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Approaches for the Parallelization of Software Implementation 

of Integer Multiplication 
In this paper there are considered several approaches for the increasing performance of 

software implementation of integer multiplication algorithm for the 32-bit & 64-bit 

platforms via parallelization. The main idea of algorithm parallelization consists in 

delayed carry mechanism using which authors have proposed earlier [11]. The delayed 

carry allows to get rid of connectivity in loop iterations for sums accumulation of 

products, which allows parallel execution of loops iterations in separate threads. Upon 

completion of sum accumulation threads, it is necessary to make corrections in final 

result via assimilation of carries. First approach consists in optimization of 

parallelization for the two execution threads and second approach is an evolution of the 

first approach and is oriented on three and more execution threads. Proposed 

approaches for parallelization allow increasing the total algorithm computational 

complexity, as for one execution thread, but decrease total execution time on multi-core 

CPU. 

Keywords: multiplication, integers, parallelization, OpenMP, OpenCL, software 

implementation, cryptographic transformations, public key cryptosystem. 

 

Introduction. The IT penetration of society life leads to increasing of information security role, 

which are unthinkable without cryptographic cryptosystems. Public key cryptosystems hold a special 

place among the cryptographic transformations. 

Public key cryptosystems have a long history from first publication of Diffie & Hellman [1], 

which initiates basis to modern cryptosystems, for example algebraic curve cryptosystems. The 

increasing of software and hardware implementation of public key cryptosystems is the most 

important among topical tasks of public key cryptosystems developing. 

Arithmetic operations in rings and fields of integers form the basis of public key cryptosystems 

the whole of germination time. 

Integer multiplication operation is the main operation in ring or field arithmetic. 

Thus, the increasing of performance of public key cryptosystems may be achieved via 

increasing performance of integer multiplication operation in ring or field. 

It is well known, that software implementation of any algorithm depends on the architecture of 

hardware platform. Such microprocessors evolution goes to increasing a clock frequency. But upon 

reaching of physical limitation accent moves to increasing number of execution threads. Now, 

following CPU are available: 

 AMD proposes CPU (Opteron 6200 Series) with 16 physical cores and 16 execution threads; 

 Intel proposes CPU (Xeon 7000 Series) with 10 physical cores with Hyper-Threading and 20 

execution threads. 

There are two computational accelerators based on GP GPU available: 

 NVIDIA proposes GP GPU (Tesla FermiM2090) with CUDA technology with 512 physical 

cores; 

 AMD proposes GP GPU (FireStream 9370) with AMD APP technology with 20 SIMD PU 

and 1600 Streamed cores. 

The task of efficiency using all these cores lies on software engineer which designs and 

programs algorithms. 

In accordance with this, it is no doubt that adaptation of existing algorithms for execution on 

multi-core CPU (CPU with several execution threads) is an urgent task. 
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The task of algorithm parallelization of arithmetic operations for integers is not new [2, 3], in 

these papers there are considered Montgomery multiplication and integers arithmetic for 

implementation on NVIDIA GP GPU [2, 3]. Further evolution of this direction for other arithmetic 

algorithms allows to find more effective parallelization technique for  different hardware platforms. 

There are several well known parallelization techniques: 

 OpenMP [4, 5] for general purpose CPU. 

 OpenCL [6] for general purpose CPU and for GP GPU NVIDIA & AMD. 

 Intel Threading Building Block [7] for the general purpose CPU. 

 NVIDIA CUDA [8] for GP GPU NVIDIA. 

 AMD Accelerated Parallel Processing (APP) [9] for GP GPU AMD. 

Further we consider algorithms for integer multiplication and approaches for their 

parallelization with OpenMP technology. The OpenMP technology was chosen because it is 

supported by most modern C++ compilers for variety hardware platforms (like Intel C++ Compiler, 

GCC C++ Compiler & Microsoft C++ Compiler). OpenMP makes it easy to implement parallelism in 

existing C++ programs. Other mentioned technologies are more cumbersome and less obvious, but the 

main idea of proposed parallelization approach remains unchangeable. 

Modified Comba. Earlier, in paper [11], authors proposed a modified algorithm Comba [10] – 

Modified Comba, with delayed carry technique. Usage of 64-bit variables for storing 32-bit variables 

allows to get rid of carry assimilation from high part of 32-bit variable after each arithmetic operation. 

Hi(a0*b0) Lo(a0*b0)

r0r1
 

Fig. 1. Delayed carry mechanism idea 

The carry accumulates in high part of 64-bit variable and may be assimilated if necessary, see 

Fig. 1. Modified Comba algorithm [11] is shown below. 

Algorithm Modified Comba. Integer multiplication [11]. 

Input: integers  pba GF, , 32w , an w2
log , 12  nnk . 

Output: integer bac  . 

1.   064

0 r ,   064

1 r ,   064

2 r . 

2. For 0k , nk  , k  do 

2.1. For 0i , kj  , ki  , i , j  do 

2.1.1.       323264

ji bauv  . 

2.1.2.      3264

0

64

0 vrr  ,      3264

1

64

1 urr  . 

2.2.    
 

  64

032

64

1

64

1 hi rrr  , 
   

 
  64

132

64

2

64

2 hi rrr  . 

2.3. 
 

 
  64

032

32 low rck  , 
 

 
  64

132

64

0 low rr  , 
 

 
  64

232

64

1 low rr  ,   064

2 r . 

3. For nk  , 1l , nkk  , k , l  do 

3.1. For li  , lkj  , ni  , i , j  do 

3.1.1.       323264

ji bauv  . 

3.1.2.      3264

0

64

0 vrr  ,      3264

1

64

1 urr  . 

3.2. 
   

 
  64

032

64

1

64

1 hi rrr  , 
   

 
  64

132

64

2

64

2 hi rrr  . 

3.3. 
 

 
  64

032

32 low rck  , 
 

 
  64

132

64

0 low rr  , 
 

 
  64

232

64

1 low rr  ,   064

2 r . 

4. 
 

 
  64

032

32 low rcnk  . 

5. Return  c . 



Let’s conduct a brief analysis of Modified Comba algorithm [11], and show main difference 

with prototype – Comba algorithm [10] as well as work out in details Modified Comba potentialities. 

On fig. 2 and 3 graphical visualization of Modified Comba Algorithm for 3n  is shown, where 

the addition of corresponding products is clearly traced in columns. 

a2 a1 a0

b2 b1 b0

Hi(a0*b0) Lo(a0*b0)

Hi(a2*b0) Lo(a2*b0)

c2 c1 c0

a

b

c

Hi(a1*b0) Lo(a1*b0)

Hi(a0*b1) Lo(a0*b1)

Hi(a0*b2) Lo(a0*b2)

Hi(a1*b1) Lo(a1*b1)

r0r1

r2

r0r1

r0r1

r2

r0r1

r0r1

r0r1

r2

 

Fig. 2. Graphical visualization of loop 2 in Modified Comba Algorithm 

c3c4c5

Hi(a2*b1) Lo(a2*b1)

Hi(a1*b2) Lo(a1*b2)

Hi(a2*b2) Lo(a2*b2)

r0r1

r2

r0r1

r0r1

r2

c
 

Fig. 3. Graphical visualization of loop 3 in Modified Comba Algorithm 

The idea of delayed carry, previously described in Modified Comba Algorithm [11], has 

prompted authors on possibility of parallel addition values in columns 

  njijikbar
n

k ji 



,0,|Lo

12

00  and   njijikbar
n

k ji 



,0,|Hi

12

01 . In the 

classical Comba algorithm, this approach is impossible, due to the fact that addition operations with 

carry have connectedness. 



The fact of carry absence in additions integers in column (sum accumulation) for Modified 

Comba Algorithm allowing to say about isolatedness of sum accumulation operation, which allows to 

execute accumulation loop on step 2 and 3 in parallel independent threads. 

Notice, after the completion of sum accumulation in all independent threads, still it is required 

to make an adjustment (to assimilate a carry)  011 Hi rrr  ,  122 Hi rrr   and compute result 

 0Lo rci  . 

The delayed carry mechanism allows formulating several approaches to the Modified Comba 

Algorithm parallelization: 

 Parallel execution (in two parallel threads) of loops in the step 2 and 3 with further final result 

correction. We will call it Modified Comba 2x. 

 Parallel execution (number of parallel threads) of iterations in loops on steps 2 and 3 with 

further intermediate results (from parallel threads) merging. We will call it Modified Comba 

Mx. 

Modified Comba 2x algorithm. The algorithm contains two loops on step 2 and 3, which read 

elements  32

ia  and  32

jb  of corresponding arrays with further writing results of multiplication  32

ia  

and  32

jb  to elements  32

kc . Note, indexes k  in loops on step 2 and 3 are not repeated while writing to 

elements  32

kc . This allows to say about data independence in these loops and possibility of parallel 

loops execution by the parallel technique. It is worth underlining that, both loops on step 2 and 3 use 

common temporary variables 0r , 1r  and 2r . Moreover, variables 0r  and 1r  keep values which use in 

loop in step 3 after the loop on step 2 is complete.  

Thus, after the finishing loop on step 3 it will require making a correction of results of loop 

execution in step 3 – to take into account results of execution loop in step 2 (results keep in temporary 

variables 0r , 1r  and 2r ). See, while loops on steps 3 and parallelization, each thread should work with 

its own private temporary variables 0rl , 1rl  and 2rl . 

Global variables 0r  and 1r  will be used only for the possible carry from 0rl , 1rl  loop on step 2 

to further correction of results accumulation in loop on step 3. 
Let’s consider Modified Comba algorithm with parallelization via OpenMP into two threads. 
Algorithm Modified Comba 2x. Integer multiplication with OpenMP supports two threads. 

Input: integers  pba GF, , 32w , an w2
log , 12  nnk . 

Output: integer bac  . 

1. #pragma omp parallel sections private(  64

0r ,  64

1r ) begin 

1.1. #pragma omp section begin 

1.1.1.   064

0 rl ,   064

1 rl ,   064

2 rl . 

1.1.2. For 0k , nk  , k  do 

1.1.2.1. For 0i , kj  , ki  , i , j  do 

1.1.2.1.1.      323264

ji bauv  . 

1.1.2.1.2.      3264

0

64

0 vrlrl  ,      3264

1

64

1 urlrl  . 

1.1.2.2. 
   

 
  64

032

64

1

64

1 hi rlrlrl  , 
   

 
  64

132

64

2

64

2 hi rlrlrl  . 

1.1.2.3. 
 

 
  64

032

32 low rlck  , 
 

 
  64

132

64

0 low rlrl  , 
 

 
  64

232

64

1 low rlrl  ,   064

2 rl . 

1.1.3.    64

1

64

0 rlr  . 

1.1.4.    64

2

64

1 rlr  . 

#pragma omp section end 

1.2. #pragma omp section begin 

1.2.1.   064

0 rl ,   064

1 rl ,   064

2 rl . 



1.2.2. For nk  , 1l , nkk  , k , l  do 

1.2.2.1. For li  , lkj  , ni  , i , j  do 

1.2.2.1.1.      323264

ji bauv  . 

1.2.2.1.2.      3264

0

64

0 vrlrl  ,      3264

1

64

1 urlrl  . 

1.2.2.2.    
 

  64

032

64

1

64

1 hi rlrlrl  ,    
 

  64

132

64

2

64

2 hi rlrlrl  . 

1.2.2.3.  
 

  64

032

32 low rlck  ,  
 

  64

132

64

0 low rlrl  ,  
 

  64

232

64

1 low rlrl  ,   064

2 rl . 

#pragma omp section end 

#pragma omp parallel sections end 

2.      3264

0

64

0 ncrr  . 

3.    
 

    32

1

64

032

64

1

64

1 hi  ncrlrr . 

4.  
 

  64

132

64 hi rlt  . 

5. For 2 nk , nkk  , k  do 

5.1.      326464

kctt  . 

5.2.  
 

  64

32

32 low tck  . 

5.3.  
    

  64

32

64

32 hilow tt  . 

5.4.  
   0hi 64

32 t . 

6.  
 

  64

032

32 low rcnk  . 

7. Return  c . 

a2 a1 a0

b2 b1 b0

Hi(a0*b0) Lo(a0*b0)

Hi(a2*b0) Lo(a2*b0)

c3 c2 c1 c0c4c5

a

b

c

Hi(a1*b0) Lo(a1*b0)

Hi(a0*b1) Lo(a0*b1)

Hi(a0*b2) Lo(a0*b2)

Hi(a1*b1) Lo(a1*b1)

Hi(a2*b1) Lo(a2*b1)

Hi(a1*b2) Lo(a1*b2)

Hi(a2*b2) Lo(a2*b2)

r0r1

r2

r0r1

r0r1

r2

r0r1

r0r1

r0r1

r2

r0r1

r2

r0r1

r0r1

r2

Thread 1 

(Section 1)

Thread 2 

(Section 2)

 

Fig. 4. Graphical interpretation of loop 2 in Modified Comba 2x Algorithm 



After the finishing execution of the parallel threads in step 1.1 and 1.2, it is required to correct in 

steps 2-6 the result of thread in step 1.2 via carry transfer from result in other thread in step 1.1. 

The algorithm Modified Comba 2x for 2 threads and 3n  shown on fig. 4. 

An algorithm with parallelization on multiply threads deserves special attention. It is described 

below. 

Modified Comba Mx algorithm. In detailed consideration of Modified Comba algorithm, it is 

easy to note, that iterations in loops in steps 2 and 3 do not depend on one another. 

The exclusions are addition accumulation results and carry from current iteration to only that addition 

and carry results after the current iteration to further iteration processing in steps 2.2 and 2.3. By 

entering individual local variables for the sum accumulation parallel sum accumulation in iteration on 

steps 2 and 3 may be correctly performed. 

For these purposes in algorithm Modified Comba Mx two arrays  640ir  и  641ir , 12,0  ni . 

Are declared. Easy to see, that this approach allows to variate number of parallel threads without 

algorithm modification in whole. 

Algorithm Modified Comba Mx. Integer multiplication with OpenMP supports multiply 

threads 

Input: integers  pba GF, , 32w , an w2
log , 12  nnk . 

Output: integers bac  . 

0. 1l . 

1. #pragma omp parallel private (  64

0r ,  64

1r ) reduction (+ : l ) begin 

2. #pragma omp for nowait begin  

2.1. For 0k , nk  , k  do 

2.1.1.   064

0 rl ,   064

1 rl . 

2.1.2. For 0i , kj  , ki  , i , j  do 

2.1.2.1.      323264

ji bauv  . 

2.1.2.2.      3264

0

64

0 vrlrl  ,      3264

1

64

1 urlrl  . 

2.1.3.    64

0

640 rlr k  ,    64

1

641 rlr k  . 

#pragma omp for end 

3. #pragma omp for nowait begin 

3.1. For nk  , nkk  , k  do 

3.1.1.   064

0 rl ,   064

1 rl ,   064

2 rl . 

3.1.2. For li  , lkj  , ni  , i , j  do 

3.1.2.1.      323264

ji bauv  . 

3.1.2.2.      3264

0

64

0 vrlrl  ,      3264

1

64

1 urlrl  . 

3.1.3. 
   64

0

640 rlr k  , 
   64

1

641 rlr k  . 

3.1.4. l . 

#pragma omp for end 

#pragma omp parallel end 

4.    64

0

64

0 0rrl  . 

5.    64

0

64

1 1rrl  . 

6. 
 

 
  64

032

32

0 low rlc  . 

7. 
   

 
  64

032

64

1

64

1 low rlrlrl  . 

8. 
 

 
  64

132

64

2 hi rlrl  . 



9.    64

1

64

0 rlrl  . 

10.    64

2

64

1 rlrl  . 

11.   064

2 rl . 

12. For 1k , nkk  , k  do 

12.1.    6464

0 0krrll  . 

12.2.    6464

1 1krrll  . 

12.3.    
 

  64

032

64

0

64

0 low rllrlrl  . 

12.4.    
 

    
    

  64

132

64

032

64

032

64

0

64

1 lowhihi rllrllrlrlrl  . 

12.5.    
 

    
  64

132

64

132

64

2

64

2 hihi rllrlrlrl  . 

12.6.  
 

  64

032

32 low rlck  . 

12.7.    64

1

64

0 rlrl  . 

12.8.    64

2

64

1 rlrl  . 

12.9.   064

2 rl . 

13.  
 

  64

032

32 low rlcnk  . 

14. Return  c . 

Comparison with other algorithms. Parallelization efficiency may be evaluated by the 
comparison of average time execution of software implementations for proposed parallel algorithms 
with single thread Modfied Comba algorithm [11], for one million iterations for different integers bit-
length. 

Performance measurement of software implementation is performed for the arrays with 32-bit 
machine words, which allows to estimate performance of implementations as a whole. 

The Modified Comba 2x, Mx and single thread Modified Comba are implemented in C++ and 

compiled with Intel C++ Compiler XE 2011 in Microsoft Visual Studio 2005 in Release Win32 target 

with Maximize Speed option and SSE2 supports. 

While testing several hardware platforms are used: 

 Entry-level old mobile CPU – Intel Dual Core T2130 on Microsoft Windows 7 x86. 

 Middle-level old mobile CPU – Intel Core2 Duo T7200 on Microsoft Windows XP x86. 

 High-level modern mobile CPU – AMD A8-3510 MX on Microsoft Windows 7 x86-64. 

 Middle-level old desktop CPU – Intel Core2 Duo E6400 on Microsoft Windows 7 x86. 

 High-level modern desktop CPU – Intel Core i7 2600 on Microsoft Windows 7 x86. 

All CPU have two cores with two execution threads without Hyper-Threading only that: 

 AMD A8-3510 MX has 4 cores and 4 execution threads (without Hyper-Threading). 

 Intel Core i7 2600 has 4 cores and 8 execution threads (with Hyper-Threading). 

In table 1 there are shown the performance measurement results for different software 

implementations for one million multiplications and different CPU for specified arrays with 32-bit 

words length. 



Table 1. Performance of different implementations of integer multiplication algorithms in ms 

CPU Algorithm 
Count of 32-bit words / ms 

3 4 8 16 32 48 64 96 128 192 256 384 

Intel Dual Core 

T2130 

Cmb* 16 16 46 187 702 1544 2652 5786 10246 22988 40206 90002 

Cmb* 2x 202 202 219 328 546 966 1591 3758 5381 13194 20508 49173 

Cmb* Mx 281 297 343 464 889 1544 2417 5332 8234 17935 33203 72519 

Intel Core2 Duo 

T7200 

Cmb* 16 16 46 156 484 1015 1734 3766 6719 14703 26063 57735 

Cmb* 2x 234 172 187 235 422 703 1125 2157 3641 7812 13531 29859 

Cmb* Mx 266 281 297 406 719 1235 1844 3593 6015 12891 22500 49625 

Intel Core2 Duo 

E6400 

Cmb* 0 16 31 94 328 688 1172 2515 4500 9843 17438 38610 

Cmb* 2x 78 93 93 125 266 453 719 1672 2438 5265 9547 20281 

Cmb* Mx 141 141 172 250 453 781 1218 2735 4047 8688 16000 34578 

AMD A83510 

MX 

Cmb* 16 16 31 156 452 921 1576 3682 6537 14212 24133 51480 

Cmb* 2x 187 187 209 250 421 687 1061 2075 3416 7472 13072 28205 

Cmb* Mx 359 375 390 437 593 826 1185 2075 3276 6755 11404 24804 

Intel Core i7-

2600 

Cmb* 0 16 16 78 249 546 936 2044 3525 5554 13884 30872 

Cmb* 2x 124 109 109 156 266 484 764 1622 2605 3635 9734 21902 

Cmb* Mx 172 156 203 234 312 421 609 1139 1794 7831 6334 13089 

Let’s try to analyze the results of experiments shown in table 1. The low-end CPU Dual Core 
T2130 showed superiority two thread implementation Cmb* 2x over single thread implementation 
Cmb* on 32 word long integers and Cmb* Mx over single thread implementation Cmb* on 48 word 
Long integers. Note, Cmb* Mx showed much worse performance than Cmb* 2x. 

CPU Core2 Duo T7200 has better performance then CPU Dual Core T2130, in accordance with 
this Cmb* 2x leaded Cmb* on integers with length of 32 words and Cmb* Mx leaded Cmb* on 48 
word long integers. Note, as in previous case, Cmb* Mx showed worst performance then Cmb* 2x. 
This behavior may be clearly explained via higher core performance of Core2 Duo T7200 in 
comparison with Dual Core T2130. 

Special attention should be paid to the mobile CPU AMD A83510 MX, which shows the 
superiority Cmb* 2x on 32 word long integers and Cmb* Mx on 48 word long integers. In addition, 
the implementation of Cmb* Mx excels the Cmb* 2x on 96 words long integers. These results allow 
us to safely say, what Cmb* Mx may be efficiently used in computers with multiprocessors and multi-
core CPUs. 

Let us now consider the results of experiments in desktops. The desktop with Core2 Duo E6400 
shows the comparatively results with Core2 Duo T7200: Cmb* 2x shows the superiority over single 
thread implementation of Cmb* on integers with length in 32 words and Cmb* Mx shows the 
superiority over single thread implementation of Cmb* on integers with length in 128 words. This 
behavior may be explained by the higher core performance of Core2 Duo E6400 in comparison with 
Core2 Duo T7200. 

The desktop with Core i7-2600 CPU shows the best results in comparison with other: so due to 
high performance of cores the superiority of Cmb* 2x and Cmb* Mx over single thread Cmb* shows 
on integers with length in 48 words. 

The effect of execution Cmb* Mx on CPU with 4 cores and 8 execution threads appears in explicit 
superiority not only on Cmb* but also on Cmb* 2x. A further increasing the integers length showed a 
significant superiority Cmb* Mx over Cmb* 2x. 

Table 1 clearly shows that the effect of parallelism begins to appear during multiplication of 

integers with length more than 32 words. This is connected with significant expenses in new work 

thread creation in one multiplication operation. These expenses are commensurable with expenses) on 

multiplication by itself. This undesirable effect may be avoided via preliminary working thread 

creation, before it carries out all arithmetic operations on library initialization stage. 
As well, it is worth to observe that: the effect from parallelization appears on the greater bit-length 

of integer if faster CPU is used. It is evidenced by the results of measurements on CPU: Intel Core i7-
2600 and AMD A83510 MX. 



Conclusion. Results of experiments and theoretical investigations, which made in this paper, allow 
saying about next conclusions: 

1. Modified Comba algorithm proposed by authors may be efficiently parallelized. Modified 

Comba 2x algorithm in 1.5 times and Modified Comba Mx algorithm in 2 times is in excess of single 

thread algorithm. 
2. The parallelization benefits appear on 1024 bit (on 32 word with 32-bit), this allow to say about 

large expenses on new parallel thread creation. These expenses may be compensated in the arithmetic 
library on initialization stage. 

3. The OpenMP implementation (support) in GNU gcc C++ Compiler on Debian Linux 6.0 x86-64 
and Microsoft C++ Compiler in Visual Studio 2005, 2008 and 2010 on Windows XP x86 and 
Windows 7 x86-64 appear to be much worse than Intel C++ Compiler XE 2011 on Windows 7 
because C++ programs have much worse performance (they are not described in this work). 

In software implementation, large time on new thread creation and large time on delay before 
thread destruction are mainly responsible for the worse performance (GNU gcc C++ Compiler on 
Debian Linux 6.0 x86-64 and Microsoft C++ Compiler in Visual Studio 2005, 2008 and 2010). 

Further, authors see application of parallelization technique to other arithmetic operation 
algorithms in rings and fields such as reduction and inversion for the enhancing performance of public 
key cryptosystems, like cryptosystems on algebraic curves. 

The necessity of these researches speaks results obtained by the authors of [12] via using CUDA 

technology in the implementation of elliptic curve cryptosystem. 
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