇒ 1

]
= Pr

[
AG0 ⇒ 1

]
.

To justify (2), we note that the simplified adversary D never makes queries of the types in Case 1 or Case
2 above; hence, we have Pr

[
DI0 ⇒ 1

]
= Pr

[
DI1 ⇒ 1

]
(note that I1 is the same as I0 except that we have

omitted the checks necessary to detect and handle queries causing Case 1 (at line 040 of Game I0) and Case
2 (at line 040 of Game I0). It remains to show that Pr

[
DI0 ⇒ 1

]
=

[
AI0 ⇒ 1

]
. The justification for this (by a

straightforward case analysis) is very similar to the one we just used to show Pr
[
DG0 ⇒ 1

]
= Pr

[
AG0 ⇒ 1

]
and omitted here.

4.2 Proof of Lemma 2

Fig. 4 shows the sequence of games I1 → I2 → I3 that we use to prove Lemma 2. Game I1 includes the
boxed statements (at lines 120, 130, and 132) while Game I2 does not. We remind that the games are run
with a simplified adversary and pointless queries are disallowed.
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Procedure Initialize Procedure O0(M) Game I1

000 R $← Func(m, n) 110 return Z ←R[M ] Game I2

001 return K
$← K

Procedure O1(M) Procedure O−1
1 (X)

120 if M ∈ Pe then bad← true, return ⊥ 130 if X ∈ Pd then bad← true, return ⊥
121 Z ←R[M ] 131 Y ← HK(X)

122 if ∃ (⊥, X, Y, Z) ∈ C then 132 if ∃ (M ′, X ′, Y, Z′) ∈ C ∧X 6= X ′ then bad← true, return ⊥
123 C ← (C\ {(⊥, X, Y, Z)}) ∪ {(M, X, Y, Z)} 133 if ∃ (M,⊥, Y, Z) ∈ C then
124 Pd ← Pd\ {X}, return X 134 C ← (C\ {(M,⊥, Y, Z)}) ∪ {(M, X, Y, Z)}
125 X

$← {0, 1}m 135 Pe ← Pe\ {M}, return M

126 Y ← HK(X) 136 M
$← {0, 1}m

127 C ← C ∪ {(M, X, Y, Z)} 137 Z ←R[M ]
128 return X 138 C ← C ∪ {(M, X, Y, Z)}

139 return M

Procedure O2(Y ) Procedure O−1
2 (Z)

140 M
$← {0, 1}m 150 X

$← {0, 1}m
141 Z ←R[M ] 151 Y ← HK(X)
142 C ← C ∪ {(M,⊥, Y, Z)} 152 C ← C ∪ {(⊥, X, Y, Z)}
143 Pe ← Pe ∪ {M} 153 Pd ← Pd ∪ {X}
144 return Z 154 return Y

Game I3

Procedure Initialize Procedure O0(M)

000 R $← Func(m, n) 310 return Z ←R[M ]

001 return K
$← K

Procedure O1(M) Procedure O−1
1 (X)

320 Z ←R[M ] 330 Y ← HK(X)
321 if ∃ (⊥, X, Y, Z) ∈ C then return X 331 if ∃ (M,⊥, Y, Z) ∈ C then return M

322 return X
$← {0, 1}m 332 return M

$← {0, 1}m

Procedure O2(Y ) Procedure O−1
2 (Z)

340 M
$← {0, 1}m 350 X

$← {0, 1}m
341 Z ←R[M ] 351 Y ← HK(X)
342 C ← C ∪ {(M,⊥, Y, Z)} 352 C ← C ∪ {(⊥, X, Y, Z)}
343 return Z 353 return Y

Fig. 4. Sequence of games used for proving Lemma 2. Game I1 includes the boxed (return ⊥) statements while Game I2 does
not.
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I1 → I2. Games I1 and I2 are identical-until-bad and so from the fundamental lemma of game-playing [4]
we have Adv(DI1 ,DI2) = Pr

[
DI1 sets bad

]
. Now, we bound Pr

[
DI1 sets bad

]
using the union bound and

case analysis of the events in which bad might set to true in Game I1.

Line 120. The flag bad is set at this line if D makes a query O1(M) such that M ∈ Pe. Now, note that the
set of poisoned queries, Pe, is generated as a result of queries to O2 and consists of randomly chosen values
for M (at line 140 of Game I1) about which adversary D only gets corresponding random values Z ← R[M ]
(see lines 141 and 144 of Game I1), i.e. output values from a random function R. If adversary can make
the simulator reveal a poisoned value M at line 135 (which is possible by crafting an appropriate sequence
of queries 1) then M is deleted from Pe and will no longer be a poisoned value. Therefore, setting bad to
true at line 120 in Game I1 requires that adversary D guesses a random poisoned value M ∈ Pe which has
never been revealed, by only having the corresponding random values Z ← R[M ] for such unknown random
values for M . As R is a random function and |Pe| ≤ q2 we have

Pr[DI1sets bad at line 120] ≤ q22−m. (3)

Line 130. The flag bad is set at this line if adversary D makes a query O−1
1 (X) such that X ∈ Pd. The set

of poisoned values for X, i.e. Pd, is generated as a result of queries to O−1
2 and consists of randomly chosen

values for X (at line 150 of Game I1) about which D only gets the corresponding hash values Y ← HK(X)
(see lines 150-154 of Game I1). That is, each query to oracle O−1

2 provides the adversary with an image
value Y ← HK(X) where the corresponding input value X is chosen at random and not revealed to the
adversary. Adversary can make the simulator reveal some of these input values X at line 124 of Game I1

(by crafting an appropriate sequence of queries 2) in which case such values for X are deleted from Pd

(hence, no longer will be relevant for the conditional statement at line 130). Therefore, to set bad at line
130 of Game I1, adversary D must find one of the input values X (which is not revealed yet) for a given
image value Y (obtained from a previous query to O−1

2 ). Therefore, the probability that adversary D can
make bad be true at line 130 is bounded by the probability that D can win in the following experiment
against the hash function HK : adversary adaptively receives several images {Y1, Y2, · · · , YQ} under HK(.)
for random inputs {X1, X2, · · · , XQ}; adversary gets to learn some of these inputs (but not all of them),
and finally adversary must find one of the remaining (unrevealed) inputs, i.e., invert a remaining image
value Yi. (Note that inverting an image value Y implies finding a preimage for Y but the converse does not
hold necessarily, as there may be several preimages for a given image value.) This experiment captures a
notion that was called “some-point-one-way” function (spowf) by Ristenpart and Shrimpton in [26, 27]. A
straightforward hybrid argument similar to one shown in [27] can be used to reduce a spowf adversary D
to an OW adversary C such that AdvOW

H (C) ≥ 1
Q .Advspowf

H (D). Now, noticing that |Pd| ≤ q−2 (equality
holds if none of the poisoned values X are revealed at line 124 of Game I1), we have

Pr[DI1sets bad at line 130] ≤ Advspowf
H (D) ≤ q−2AdvOW

H (C). (4)

Line 132. The flag bad is set at this line if D makes a query O−1
1 (X) such that, under the hash function

HK(.), X collides with an X ′ that was already stored by the simulator in a complete tuple in C and X ′ 6= X.
Let B be an adversary that runs D and answers D’s queries as described in Game I1. Clearly, if D can set
bad to true at line 132 then B will output the colliding pair (X, X ′) and wins the CR game against HK . So,
we have

Pr[DI1sets bad at line 132] = AdvCR
H (B). (5)

1 An adversary that has an X and its hash value Y = HK(X) can make the simulator reveal a poisoned value M at line 135
by asking O2(Y ) followed by O−1

1 (X).
2 An adversary, having an arbitrary M , can make the simulator reveal a poisoned value X at line 124 in Game I1 by asking

the following sequence of queries: Z ← O0(M); Y ← O−1
2 (Z); and X ← O1(M).
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From 3, 4, and 5 we have

Adv(DI1 ,DI2) ≤ AdvCR
H (B) + q−2AdvOW

H (C) +
q2

2m
. (6)

I2 → I3. To move from I2 to I3, we omit parts of the code of I2 which were responsible for handling
the flag bad and the poisoned queries. This change is conservative as these operations (that were used for
capturing the difference between games I1 and I2) are now redundant in Game I2 and do not affect any
other variables. So, we have

Adv(DI2 ,DI3) = 0. (7)

Now, from (6) and (7), and remembering that q = q0 + q1 + q−1 + q2 + q−2, we have

Adv(DI1 ,DI3) ≤ Adv(DI1 ,DI2) + Adv(DI2 ,DI3) ≤ AdvCR
H (B) + qAdvOW

H (C) +
q

2m
. (8)

This completes the proof of Lemma 2. ut
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A Appendix

A.1 Proof of Lemma 3

We use a sequence of games, G0 → G1 → G2 → G3 → G4 → G5, to prove the lemma. G0 is shown in Fig.
1, games G1 → G2 → G3 → G4 are shown in Fig. 5, and G5 is shown in Fig. 6. The transitions between
these games are mainly based on basic and commonly used techniques in the game-playing framework [4];
hence, for lack of space, we only briefly overview them. The move from G0 to G1 we rewrite game G0 by
lazily growing π1 and π2. This is a conservative move and we have

Adv(DG0 ,DG1) = 0. (9)

Games G1 and G2 are identical-until-bad and from the fundamental lemma of game-playing technique
we have Adv(DG1 ,DG2) = Pr

[
DG1 sets bad

]
. Note that the flag bad is set in game G1 whenever collisions

happen during lazily growing π1 and π2. Using the standard birthday-bound, we have

Adv(DG1 ,DG2) ≤ 0.5(q0 + q1 + q−1)2

2m
+

0.5(q0 + q2 + q−2)2

2n
≤ 0.5q2

2m
+

0.5q2

2n
. (10)

Games G2 and G3 are adversarially indistinguishable. To move from G2 to G3, we first omit the state-
ments at lines 102, 122, 132, 142, and 152 of G2 (note that G2 does not include the boxed statements and
hence omitting these lines will not affect adversary’s view), then we rewrite the way that the tables π1 and
π2 are handled in an equivalent way; namely, we first check whether a domain or range element is already
defined in these tables and if so we return that element; otherwise, we go on by sampling a random point
and defining the tables accordingly. (For the moment, setting bad at lines 330 and 340 of G3 can be ignored
as they will only be used later to move from G3 to G4.) Clearly, this code rewriting does not affect the
distribution of the responses that an adversary gets in these two games, so we have

Adv(DG2 ,DG3) = 0. (11)
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Games G3 and G4 are identical-until-bad, so we have Adv(DG3 ,DG4) = Pr
[
DG3 sets bad

]
. We claim

that Pr
[
DG3 sets bad at line 330

]
≤ q0q−1

2m . Remembering that D is a simplified adversary and pointless
queries are not allowed, we note that bad is set at line 330 if a new (non-redundant) query X made by the
adversary to oracle O−1

1 equals to an already defined but unrevealed image element of π1. Now, note that
such already defined but unrevealed values for X (image elements for π1) can only be generated as a result
of queries to O0 (see lines 300-302); i.e., there can be at most q0 such values and the probability to hit one
of them in a query O−1

1 (X) (at line 330) is at most q0

2m . As adversary can make q−1 (non-redundant) queries
to oracle O−1

1 , using the union bound, the probability that adversary can set bad at line 330 is bounded to
q0q−1

2m .
Now, it remains to bound Pr

[
DG3 sets bad at line 340

]
; this is the probability that a new (non-redundant)

query Y made by the adversary to oracle O2 collides with an already defined but unrevealed domain element
of π2. Such already defined but unrevealed values for Y are the outputs of the hash function HK (see Fig.
1); i.e., the intermediate values about which a simplified adversary is not given any information. So, we can
bound the probability that adversary can set bad at line 340 by the probability that adversary can win the
following combinatorial experiment: a random key K

$← K is selected and given to the adversary; adversary
gets to choose any q2 points Y1, Y2, · · · , Yq2 from {0, 1}n and let Y = {Y1, Y2, · · · , Yq2}; random values Xi

$←
{0, 1}m are chosen, for 1 ≤ i ≤ q0, and let Y ′

i = HK(Xi); adversary wins if Y ′
i = Yj for some i ∈ {1, · · · , q0}

and j ∈ {1, · · · , q2}. That is, we have Pr
[
DG3 sets bad at line 340

]
≤ Pr [HK(Xi) = Yj for some i, j]. The

latter probability (of the success in the combinatorial experiment) was calculated by Ristenpart and Shrimp-
ton in [27] (and sounds to be the reason behind the definition of the ∆-regularity notion in [26, 27]); we
use the known bound for this probability from (page 16 of) [27] by replacing appropriate parameters here
and omit the calculations (more complete proofs are left to the full version of this paper). Namely, we have
Pr [HK(Xi) = Yj for some i, j] ≤ q0q2

2n + q0q2∆. Therefore, we have

Pr
[
DG3 sets bad

]
≤ q0q−1

2m
+

q0q2

2n
+ q0q2∆ ≤

q2

2m
+

q2

2n
+ q2∆. (12)

To move from G4 to G5, we first omit the statements setting bad in Game G4 (as these do not affect
the responses in G4). Then instead of selecting a random value Y directly from {0, 1}n (at line 351 in G4)
we choose a random value X from the domain of the hash function HK and set Y = HK(X) (at line 551
in G5). As we assume that H is an ε-almost output regular hash function, we have Adv(DG4 ,DG5) ≤ ε.
Combing this and (9), (10), (11) and (12), we can conclude the proof of Lemma 3 as

Adv(DG0 ,DG5) ≤ 1.5q2

(
1

2m
+

1
2n

)
+ q2∆ + ε.

A.2 Proof of Lemma 4

The proof is divided into three lemmas. In the following, we provide the lemmas together with the sequences
of games, in Fig. 6 and Fig. 7, used for proving them. Descriptions of the proofs using the shown sequences
of games and standard techniques to bound the movements between the games are straightforward and
omitted here.

Lemma 5. Let D be any simplified adversary that runs in time at most t and makes at most q queries to
all of its oracles. We can construct an adversary D∗ as shown in Fig. 7 such that

Adv(DG5 ,DI3) ≤ Adv(D∗G6 ,D∗I4) +
q0q−2

2n
+

0.5(q0 + q−2)2

2nµ(H)

where D∗ runs in time t∗ ≤ t + cq(TimeH + log(q)), for a small constant c, and makes at most q queries to
its own five oracles (O∗

0,O∗
1,O

−1
1

∗
,O∗

2,O
−1
2

∗). ut
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Proof (Sketch). Referring to the construction of D∗ in Fig. 7, and the games I3 (in Fig. 4), I4 (in Fig. 6),
G5 and G6 (in Fig. 6), we have

Pr
[
D∗I4 ⇒ 1

]
= Pr

[
DI3 ⇒ 1 ∧Abort

]
≥ Pr

[
DI3 ⇒ 1

]
− q0q−2

2n
(13)

Pr
[
D∗G6 ⇒ 1

]
= Pr

[
DG5 ⇒ 1 ∧Abort

]
≥ Pr

[
DG5 ⇒ 1

]
− 0.5(q0 + q−2)2

2nµ(H)
. (14)

Using (13) and (14) we have

Adv(DG5 ,DI3) =
∣∣Pr

[
DG5 ⇒ 1

]
− Pr

[
DI3 ⇒ 1

]∣∣
≤

∣∣∣Pr
[
D∗G6 ⇒ 1

]
− Pr

[
D∗I4 ⇒ 1

]∣∣∣ +
q0q−2

2n
+

0.5(q0 + q−2)2

2nµ(H)

= Adv(D∗G6 ,D∗I4) +
q0q−2

2n
+

0.5(q0 + q−2)2

2nµ(H)
.

ut

Lemma 6. Adv(D∗G6 ,D∗I4) ≤ Adv(D∗G7 ,D∗I8) + 2q0q2

2m + 0.5q2
2

2m . ut

Sequences of games I4 → I5 → I6 → I7 → I8 and G6 → G7, and description of D∗ are shown in Fig. 6 and
Fig. 7.

Lemma 7. Adv(D∗G7 ,D∗I8) ≤ 0.5q2
0

2nµH + 0.5(q0+q−2)2

2nµ(H) + q0q2

2n + q0q2∆. ut

Combining the bounds in lemmas 5–7 and noticing that qi ≤ q for i ∈ {0, 1,−1, 2,−2} (where q denotes
the total number of queries by the adversary), we have

Adv(DG5 ,DI3) ≤ q2

(
2.5
2m

+
2
2n

+
1.5

2nµ(H)
+ ∆

)
. (15)

This completes the proof of Lemma 4. ut
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Procedure Initialize

000 return K
$← K Game G1

Game G2

Procedure O0(M) Procedure O−1
1 (X)

100 if π1[M ] = ⊥ then 130 if π−1
1 [X] = ⊥ then

101 X
$← {0, 1}m 131 M

$← {0, 1}m

102 if X ∈ image(π1) then bad← true, X
$← image(π1) 132 if M ∈ domain(π1) then bad← true, M

$← domain(π1)
103 π1[M ]← X 133 π1[M ]← X
104 X ← π1[M ] 134 M ← π−1

1 [X]
105 Y ← HK(X) 135 return M
106 if π2[Y ] = ⊥ then

107 Z
$← {0, 1}n Procedure O2(Y )

108 if Z ∈ image(π2) then bad← true, Z
$← image(π2) 140 if π2[Y ] = ⊥ then

109 π2[Y ]← Z 141 Z
$← {0, 1}n

110 Z ← π2[Y ] 142 if Z ∈ image(π2) then bad← true, Z
$← image(π2)

111 return Z 143 π2[Y ]← Z
144 Z ← π2[Y ]
145 return Z

Procedure O1(M) Procedure O−1
2 (Z)

120 if π1[M ] = ⊥ then 150 if π−1
2 [Z] = ⊥ then

121 X
$← {0, 1}m 151 Y

$← {0, 1}n

122 if X ∈ image(π1) then bad← true, X
$← image(π1) 152 if Y ∈ domain(π2) then bad← true, Y

$← domain(π2)
123 π1[M ]← X 153 π2[Y ]← Z
124 X ← π1[M ] 154 Y ← π−1

2 [Z]
125 return X 155 return Y

Procedure Initialize Game G3

000 return K
$← K Game G4

Procedure O0(M) Procedure O−1
1 (X)

300 X
$← {0, 1}m 330 if π−1

1 [X] 6= ⊥ then bad← true, return M ← π−1
1 [X]

301 if π1[M ] 6= ⊥ then X ← π1[M ] 331 M
$← {0, 1}m

302 π1[M ]← X 332 π1[M ]← X
303 Y ← HK(X) 333 return M
304 if π2[Y ] 6= ⊥ then return Z ← π2[Y ]

305 Z
$← {0, 1}n Procedure O2(Y )

306 π2[Y ]← Z 340 if π2[Y ] 6= ⊥ then bad← true, return Z ← π2[Y ]

307 return Z 341 Z
$← {0, 1}n

342 π2[Y ]← Z
343 return Z

Procedure O1(M) Procedure O−1
2 (Z)

320 if π1[M ] 6= ⊥ then return X ← π1[M ] 350 if π−1
2 [Z] 6= ⊥ then return Y ← π−1

2 [Z]

321 X
$← {0, 1}m 351 Y

$← {0, 1}n
322 π1[M ]← X 352 π2[Y ]← Z
323 return X 353 return Y

Fig. 5. Sequence of games used in the proof of Lemma 3. G1 and G3 include the boxed statements while G2 and G4 do not.
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Procedure Initialize Game G5

000 return K
$← K

Procedure O0(M) Procedure O−1
1 (X)

500 X
$← {0, 1}m 530 M

$← {0, 1}m
501 if π1[M ] 6= ⊥ then X ← π1[M ] 531 π1[M ]← X
502 π1[M ]← X 532 return M
503 Y ← HK(X)
504 if π2[Y ] 6= ⊥ then return Z ← π2[Y ]

505 Z
$← {0, 1}n Procedure O2(Y )

506 π2[Y ]← Z 540 Z
$← {0, 1}n

507 return Z 541 π2[Y ]← Z
542 return Z

Procedure O1(M) Procedure O−1
2 (Z)

520 if π1[M ] 6= ⊥ then return X ← π1[M ] 550 if π−1
2 [Z] 6= ⊥ then return Y ← π−1

2 [Z]

521 X
$← {0, 1}m 551 X

$← {0, 1}m, Y ← HK(X)
522 π1[M ]← X 552 π2[Y ]← Z
523 return X 553 return Y

Procedure Initialize Game G6

000 return K
$← K

Procedure O0(M) Procedure O−1
1 (X)

600 X
$← {0, 1}m 630 M

$← {0, 1}m
601 if π1[M ] 6= ⊥ then X ← π1[M ] 631 π1[M ]← X
602 π1[M ]← X 632 return M
603 Y ← HK(X)
604 if π2[Y ] 6= ⊥ then return Z ← π2[Y ] Procedure O2(Y )

605 Z
$← {0, 1}n 640 Z

$← {0, 1}n
606 π2[Y ]← Z 641 π2[Y ]← Z
607 return Z 642 return Z

Procedure O1(M) Procedure O−1
2 (Z)

320 X
$← {0, 1}m 650 X

$← {0, 1}m, Y ← HK(X)
321 π1[M ]← X 651 π2[Y ]← Z
322 return X 652 return Y

Game I4

Game I5

Procedure Initialize Procedure O0(M)

000 R $← Func(m, n) 410 return Z ←R[M ]

001 return K
$← K

Procedure O1(M) Procedure O−1
1 (X)

420 return X
$← {0, 1}m 430 Y ← HK(X)

431 if ∃ (M,⊥, Y, Z) ∈ C then return M

432 return M
$← {0, 1}m

Procedure O2(Y ) Procedure O−1
2 (Z)

440 M
$← {0, 1}m 450 X

$← {0, 1}m
441 Z ←R[M ] 451 Y ← HK(X)
442 C ← C ∪ {(M,⊥, Y, Z)} 452 return Y
443 return Z

Fig. 6. Games used in the proof of Lemma 3 and Lemma 4. Game I4 includes the boxed (return M) statement at line 431 while
in I5 it is omitted (i.e., replaced by an empty statement).
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Game I6

Game I7

Procedure Initialize Procedure O0(M)

000 return K
$← K 610 Z

$← {0, 1}n

620 if R[M ] 6= ⊥ then bad← true, Z ←R[M ]

630 return R[M ]← Z

Procedure O1(M) Procedure O−1
1 (X)

620 return X
$← {0, 1}m 634 return M

$← {0, 1}m

Procedure O2(Y ) Procedure O−1
2 (Z)

640 M
$← {0, 1}m 650 X

$← {0, 1}m

641 Z
$← {0, 1}n 651 Y ← HK(X)

642 if R[M ] 6= ⊥ then bad← true, Z ←R[M ] 652 return Y

643 return R[M ]← Z

Procedure Initialize Game G7

001 return K
$← K Game I8

Procedure O0(M) Procedure O−1
1 (X)

700 X
$← {0, 1}m 730 M

$← {0, 1}m
701 if π1[M ] 6= ⊥ then X ← π1[M ] 731 π1[M ]← X
702 π1[M ]← X 732 return M
703 Y ← HK(X)

704 if π2[Y ] 6= ⊥ then bad← true, return Z ← π2[Y ] Procedure O2(Y )

705 Z
$← {0, 1}n 740 Z

$← {0, 1}n
706 π2[Y ]← Z 741 π2[Y ]← Z
707 return Z 742 return Z

Procedure O1(M) Procedure O−1
2 (Z)

720 X
$← {0, 1}m 750 X

$← {0, 1}m, Y ← HK(X)
721 π1[M ]← X 751 π2[Y ]← Z
722 return X 752 return Y

Adversary D∗(K)
Run D(K), answering its queries as follows:

on query O0(M): on query O1(M):

00 Z ← O∗
0(M) 10 if ∃ (M, Z) ∈ S0 ∧ ∃ (Y, Z) ∈ S2 then

01 if Z ∈ Pz then Abort 11 return X ← YtoX[Y ]
02 S0 ← S0 ∪ {(M, Z)} 12 return X ← O∗

1(M)
03 return Z

on query O−1
1 (X): on query O−1

2 (Z):

20 return M ← O−1
1

∗
(X) 40 if ∃ (M, Z) ∈ S0 then

41 X
$← {0, 1}m , Y ← HK(X)

on query O2(Y ): 42 YtoX[Y ]← X, S2 ← S2 ∪ {(Y, Z)}
30 return Z ← O∗

2(Y ) 43 return Y
44 Pz ← Pz ∪ {Z}
45 return Y ← O−1

2

∗
(Z)

when D halts with output bit b, output b.

Fig. 7. Games used in the proof of Lemma 4, and (at the bottom) building a construction-respecting simplified adversary D∗
from any arbitrary simplified adversary D as used in Lemma 5.


