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Abstract. In many private set operations, a set is represented by a polynomial over a ring Zσ for
a composite integer σ, where Zσ is the message space of some additive homomorphic encryption.
While it is useful for implementing set operations with polynomial additions and multiplications,
a polynomial representation has a limitation due to the hardness of polynomial factorization over
Zσ. That is, it is hard to recover a corresponding set from a resulting polynomial over Zσ if σ is
not a prime.
In this paper, we propose a new representation of a set by a polynomial over Zσ, in which σ is
a composite integer with known factorization but a corresponding set can be efficiently recovered
from a polynomial except negligible probability in the security parameter. Note that Zσ[x] is not a
unique factorization domain, so a polynomial may be written as a product of linear factors in several
ways. To exclude irrelevant linear factors, we introduce a special encoding function which supports
early abort strategy. As a result, our representation can be efficiently inverted by computing all the
linear factors of a polynomial in Zσ[x] whose roots locate in the image of the encoding function.
When we consider group decryption as in most private set operation protocols, inverting polynomial
representations should be done without a single party possessing the secret of the utilized additive
homomorphic encryption. This is very hard for Paillier’s encryption whose message space is ZN with
unknown factorization of N . Instead, we detour this problem by using Naccache-Stern encryption
with message space Zσ where σ is a smooth integer with public factorization.
As an application of our representation, we obtain a constant round privacy-preserving set union
protocol. Our construction improves the complexity than the previous without an honest majority.
It can be also used for a constant round multi-set union protocol and a private set intersection
protocol even when decryptors do not possess a superset of the resulting set.

Keywords: Polynomial representation, Polynomial factorization, Root finding, Privacy-preserving
set union

1 Introduction

Privacy-preserving set operations (PPSO) are to compute set operations of participants’ dataset
without revealing any information other than the result. There have been many proposals to
construct PPSO protocols with various techniques such as general MPC [13, 1], polynomial
representations [9, 17, 10, 24, 14], pseudorandom functions [15], and blind RSA signatures [7, 6].
While the last two techniques are hard to be generalized into multi-party protocols, polynomial
representations combining with additive homomorphic encryption (AHE) schemes enable us to
have multi-party PPSO protocols for various operations including set intersection [17, 10, 24],
(over-)threshold set union [17], element reduction [17] and so on. Among these constructions,
set intersection protocols run in constant rounds, but others run in linear of the number of
participants.

Let us focus on privacy-preserving set union protocols. There are two obstacles to construct
constant round privacy-preserving multi-party set union protocols based on polynomial repre-
sentations with AHE schemes. First, in the polynomial representations set union corresponds
to polynomial multiplication, which is not supported by an AHE scheme in constant rounds.
Second, to recover the union set from the resulting polynomial, we need a root finding algorithm
of a polynomial over Zσ, where Zσ is the message space of the AHE scheme.

Recently, Seo et al. [25] proposed a constant round set union protocol based on a novel
approach in which a set is represented as a rational function using the reversed Laurent series.
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In their protocol, each participant takes part in the protocol with a rational function whose poles
consist of the elements of his set and at the end of the protocol he obtains a rational function
whose poles correspond to the set union. Then each participant recovers the denominator of the
rational function using the extended Euclidean algorithm and finds the roots of the denominator.
Since each rational function is summed up to the resulting function after encrypted under an
AHE scheme, the first obstacle is easily overcome.

However, a root finding is still problematic on the message space Zσ of the AHE schemes.
Since the message space has unknown order [22] or is not a unique factorization domain (UFD) [21,
23, 3] in the current efficient AHE schemes, there is no proper polynomial factorization or root
finding algorithm working on the message space. To avoid this obstacle, the authors in [25]
utilized a secret sharing scheme. However, it requires computational and communicational costs
heavier than the previous and requires an honest majority for security since their protocol ex-
ploits a secret sharing scheme to support privacy-preserving multiplications in constant rounds.

Our Contribution Let σ =
∏¯̀

i=1 qi for distinct primes qi, which is larger than the size of the
universe of set elements. We propose a new representation of a set by a polynomial over Zσ,
in which a corresponding set can be efficiently recovered from a polynomial except negligible
probability when the factorization of σ is given.

For a given polynomial f(x) =
∏d
i=1(x − si) ∈ Zσ[x], if the factorization of σ is given, one

can obtain all roots of f in Zqi for each i by exploiting a polynomial factorization algorithm
over a finite field Zqi [31]. By reassembling the roots of f in Zσ using the Chinese Remainder
Theorem (CRT), we can obtain all the candidates. However, the number of candidates amounts
to d

¯̀
, which is exponential in the size of the universe.

We introduce a special encoding function ι to exclude irrelevant candidates efficiently. For a
polynomial f =

∏d
i=1(x−ι(si)) ∈ Zσ[x], our encoding function aborts most irrelevant candidates

without d
¯̀

CRT computations, by giving a certain relation among roots of f in Zqj [x] and roots
of f in Zqj+1 [x]. As a result, our encoding function enables us to efficiently recover all the roots
of f with negligible failure probability if they are in the image of ι.

Table 1. Comparison with Previous Set-Union Protocols

HBC Rounds Communication Cost Computational Cost # of Honest Party

[17] O(n) O(n3kτN ) O(n4k2τNρN ) ≥ 1

[10] O(n) O(n2kτN ) O(n2k2τNρN ) ≥ 1

[25] O(1) O(n4k2τp′) O(n5k2ρp′) ≥ n/2
Ours O(1) O(n3kτN ) O(n3k2τNρN ) ≥ 1

Malicious Rounds Communication Cost Computational Cost # of Honest Party

[10] O(n) O((n2k2 + n3k)τN ) O(n2k2τNρN ) ≥ 1

[25] O(1) O(n4k2τp) O(n5k2τpρp) ≥ n/2
Ours O(1) O(n3k2τN ) O(n3k2τNρN ) ≥ 1

n: the number of participants, k: the maximum size of sets
τN , τp′ , τp: the size of modulus N for Paillier encryption scheme or NS encryption scheme,
the size p′ of representing domain, the order p of a cyclic group for Pedersen commitment
scheme, respectively
ρN , ρp′ , ρp: modular multiplication cost of modulus N for Paillier encryption scheme or NS
encryption scheme, p′ for the size of representing domain, p for the order of a cyclic group
for Pedersen commitment scheme, respectively

As an application of our new representation, combining with Naccache-Stern (NS) AHE
scheme which is the factorization of σ is public, we obtain an efficient constant round privacy-
preserving set union protocol without an honest majority. In Table 11, we compare our set union
protocols with the previous main results [10, 17, 25].

1 Note that the communication and computational complexities in Table 1 of [25] are for one participant.
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Remark that we can easily extend our set union protocol to a multi-set union protocol by
encoding the same elements differently. We describe details in Section 4.3. The resulting multi-
set union protocol is little bit slower than the previous result [14], but the public key size of the
utilized encryption in our protocol is O(1), while that of the previous is O(d) for the size d of
the multi-set union.

We also consider transforming previous privacy-preserving set intersection protocol in [17]
into a protocol even when decryptors do not possess a superset of the resulting set except the
universe.

Related Work There have been a few researches to construct a privacy-preserving multi-party
set and multi-set union protocol. Kissner and Song [17] provided multi-party set and multi-set
union protocols in the honest-but-curious case. Frikken [10] and Sang and Shen [24] presented
more efficient multi-party set union protocols and multi-set union protocols in the malicious
case, respectively. However, these protocols exploit a mix-net protocol [11] instead of a root
finding algorithm, which runs in linear rounds in the number of corrupted players, and hence it
cannot run in constant rounds. Blanton and Aguiar [2] presented efficient privacy-preserving set
and multi-set union protocols based on a secret sharing technique and these can be parallelized,
but still run in linear rounds.

Recently, Seo et al. [25] proposed a constant round multi-party set union protocol by rep-
resenting elements in a set as poles of a rational function. However, their constructions hire a
secret sharing technique for supporting privacy-preserving multiplications in constant rounds,
thus requires an honest majority assumption for security and computational and communica-
tional complexity heavier than the previous.

In case of privacy-preserving multi-set union protocols, Hong et al. [14] proposed a protocol
based on ElGamal encryption schemes defined over an extension field Fqκ where κ is larger
than d for the cardinality d of the resulting multi-set. However, it suffers from the public key
size of the utilized encryption since the extension degree κ of the extension field has to be larger
than d and hence the public key size is O(d).

Outline of the Paper In Section 2 we look into some components of our privacy-preserving
set union protocol, polynomial factorization algorithm, polynomial representation, and AHE
schemes. We provide our new polynomial representation that enables us to uniquely factorize
a polynomial satisfying some criteria in Section 3. Our constant round privacy-preserving set
union protocols are presented in Section 4. Some supplying materials including analysis of our
representation and the set union protocol for the malicious case, are given in Appendix.

2 Preliminaries

In this section, we look into polynomial representations of a set for PPSO protocols and in-
troduce efficient AHE schemes utilized in PPSO protocols to support polynomial operations
between encrypted polynomials. Then, we briefly look into root finding algorithms over finite
fields and message spaces of AHE schemes for applying to recover a set from a polynomial in
the polynomial representation.

2.1 Basic Definitions and Notations

Throughout the paper, let U be the universe, n be the number of participants in the protocol,
and k be the maximum size of participants’ datasets Si’s. Also, d denotes the size of (multi-)set
union among participants’ datasets in the protocol.

Let R[x] be a set of polynomials defined over a ring R and R(x) be a set of rational functions

defined over R, i.e., R[x] = {f(x)|f(x) =
∑deg f

i=0 f [i]xi and f [i] ∈ R for all i} and R(x) =

{f(x)
g(x) |f(x), g(x) ∈ R[x], g(x) 6= 0}. For a polynomial f ∈ R[x], we denote the coefficient of xi in
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a polynomial f by f [i], i.e., f(x) =
∑deg f

i=0 f [i]xi ∈ R[x]. For a polynomial f(x) =
∑deg f

i=0 f [i]xi ∈
Zσ[x] and a factor q of σ, f mod q denotes a polynomial

∑deg f
i=0 (f [i] mod q)xi ∈ Zq[x].

We also define a negligible function as follows: a function g : N→ R is negligible if for every
positive polynomial µ(λ), there exists an integer N such that g(λ) < 1/µ(λ) for all λ > N .

2.2 Polynomial Representation of a Set

Let R be a commutative ring with unity and S be a subset of R. We may represent a set S by
a polynomial or a rational function over R.

Polynomial Representation In some previous works [9, 17, 10, 14, 25], a set S can be represented
by a polynomial fS(x) ∈ R[x] whose roots are the elements of S. That is,

fS(x) :=
∏

si∈S
(x− si).

This representation gives the following relation:

fS(x) + fS′(x) = gcd(fS(x), fS′(x)) · u(x)

for some polynomial u(x) ∈ R[x] and hence the roots of a polynomial fS(x) + fS′(x) are the
elements of S∩S′ with overwhelming probability. Also, the roots of fS(x)·fS′(x) are the elements
of S ∪ S′ as multi-sets.

Rational function Representation Recently, Seo et al. [25] introduced a novel representation of
a set S ⊂ R by a rational function FS over R whose poles consist of the elements of S. That is,

FS(x) :=
1∏

si∈S(x− si)
=

1

fS(x)
.

This representation provides the following relation:

FS(x) + FS′(x) =
fS(x) + fS′(x)

fS(x) · fS′(x)
=

gcd(fS(x), fS′(x)) · u(x)

fS(x) · fS′(x)
=

u(x)

lcm(fS(x), fS′(x))

for some polynomial u(x) ∈ R[x] which is relatively prime to lcm(fS(x), fS′(x)) with overwhelm-
ing probability. Hence the poles of FS(x) + FS′(x) are exactly the roots of lcm(fS(x), fS′(x)),
which are the elements of S ∪ S′ as sets, not multi-sets, if u(x) and lcm(fS(x), fS′(x)) have no
common roots. This rational function is represented again by an infinite formal power series, so
called a Reversed Laurent Series (RLS), in [25].

2.3 Additive Homomorphic Encryption

Let us consider a commutative ring R with unity and a R-module G where r · g := gr for r ∈ R
and g ∈ G. Let Encpk : R → G be a public key encryption under the public key pk. We can

define a public key encryption for a polynomial f =
∑deg f

i=0 f [i]xi ∈ R[x] as follows:

Epk(f) :=

deg f∑

i=0

Encpk(f [i])xi.

Assume Encpk has an additive homomorphic property such that

Encpk(a+ b) = Encpk(a)Encpk(b), Encpk(ab) = Encpk(a)b

for a, b ∈ R. Then given two polynomials f =
∑deg f

i=0 f [i]xi and g =
∑deg g

i=0 g[i]xi in R[x], we
can induce homomorphic properties of E as follows:
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– Polynomial addition: Given Epk(f) and Epk(g), it is possible to compute Epk(f + g) by
calculating Encpk((f +g)[i]) = Encpk(f [i])Encpk(g[i]) for all 0 ≤ i ≤ max{deg f,deg g} where

f + g =
∑max{deg f,deg g}

i=0 (f + g)[i]xi.

– Polynomial multiplication: Given Epk(f) and g, it is possible to compute Epk(fg) by
calculating Encpk((fg)[`]) =

∏
i+j=` Encpk(f [i])g[j] for all 0 ≤ ` ≤ deg f + deg g where fg =

∑deg f+deg g
`=0 (fg)[`]x`.

There have been several efficient AHE schemes [21–23, 3]: Under the assumption that fac-
toring N = p2q is hard, Okamoto and Uchiyama [22] proposed a scheme with R = Zp and
G = ZN , in which the order p of the message space R is hidden. With the decisional composite
residuosity assumption, Paillier [23] scheme and Camenisch and Shoup scheme [3] have R = ZN
and G = ZN2 for N = pq, in which the size of message spaces is a hard-to-factor composite
integer N . Naccache and Stern [21] proposed a scheme with R = Zσ and G = ZN under the
higher residuosity assumption, where N = pq is a hard-to-factor integer and σ is a product of
small primes dividing φ(N) for Euler’s totient function φ.

In the above schemes, it is hard to find the roots of a polynomial in R[x] without knowing a
secret key. For the second case, in fact, Shamir [27] showed that to find a root of a polynomial
f(x) =

∏d
i=1(x − si) ∈ ZN [x] is equivalent to factor N . While, in the NS scheme, it may be

possible to compute some roots of a polynomial in Zσ[x] since the factorization of σ is public.
But Zσ[x] is not a UFD and hence the number of roots of a polynomial f ∈ Zσ[x] can be larger
than deg f . In fact, if f(x) =

∏d
i=1(x − si) ∈ R[x], then the number of candidates of roots of

the polynomial f is d
¯̀

where ¯̀ is the number of prime factors of σ. We will use the NS scheme
by presenting a method to efficiently recover all the roots of a polynomial f ∈ Zσ[x] satisfying
some criteria.

2.4 Root Finding Algorithms

When R is a finite field Fq, we have several efficient root finding algorithms in R[x]. As an
instance, using a square-free decomposition and the Cantor-Zassenhaus algorithm [32, Sec-
tion 14.4], a polynomial of degree d over a field Fq is factored in Õ(d2 log q) field opera-
tions. Recently, it has been improved using fast arithmetic into O(d1.5+o(1)) field operations
by Umans [31]. However, as mentioned above, there is no efficient AHE scheme whose message
space is a finite field Fq with public q.

Consider R = Zσ, a message space of the NS encryption scheme for σ =
∏¯̀

j=1 qj with distinct
public primes qj ’s. Let f ∈ Zσ[x] be a polynomial of degree d, which is a product of d linear
factors (x−si)’s. Since Zσ[x] is not a UFD, it is still very hard to recover the exact (x−si)’s from
the polynomial f . However, since the factors of σ are known, one can apply Umans’ polynomial
factorization algorithm to find all roots of f mod qj with Õ(d1.5) field operations in Zqj for each

j. Then one performs the CRT computations, which takes O(log2 σ) bit operations for each
candidate of roots. Since each polynomial f mod qj has about d distinct roots, there exist about

d
¯̀

candidates of roots of f over Zσ. Hence the total complexity becomes Õ(¯̀d1.5 log2 q+d
¯̀
log2 σ)

bit operations, where q := maxj{qj}. However, one still can not determine the exact si’s since
it has no criterion to distinguish the exact si’s from candidates.

In this paper, we can recover all the exact roots of f satisfying some criteria in O(¯̀d1.5 log2 q)
bit operations using early abort technique. The details are in Section 3.

3 Invertible Polynomial Representation

Let fS(x) =
∏
si∈S(x−si) ∈ Zσ[x] be a polynomial for a set S ⊆ Zσ and a composite σ =

∏¯̀

j=1 qj
with distinct primes qj ’s. Since Zσ[x] is not a UFD, it is impossible to recover the exact S from
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the polynomial fS in almost all cases. In this section, we provide our new polynomial repre-
sentation that enables us to efficiently recover the exact corresponding set from the polynomial
represented by our suggestion.

Before describing our polynomial representation, we assume that the resulting set union of
cardinality d is randomly chosen in U(d), the set of subsets of cardinality d of the universe U .
In general, since elements of a participant’s dataset may not be random in the universe U , the
resulting set union may also not be random in the set U(d). However, one can efficiently make
that the resulting set union satisfies this assumption using a pseudorandom permutation. Also,
in practice, one can utilize a block cipher such as the DES encryption instead of a pseudorandom
permutation [12, Section 3.7]. For example, a participant encrypts his element s′ so that s =
DESK3(DESK2(DESK1(s′))) where K1,K2 and K3 are public and randomly chosen in the key
space of the DES encryption. Then a participant obtains the original message s′ by computing
s′ = DES−1

K1
(DES−1

K2
(DES−1

K3
(s))) after recovering a root s from the resulting polynomial.

Parameter Setting Let us explain parameters for our polynomial representation and PPSO
protocols. First, set the bit size of the modulus N of the NS encryption scheme by considering
a security parameter λ. For the given universe U and the maximum size of the resulting set
union d (here, d = nk for the number n of participants and the maximum size k of participants’
datasets), let d0 = max{d, dlogNe} and set τ = 1

3(log d+ 2 log d0). This setting comes from the
computational complexity analysis of our set union protocol and the value τ will influence the
bit size of prime factors of σ and the size of the message space of the NS encryption scheme.
See Section 4.2 for details.

Set the parameter ` and α so that ` is the smallest positive integer such that U ⊆ {0, 1}3τα`
for some rational number 0 < α < 1 satisfying 3ατ and 3(1 − α)τ are integers. Note that the
proper size of α is 1

3 for optimal complexity of our protocol. The details will be presented in
Appendix A. Then, set the proper size ¯̀ larger than ` and let `′ = ¯̀− `. The analysis of the
proper size of ¯̀ will be discussed at the end of Section 3.1. Choose ¯̀ (3τ + 1)-bit distinct primes

qj ’s and set σ =
∏¯̀

j=1 qj . Note that the size of the message space of the NS encryption scheme

is less than N
4 for its security [21]. Hence, the parameters have to be satisfied the condition

σ < N
4 and so ¯̀< blogNc−2

3τ . Also, we assume that ¯̀ is smaller than d for optimal complexity of

our proposed protocol. In summary, the parameter ¯̀ is smaller than min{d, blogNc−2
3τ }.

Now, we are ready to describe our new polynomial representation. Focus on the fact that
the factorization of σ is public in the NS encryption scheme. Using this fact, given a polynomial
f =

∏d
i=1(x − si) ∈ Zσ[x] for a set S = {s1, . . . , sd}, one can obtain all roots of f mod qj for

each j by applying Umans’ polynomial factorization algorithm over a finite field Zqj . To recover

S, one can perform CRT computation for obtaining less than d
¯̀

candidates of roots of f over
Zσ. In general, however, the number of roots of f over Zσ is larger than deg f and there is no
criteria to determine the exact set S. To remove irrelevant roots which are not in S, we give
some relations among all roots of polynomials f mod qj ’s by providing an encoding function.

Before describing our solution, we look into an easy way to give a relation among all roots
of polynomial f mod qj for all j. However, it is not efficient to recover a set from a polynomial.

Encoding with a tag To give relations among all roots of polynomials f mod qi’s, we may consider
to insert the same value depending on the element, called a tag, into an element part in Zqj ’s.
For example, let h : {0, 1}∗ → {0, 1}3(1−α)τ be an uniform hash function for a positive rational
number 0 < α < 1 such that 3ατ and 3(1 − α)τ are to be integers. For a dataset S ⊆ Zσ,
parse si ∈ S into ¯̀ blocks si,1, . . . , si,¯̀ of (3ατ)-bit so that si = si,1|| · · · ||si,¯̀. Consider a

function ι′ : U ⊆ {0, 1}3ατ ¯̀ → Zσ, in which ι′(si) is the unique element in Zσ satisfying



7

ι′(si) ≡ si,j ||h(si) mod qj for 1 ≤ j ≤ ¯̀.2 Then we represent a set S as a polynomial fS(x) =∏
si∈S(x− ι′(si)) ∈ Zσ[x].

Then one can reduce the number of candidates by checking a tag h(si) when one gets all
roots over Zqj ’s. However, when a collision occurs, say h(si) = h(sj) with si 6= sj , one has to

check the hash value of 2
¯̀

elements which are possible combinations of (si,1, sj,1), · · · , (si,¯̀, sj,¯̀).
The probability3 that at least one collision occur among d hash values h(si)’s is lower bounded

by d2

21+3τ(1−α) which is not negligible even for small α. Moreover, the expected computation

becomes Ω(2
¯̀
).

3.1 Our Polynomial Representation

Now, we present our polynomial representation for supporting to recover a set from a polynomial
over Zσ represented by our suggestion. Take α = 1

3 , i.e., U ⊆ {0, 1}τ` for optimization. If α 6= 1
3 ,

the expected computation is in polynomial time only when the size of the universe is restricted.
Details about the proper size of α is in Appendix A.

· · ·
· · ·

· · ·

. . .

(mod q1)

(mod q2)

(mod q¯̀)

...
...

...

Fig. 1. Our Encoding Function ι

Encoding by Repetition Let h : {0, 1}∗ → {0, 1}2τ and hj : {0, 1}∗ → {0, 1}τ be uniform hash
functions for 1 ≤ j ≤ `′. Parse a message si ∈ U ⊆ {0, 1}τ` into ` blocks si,1, . . . , si,` of τ -bit so
that si = si,1|| · · · ||si,`. Let si,`+j = hj(si) for 1 ≤ j ≤ `′ and parse h(si) into two blocks si,¯̀+1

and si,¯̀+2 of τ -bit. Set ¯̀ = ` + `′. We define our encoding function ι : U ⊆ {0, 1}τ` → Zσ, in
which ι(si) is the unique element in Zσ satisfying ι(si) ≡ si,j ||si,j+1||si,j+2 mod qj for 1 ≤ j ≤ ¯̀.
Then a set S is represented as a polynomial fS(x) =

∏
si∈S(x− ι(si)) ∈ Zσ[x].

Decoding Phase Denote by s
(i)
j := ι(si) mod qj for each message si = si,1|| · · · ||si,`. For 1 ≤

j ≤ ¯̀− 1, we define (s
(i)
j , s

(i′)
j+1) ∈ Zqj × Zqj+1 to be a linkable pair if the last (2τ)-bit of s

(i)
j is

equal to the first (2τ)-bit of s
(i′)
j+1, i.e., si,j+1||si,j+2 = si′,j+1||si′,j+2. Inductively, we also define

(s
(i1)
1 , · · · , s(ij+1)

j+1 ) ∈ Zq1 × · · · × Zqj+1 to be a linkable pair if (s
(i1)
1 , · · · , s(ij)

j ) and (s
(ij)
j , s

(ij+1)
j+1 )

are linkable pairs.

Let ι(si) and ι(si′) be images of elements si and si′ of the function ι with si 6= si′ . We can
easily check the following properties:

–
(
s

(i)
1 , · · · , s(i)

j+1

)
is always a linkable pair.

2 By notation abuse, throughout this paper if necessary, we regard a bit string as the corresponding integer via
some converting function.

3 Pr[At least one collision occur among d hash values h(si)’s.] ≤ 1 −
(

1− 1

23(1−α)τ

)
· · ·
(

1− d−1

23(1−α)τ

)
≈ 1 −

exp
(
−
∏d−1
i=1

i

23(1−α)τ

)
≈ d2

2·23(1−α)τ .
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s
(i1)
1 =

s
(i2)
2 =

s
(i3)
3 =

si1,1||si1,2||si1,3

si3,3||si3,4||si3,5

)
⇣
s
(i1)
1 , s

(i2)
2 , s

(i3)
3

⌘
is a linkable pair.

si2,2||si2,3||si2,4

Fig. 2. Linkable Pair

– When si and si′ are uniformly chosen strings from {0, 1}τ`,

Pr[(s
(i)
j , s

(i′)
j ) is a linkable pair] = Pr

[
si,j+1||si,j+2 = si′,j+1||si′,j+2

]
=

1

22τ
(1)

for a fixed 1 ≤ j ≤ ¯̀.

At decoding phase, when a polynomial f(x) =
∏d
i=1(x− ι(si)) ∈ Zσ[x] is given, we perform

two phases to find the correct d roots of the polynomial f(x). In the first stage, one computes

all the roots {s(1)
j , · · · , s(d)

j } over Zqj [x] for each j. For each j sequentially from 1 to ¯̀− 1, we

find all the linkable pairs among {s(1)
j , · · · , s(d)

j } and {s(1)
j+1, · · · , s

(d)
j+1} by checking whether the

last (2τ)-bit of s
(i)
j and the first (2τ)-bit of s

(i′)
j+1 are the same. It can be done by d2 comparisons

or O(d log d) computations using sorting and determining algorithms.
After ¯̀− 1 steps, we obtain d′ number of linkable pairs of ¯̀-tuple, which are candidates of

roots of the polynomial f and elements of the set. It includes the d elements corresponding to
ι(s1), . . . , ι(sd). If d′ is much larger than d, it can be a burden. However, we can show that the
expected value of d′ is at most 3d in Theorem 1. See Section 3.2.

After obtaining d′ linkable pairs of ¯̀-tuple, in the second phase, we check whether each pair
belongs to the image of ι with the following equalities:

si,`+j = hj(si) for all 1 ≤ j ≤ `′, (2)

si,¯̀+1|| si,¯̀+2 = h(si). (3)

The linkable pairs of ¯̀-tuple, corresponding to ι(si) for some i clearly satisfies the above equa-
tions. However, for a random ¯̀-tuple in Zq1 × · · · × Zq¯̀, the probability that it satisfies the
relation (2) is about 1

2τ`′
and the probability that it satisfies the relation (3) is about 1

22τ under
the assumption that h and hj ’s are uniform hash functions. Hence, the expected number of
wrong ¯̀-tuples passing both phases is less than d × 1

2τ(2+`′) . It is less than 2−λ for a security

parameter λ if we take the parameter `′ to satisfy

`′ >
3(λ+ log d)

log d+ 2 log d0
− 2. (4)

For example, when λ = 80 and d ≈ d0 ≈ 210, then `′ is about 8. Therefore, one can recover a set
from the given polynomial represented by our suggestion without negligible failure probability
in the security parameter.

Computational Complexity Let us count the computational cost of our representation. The
encoding phase consists of two steps: (1) the CRT computation per each element to obtain
a value of the encoding function ι and (2) the polynomial expansion. The first step requires
O(d log2 σ) bit operations for d elements and the second step requires O(d2) multiplications.
Hence, the complexity for the encoding phase is O(d2) multiplications.

The decoding phase may be divided into three steps: (1) finding roots of a polynomial f
in Zqj for each j, (2) finding all linkable pairs of length ¯̀, and (3) checking the equations (2)
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and (3). These steps require O(¯̀d1.5) multiplications, O(¯̀d log d) bit operations, and O(`′d)
hash computations, respectively. Hence, the complexity for the decoding phase is dominated by
O(¯̀d1.5) multiplications.

3.2 The Expected Number of Linkable Pairs

In this subsection, we analyze the expected number of linkable pairs of ¯̀-tuple when we recover
a set from a polynomial of degree d, represented by our suggestion.

A set of κ elements s
(1)
j , · · · , s(κ)

j ∈ Zqj is called a κ-collision if their last 2τ -bits are the

same. Since (s
(i)
j−1, s

(i)
j ) is trivially a linkable pair for 1 ≤ i ≤ κ, κ-collision causes at least κ

linkable pairs. Assume that S = {s1, . . . , sd} is a uniformly and randomly chosen set in the set of
subsets of cardinality d of the set {0, 1}τ` and h and hj ’s utilized in the encoding function ι are
uniform hash functions. Then, we easily obtain the following observations, which are evidences
of the expected number of linkable pairs of ¯̀-tuple is not large.

1. The probability that at least one 2-collision occurs in Zqj is less than 1
2 by the birthday

paradox.
2. The probability that at least one κ-collision occurs for κ ≥ 3 in Zqj is at most 1

4d ≈ 1
2(2+τ)

of the probability that at least one (κ− 1)-collision occurs from [30, Theorem 2].
3. The κ-collision in Zqj yields κ2 more candidates of roots of the polynomial f , not 2κ can-

didates. More concretely, assume that κ-collision {s(1)
j , · · · , s(κ)

j } occurs. Then s
(1)
j can be

combined with κ candidates {s(1)
j+1, · · · , s

(κ)
j+1}. Hence κ2 linkable pairs are generated.

The expected number of 2-collision in Zqj for all j is roughly
¯̀

2 and the expected number
of κ-collision in Zqj for κ ≥ 3 is negligible. Theorem 1 gives a rigorous analysis of the upper
bound of the expected number of linkable pairs of ¯̀-tuple.

Theorem 1. Assume that S = {s1, . . . , sd} is a uniformly and randomly chosen set in the set of
subsets of cardinality d of the set {0, 1}τ`. Define an encoding function ι : {0, 1}τ` → Zσ so that
ι(si) is the unique element in Zσ satisfying ι(si) ≡ si,j ||si,j+1||si,j+2 mod qj for all 1 ≤ j ≤ ¯̀

when si = si,1|| . . . ||si,` and si,j’s are τ -bit. Assume h and hj’s utilized in the encoding function
ι are uniform hash functions. Then the expected number of linkable pairs of ¯̀-tuple is at most
3d for a polynomial fS =

∏
si∈S(x− si).

Proof. Let Ej be the expected number of linkable pairs of j-tuple in Zq1 × · · · × Zqj for j ≥ 2.

For 1 ≤ j ≤ j′ ≤ ¯̀, let Sj′−j+1(ij , . . . , ij′) be the event that (s
(ij)
j , . . . , s

(ij′ )

j′ ) is a linkable pair.
Then,

E2 =
∑

i1,i2∈{1,...,d}

1 · Pr[S2(i1, i2)]

=
∑

i1,i2∈{1,...,d}

Pr[S2(i1, i2) ∧ (i1 = i2)] +
∑

i1,i2∈{1,...,d}

Pr[S2(i1, i2) ∧ (i1 6= i2)]

=
∑

i1∈{1,...,d}

Pr[S2(i1, i1)] +
∑

i1 6=i2∈{1,...,d}

Pr[S2(i1, i2)]

= d+ d(d− 1)
1

22τ
= d

(
1 +

d− 1

22τ

)

since Pr[S2(i1, i1)] = 1 for i1 ∈ {1, . . . , d} and Pr[S2(i1, i2)] = 1
22τ for distinct i1, i2 ∈ {1, . . . , d}

from the equation (1).

Now, we consider the relation between Ej and Ej+1. When (s
(i1)
1 , . . . , s

(ij)
j ) is a linkable pair,

consider the case that (s
(i1)
1 , . . . , s

(ij)
j , s

(ij+1)
j+1 ) is a linkable pair. One can classify this case into

the following three cases:
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1. ij+1 = ij ,

2. (ij+1 6= ij) ∧ (ij+1 = ij−1),

3. (ij+1 6= ij) ∧ (ij+1 6= ij−1).

At the first case, if ij+1 = ij and (s
(i1)
1 , . . . , s

(ij)
j ) is a linkable pair, then (s

(i1)
1 , . . . , s

(ij)
j , s

(ij+1)
j+1 )

is always a linkable pair. Hence,

E
(1)
j+1 :=

∑

i1,...,ij+1∈{1,...,d}

Pr [Sj+1(i1, . . . , ij , ij+1) ∧ (ij+1 = ij)]

=
∑

i1,...,ij∈{1,...,d}

Pr [Sj(i1, . . . , ij)] = Ej .

At the second case, if ij+1 = ij−1 6= ij and (s
(i1)
1 , . . . , s

(ij)
j ) is a linkable pair, then the relation

sij−1,j+1 = sij ,j+1 = sij+1,j+1 is satisfied from the encoding rule of ι. Hence,

E
(2)
j+1 :=

∑

i1,...,ij+1∈{1,...,d}

Pr [Sj+1(i1, . . . , ij , ij+1) ∧ (ij+1 = ij−1 6= ij)]

=
∑

i1,...,ij+1∈{1,...,d}
ij+1=ij−1 6=ij

Pr [Sj(i1, . . . , ij) ∧ S2(ij , ij+1)]

=
∑

i1,...,ij+1∈{1,...,d}
ij+1=ij−1 6=ij

Pr
[
Sj(i1, . . . , ij) ∧ (sij ,j+1||sij ,j+2 = sij+1,j+1||sij+1,j+2)

]

=
∑

i1,...,ij+1∈{1,...,d}
ij+1=ij−1 6=ij

Pr
[
Sj(i1, . . . , ij) ∧ (sij ,j+2 = sij+1,j+2)

]

=
∑

i1,...,ij+1∈{1,...,d}
ij+1=ij−1 6=ij

Pr [Sj(i1, . . . , ij)] Pr
[
sij ,j+2 = sij+1,j+2

]

=
1

2τ

∑

i1,...,ij+1∈{1,...,d}
ij+1=ij−1 6=ij

Pr [Sj(i1, . . . , ij)]

≤ 1

2τ

∑

i1,...,ij∈{1,...,d}

Pr [Sj(i1, . . . , ij)] =
1

2τ
Ej .

At the last case, we can obtain the following result:

E
(3)
j+1 :=

∑

i1,...,ij+1∈{1,...,d}

Pr [Sj+1(i1, . . . , ij , ij+1) ∧ ((ij+1 6= ij) ∧ (ij+1 6= ij−1))]

=
∑

i1,...,ij+1∈{1,...,d}
ij+1 /∈{ij−1,ij}

Pr [Sj(i1, . . . , ij) ∧ S2(ij , ij+1)]

=
∑

i1,...,ij+1∈{1,...,d}
ij+1 /∈{ij−1,ij}

Pr
[
Sj(i1, . . . , ij) ∧ (sij ,j+1||sij ,j+2 = sij+1,j+1||sij+1,j+2)

]

=
∑

i1,...,ij+1∈{1,...,d}
ij+1 /∈{ij−1,ij}

Pr [Sj(i1, . . . , ij)] Pr
[
sij ,j+1||sij ,j+2 = sij+1,j+1||sij+1,j+2

]

≤ d− 1

22τ

∑

i1,...,ij∈{1,...,d}

Pr [Sj(i1, . . . , ij)] =
d− 1

22τ
Ej .
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From the above results, we obtain the recurrence formula of Ej as follows:

Ej+1 = E
(1)
j+1 + E

(2)
j+1 + E

(3)
j+1

≤
(

1 +
1

2τ
+
d− 1

22τ

)
Ej

for j ≥ 2 and hence

E¯̀≤ d
(

1 +
1

2τ
+
d− 1

22τ

)¯̀−1

since E2 = d
(
1 + d−1

22τ

)
≤ d

(
1 + 1

2τ + d−1
22τ

)
.

Now, we show that ¯̀≤ 22τ

2τ+d . From the parameter setting, it is satisfied that ¯̀≤ min{d, blogNc−2
3τ }.

When d0 ≥ 8d, it holds

min

{
d,
blogNc − 2

3τ

}
≤ d ≤ d

1/3
0 d2/3

2
.

Consider the case that d0 < 8d. Then, it also holds

min

{
d,
blogNc − 2

3τ

}
≤ blogNc − 2

3τ
≤ d0

3τ
≤ d

1/3
0 d2/3

2

since τ ≥ 3. Hence

¯̀≤ min

{
d,
blogNc − 2

3τ

}
≤ d

1/3
0 d2/3

2
≤
(
d2

0d
)2/3

2d0
≤ 22τ

2τ + d

since 2d0 > 2τ + d. Therefore we obtain the following result:

E¯̀≤ d
(

1 +
1

2τ
+
d− 1

22τ

)¯̀−1

< ed < 3d,

where e ≈ 2.718 is the base of the natural logarithm. In other words, the upper bound of the
expected number of linkable pairs of ¯̀-tuple is 3d. �

4 Applications to Set Operations

In this section, we present our set union protocols based on our polynomial representation
described in Section 3. Our construction exploits the NS AHE scheme to encrypt a rational
function whose denominator corresponds to a participant’s set. For this, we generalize a reversed
Laurent Series presented in [25] to work on Zσ with a composite σ, which is the domain of the
NS scheme.

We also explain how to modify our polynomial representation for applying to construct
multi-set union protocol and a set intersection protocol in which decryptors are different from
set contributors.

4.1 Transforming Our Representation into a Rational Function using Reversed
Laurent Series

To construct constant round privacy-preserving set union protocols, we adopt rational function
representations presented in [25]. In the rational function representation, each participant Pi
represents his own set Si of elements as a rational function 1

fSi
where fSi :=

∏
sj∈S(x− sj). It

gives the relation
r1

fS1

+
r2

fS2

+ · · ·+ rn
fSn

=
u

lcm(fS1 , fS2 , . . . , fSn)
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for random polynomials ri’s and some polynomial u. Then each participant tries to recover
f(x) = lcm(fS1 , . . . , fSn) from a polynomial F (x) = u

lcm(fS1
,...,fSn ) .

To represent a set as a rational function, the authors in [25] exploit a reversed Laurent
series (RLS). We briefly introduce a RLS. (Refer to [25] for details.)

For a positive integer q, a reversed Laurent series (RLS) over Zq is a singly infinite, formal
sum of the form f(x) =

∑m
i=−∞ f [i]xi (f [m] 6= 0) with an integer m and f [i] ∈ Zq for all i. We

define the degree of f by m and it is denoted by deg f . For a RLS f(x), given d1 ≤ d2 ≤ deg f ,
we denote f(x)[d1,d2] =

∑d2
i=d1

f [i]xi. For a rational function f/g with f, g ∈ Zq[x] and g 6= 0, we
define the RLS representation of a rational function f/g by a reversed Laurent series of f/g.

When q is a prime, the RLS representation has the following properties:

– The RLS representation for a given rational function is unique.

– Let f, g be polynomials in Zq[x] with deg f < deg g and g 6= 0. Then there exists an
algorithm [25] to compute k(> deg g) high-order terms of the RLS representation of f/g.
We describe this algorithm in Algorithm 1. RationalToRLS(f, g, k) denotes the output of
RationalToRLS algorithm which takes polynomials f, g and integer k.

Algorithm 1 RationalToRLS(f, g, k)

Input: f(x), g(x) ∈ Zq[x] with deg f < deg g and an integer k > deg g
Output: k higher-order terms of the RLS representation of a rational function f/g

1: F (x)← f(x) · xk
2: Compute Q(x), R(x) such that F (x) = g(x)Q(x) + R(x) and degR < deg g using a polynomial division

algorithm
3: return Q(x) · x−k

– When 2k high-order terms of the RLS representation of a rational function f/g such that
f, g ∈ Zq[x], g 6= 0, and deg f < deg g ≤ k are given, there exists an efficient algorithm [29,

Section 17.5.1] to recover two polynomials v(x), u(x) in Zq[x] such that v
u = f

g in Zq(x) and
gcd(v, u) = 1.

In our protocol, we will represent each participant’s set Si as our polynomial representation
fSi :=

∏
sj∈Si(x − ι(sj)) ∈ Zσ[x] with our encoding function ι. Then we convert a rational

function of 1/fSi to its RLS over Zσ. Since Zσ is not a Euclidean domain, one may doubt whether
the RationalToRLS algorithm works on Zσ[x]. However, in our protocol, since the conversion
requires polynomial divisions only by monic polynomials, the RationalToRLS algorithm works
well on Zσ[x].

After the end of interactions among participants in our protocol, each participant obtains
the 2nk higher-order terms of the RLS representation of a rational function u(x)

U(x) where U(x) =

lcm(fS1(x), . . . , fSn(x)). There is no algorithm to recover u′(x) and U ′(x) in Zσ[x] such that
u(x)
U(x) = u′(x)

U ′(x) . However, from our polynomial representation, it only requires U ′(x) mod qj for

each j and we can obtain U ′(x) mod qj from the RLS representation modulo qj by running
polynomial recovering algorithm on Zqj [x]’s.

The following lemma guarantees that, in a polynomial ring Zσ[x], a modular operation by
a prime divisor q of σ and RationalToRLS algorithm are commutative. This will be utilized to
prove the correctness of our protocol.

Lemma 1. Let f, g be polynomials in Zσ[x] with deg f < deg g and g 6= 0. Suppose that the
leading coefficient of g is 1 in Zσ. For each prime q which divides σ and an integer k > deg g,
RationalToRLS(f mod q, g mod q, k) = RationalToRLS(f, g, k) mod q.
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Proof. Let RationalToRLS(f, g, k) = Q(x)x−k where xkf(x) = Q(x)g(x) + R(x) in Zσ[x] with
R = 0 or degR < deg g. For each polynomial p(x) in Zσ[x], denote p(x) mod q by pq(x).
Then xkfq(x) = Qq(x)gq(x) + Rq(x) in Zq[x], where Rq = 0 or degRq ≤ degR < deg g =
deg gq. Since the division algorithm uniquely outputs the quotient and the remainder in Zq[x],
RationalToRLS(f mod q, g mod q, k) = Qq(x)x−k ≡ Q(x)x−k mod q. �

The following lemma gives an information on the distribution of uj(x) := u(x) mod qj in our
protocol which is inevitable to prove the security of our set union protocol. It guarantees that
the distributions of uj(x) and u(x) are uniformly distributed among polynomials in the set of
polynomials having degree at most deg(lcm(fS1 , . . . , fSn))− 1 in Zqj [x] and Zσ[x], respectively.
The proof of Lemma 2 is given in [25].

Lemma 2 ([25, Lemma 1]). Let fS1(x), . . . , fSn(x) ∈ Zq[x] be polynomials of degree k ≥
1 for a prime q. Suppose r1(x), . . ., rn(x) are polynomials in Zq[x], chosen uniformly and
independently in the set of polynomials of degree at most k − 1. Let u(x) be a polynomial such
that

u(x)

lcm(fS1(x), . . . , fSn(x))
=

n∑

i=1

ri(x)

fSi(x)
. (5)

Then u(x) is uniformly distributed among polynomials in the set of polynomials ∈ Zq[x] having
degree at most deg(lcm(fS1(x), . . . , fSn(x)))− 1.

Finally, to recover the exact U(x) = lcm(fS1 , . . . , fSn) from the rational function u(x)
U(x) ,

the relation gcd(u(x), U(x)) = 1 is to be satisfied. In our set union protocol, since uj(x) :=
u(x) mod qj is uniformly distributed in Zqj [x] and the expected number of roots of a random
polynomial is one [19], we may expect that our RLS representation fails to output all the
elements in the set union with probability d

qj
≈ 2−2τ . Furthermore, it can be detected if this

happens for a certain j, whose probability is about 1− (1− d
qj

)
¯̀ ≈ ¯̀d

qj
≤ 2−τ . It is not negligible,

but small enough.

4.2 Set Union for Honest-But-Curious Case

Threshold Naccache-Stern Encryption For a group decryption, it requires a semantically secure,
threshold NS AHE scheme in our protocol. We provide a threshold version of the NS encryption
scheme in Appendix B. Our construction is based on the technique of Fouque et al. [8], which
transforms the original Paillier homomorphic encryption scheme into a threshold version working
from Shoup’s technique [28].

Parameter Setting Let U be the universe, n be the number of participants, and k be the
maximum size of participants’ datasets. Let d be the possible maximum size of the set union,
i.e., d = nk. Take the bit size of N by considering the security of the threshold NS AHE
scheme, which is the modulus of the threshold NS AHE scheme. Put d0 = max{d, dlogNe}
and τ = 1

3(log d + 2 log d0). Set ` so that U ⊆ {0, 1}τ`, a proper size of `′ so that `′ satisfies

the relation (4) and let ¯̀ = ` + `′. Note that ¯̀ is to be smaller than min
{
d, blogNc−2

3 log logN

}
since

τ ≥ log logN . Generate the parameters of the threshold NS encryption scheme, including the
size of message space σ, which is a product of ¯̀ (3τ + 1)-bit distinct primes qi’s.

Our Set Union Protocol for Honest-But-Curious Case Our set union protocol against honest-
but-curious (HBC) adversaries is described in Figure 3. In our set union protocol, each par-
ticipant computes the 2nk higher-order terms of the RLS representation of FSi = 1

fSi
=

1∏
si,j∈Si

(x−ι(si,j)) ∈ Zσ[x] for our encoding function ι and sends its encryption to all oth-

ers. With the received encryptions of FSj for 1 ≤ j ≤ n, each participant Pi multiplies a
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Input: There are n ≥ 2 HBC participants Pi with a private input set Si ⊆ U of car-
dinality k. Set d = nk. The participants share the secret key sk, to which pk is the
corresponding public key to the threshold NS AHE scheme. Let ι : {0, 1}∗ → Zσ be
the encoding function provided in Section 3.

Each participant Pi, i = 1, . . . , n:

1. (a) constructs the polynomial fSi(x) =
∏
si,j∈Si(x − ι(si,j)) ∈ Zσ[x], runs

RationalToRLS(1, fSi , (2n + 1)k − 1) to obtain
(

1
fSi (x)

)
[−(2n+1)k+1,−k]

, and

computes FSi(x) =
(

1
fSi (x)

)
[−(2n+1)k+1,−k]

· x(2n+1)k−1.

(b) computes F̃Si , the encrypted polynomial of FSi , and sends F̃Si to all other
participants.

2. (a) chooses random polynomials ri,j(x) ∈ Zσ[x] of degree at most k for all 1 ≤
j ≤ n.

(b) computes the encryption, φ̃i, of the polynomial φi(x) =
∑n
j=1 FSj · ri,j and

sends it to all participants.

3. (a) calculates the encryption of the polynomial F (x) =
∑n
i=1 φi(x).

(b) performs a group decryption with all other players to obtain the 2nk higher-
order terms of F (x).

4. (a) recovers a polynomial pair of uj(x) and Uj(x) in Zqj [x] for all 1 ≤ j ≤ ¯̀

such that
(
uj(x)

Uj(x)

)
[−2nk,−1]

= (F (x) mod qj)[k−1,(2n+1)k−2] · x−(2n+1)k+1 and

gcd(uj(x), Uj(x)) = 1 in Zqj [x], using the 2nk higher-order terms of F (x)
obtained in Step 3 (b).

(b) extracts all roots of Uj(x) in Zqj [x] for all j using a factorization algorithm.
(c) determines the set union using the encoding rule of ι.

Fig. 3. PPSU-HBC protocol in the HBC case

polynomial ri,j using additive homomorphic property, which is a randomly chosen polyno-
mial by the participant Pi and adds all the resulting polynomials to obtain the encryption of
φi(x) =

∑n
j=1 FSj · ri,j . Then, he sends the encryption of φi(x) to all others. After interactions

among participants, each participant can obtain the 2nk high-order term of the RLS representa-

tion of F (x) =
∑n

i=1

(∑n
j=1

1
fSj
· ri,j

)
∈ Zσ[x]. Then each participant obtains the 2nk high-order

terms of the RLS representation of F in Zσ[x] with group decryption and recovers polynomi-

als uj(x) and Uj(x) such that
(
uj(x)
Uj(x)

)
[−2nk,−1]

= (F (x) mod qj)[k−1,(2n+1)k−2] · x−(2n+1)k+1 and

gcd(uj(x), Uj(x)) = 1 in Zqj [x] from these values. Thereafter, each participant extracts all roots
of Uj(x) over Zqj for each j and recovers all elements based on criteria of our representation.

Analysis Now, we consider the correctness and privacy of our proposed protocol described in
Figure 3. The following theorems guarantee the correctness and privacy of our construction in
Figure 3.

Theorem 2. In the protocol described in Figure 3, every participant learns the set union of
private inputs participating players, with high probability.

Proof. After Step 3 (b), all participants obtain the 2nk higher-order terms of F (x) =
∑n

i=1

(∑n
j=1

1
fSj
· ri,j

)
∈

Zσ[x] and hence they obtain the 2nk higher-order terms of the RLS representation of F (x) mod
qj . From these values, using polynomial recovering algorithm, they reconstruct polynomials

uj(x) and Uj(x) such that
uj(x)
Uj(x) ≡ Fj(x) mod qj and gcd(uj(x), Uj(x)) = 1. From the equa-

tion (4) and Lemma 1, Uj = (lcm(fS1 , fS2 , . . . , fSn) mod qj) with high probability. Since our
polynomial representation can give the exact corresponded set with overwhelming probability,
it gives S1 ∪ . . . ∪ Sn. �
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Theorem 3. Assume that the utilized additive homomorphic encryption scheme is semantically
secure. Then, in our set union protocol for the HBC case described in Figure 3, any adversary
A of colluding fewer than n HBC participants learns no more information than would be gained
by using the same private inputs in the ideal model with a trusted third party.

Proof. Since the utilized additive homomorphic encryption scheme is semantically secure, each
participant learns only F (x) =

∑n
j=1 (

∑n
i=1 ri,j)FSj in Zσ[x]. All players contribute to generate

the polynomial
∑n

i=1 ri,j and the polynomial
∑n

i=1 ri,j is uniformly distributed and unknown.
Moreover, the resulting polynomials uj are uniformly distributed by Lemma 2. Hence, no in-
formation can be recovered from the polynomial F , Uj ’s and uj ’s, other than those given by
revealing the union set. �

Performance Analysis It is clear that our protocol runs in O(1) rounds. Let us count the
computational and communicational costs for each participant.

Step 1 (a): requires Õ(k) multiplications in Zσ for a polynomial expansion of degree k and
O(kd) multiplications to run the RationalToRLS algorithm and compute FSi .

Step 1 (b): requires O(d) exponentiations for 2d encryptions and O(nd) communication costs.
Step 2 (b): requires O(d2) exponentiations for computing the encryption φ̃i :=

∑n
j=1 F̃Sj · ri,j

using additive homomorphic property and O(nd) communication costs.
Step 3 (a): requires O(nd) multiplications for computing

∑n
i=1 φ̃i.

Step 3 (b): requires O(d) exponentiations for decryption share computation for 2d ciphertexts
and O(¯̀√dqi) multiplications for solving d DLPs for ¯̀ groups of order qj ’s.

4 The communi-
cation cost is O(nd).

Step 4 (a): requires O(d2) multiplications in Zqj to recover Uj(x) using extended Euclidean
algorithm for each j.

Step 4 (b): requires O(d1.5+o(1)) multiplications in Zqj for each j to factor a polynomial of
degree d.

Step 4 (c): requires O(¯̀d log d log qj) bit operations for sorting and O(d) hash computations.

Then the computational complexity is dominated by one of terms O(d2) exponentiations in
Step 2 (b) and O(¯̀√dqi) multiplications in Step 3 (b). Since one modular exponentiation for

a modulus N requires O(logN) multiplications and ¯̀< min
{
d, blogNc−2

3 log logN

}
, the computational

complexity for each participant is dominated by O(d2) = O(n2k2) exponentiations in ZN and
the total complexity is O(n3k2) exponentiations in ZN . The total communication cost for our
protocol is O(n2d) = O(n3k) (logN)-bit elements.

For the malicious case, we can obtain the set union protocol using techniques in [17] and [25].
Refer to Appendix C.1 for the details in the malicious case.

4.3 Extend to Multi-set Union Protocol

We can easily extend our set union protocol to a multi-set union protocol by modifying our
encoding function. Assume that each participant Pi has a multi-set Si ⊆ U for the known
universe U ⊆ {0, 1}τ`. Define a function η : U → U ′′ ⊆ {0, 1}τ(`+`′′) by η(s) = s||r where r
is a randomly chosen element in {0, 1}τ`′′ . Then each participant takes part in our set union
protocol with a set {η(s1), . . . , η(sk)} as his set instead of {s1, . . . , sk}. For the same messages
s1 and s2, if η(s1) is different from η(s2), one can obtain η(s1) and η(s2) as a part of a set union,
so the frequency of s1 in the union can be revealed. Hence, if all values of η are distinct, we can
learn the multi-set union.

4 Note that one has to solve ¯̀ DLPs over a group of order qi for one decryption in the NS encryption scheme.
In Step 3 (b), one has to solve 2d = 2nk DLPs over a group of order qi for each qi. It requires O(

√
dqi)

multiplications to solve d DLPs over a group of order qi [18] and hence total complexity of this step is
O(¯̀

√
dqj) multiplications.
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Consider the probability that there exist at least two same values among d values of func-
tion η. This probability is

1−
(

1− 1

2τ`′′

)
· · ·
(

1− d− 1

2τ`′′

)
≈ d2

2τ`′′

and it is less than 2−λ if `′′ >
λ+ 2 log d− 1

log d
. For example, when λ = 80 and d ≈ d0 ≈ 210,

then `′′ is about 10.

Both computational and communicational complexities of our multi-set union protocol are
the same with those of our set union protocol as big-O notation. It is heavier than the previous
best result [14], which requires O(n2k) exponentiations in Fq and O(n2k log q) bits where q is
similar to the size of the universe. However, the public key size of our protocol is O(1) elements,
while that of the previous result in [14] is O(d) elements for the size d of the multi-set union
since their construction utilized ElGamal encryption schemes defined over an extension field Fpd
of extension degree d.

4.4 Set Intersection Protocol

In most private set intersection protocols based on polynomial representations and AHE schemes,
it is hard to factor the resulting polynomial corresponded to the intersection of datasets. Hence,
it is assumed that the decryptors who want to obtain the set intersection possess a set having
the resulting set as a subset and evaluate at elements of his set to check whether each element
is a root of the resulting polynomial. However, our polynomial representation provides a private
set intersection protocol in which the decryptors efficiently recover the resulting set without
a superset of the resulting set, except the universe, since it enables us to factor the resulting
polynomial.

5 Conclusion

In this paper, we provided a new representation of a set by a polynomial over Zσ, which can
be efficiently inverted by finding all the linear factors of a polynomial whose root locates in
the image of our encoding function, when the factorization of σ is public. Then we presented
an efficient constant-round set union protocols, transforming our representation into a rational
function and then combining it with threshold NS AHE scheme. We also extend our set union
protocol to the multi-set union protocol by modifying rational function representation and
consider the set intersection protocol in the case that decryptors do not possess a superset of
the resulting set except the universe.

We showed that our encoding function is quite efficient on average-case, but it still requires
exponential time in the degree of a polynomial to recover a set from the polynomial represented
by our encoding function at worst-case although the probability of the worst-case is sufficiently
small. Hence it would be interesting to construct an encoding function that enables us to recover
a set in polynomial time even at worst-case.
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A The Proper Size of α

In this section, we explain why the proper size of α is 1
3 . Let α = b

a for relatively prime a, b

with a < b and assume that ` and `′ are divided by b. Let h : {0, 1}∗ → {0, 1}3(1−α)τ and
hi : {0, 1}∗ → {0, 1}3ατ be uniform hash functions for 1 ≤ i ≤ `′. 5 Assume that 3ατ and
3(1−α)τ are integers. Parse a message si ∈ U ⊆ {0, 1}3ατ` into ` blocks si,1, · · · , si,` of 3ατ -bit
so that si = si,1|| · · · ||si,`. Let si,`+j = hj(si) for 1 ≤ j ≤ `′ and parse h(sj) into (a− b) blocks
si,¯̀+1, · · · , si,¯̀+a−b of 3ατ -bit. Set ¯̀= `+ `′.

We define an encoding function ια : U ⊆ {0, 1}3ατ` → Zσ, in which ια(si) is the unique

element in Zσ satisfying ια(si) = si,(j−1)b+1|| · · · ||si,(j−1)b+a mod qj for a composite σ =
∏¯̀

j=1 qj .
Then a set S is represented as a polynomial f(x) =

∏
si∈S (x− ια(si)) ∈ Zσ[x].

For each message si = si,1|| · · · ||si,`, denote ια(si) mod qj by s
(i)
j . We generalize the definition

of a linkable pair. We define (s
(i)
j , s

(i′)
j+1) ∈ Zqj×Zqj+1 to be a linkable pair if the last 3(1−α)τ -bit

of s
(i)
j is equal to the first 3(1− α)τ -bit of s

(i′)
j+1. Inductively, we also define (s

(i1)
1 , · · · , s(ij+1)

j+1 ) ∈
Zq1 × · · · × Zqj+1 to be a linkable pair if (s

(i1)
1 , · · · , s(ij)

j ) and (s
(ij)
j , s

(ij+1)
j+1 ) are linkable pairs.

Let ια(si) and ια(si′) be images of elememts si and si′ of the encoding function ια with
si 6= si′ . Assume that si and si′ are uniformly chosen strings from {0, 1}3ατ`. Then,

Pr [(s
(i)
j , s

(i′)
j ) is a linkable pair] (6)

= Pr
[
si,jb+1|| · · · ||si,(j−1)b+a = si′,jb+1|| · · · ||si′,(j−1)b+a

]
(7)

=
1

23(1−α)τ
(8)

for a fixed 1 ≤ j ≤ ¯̀.

At the decoding phase, when a polynomial f(x) =
∏d
i=1(x− ια(si)) is given, one computes

all the roots {s(1)
j , · · · , s(d)

j } over Zqj . Then for each j sequentially from 1 to ¯̀− 1, we find all

linkable pairs between {s(1)
j , · · · , s(d)

j } and {s(1)
j+1, · · · , s

(d)
j+1} and check the hash values to find

the correct d si’s.

Theorem 4. Assume that S = {s1, . . . , sd} is a uniformly and randomly chosen set in the
set of subsets of cardinality d of the set {0, 1}3ατ` for 0 < α < 1. Define an encoding func-
tion ια : {0, 1}3ατ` → Zσ so that ια(si) is the unique element in Zσ satisfying ια(si) ≡
si,(j−1)b+1|| · · · ||si,(j−1)b+a mod qj for all 1 ≤ j ≤ ¯̀ when si = si,1|| · · · ||si,`, si,j’s are 3ατ -

bit and α = b
a for relatively prime a, b. Assume that ` and `′ are divided by b. Assume h and

hj’s utilized in the encoding function ι are uniform hash functions.

The expected number of linkable pairs of ¯̀-tuple is at most

d

(
1 +

3

2min{3ατ,(2−3α)τ}

)¯̀−1

for a polynomial f(x) =
∏d
i=1(x− ια(si)).

Proof. Let Ej be the expected number of linkable pair of j-tuple in Zq1 × · · · × Zqj for j ≥ 2.

For 1 ≤ j ≤ j′ ≤ ¯̀, let Sj′−j+1(ij , . . . , ij′) be the event that (s
(ij)
j , . . . , s

(i′j)

j′ ) is a linkable pair.

5 Note that qj ’s are (3τ + 1)-bit primes and the outputs of hash functions h and hi’s are less than qj for all j.
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Then,

E2 =
∑

i1,i2∈{1,...,d}

1 · Pr[S2(i1, i2)]

=
∑

i1,i2∈{1,...,d}

Pr[S2(i1, i2) ∧ (i1 = i2)] +
∑

i1,i2∈{1,...,d}

Pr[S2(i1, i2) ∧ (i1 6= i2)]

=
∑

i1∈{1,...,d}

Pr[S2(i1, i1)] +
∑

i1 6=i2∈{1,...,d}

Pr[S2(i1, i2)]

= d+ d(d− 1)
1

23ατ
= d

(
1 +

d− 1

23ατ

)

since Pr[S2(i1, i1)] = 1 for i1 ∈ {1, . . . , d} and Pr[S2(i1, i2)] = 1
23ατ for distinct i1, i2 ∈ {1, . . . , d}

from the equation (6).

Now, we consider the relation between Sj and Sj+1. When (s
(i1)
1 , . . . , s

(ij)
j ) is a linkable pair,

consider the case that (s
(i1)
1 , . . . , s

(ij)
j , s

(ij+1)
j+1 ) is a linkable pair. One can classify this case into

the following cases:

1. ij+1 = ij ,

2. ij+1 = ij−k /∈ {ij−k+1, . . . , ij} for k = 0, . . . , ba−1
b c − 1,

3. ij+1 = ij−k /∈ {ij−k+1, . . . , ij} for k = ba−1
b c, . . . , j − 1.

At the first case, if ij+1 = ij and {s(i1)
1 , · · · , s(ij)

j } is a linkable pair, then {s(i1)
1 , · · · , s(ij)

j , s
(ij+1)
j+1 }

is always a linkable pair. Hence,

E
(1)
j+1 :=

∑

i1,...,ij+1∈{1,...,d}

Pr [Sj+1(i1, . . . , ij , ij+1) ∧ (ij+1 = ij)]

=
∑

i1,...,ij∈{1,...,d}

Pr [Sj(i1, . . . , ij)] = Ej .

At the second case, if 0 ≤ k ≤ ba−1
b c − 1,

E
(2)
j+1 :=

∑

i1,...,ij+1∈{1,...,d}

Pr[Sj+1(i1, . . . , ij+1) ∧ (ij+1 = ij−k /∈ {ij−k+1, . . . , ij})]

=
∑

i1,...,ij+1∈{1,...,d}
ij+1=ij−k /∈{ij−k+1,...,ij}

Pr
[
Sj(i1, . . . , ij) ∧ S′j(ij , ij+1)

]

≤
ba−1
b c−1∑

k=0

∑

i1,...,ij∈{1,...,d}

1

23kατ
Pr[Sj(i1, . . . , ij)] ≤

2

23ατ
Ej

since the last τ(1− (k+1)b+1
a )-bit of s

(ij−k)
j−k and the first τ(1− (k+1)b+1

a )-bit of s
(ij+1)
j+1 are already

same from the encoding rule of ια when S′j(ij , ij+1) is the event that sij ,(j−k−1)b+a+1|| · · · ||sij ,(j−1)b+a =
sij+1,(j−k−1)b+a+1|| · · · ||sij+1,(j−1)b+a.

For ba−1
b c ≤ k < j, if ij+1 = ij−k /∈ {ij−k+1, . . . , ij}, then

{(j − k)b+ 1, . . . , (j − k − 1)b+ a)} ∩ {jb+ 1, . . . , jb+ a} = ∅.
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Hence,

E
(3)
j+1 :=

∑

i1,...,ij+1∈{1,...,d}

Pr[Sj+1(i1, . . . , ij+1) ∧ (ij+1 = ij−k /∈ {ij−k+1, . . . , ij})]

=
∑

i1,...,ij+1∈{1,...,d}
ij+1=ij−k /∈{ij−k+1,...,ij}

Pr[Sj(i1, . . . , ij)] · Pr[S2(ij , ij+1)]

=

j−1∑

k=da−1
b
e

∑

i1,...,ij∈{1,...,d}

1

23(1−α)τ
Pr[Sj(i1, . . . , ij)] ≤

d

23(1−α)τ
Ej .

since
∑j−1

k=da−1
b
e

1
23(1−α)τ ≤

¯̀

23(1−α)τ ≤ d
23(1−α)τ .

From the above results, one can obtain the recurrence formula of Ej as follows:

Ej+1 = E
(1)
j+1 + E

(2)
j+1 + E

(3)
j+1

≤
(

1 +
2

23ατ
+

d

23(1−α)τ

)
Ej

for j ≥ 2. Therefore,

E¯̀≤
(

1 +
2

23ατ
+

d

23(1−α)τ

) ∑

i1,...,i¯̀−1∈{1,...,d}

Pr[S¯̀(i1, . . . , i¯̀−1)]

≤
(

1 +
2

23ατ
+

d

23(1−α)τ

)¯̀−2 ∑

i1,i2∈{1,...,d}

Pr[S2(i1, i2)]

≤ d
(

1 +
3

2min{3ατ,(2−3α)τ}

)¯̀−1

.

�

If ¯̀≥ 2min{3ατ,(2−3α)τ}, then d
(

1 + 3
2min{3ατ,(2−3α)τ}

)¯̀−1
is exponentially increased. Hence it

requires the limitation of ¯̀ so that ¯̀< 2min{3ατ,(2−3α)τ}. But, if α 6= 1
3 , then either 3α or (2−3α)

is less than 1 and hence 2min{3ατ,(2−3α)τ} < min
{
d, blogNc−2

3τ

}
for increasing of d and logN . It

causes the limitation of the size of universe since |U| ≤ 23ατ` in the case α 6= 1
3 . From these

reasons, we set α so that the universe U is a subset of {0, 1}τ`, i.e., α = 1
3 .

B Threshold Naccache-Stern Cryptosystem

In this section, we provide a threshold version of NS AHE scheme. Our threshold version is
based on Fouque et al.’s work [8], which transforms the original Paillier homomorphic encryption
scheme into a threshold version working from Shoup’s technique [28]. The security proof of our
construction is similar with that of a threshold version of Paillier encryption scheme under the
assumption that the original NS AHE scheme is semantically secure. We omit the detail of the
security proof.

Threshold Naccache-Stern Encryption Scheme Our threshold version of the NS AHE scheme
consists of the following four algorithms:

– KeyGen(λ, n, t): this algorithm is executed by a dealer. It takes as inputs a security parameter
λ, the number n of participating users and the threshold parameter t. Then the dealer runs
the following steps:
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1. Generate ¯̀ (τ(λ) + 1)-bit primes qi’s where τ(λ) is a polynomial in λ. We simply write

τ(λ) by τ . Let u =
∏¯̀/2
i=1 qi and v =

∏¯̀

i=¯̀/2+1 qi.

2. Generate two κ(λ)-bit large primes p′1, p
′
2.

3. Compute p1 = 2up′1 + 1 and p2 = 2vp′2 + 1. If at least one of p1 and p2 are not prime, go
to the first step. Otherwise, let N = p1p2 and σ = uv.

4. The secret key φ(N)/σ is shared using the secret sharing scheme such as Shamir’s [26]:
Let f(x) =

∑t
i=0 aix

i where a0 = φ(N)/σ and ai’s are randomly chosen element in
Zφ(N). Then the secret share ski for a user Pi is f(i) mod φ(N)/σ.

5. Choose a random element g of order φ(N)/4 in Z∗N .
6. Choose a random generator vk of the maximal cyclic group consisting of squares in Z∗N .

Let vki = vk∆ski mod N where ∆ = n!.
It outputs a public key pk = (N, g, σ, vk, {vki}ni=1, ∆) and a secret key ski for each user Pi.

– Enc(pk,m): this algorithm takes as inputs a public key pk and a message m. It chooses a
random element x in ZN and outputs c = gmxσ mod N .

– ShareDec(pk, i, ski, c): this algorithm takes as inputs a public key pk, an index 1 ≤ i ≤ n, a
secret share ski and a ciphertext c. Then it computes ci = c2∆ski along with its proof πci of
the equality of the discrete logarithm between (c4, c2

i ) and (vk, vki) and computes gi = g∆ski

along with its proof πgi of the equality of the discrete logarithm between (g, gi) and (vk, vki)
where gi = g∆ski and vki = vk∆ski . It outputs (ci, πci , gi, πgi).

– Combine(pk, S, c, {ci}i∈S , {πci}i∈S , {gi}i∈S , {πgi}i∈S): this algorithm is executed by the com-
biner. (Note that it can be also executed by any user if the fairness is not considered.) It
takes as an input a public key pk, an index set S, a ciphertext c, its decryption shares
{ci}i∈S , corresponding proofs {πci}i∈S , generator shares {gi}i∈S , and corresponding proofs
{πgi}i∈S . Then it runs the following steps:
1. If |S| ≤ t, this algorithm returns ⊥.
2. Otherwise, it verifies all proofs πci ’s and πgi ’s. If at least one of proofs are failed to verify,

return ⊥.

3. For a set S, compute µS0,j := ∆
∏
j′∈S\{j}

j′

j′−j ∈ Z. Then compute c̄ =
∏
j∈S c

2µS0,j
j mod N

and ḡ =
∏
j∈S g

2µS0,j
j mod N .

4. For all qi|σ, compute m′i = logḡq̂i c̄
q̂i using a DLP solving algorithm where q̂i = σ

qi
. Then

compute m′ such that m′ ≡ m′i mod qi for all i using CRT computation. It outputs m′.

Correctness of Our Construction By the Lagrange interpolation formula, we obtain

c̄ =
∏

j∈S
c

2µS0,j
j =

∏

j∈S
c4∆skiµS0,j = c4∆

∑
j∈S skjµS0,j = c4∆2f(0)

and similarly ḡ = g4∆2f(0). Hence,

logḡq̂i c̄
q̂i = log

g
4∆2 φ(N)

qi

c
4∆2 φ(N)

qi = log
g

4∆2 φ(N)
qi

(gmxσ)
4∆2 φ(N)

qi

= log
g

4∆2 φ(N)
qi

(gm)
4∆2 φ(N)

qi ≡ (m mod qi)

which gives the correctness of our construction.

C Supplement for Our Set Union Protocol

C.1 Malicious Case

Zero-knowledge Proofs We exploit the following zero-knowledge proofs for the malicious ad-
versary model. We can efficiently construct the required zero-knowledge proofs for the NS
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encryption scheme by applying some standard techniques [4, 5]. We briefly introduce how to
construct the following zero-knowledge proofs. Let Epk be an encryption of a polynomial defined
in Section 2.3.

– ZKPK[g(x)|Epk(g(x)), Epk(f(x)), Epk(f(x) · g(x))]: this is a zero-knowledge proof that Epk(f(x)·
g(x)) is an encryption of f(x)g(x) when polynomial encryptions Epk(g(x)), Epk(f(x)) and
Epk(f(x) · g(x)) are given. In this case, the prover knows only g(x), not f(x). We obtain
this protocol by generalizing zero-knowledge proof of correct multiplication which proves
Encpk(c) is an encryption of ab, when Encpk(a) and Encpk(b) are given for an AHE scheme
Encpk with the public key pk. This protocol requires O(nk2) exponentiations for computation
and O(nk2) (logN)-bit elements for communication when f(x) is a polynomial of degree
2nk and g(x) is a polynomial of degree k.

– ZKPK[f(x), g(x)]: this is a zero-knowledge proof that g(x) is the RLS representation of
1/f(x) when encryptions of f(x) and g(x) are given. By the Lemma 2 in [25], if f(x) and
g(x) satisfy deg (f(x)g(x)− x(deg f+deg g)) < deg f , then g(x) is the RLS representation of
a rational function 1/f(x). Hence it is enough to prove that the deg(g(x)) + 1 higher-
order coefficients of f(x)g(x) are equal to 1, 0, . . . , 0. To prove this, the prover first gives
Epk(f(x) · g(x)) with zero-knowledge proof ZKPK[g(x)|Epk(g(x)), Epk(f(x)), Epk(f(x) · g(x))].
(In this case, the prover also knows f(x), but the protocol is the same.) Then, using zero-
knowledge protocols that a ciphertext is an encryption of 0 and a ciphertext is an encryption
of 1, the prover proves that the encryption of the (deg g) + 1 higher-order coefficients of
Epk(f(x) · g(x)) are encryption of 1, 0, . . . , 0. It requires O(nk2) exponentiations and O(nk2)
(logN)-bit elements for communications when f(x) is a polynomial of degree k and g(x) is
a polynomial of degree 2nk.

Commitment Scheme We also exploit some equivocal commitment schemes [16, 20] so that the
simulator in the malicious adversary model can open the envelope to arbitrary value without
being detected by the adversary.

Our Set Union Protocol for Malicious Case We give a PPSU-MAL protocol which is
secure against malicious adversaries in Figure 4. The parameters are the same with that of
protocols for the HBC adversaries model in Section 4.2.

This protocol also runs in O(1) round. The complexities are the same with the protocol for
the HBC adversary model as a big-O notation except those of running zero-knowledge proof
protocols. However, to give a zero-knowledge proof of polynomial multiplication and inverse
relation, we need to O(nk2) communication cost and O(nk2) computational cost. In particular, a
zero-knowledge proof protocol ZKPK[ri,j |Λ(ri,j), Epk(FSi,j ), µi,j ] has to run for all 1 ≤ i 6= j ≤ n,
the total communication complexity and computational complexity are O(n3k2) (logN)-bit
elements and O(n3k2) exponentiation, respectively, and this is the most expensive part in our
malicious protocol.

The correctness is similar with that of the HBC case and the following theorem guarantees
the security of the protocol proposed in Figure 4.

Theorem 5. In our set union protocol for the malicious case described in Figure 4, there is
a simulator S for a player (or a group of players) operating in the ideal model, such that the
view of the players in the ideal model is computationally indistinguishable from the view of the
honest players and any adversaries A of colluding players in the real world.

Proof. Let S be a simulator in ideal world, communicating with malicious adversaries A in the
real world, who are able to collude among malicious adversaries. We want to show that malicious
adversaries A in the real world cannot distinguish that S does not play in the real world.

S operates the following steps:
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Input: There are n ≥ 2 participants Pi with a private input set Si ⊆ U of cardinality k. Set d = nk.The
participants share the secret key sk, to which pk is the corresponding public key to the threshold NS
AHE scheme. Let Epk be an encryption defined in Section 2.3. Let ι : {0, 1}∗ → Zσ be the encoding
function provided in Section 3. We utilize an equivocal commitment scheme and zero-knowledge proofs
protocols.

Each participant Pi, i = 1, . . . , n:
1. (a) constructs the polynomial fSi(x) =

∏
si,j∈Si(x − ι(si,j)) ∈ Zσ[x], runs

RationalToRLS(1, fSi , (2n + 1)k − 1) to obtain
(

1
fSi (x)

)
[−(2n+1)k+1,−k]

, and computes

FSi(x) =
(

1
fSi (x)

)
[−(2n+1)k+1,−k]

· x(2n+1)k−1.

(b) computes ˜fSi , F̃Si , the encrypted polynomial of fSi , FSi and sends them to all other participants
with proofs of ZKPK[fSi , FSi ].

(c) chooses random polynomials ri,j(x) of degree at most k for all 1 ≤ j ≤ n, and sends a
commitment of Λ(ri,j) to all parties, where Λ(ri,j) = Epk(ri,j).

2. (a) opens the commitment to Λ(ri,j).
(b) verifies zero-knowledge proofs ZKPK[fSi , FSi ].
(c) sets the leading coefficient to a known encryption of 1
(d) calculates µi,j , the encrypted polynomial of FSj × ri,j with proofs of correct multiplication

ZKPK[ri,j |Λ(ri,j), Epk(FSi,j ), µi,j ] and sends them all other participants.
3. (a) calculates the encrypted polynomial of F (x) =

∑n
i=1

∑n
j=1 FSj × ri,j and verifies all attached

proofs.
(b) performs a group decryption with all other players to obtain the 2nk high-order terms of F (x).

4. (a) recovers a polynomial pair of uj(x) and Uj(x) in Zqj [x] for all 1 ≤ j ≤ ¯̀ such that(
uj(x)

Uj(x)

)
[−2nk,−1]

= (F (x) mod qj)[k−1,(2n+1)k−2] · x−(2n+1)k+1 and gcd(uj(x), Uj(x)) = 1 in

Zqj [x], using the 2nk high-order terms of F (x) obtained in Step 3 (b).
(b) extracts all roots of Uj(x) in Zqj [x] for all j using a factorization algorithm.
(c) determines the set union using the encoding rule of ι.

Fig. 4. PPSU-MAL protocol in the malicious case

1. For each honest player i, a simulator S
(a) chooses monic polynomial fi such that each such polynomial is relatively prime.
(b) chooses polynomials ri,1, . . . , ri,n and creates encryptions Λ(ri,j) from them.

2. The simulator S performs Step 1 (a), (b), (c) of our set union protocol:

(a) calculates FSi(x) =
(

1
fSi (x)

)
[−(2n+1)k+1,−k]

· x(2n+1)k−1.

(b) computes f̃Si , F̃Si , the encrypted polynomial of fSi , FSi and sends them to all other
participants with proofs of ZKPK[fSi , FSi ].

(c) chooses random polynomials ri,j(x) of degree at most k for all 1 ≤ j ≤ n, and sends
trapdoor commitment of Λ(ri,j) to all parties, where Λ(ri,j) = Epk(ri,j).

(d) receives from each malicious player α ∈ A the followings: ˜fSα , F̃Sα , ZKPK[fSα , FSα ] and
trapdoor commitment of Λ(rα,j) for 1 ≤ j ≤ n.

3. The simulator S extracts fSα from ZKPK[fSα , FSα ] and trapdoor commitments to Λ(rα,j)
to obtain a polynomial Fα and polynomials rα,j for all α ∈ A.

4. The simulator S submits all roots to TTP and returns the set union.
5. The simulator S prepares to reveal the set union:

(a) computes U(x) =:
∏
sj∈U (x − ι(sj)) ∈ Zσ[x] and computes the high-order 2nk RLS

representation F (x) of a rational function u(x)
U(x) over Zσ for a randomly chosen u(x) such

that gcd(u(x), U(x)) = 1 and deg u < degU .

(b) computes (FSi)j :=
uj(x)
Uj(x) mod qj where Uj(x) :=

∏
sj∈U (x− ι(sj)) mod qj .

(c) chooses a set of polynomial ri,j ’s such that F (x) =
∑n

i=1 FSi(x)(
∑n

j=1 ri,j) ∈ Zσ[x].
6. The simulator S follows the rest of the protocol as described and he opens the trapdoor

commitment to reveal an appropriate Λ(ri,j) for the new chosen polynomial ri,j . Then the
participants calculate an encryption of the polynomial U chosen by the simulator S, and
then decrypt it and hence learn the union set.
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Note that the colluding players A cannot distinguish that the simulator S is in the real world
or not and all players obtain the correct answer in both the real world and ideal world. �


