
Intercepting Tokens:

The Empire Strikes Back in the Clone Wars

Özgür Dagdelen Marc Fischlin

Darmstadt University of Technology, Germany

oezguer.dagdelen@cased.de, marc.fischlin@gmail.com

Abstract We discuss interception attacks on cryptographic protocols which rely on trustworthy
hardware like one-time memory tokens (Goldwasser et al., Crypto 2008). In such attacks the
adversary can mount man-in-the-middle attacks and access, or even substitute, transmitted
tokens. We show that many of the existing token-based protocols are vulnerable against this
kind of attack, which typically lies outside of the previously considered security models.

We also give a positive result for protocols remaining secure against such attacks. We present
a very efficient protocol for password-based authenticated key exchange based on the weak
model of one-time memory tokens. Our protocol only requires four moves, very basic opera-
tions, and the sender to send ` tokens in the first step for passwords of length `. At the same
time we achieve information-theoretic security in Canetti’s universal composition framework
(FOCS 2001) against adaptive adversaries (assuming reliable erasure), even if the tokens are
not guaranteed to be transferred securely, i.e., even if the adversary can read or substitute
transmitted tokens.

1 Introduction

Recently, the area of designing cryptographic protocols in the presence of hardware tokens has
gained significant attention [39, 40, 38, 32, 49, 16, 20, 47, 42, 34, 33, 28, 25, 9, 23, 18, 26, 8].
Nonetheless, the idea of relying on tamper-proof hardware devices to relax assumptions dates
back to the 80’s [62, 50]. Indeed, security tokens such as smart cards have already undergone
a comprehensive treatment from a hardware’s perspective, e.g., [3, 37, 17, 22, 60, 53, 6, 61, 45],
and have been commercially available even in simple forms such as for one-time passwords [27],
before their usefulness for the design of more complex cryptographic protocols has begun to be fully
explored. The pleasant aspect of using hardware tokens is that they facilitate the design of efficient
protocols while still achieving strong security guarantees. Notably, most of the aforementioned
works design protocols in Canetti’s universal composition (UC) framework [12]. There are two
reasons for this: (a) the derived protocols provide strong security even in “hostile” environments
(e.g., in presence of concurrent executions of other protocols), and (b) vice versa, the UC framework
allows an easy modeling of such tokens.

The aforementioned works use different types of hardware tokens, ranging from very powerful
smartcards as in [40] to very minimalistic one-time memory (OTM) tokens as in [32]. The latter are
tamper-proof tokens which allow a sender to store two values and to transfer the token to a receiver,

1



and when one of the two values is read according to a receiver’s choice, the other value collapses and
is irrevocably lost. Although resembling a hardware-based implementation of an oblivious transfer
protocol, Goldwasser et al. [32] point out that these tokens implement a weaker functionality than
oblivious transfer. The main difference is that the (single) measurement on the receiver’s side is
carried out locally such that an adversarial receiver may postpone the measurement instead of
performing the read-out when supposed to do. This is in contrast to an execution of an oblivious
transfer protocol where the sender knows when the transfer takes place (and can therefore enforce
a transfer at a certain point in a protocol run).

There are essentially two types of approaches using tokens: some devised protocols focus on
concrete problems [38, 42, 28, 10] like secure computation of set intersections and aim at providing
really efficient protocols. Others provide general feasibility results to compute arbitrary functions
[40, 32, 33, 34, 25] and are, therefore, more general but at the same time often less efficient than
desired. Another important research direction, which emerged recently, is to investigate how much
trust in the tokens is required. That is, the works by Kolesnikov [42], Fischlin et al. [28], Ostrovsky
et al. [52], Damg̊ard and Scafuro [21], and van Dijk and Rührmair [64, 59] consider the problem
of untrustworthy tokens. These works investigate which security properties can be achieved if an
adversary is able to introduce malicious tokens with diverging behavior in the protocol.

1.1 Interception Attacks on Token-Based Protocols

Here we discuss a somewhat dual problem to malicious tokens, namely, the adversary’s ability to
intercept trustworthy tokens. Previous efforts often assumed that tokens are eventually faithfully
delivered to the intended receiver, and that the adversary could not intercept and replace tokens
on behalf of the sender. This is testified by the common definition of token functionalities (e.g.,
[40, 32, 16, 34, 8]) in which the receiver is informed by the functionality about a token creation
from the sender. In particular, the adversary thus cannot send a different token on behalf of the
sender. This is even the case for the tokens considered in [16] where the adversary can basically
place tokens inside other tokens, but creation of such tokens again reveals the sender’s identity to
the receiver. We show that a vast number of previous proposals (e.g., [32, 42, 34, 24]) becomes
insecure when the adversary is able to mount such substitution attacks; this is independent of the
question whether tokens can be malicious or not.

Remarkably, the above problem refers to the authenticity of the tokens in the sense that one
can reliably identify the sender of the token. This thwarts attacks in which the adversary tries
to inject tokens. The adversary, however, may not even need to be able to replace tokens to
mount successful attacks. It sometimes suffices to be able to access the honestly generated token,
instead of the intended receiver. Attacks against this “confidentiality” property have been partially
described in the area of physical unclonable functions (PUFs) in UC protocols for oblivious transfer,
key exchange, or bit commitments, where the adversary can communicate with the PUF before it
eventually reaches the designated receiver [10, 52, 21]. These papers show that security can still be
achieved in this case, albeit further attacks exist if the adversary can access PUFs after the protocol
has ended [64, 59]. However, the positive results [10, 52, 21] crucially rely on the authenticated
transmission of tokens, preventing substitution attacks.

Here we show that one cannot realize any functionalities with an embedded oblivious transfer (or
similar properties) if transmitted tokens can be intercepted by the adversary. This also presumes
that there is no other authenticated (digital) channel, which could otherwise be used to run an
authenticated OT protocol without tokens. It follows that the known OT-like protocol of [34],

2



which merely transmit tokens, cannot be secure against token interceptions attacks. The result
extends to other protocols like [32, 24] if the additional digital transmissions in these protocols are
not authenticated either. We note that for these protocols the results merely rely on the ability to
read out intercepted tokens, and do not even need to take advantage of substitution attacks.

1.2 Positive Results: Password-Based Key Exchange

Since we do not touch the issue of malicious tokens here —which, as explained above, is orthogonal
to the question of interceptions— we investigate a solution which presumes that one can identify
well-formed tokens. This is similar to bank notes for which recipients can verify the integrity of
notes, but for which the reliable authentication of the payer by purchases over the counter, is usually
not guaranteed. Nonetheless, this could be ensured in principle by means of certification through,
say, identification documents. As in this example we assume that tokens contain an imprinted
and tamper-proof serial number. In order to provide authentic transmissions, i.e., allowing for
trustworthy identification of the source, we can assume that the sender simply also sends the signed
serial number or, more generally, re-sends the serial number through an authenticated channel
between the two parties.

The above solution, however, does not work in the case that there is no pre-established authen-
ticated channel. A concrete example for such a setting is authenticated key exchange. Roughly, in
an authenticated key exchange protocol two parties aim to establish a shared key with a designated
partner, usually with the goal to form a confidential and authenticated channel between them. In
the password-based case the parties initially share a human-memorizable password of limited en-
tropy, and still try to establish a strong cryptographic key. In this case it is often assumed that the
key establishment is not carried out over an authenticated channel, such that the aforementioned
solution of authenticated transmission of the token’s serial number does not work offhandedly.
Instead, the authenticity of tokens must originate from within the password-based protocol itself.

A widely-deployed security notion for such password-based authenticated key exchange pro-
tocols has been given by Bellare et al. [7]. Later, Canetti et al. [14] (and subsequently [1]) gave
stronger formalizations for password-based key exchange in the UC framework. So far, only a few
password-based key exchange protocols meeting the UC notion have been proposed, usually relying
on encryption schemes and hash proof systems [14, 1, 31, 36, 41]. An exception is the recently
proposed solution by Canetti et al. [13]. Their efficient UC-secure password-based key exchange
protocol is based on oblivious transfers. However, the security of their construction relies on com-
putational assumptions and the common reference string model. Note that Barak et al. [4] pointed
out that UC-secure password-based key exchange should be infeasible in the unauthenticated case,
unless some auxiliary mean is provided (like a common reference string in [4]). Let us also stress
again that general feasibility results like the one in [34], showing that one can realize any func-
tionality with a non-interactive, statistically UC-secure protocol based on one-time (bit) memory
tokens, is not applicable as it requires authenticated channels, as our interception attacks show.

Here we design a new protocol for authenticated password-based key exchange, resistant against
interception attacks. In line with previous efforts for strong security based on tokens, our protocol
achieves UC security. Remarkably, we use only the weak one-time memory tokens (for strings) and,
in contrast to previous efforts, our protocols are information-theoretically secure against adaptive
corruptions (if the sender can reliably erase randomness). That is, we formally show UC security
for unbounded adaptive adversaries and unbounded environments in the hybrid model where we
model one-time memory tokens through ideal functionalities. In particular, we do not rely on any

3



unproven cryptographic assumption. According to a recent result by Unruh [63] our protocols thus
also resist quantum adversaries. In addition, from a result by Nielsen [51] about non-committing
encryption, it follows there cannot exist key agreement protocols secure against adaptive corruptions
in the UC model, in the standard model and assuming a full state reveal. Our protocol overcomes
this impossibility result by assuming reliable erasures.

As for efficiency, our protocol only requires very basic operations, and for `-bit passwords
requires only ` tokens, sent in the first step from the sender to the receiver. The overall protocol
requires four moves and O (`λ) bits of communication for security parameter λ, determining the
level of statistical security.

1.3 Discussion

At a superficial glance, it may seem easy to design key exchange protocols when one-time memory
tokens are available. For instance, simple approaches like having the sender encode random pairs
in ` tokens, asking the receiver to read the i-th token according to the i-th password bit and
to send parts of the value back to authenticate and use the other part to compute the key, are
imaginable. This construction, however, does not withstand very basic attacks. Namely, a malicious
sender could prepare such tokens and compute the password from the receiver’s answer. In fact,
the main obstacle in designing UC secure protocols is to solve the “chicken-and-egg” problem of
authentication, i.e., one party needs to authenticate first without revealing anything useful to the
adversary about the password. Our solution shows that this is still possible with the approach of
having the receiver read out the i-th of the ` tokens according to the i-th password bit. But we
let the sender first authenticate by having the receiver send a random challenge vector after having
received the tokens, with the guarantee that the sender’s subsequent authentication reply looks
random if the receiver reads out a single token at the “wrong” position. In the fourth round of out
protocol the receiver then authenticates.

One-time memory tokens are advantageous due to their simple functionality. However, once
the token has been queried, the token is useless. Ideally, one would like to have such tokens which
implement a reusable version, but then usually information-theoretic security cannot be achieved
anymore. If one settles for computational security, then the token can either be stateful, i.e., change
its state after queries, or stateless. Clearly, the latter tokens are again preferred as they are, for ex-
ample, resettably secure [16, 42, 34]. Our protocols can be easily implemented in a stateful version,
as the values stored in the memory are purely random. Hence, one can easily use a pseudorandom
function to let the token return (pseudo)random answers and update the key of the pseudorandom
function afterwards. It remains open if one can implement a version using a stateless token, without
involving additional assumptions like an oblivious transfer protocol. Another alternative, to reduce
the number of tokens required per execution, is to use the (statistically-secure) sequential-OTM
functionality derived from a single wrapper token [25]. While the solution requires additional inter-
action it is quite efficient; one would need to check, though, that the construction remains secure
for unauthenticated transmissions.

To support the argument of the difficulty to design secure key-exchange protocols based on
one-time memory tokens note that, as mentioned before, such tokens provide a weaker version of
oblivious transfer in terms of functionality. The important difference, as pointed out in [32], is that
a malicious receiver may decide to postpone the read-out of the token, whereas the sender in an
oblivious transfer protocol can be assured about the point in time when the receiver obtained one
of the two values. In analogy to such “forced read-outs” we note that such delayed measurements

4



(in case of quantum states) are the reason that the common security definition for the BB84
quantum key exchange protocol turned out to be inadequate when composed with the one-time
pad encryption [57].

Additionally, referring to the case of authentic vs. unauthentic transmissions, most oblivious
transfer protocols today are assumed to be run over an authenticated channel and merely provide
computational security [29, 35, 19, 55, 58, 13].1 Furthermore, in order to be UC secure they also
need some kind of set-up assumption like a common reference string [12]. It is currently unclear if
one can implement such set-up assumptions if the tokens are not sent in an authenticated way.

From a high-level perspective our protocol bears some similarities with the solutions based on
oblivious transfer, proposed by Canetti et al. [13]. A closer look, however, reveals the differences in
the designs of the protocols. Basically, [13] presents two UC-secure protocols, one using oblivious
transfer in both directions and achieving adaptive security, the other one using OT only from the
initiator to the responder but withstanding static corruptions only. Looking at the underlying
assumptions, both their solutions work in the common reference string model and provide compu-
tational security, whereas our token-based protocol does not require any set-up assumption, and
achieves statistical security against adaptive corruptions, but only if assuming reliable erasure.

But the main difference between the protocols in [13] and here lies in the way the oblivious
transfer is used and how authenticated channels are implemented. One solution in [13] uses OT
in both directions which, if implemented with hardware tokens, would require exchange of tokens
and constitute a major disadvantage to other token-based protocols. Hence, we are interested in
protocols in which one party sends tokens at the outset only. The other solution in [13] indeed
uses OT in one direction only, but requires chosen-ciphertext secure encryption instead. Secondly,
[13] first design their protocols in the presence of authenticated channels, and then use known
techniques [4, 30] to implement the OT functionality securely without authenticated channels. In
our solution, the authentication step is “built-in” into the protocol, without relying on further
techniques, yielding more efficient solutions and showing that one-time memory tokens only are
sufficient.

Finally, we remark that there seems to be an obvious relation of one-time memory protocols to
quantum cryptography. Like a one-time memory token a quantum state collapses when measured.
There are, nonetheless, important differences. First note that one-time memory tokens allow “secure
local” measurements, whereas a quantum adversary could entangle quantum states and any “local”
measurement, e.g., based on the password, would immediately become available to the adversary.
Indeed, the impossibility of unconditionally secure 1-out-of-2 oblivious transfer in the quantum
setting is well established today [46, 48]. For more discussions about the relationship of quantum
power and one-time memory tokens see [8].

2 Security Model

2.1 Universal Composition Model

We analyze our password-based key exchange protocol in the Universal Composition Framework
by Canetti [12]. In the UC framework one compares real-world executions of a protocol π among
(possibly corrupt) parties P1, . . . , Pn in the presence of an adversary A to ideal-world executions

1It must be said though that, except for [29, 13], none of the papers is explicit about authenticated channels; we
draw this conclusion by consultation of the proofs.

5



in the presence of an ideal-model adversary Sim, usually called simulator. In the ideal-world, the
parties have secure access to an ideal functionality F which captures the desired functional and
security properties in an abstract way; in this case, the parties essentially only forward any input to
the functionality and are thus called dummy parties. As usual, both adversaries may corrupt parties
at the beginning only (static corruptions) or during protocol executions (adaptive corruptions). In
the latter case, one often assumes that honest parties are able to erase unnecessary internal data
reliably such that these data are not available to the adversary upon corruption. For technical
reasons each execution is accompanied by a globally unique session identifier sid available to all
parties.

In both worlds a special party, called the environment Z, provides the input to the parties,
reads their outputs, and communicates with the adversary. Roughly, the environment models an
active distinguisher which determines any setting in which the protocol may be executed. Ideally,
the environment should not be able to tell apart real-world executions from ideal-model executions.
That is, let RealA,Z,π(λ) be the output of the environment when interacting with a real-world
execution of protocol π in the presence of A for security parameter λ, and IdealSim,Z,F (λ) denote
Z’s output for the ideal world. Then, a protocol π securely realizes F (information-theoretically)
if for any efficient (resp. unbounded) adversary A there should be an efficient (resp. unbounded)
simulator Sim such that for any efficient (resp. unbounded) environment Z we have

RealA,Z,π(λ) ≈ IdealSim,Z,F (λ),

where ≈ denotes computationally indistinguishability (resp. statistical indistinguishability).2

To model hardware tokens we follow previous approaches and specify tokens through ideal func-
tionalities as well, and work in the hybrid world. In this real-world surrogate all parties P1, . . . , Pn
and A now also have access to an ideal functionality G, and we write HybridA,Z,πG (λ) for the
environment’s output. We say that π securely realizes F in the G-hybrid world (information-
theoretically) if for any efficient (resp. unbounded) adversaryA there should be an efficient (resp. un-
bounded) simulator Sim such that for any efficient (resp. unbounded) environment Z we have

HybridA,Z,πG (λ) ≈ IdealSim,Z,F (λ).

One may again assume here that the simulator is at most polynomial time in the adversary’s
running time; we do not impose this restriction.

2.2 One-Time Memory Tokens

As explained above we model the hardware token as an ideal functionality and work in the corre-
sponding hybrid model. We model sending of tokens in the protocol by having a party create the
token and transmitting the unique token identifier tid (which corresponds to the session identifier
of the token hybrid in the UC model) to the partner. We assume that each tid is of the form
tid = (sid, tid′) for the session identifier sid for which the token is created.3 Hence, when consider-
ing authenticated transmissions of tokens, i.e., sending the tid over an authenticated channel, the

2Here, one may further assume that the simulator is at most polynomial time in the adversary’s running time; as
remarked in the introduction we stick to the more liberal definition and revisit this issue when stating the theorem.

3In a stronger model one could demand that tokens are not even session-specific. But then the benefits of using
the UC model, analyzing a single protocol execution and concluding composition immediately, would be lost. Instead
one would need to manually deal with multiple dependent executions, similar to the joint-state UC framework [15].
For the same reasons we do not allow the adversary to put names of other parties into tokens, because the parties
are bound to the session.

6



adversary cannot change the identifier tid sent from an honest sender. Nonetheless, the adversary
can still access the token via calling the ideal functionality for the tid. In previous definitions
authentic token transfers have been ensured by letting the functionality inform the receiver about
a newly created token by the sender. Interestingly, most definitions (e.g., [16, 34]) neither allow
calls of the adversary to the token created for the honest receiver and thus, formally, even exclude
temporary access through the adversary when the token is in transmission.

To consider unauthenticated transmissions of tokens, we let the adversary intercept tokens and
read them, even when the designated receiver is honest. This requires the adversary also to create
tokens (within the session sid) and to replace the depleted token. We note that we do not need to
make any assumption about who currently is in possession of the token (i.e., that the adversary
cannot read the token if it has already been delivered). The reason is that we can assume that, if
the adversary forgoes reading the token when sent and instead delivers it to the receiver who then
reads the token and ultimately makes it inaccessible for the adversary.

Figure 1 illustrates the ideal functionalities of One-Time-Memories in both versions. Besides
the secure and insecure versions FsecOTM and F insecOTM where the adversary can neither access nor
create tokens, or do both, we occasionally denote by FauthOTM the functionality where the adversary
cannot call create on behalf of another party, but can still access sent tokens. In other words, the
transmissions are authentic but not confidential.

In the sequel, we often merely say that a party creates a token. It is understood that the party
calls the functionality in the hybrid model with the corresponding input command create. The
party sends the token to another party if it later transmits the token identifier to this party. The
receiver is assumed to check that the identifier matches the session identifier. We then say that the
receiver queries or accesses the token if it sends a choice command.

We note that the token identifier tid is immediately available to the adversary, once the token
has been created by an honest sender. She could thus access the token before it is even delivered,
i.e., before tid is sent to the intended receiver. However, since we can assume that the honest sender
never accesses its own token (because it already knows the encapsulated values) and that tid may
be sent by the protocol, this does not violate generality. Analogously, the protocol can easily enforce
that an intended honest receiver Pj does not access the token before actually receiving tid.

2.3 Stronger Hardware Tokens

While one-time-memory tokens are simple but still powerful, other tamper-proof token models
exist, implementing more complex operations and consequently are based on stronger (physical)
assumptions. Closely related to OTMs are parallel OTMs (pOTMs) and external OTMs (ExtOTM).
The former essentially allows a receiver to query multiple OTM tokens simultaneously, and return
an output once the receiver committed to all inputs. ExtOTM tokens are OTM tokens augmented
with a confirmation string r chosen by the sender, i.e., the receiver upon input bit b obtains (sb, r)
where the r-part is identical for both queries. The string r can be used to convince the sender that
the token has been queried already. In other words, if the receiver sends back the string r to the
sender after accessing the token, this essentially implements an OT protocol. Our changes in the
definition for plain OTMs can be applied to all these tokens accordingly.

An even stronger token, called One-Time Programs (OTP), implements one-sided secure func-
tion evaluation non-interactively. The sender programs an OTP with its input and sends it over to
the receiver, which learns the output of the function once the token is queried with its part of the
input. Several works (e.g., [34, 24, 32]) show that pOTM, ExtOTM and OTPs can be instantiated

7



Functionalities Fsec
OTM and F insec

OTM

(secure/insecure transmission)

The functionalities are parameterized by the security parameter λ. The interaction with an adversary and a set
of parties is enabled via the following queries:

• On input (create, tid, Pi, Pj , (s0, s1)) from party Pi or the adversary, check if an entry (tid, ∗, ∗)
exists. If so, return ⊥; else store the tuple (tid, s0, s1). Send the publicly delayed output
(ready, tid, Pi, Pj) to party Pj . (Note that the public delay means that the adversary is informed about the

message, and can for example delay delivery infinitely long and thus basically substitute the token by another

one.)

• On input (choice, tid, Pi, Pj , x) from party Pj or the adversary, where x ∈ {0, 1}, check if an entry
(tid, s0, s1) exists. If not, return ⊥; else, send (out, tid, Pi, Pj , sx) to Pj resp. the adversary.

Figure 1: Ideal functionalities FsecOTM and F insecOTM for One-Time-Memory (OTM). The underlined
text is valid only when considering insecure transmission. The first change refers to authenticated
vs. unauthenticated transmissions, the second difference to confidential vs. accessible tokens. It
is sometimes convenient to denote by FauthOTM the functionality as above, but where the adversary
cannot call create on behalf of another party. In this sense the transmissions are authentic but
not confidential.

by a polynomial number of OTMs. However, they typically rely on the fact that the OTMs are
transmitted securely. We show in the next section that all those constructions are insecure in the
UC model if considering insecure (even merely unauthenticated) transmission of hardware tokens.

3 Interception Attacks on Tamper-Proof Tokens

We first show that one cannot even obtain bit-OT in the UC model if one assumes only accessible
tokens. For a formal definition of the OT functionality we refer to [12]. Basically, the sender inputs
two bits x0, x1 and the receiver, upon inputting a bit b, receives xb. For simplicity we state the result
for our insecurely transmitted OTM token functionality F insecOTM, but it extends straightforwardly
to any tokens which are accessible by the adversary. The proposition presumes unauthenticated
channels otherwise (such that one cannot simply run a token-free OT protocol over this channel),
and that no set-up is used, especially no shared secrets between the parties.4

Proposition 3.1 There is no UC-secure protocol for oblivious bit-transfer in the F insecOTM-hybrid
model (assuming unauthenticated channels).

In case that only the sender creates tokens in the protocol the proposition holds even if the
adversary can merely access the transmitted tokens; it does not even need to be able to substitute
them. Put differently, the claim then still holds in the FauthOTM-hybrid model.

4The fact that any other transmissions are unauthenticated, too, avoids conflicts with the PUF-based UC-secure
OT-constructions in [10, 52] where the adversary can indeed access the PUF; these protocols send additional digital
messages over authenticated channels.

8



Proof. Assume that we have a protocol π in the one-time token hybrid world which allegedly
implements the oblivious transfer functionality UC-securely in which the sender Pi inserts a pair
of bits (x0, x1) and the receiver Pj a bit b to receive xb. Consider the following environment Z and
the following adversary A against this protocol.

The environment Z picks x0, x1 ← {0, 1} randomly and writes these two values on the input
tape of the honest sender Pi, which is supposed to start an oblivious transfer with Pj . It also writes
b = 1 on the input tape of the honest receiver Pj . It also internally invokes a copy of the receiver’s
program P ′j of π but for input b = 0. Next, it instructs the adversary A to relay the communication
between the original sender Pi and the internal copy P ′j of the receiver, making Pi believe that it
is executing the OT with Pj . In particular, the fact that the adversary can intercept and read-out
tokens sent from Pi to Pj resp. create tokens on behalf of the receiver, and that the channels are
unauthenticated, enables A to perform all steps on behalf of Pj . The environment finally outputs
1 if and only if the local copy P ′j recovers x0 correctly.

Clearly, if Z communicates with A in the hybrid world with the actual protocol π it outputs
1 with probability negligibly close to 1; the small error may be due to the fact that the protocol
does not implement the functionality perfectly (but security demands that it cannot be more than
negligible loss). On the other hand, in the ideal world the simulator Sim does not get to see any
information about x0, because both the sender and the receiver remain honest. (Interestingly,
this would even remain true if Sim could corrupt Pj and learn x1). Hence, Sim can make the
environment output 1 with probability at most 1

2 , allowing Z to distinguish the two worlds with a
constant difference in the probabilities. �

With the above approach one can conclude, for example, that the token-only protocols by Goyal
et al. [34] for securely realizing pOTM from OTMs, Goyal et al. [34] for securely realizing ExtOTM
from OTMs, and Goldwasser et al. [32] for securely realizing OTP from OTMs cannot be secure
when considering interceptable tokens. The same is true for the protocols in [42, 24] if we assume
that the additional digital transmissions are also unauthenticated. We note that neither of these
protocols claims to provide security in this case, since interception attacks are not considered.

4 UC-Secure Password-Based Key Exchange

We first recall the ideal functionality for password-based key exchange, and then present a “light-
weight” protocol which realizes the functionalities in the FauthOTM-hybrid world (and assuming au-
thenticated channels). Recall that this means that the adversary can at least read intercepted
tokens, but it cannot inject new ones. We also discuss that this version of the protocol falls prey to
interception attacks (showing that also protocols in which the parties potentially share some secret
at the outset are vulnerable). We then discuss how to modify our protocol to achieve security in
the F insecOTM-hybrid setting.

4.1 Modeling Password-Based Key Exchange

We next revisit the definition of an ideal functionality FpwKE of Canetti et al. [14] (See Fig. 2).
The ideal functionality captures the abstract properties of a key exchange protocol in the sense
that two parties agree upon the same cryptographic key only if they hold the same passwords.
Furthermore, by definition, the adversary can test only a single (explicit) password for correctness
in each execution; for a wrong guess, the execution is interrupted. Note that the definition does not

9



make any claims about the additional property of contributiveness, in the sense that both parties
contribute to the key (as defined in [2]).

For more motivational discussion about the definition see [14], where it is shown that any pro-
tocol realizing this definition also provides security according to the common Bellare-Pointcheval-
Rogaway notion for password-based authenticated key exchange [7] (except for technical issues
regarding session identifiers). As pointed out in [1] any protocol meeting the definition immedi-
ately provides forward security as well, since the environment chooses passwords. The latter also
makes the deployment of the joint-state UC framework [15] obsolete.

Functionality FpwKE

The functionality FpwKE is parameterized by the security parameter λ. The interaction with an adversary Sim and a
set of parties is enabled via the following queries:

• On input (NewSession, sid, Pi, Pj ,pw, role) from party Pi, send (NewSession, sid, Pi, Pj , role) to Sim. Further-
more, in case this is the first NewSession query, or the second query while there exists a record (sid, Pj , Pi,pw′),
then record (sid, Pi, Pj , pw) and mark this record fresh.

• On input (TestPwd, sid, Pi, pw′) from the adversary Sim, check for a fresh record of the form (sid, Pi, Pj , pw). If
found and

– pw = pw′, mark the record as compromised and send “correct guess” back to Sim.

– pw 6= pw′, mark the record as interrupted and send “wrong guess” back to Sim.

• On input (NewKey, sid, Pi, sk) from Sim and sk is an element in the session key space, check for a record of the
form (sid, Pi, Pj , pw) and that this is the first NewKey query for Pi. If so, then

– If this record is compromised, or either Pi or Pj is corrupted, then output (NewKey, sid, sk) to party Pi.

– If this record is fresh, and there is a record (sid, Pj , Pi,pw′) with pw′ = pw, and a key sk′ was sent to Pj
where (sid, Pj , Pi,pw′) was fresh at the time, then output (NewKey, sid, sk′) to Pi.

– Otherwise, pick a new random key sk′ in the key space and send (NewKey, sid, sk′) to Pi.

In any case, this record is marked as completed.

Figure 2: Ideal functionality FpwKE for password-based key exchange

4.2 Key Exchange in the Authenticated Setting

In this section, we propose an information-theoretically secure password-based authenticated key-
exchange protocol using one-time memory tokens. As explained we first assume that all trans-
missions are authenticated, including the token handover. In other words, in each execution the
adversary may eavesdrop on the communication of honest parties, or impersonate either side if the
corresponding party has already been corrupted. Since the adversary cannot modify tokens nor the
communication, we thus explicitly exclude man-in-the-middle attacks, i.e., the adversary can only
send a chosen token in an execution if it impersonates the actual sender in that execution. We do,
nonetheless, allow the adversary to access transmitted tokens in all cases.

10



Sender : Receiver :

sAb,i, s
B
b,i, s

K
b,i

$←− {0, 1}s abort ← false

for b ∈ {0, 1} , i = 1, . . . , ` = |pw|
For i = 1 . . . ` generate token Ti with tidi:
Ti outputs (sAbi,i, s

B
bi,i
, sKbi,i) on input bi

Erase all (sAbi,i, s
B
bi,i
, sKbi,i) for bi 6= pwi

tid1 . . . tid`−−−−−−−−−→
(1)

(sAi , s
B
i , s

K
i )← Ti(pwi) ∀i

If sid in tid is invalid,
then abort ← true

tb,i←−−−−−−−−−
(2)

tb,i
$←− {0, 1}s for b ∈ {0, 1} and ∀i

y ←
⊕`

i=1(s
A
pwi,i

⊕ tpwi,i)
y−−−−−−−−−→
(3)

If y 6=
⊕`

i=1(s
A
i ⊕ tpwi,i),

then abort ← true

If abort = false, then z ←
⊕`

i=1 s
B
i

z←−−−−−−−−−
(4)

else z
$←− {0, 1}s

If z =
⊕`

i=1 s
B
pwi,i

, then sk ←
⊕`

i=1 s
K
pwi,i

If abort = false, then sk ←
⊕`

i=1 s
K
i

else sk
$←− {0, 1}s else sk

$←− {0, 1}s

session key := sk session key := sk

Figure 3: Password-based authenticated key-exchange protocol KEauth using OTM tokens

4.2.1 The Protocol KEauth

The idea of our protocol KEauth is as follows. For each bit pwi of the password pw the sender A
hands over an OTM token to the receiver B with two tuples (sAb,i, s

B
b,i, s

K
b,i) for b ∈ {0, 1} of random

s-bit strings. The receiver fetches the tuple corresponding to bit pwi and the other tuple is then
erased by the definition of the token’s functionality. Next, both parties authenticate themselves
using the password by having A compute

⊕
sApwi,i

resp. having B send
⊕
sBpwi,i

. The computation
of A actually requires B to first send pairs (t0,i, t1,i) of random s-bit strings and have A compute⊕

(sApwi,i
⊕ tpwi,i) instead. Otherwise a malicious A could choose the sAb,i’s such that multiple

passwords map to the same string, e.g., all sAb,i = 0, could then easily pass the authentication

step and eventually find out valuable information about pw through well chosen sBb,i’s from B’s
authentication step.

Figure 3 illustrates our protocol KEauth in more detail. For technical reasons, we let a party send
a random answer in case of an inconsistent incoming message in the third step or fourth step, and
set the session key to a random string of length s. This is necessary because, in case of premature
aborts, the UC simulator simulating an execution between honest parties would need to know if
the passwords of the two parties match. This information, however, is not available through the
ideal functionality FpwKE.

In fact, the possibility that two honest parties may have distinct passwords, e.g., by mistyping
them, also requires the reliable erasure on the sender’s side for adaptive corruptions. In case either
of the parties gets corrupted, we learn the password of this party, but can only test for equality with

11



the partner’s password. That is, we cannot determine the actual password of the partner. However,
then the other parties’ sent data must still be independent of its password in the simulation, and
this is ensured by noting that the sender’s internal data lacks the random token inputs for false
password bits which the receiver (with a distinct password) has used. For the receiver, this holds
by construction, because reading the token at a different position has somewhat erased the other
data anyway.

4.2.2 Security

Theorem 4.1 Protocol KEauth securely realizes FpwKE in the FauthOTM-hybrid world information-theo-
retically with adaptive corruptions, assuming reliable erasures and authenticated channels. This
holds as long as s−2` = Ω(λ) for security parameter λ. The simulator’s running time is polynomial
in the adversary’s running time, the security parameter, and 2`.

Proof. Fix an arbitrary (unbounded) adversary A for the real-world protocol KEauth. We describe
an (unbounded) ideal-model simulator Sim running essentially a black-box simulation of A as a sub
routine by feigning an execution in the real-world, using the data it gets in the ideal world. The
simulator relays any communication between the adversarial sub routine A and the environment
Z, and since we consider adaptive corruptions, the black-box simulation therefore boils down to
provide replies on behalf of (simulated) honest parties and to be able to provide a valid-looking
internal state in case of a corruption. In what follows, when we say that an honest party or
the simulator “rejects”, we mean that the honest party continues running the protocol but sends
random values instead of honest responses, ultimately setting the session key to an s-bit random
value.

We note that in the simulated hybrid world the simulator has full control over the token func-
tionality and simulates it internally. In particular, it can read any data which the adversary submits
to this functionality and can prepare replies as required. We especially make use of the fact that
the simulator does not need to explicitly query the token on behalf of an honest receiver (but the
simulator then still needs to ignore further adversarial read requests because ideal token would do
so as well).

Description of the Simulator. Next, we describe the simulator in detail. At any point in
the simulation we consider the point in time in which a corrupt receiver in an execution or the
adversary makes the query to the tokens for the last remaining bit position. We then say that the
tokens are depleted, otherwise the tokens are called unexhausted. In case of depletion the simulator
possibly has to adapt the (last) token’s answer according to previous steps. Note that simulated
honest receivers in the hybrid model can be assumed not to query the tokens at all.

Tokens are depleted. If at any point during the simulation the tokens are depleted by a query
about bit position i, then the simulator adapts the token’s final answer as follows. We note that
the simulator already holds candidate values (sAb,i, s

B
b,i, s

K
b,i) for this token, either because a corrupt

sender has put them into the token (and which Sim can simply read off in the hybrid model), or
because the simulator has chosen them on behalf of the honest sender (and possibly adapted them
before, when the sender or receiver got corrupted).

12



The simulator first determines the password candidate as pw := pw′1|| . . . ||pw′` for the adver-
sary’s queries to the token, including the final one pw′i, and then —if the sender is still honest—
tests it by calling FpwKE with input (TestPwd, sid, Pi, pw) where Pi is the sender’s identity.

• If the test returns “correct guess”, then Sim stores this password pw = pw and sk =⊕`
i=1 s

K
pwi,i

for the values in the token for further use. In particular, if the simulated sender
later receives a correct value z then set the session key of the sender to sk via a NewKey query
about (sid, Pi, sk).

If the simulator, at that point, has already sent y in this simulated execution on behalf of an
honest sender, then Sim resets the entry sApwi,i

to

sApwi,i
= y ⊕

⊕̀
j=1,j 6=i

(sApwj ,j
⊕ tpwj ,j)

such that y matches the sender’s answer it would give for the password.

• Suppose that the test returns “wrong guess”. Then the simulator not change anything at this
point. If not done already, it will later send an independent random value y, and reject any
answer z of the receiver.

In either case return the (possibly updated) values (sAb,i, s
B
b,i, s

K
b,i).

Sender Corruption. Suppose that the adversary corrupts the sender in a simulated execution.
Then the simulator corrupts the sender in the ideal world and learns the input password pw. For
any execution with unexhausted tokens in which Sim has already sent y, adapt the value sApwi,i

for
unqueried position i as in the case of token depletion. For an honest receiver test the password
under the receiver’s identity and possibly adapt the value sBpwi,i

accordingly, if z has already been
sent.

If y has not been sent yet, or the tokens are already depleted, the values remain unchanged.
Hand over the password and the internal data (excluding the token inputs for the inverse bit values
of pwi, which have been erased before).

Receiver Corruption. As in the case of sender corruption Sim then learns the actual input
password. Test this password also for the sender (if it is still honest). If y has already been sent
in an execution with a sender who is still honest, and the password test with the sender returned
“correct guess”, then adapt the values sAb,i in (sAb,i, s

B
b,i, s

K
b,i) allegedly in the token accordingly, else

the values remain unchanged. If, in addition, the simulated receiver has sent z already, then also
adapt the values sBb,i. Besides the password, present the adversary the tb,i’s (if chosen already) and

the entries (sApwi,i
, sBpwi,i

, sKpwi,i
).

Simulating Steps of Honest Parties. We show next how to simulate the other steps on behalf
of honest parties.

Simulating Step (1): For an honest sender the simulator picks values (sAb,i, s
B
b,i, s

K
b,i) at random and

puts them into a token.

13



Simulating Step (2): If the receiver is honest, then the simulator picks the values tb,i at random
but does not query the token. It sends the tb,i’s on behalf of the receiver in the simulation.

Simulating Step (3): If the tokens are already depleted and the test query returned “correct
guess”, then the simulator computes y genuinely according to the (possibly adapted) values
(sAb,i, s

B
b,i, s

K
b,i) and the tb,i’s. If the test returned “wrong guess” or the tokens are unexhausted

at this point, then send a random y instead.

Simulating Step (4): In this step the receiver is supposed to verify the sender’s value y and to
provide its own authentication value z.

Assume that the sender is controlled by the adversary when sending y. Then Sim already
knows all values (sAb,i, s

B
b,i, s

K
b,i) stored in the token (either because it put them there on behalf of

an honest sender before being corrupted, or since the adversary put them into the token right
away). The simulator now tries all possible passwords pw, in polynomial time 2` = poly(λ),
and for each password computes ypw as the honest sender would (given the sb,i’s and tb,i’s). If
none value matches y, then Sim lets the receiver abort; if more than two values match, then
Sim aborts the simulation with an error message. Else, the simulator makes a TestPwd query
about the (only) candidate password pw for sid and the receiver’s identity Pj . If this query
returns “correct guess”, then compute the final message z and the key sk according to this
password and make a call (NewKey, sid, Pj , sk). For the reply “wrong guess” let the receiver
abort the execution, i.e., use random data from this point on.

For an honest sender the receiver accepts and sends a random answer z. The simulator calls
the functionality about (NewKey, sid, Pj , sk0) for an arbitrary key sk0 in the key space.

Simulating the Sender’s Final Step: When the honest sender Pi obtains the final message z from an
honest receiver, it accepts, and the simulator calls the functionality about (NewKey, sid, Pi, sk0)
for an arbitrary key sk0 in the key space. If the receiver is corrupt at this point and the tokens
are unexhausted, then Sim lets the sender reject. If the tokens of the corrupt receiver are
depleted at this point, then the simulator has already tested a password. If this test returned
“correct guess”, then the simulated sender uses the guessed password to compute the final
answer and creates the output via (NewKey, sid, Pi, sk) for the previously derived key. Else,
for “wrong guess”, the simulator lets the sender reject.

Analysis. We show next that the above simulation through Sim is indistinguishable from a
real-world execution, i.e., any (computationally unbounded) environment is unable to differentiate
between the protocol execution built up by Sim or a real execution influenced by the adversary A.

We first observe that unexhausted tokens leave the simulator enough freedom to adapt values
perfectly, i.e., the distributions of computing the correct value y from random sAb,i and tb,i, and from

picking y at random and later setting the “undetermined” value sAb,j accordingly, are identical. The
same is true for the receiver’s values. This holds, in particular, in case of corruption of a party
where testing the password on the side of the honest partner either yields a correct guess (in which
case the values are adapted correctly), or a wrong guess in which case the partner has a distinct
password and derives independent random strings. The latter is perfectly indistinguishable if the
receiver gets corrupted, because the receiver reads out at least one token at a different position
such that the other random string originally stored in the token is not available to the receiver (and

14



eventually to the adversary) anymore. It also holds in case of a sender corruption because then the
sender has already erased reliably the other data.

It remains to argue that the simulator’s verifications of the values y and z are sound. For two
honest parties, since we assume immutable transmissions, and because the ideal functionality takes
care of deciding equality of the passwords of the two parties, calling NewKey as described provides
an almost perfect simulation.

For a malicious partner in the simulation, the difference to the real-world protocol is y could
match two possible passwords such that the simulator aborts, but the genuine receiver would accept
(in the case that y does not match any of the ypw of possible passwords the receiver in the real-world
protocol would also reject). We next bound the probability of two passwords pw 6= pw′ yielding
the same ypw = ypw′ . Note that the values sAb,i are chosen and put into the token before the tb,i’s
are sent (either by the simulator or the adversary). Furthermore, the receiver is still honest, such
that the tb,i’s are random, mutually independent, and independent of the sAb,i. We conclude that
the probability (over the tb,i’s) that

ypw =
⊕̀
i=1

(spwi,i ⊕ tpwi,i) =
⊕̀
i=1

(spw′
i,i
⊕ tpw′

i,i
) = ypw′

for fixed pw 6= pw′, is at most 2−s. Hence, with probability at most 22`−s−1 there exist some
pw 6= pw′ for which a collision occurs. By the choice of parameters this is exponentially small.

Finally, we note that in the case the tokens are unexhausted, or are depleted but the simulator
obtained the reply “wrong guess” for the tested password, the probability that z sent by the
adversary would pass the verification step in the real-world protocol, is at most 2`−s (implying that
the simulator’s strategy of rejecting is valid except for an exponentially small error). This can be
seen as follows. In case the tokens are unexhausted the adversary has not obtained the independent
random value sBb,j for some b, j, such that, for a fixed password, the value z can be correct with

probability at most 2−s only. This is also true in case the tokens are depleted but the password was
wrong, because then one of the correct values sBb,i is irrevocably lost for the adversary. Summing

over all 2` passwords yields the claim. �

We note again that the simulator above is polynomial-time in the running time of the adversary
and of the number of possible passwords. For passwords of logarithmic length this number is
polynomial in the security parameter.

On Efficient Simulators. Both in our basic as well in our advanced protocol the simulator for
showing UC security runs in polynomial time in the running time of the adversary and the size of
the password space. Hence, because human-memorizable passwords are typically short and can be
considered to be of logarithmic length, this provides a simulator whose complexity is polynomially
related to the adversary’s running time and the security parameter. Recall that the goal of the
paper is indeed to derive password-based protocols.

Still, if one, nonetheless, considers passwords of super-logarithmic length, such as full-fledged
cryptographic keys, the running time of our simulator becomes exponential. Whether this now
provides the desired level of security or not depends on the definition of statistical (UC) security:
If one considers statistical security with respect to the class unbounded algorithms, in the sense
that for any potentially unbounded adversary there is a potentially unbounded simulator, then our

15



simulator achieves this goal. If, on the other hand, one requires that the simulator’s complexity is
also polynomially related to the adversary’s running time, then we no longer attain this security
level. See the discussions in [11, 12] for more details on the two approaches. Here, we use the
more liberal definition and state the runtime of the simulator in terms of the running time of the
adversary and the security parameter in the theorems, allowing to impose either definition. We
note that the idea of using strong, super-polynomial time simulators has been applied in the UC
framework before, usually to overcome set-up assumptions [54, 56, 5, 44, 43]. We are not aware if
our protocol can be modified to yield one, which is also secure according to the stronger notion.

4.3 Key Exchange in the F insecOTM-hybrid Setting

We have shown so far that information-theoretically secure authenticated key exchange is possible
using tamper-proof hardware tokens. However, the security relies in the assumptions that the
adversary does not tamper with the tokens as man-in-the-middle. Here we show that the previous
protocol succumbs to such attacks and then present a method to secure it in the unauthenticated
setting.

4.3.1 Attacking our Protocol in the Unauthenticated Setting

We have shown that KEauth securely realizes FpwKE in the FauthOTM-hybrid setting information-the-
oretically. In this section, we provide a successful attack scenario against KEauth when the adversary
is allowed to act as man-in-the-middle accessing the transmitted tokens and creating new hardware
tokens for the same session. Thereby, we conclude that KEauth does not realize FpwKE in the
(unauthenticated) F insecOTM-hybrid world. Roughly, the problem is that the simulation in the proof of
Theorem 4.1 implicitly assumes that, whenever an honest party sends y or z to the honest partner,
the simulated honest receiver should accept. This may not be a viable strategy if, as below, the
adversary may modify transmissions.

We first describe our attack for simplicity not in the UC framework, but as a protocol attack
to recover the password. It is easy to turn this into a successful attack in the UC setting (as
described below). The attack works as follows. Let A and B be an honest sender and receiver,
respectively. When A sends the prepared tokens to B, the adversary A intercepts these tokens and
queries the i-th token for some i ∈ {1, . . . , |pw|} with input b = 0. Adversary A obtains the values
(sid, sA0,i, s

B
0,i, s

K
0,i). This token is now exhausted and needs to be replaced by a new token such that

B does not notice the modification. This is done by creating a new token Ti by A which outputs
(sid, sA0,i, s

B
0,i, s

K
0,i) for input bit 0, and some independent random values for the other value. All the

tokens are now handed over to B. Henceforth, A eavesdrops on the acceptance or rejection reaction
of the receiver when the value y is sent. This information is usually conveyed to the adversary for
free in the BPR model [7] resp. eventually available through the environment in the UC setting,
even though in our protocol both parties first continue the execution. If y is accepted, then A
knows that the i-th bit of the password is 0 (with overwhelming probability). Otherwise, the i-th
password bit is 1. Hence, the adversary learns one bit of the password and by repeating this attack
the adversary can recover the entire password after |pw| executions between A and B.

Note that this attack is even possible without any modifications on the tokens. For this A
simply does not touch the tokens but instead modifies the value ti = (t0,i, t1,i). More precisely, A
waits until the receiver sends tb,i values and resets t0,i for some i ∈ {1, . . . , |pw|} to an independent
random value before delivering all tb,i to A. Now, if y sent by A is accepted by B, then A knows

16



that the i-bit of the password is 1 with overwhelming probability. Otherwise, rejection implies that
the i-bit is 0.

We note that (either one of) the above attacks can be easily turned into a successfully distin-
guishing UC environment. Namely, Z has the two honest parties use the same password whose first
bit is 0 or 1, with probability 1

2 each. Now it asks the adversary to do the modification as above,
and finally checks if both parties agree upon the same key. For an actual protocol execution this
will only happen iff the first bit of the password was really 0 and thus with probability 1

2 . In the
ideal model, however, both parties would always derive the same key because they hold the same
passwords.

4.3.2 The Protocol KEinsec

The idea to make our protocol immune against the above modification attacks is to thwart the
adversary from learning individual password bits through one’s party reaction. For this we add an
authentication step which provides integrity of the tokens and of the tb,i values via the password.
It is only necessary to authenticate the transmission from the sender to the receiver, as in case of
an invalid authentication code the (honest) receiver will reply with random and thus most likely
invalid z anyway.

To authenticate the tokens and the tb,i values we assume an unconditionally secure authentica-
tion code like the one of Carter and Wegman [65] which takes an m-bit message M (we assume that
m is at least the security parameter, else one may pad messages first) and a key a = (α, β) ∈ {0, 1}2m
and (deterministically) computes τ = MAC(a,M) = αM + β over GF(2m). To verify a MAC one
recomputes the MAC and compares it to the given τ . Note that, besides providing a (one-time)
unforgeability security level of 2−m against unbounded adversaries, this message authentication
code has another useful property: given a random m-bit string τ and an m-bit message M one can
easily solve an equation to find a matching key a = (α, β) ∈ {0, 1}2m with τ = MAC(a,M).

We now describe the full protocol KEinsec. We assume the total length of messages tid1, . . . , tid`
and of the tb,i values is at most m. Note that m = Ω(s) = Ω(λ). As before, for each bit pwi of the
password pw the sender A hands over an OTM token to the receiver B with two tuples of random
s-bit strings (sAb,i, s

B
b,i, s

K
b,i), but this time each tuple is augmented by random 2m-bit strings ab,i for

the MAC. The receiver again reads the tuple corresponding to bit pwi such that the other tuple
is irrevocably lost. It sends strings (t0,i, t1,i). Next, both parties as before authenticate themselves
using the password by having A compute

⊕
(sApwi,i

⊕ tpwi,i) resp. having B send
⊕
sBpwi,i

. Only
this time A also computes apw =

⊕
apwi,i and sends τ = MAC(apw, tid1, . . . , tid`, t0,1, . . . , t1,`) in

addition to y. The receiver answers with z as before (or a random value z in case the value y or
the value τ does not verify).

Figure 4 illustrates our protocol KEinsec in more detail. Before giving the proof we first discuss
why the attack described in the previous section does not work anymore against this protocol.
There, the adversary randomly changed a single token tid or value tb,i in order to test for single bit
of the password: if the guess was right both parties would continue the execution, else they would
reject. Here, any such change would make the MAC over all tid and ti,b invalid and thus make both
parties reject any modification. This only option for the adversary is to compute a new valid MAC.
But since the key for the MAC is distributed over all tokens, the adversary would either need to
forge a MAC without the key —which is improbable— or need to read all tokens to potentially get
the key. In the latter case the adversary commits to a password guess which can be used by the
simulator for a test and for a corresponding reaction.

17



Sender : Receiver :

sAb,i, s
B
b,i, s

K
b,i

$←− {0, 1}s, ab,i
$←− {0, 1}2m abort ← false

for b ∈ {0, 1} , i = 1, . . . , ` = |pw|
For i = 1 . . . ` generate token Ti with tidi:
Ti outputs (sAbi,i, s

B
bi,i
, sKbi,i, abi,i) on input bi

Erase all (sAbi,i, s
B
bi,i
, sKbi,i, abi,i) for bi 6= pwi

tid1, . . . , tid`−−−−−−−−−→
(1)

(sAi , s
B
i , s

K
i , ai)← Ti(pwi) ∀i

If sid in tid is invalid, then abort ← true

apw ←
⊕`

i=1 apwi,i

tb,i←−−−−−−−−−
(2)

tb,i
$←− {0, 1}s for b ∈ {0, 1} and ∀i

y ←
⊕`

i=1(s
A
pwi,i

⊕ tpwi,i)

τ ← MAC(apw, tid1 . . . , tid`, t0,1, . . . , t1,`)
y, τ−−−−−−−−−→
(3)

apw ←
⊕`

i=1 ai

If τ 6= MAC(apw, tid1 . . . , tid`, t0,1, . . . , t1,`)

or y 6=
⊕`

i=1(s
A
i ⊕ tpwi,i)

then abort ← true

If abort = false, then z ←
⊕`

i=1 s
B
i

z←−−−−−−−−−
(4)

else z
$←− {0, 1}s

If z =
⊕`

i=1 s
B
pwi,i

, then sk ←
⊕`

i=1 s
K
pwi,i

If abort = false, then sk ←
⊕`

i=1 s
K
i

else sk
$←− {0, 1}s else sk

$←− {0, 1}s

session key:= sk session key:= sk

Figure 4: Password-based authenticated key-exchange protocol KEinsec using OTM tokens

4.3.3 Security

Theorem 4.2 Protocol KEinsec securely realizes FpwKE in the F insecOTM-hybrid world information-
theoretically with adaptive corruptions, assuming reliable erasure. This holds as long as s − 2` =
Ω(λ). The simulator’s running time is polynomial in the adversary’s running time, the security
parameter, and 2`.

Proof. We again assume an adaptive (unbounded) adversary A and construct a corresponding
(unbounded) ideal-model simulator Sim via black-box simulation. We note that we can assume that,
once the adversary has taken control over a party, that the adversary does not change transmissions
from or to that party (over the channel); the adversary could easily make these modifications
internally. This, in particular, means that the adversary only modifies transmissions or injects
messages in executions between (currently) honest parties.

Description of the Simulator. We use the same notion of depleted and unexhausted tokens
as in the proof of Theorem 4.1. It is also easy to see that, analogously to there, the simulator can
easily adapt the values in case of a corruption. Here, we use the fact that the authentication code
allows to adapt the key accordingly.

Simulation of Honest Parties. It remains to discuss how to simulate honest parties. Since this
requires additional steps, compared to the proof of Theorem 4.1, we discuss this in more detail:

18



Simulating Step (1): For an honest sender the simulator picks values (sAb,i, s
B
b,i, s

K
b,i, ab,i) at random

and puts them into a token.

Simulating Step (2): If the receiver is honest, then the simulator picks the values tb,i at random
but does not query the token. It sends the tb,i’s on behalf of the receiver in the simulation.

Simulating Step (3): If the tokens are already depleted and the test query returned “correct
guess”, then the simulator computes y and τ genuinely according to the (possibly adapted)
values (sAb,i, s

B
b,i, s

K
b,i, ab,i) and the tb,i’s. If the test returned “wrong guess” or the tokens are

unexhausted at this point, then send random y and τ instead.

Simulating Step (4): In this step the receiver is supposed to verify the sender’s values y, τ and to
provide its own authentication value z. There are four cases:

1. Assume that the sender is controlled by the adversary when sending y, τ (in which case
the adversary also delivers these values to the honest receiver by assumption). Then
Sim already knows all values (sAb,i, s

B
b,i, s

K
b,i, ab,i) stored in the token (either because it put

them there on behalf of an honest sender before being corrupted, or since the adversary
put them into the token right away). The simulator now tries all possible passwords
pw and for each password computes ypw as the honest sender would (given the sb,i’s
and tb,i’s). If none value matches y, then Sim lets the receiver abort; if more than two
values match, then Sim aborts the simulation with an error message. Else, the simulator
makes a TestPwd query about the (only) candidate password pw for sid and the receiver’s
identity Pj . If this query returns “correct guess”, then compute apw according to the
protocol and verify τ with this key. If this test also succeeds then compute the final
message z and the key sk according to this password and make a call (NewKey, sid, Pj , sk).
If the verification of τ fails or the reply is “wrong guess” in the password test, let the
receiver send random z and abort the execution.

2. For an honest sender, and if the adversary has not tampered the tokens, i.e., delivered
the same tid’s as the sender has sent in this session, we have the receiver send a random
answer z. If, in addition, the adversary has delivered the same tb,i values sent by the
receiver to the sender in this session, and the same reply y, τ from the sender to the
receiver, then the simulator calls the functionality about (NewKey, sid, Pj , sk0) for an
arbitrary key sk0 in the key space; else, if the adversary has tampered with the tb,i
values or the sender’s reply, then the simulator does nothing beyond sending a random
value, i.e., lets the receiver abort.

3. If the sender is still honest, but the adversary has sent only new tokens tid′1, . . . , tid
′
` /∈

{tid1, . . . , tid`}, then the simulator determines a password candidate from y as in the
case of a corrupt sender and proceeds according to this case (as described above).

4. If the sender is honest, but the adversary has forwarded one of the tokens created by
the honest sender but also at least one fresh token (in which case the sender’s tokens
must be unexhausted), then we let the simulated receiver answer with a random z and
internally abort.

Simulating the Sender’s Final Step: When the honest sender Pi obtains the final message z from
a receiver, it does the following:

19



1. If the receiver is corrupt at this point and the token is unexhausted, then Sim lets the
sender simply abort.

2. If the tokens are depleted at this point, independently of the question whether the
receiver is honest or malicious, then the simulator has already tested a password. If this
test returned “correct guess”, then the simulated sender uses the guessed password to
verify the value z. If this succeeds, then it creates the output via (NewKey, sid, Pi, sk)
for the previously derived key. Else, if the verification tests fail or the password test has
returned “wrong guess”, the simulator lets the sender simply abort.

3. If the receiver is still honest and the adversary has simply forwarded all tokens of the
sender (in the right order) to the receiver and forwarded also the tb,i values without
modifications, and the receiver has not aborted, then the simulator lets the sender accept
and calls the functionality about (NewKey, sid, Pi, sk0) for an arbitrary key sk0 in the key
space, if and only if the adversary faithfully delivers the receiver’s final message z.

4. In any other case the simulator lets the sender abort.

Analysis. We note that the analysis in case of a malicious sender or a malicious receiver is as
before. Moreover, if the simulator extracts a password from the adversary and tests it, correctness
follows as before. It thus suffices to look at the case of the adversary mounting a man-in-the-middle
attack on an execution between honest parties.

First note that, if the adversary simply relays all the data, in particular, without depleting the
tokens, then the simulation (basically sending and accepting random values) is perfectly indistin-
guishable from an actual protocol execution in the real world. This is still true for executions in
which the adversary does not tamper with the tokens nor the tb,i-values but possibly modifies any
of the final two messages. By construction, the corresponding simulated party then aborts, which is
what would also happen in the real world (as the messages y, τ, z are deterministically determined
from the first two messages). It thus remains to analyze the case that the adversary somehow
modifies any of the two first messages.

Assume that the adversary changes one of the tokens (or the order) but still passes one of
sender’s tokens to the receiver, or faithfully relays the tokens but alters the tb,i values. Then
the adversary is completely oblivious about the secret(s) on the sender’s and on the receiver’s
side. (Note that if both parties use distinct passwords, then they also hold distinct secrets). It
follows that the adversary cannot make the receiver accept the subsequent message y, τ , except
with exponentially small probability, because it would need to forge a MAC for the distinct series
of token identifiers or tb,i values (in case of identical secrets on both sides the adversary would need
to create another MAC for a new message, in case of distinct passwords on the sender’s and on
the receiver’s side, the adversary would need to forge a MAC from scratch). Hence, our simulation
in which the receiver then aborts and sends a random answer, is statistically close to an actual
protocol execution.

Note that letting the receiver abort and send random values implies that the honest sender
then, too, most likely reacts correctly. That is, the only case in which the sender in a protocol
execution should not reject is when either the adversary by chance supplies correct values to the
sender without having corrupted the receiver (which then happens with negligible probability only
by the unforgeability of the MAC), or if the adversary corrupts the receiver after the receiver has
sent its final random values, and then replaces the random values by correct values with the help
of the now known password. In this case, however, the simulator tests the password candidate and

20



rejects if the guess is correct, but the verification fails (as the actual sender would), or if the guess
is incorrect and verification would, then also fail with overwhelming probability in the real world.

Hence, assume now that the adversary creates new tokens tid′1, . . . , tid
′
`, all distinct from the

tokens created by the sender. Then we can think of this as essentially two executions where the
adversary in one plays the malicious receiver, and in the other one the malicious sender (but where,
depending on the adversary’s actions, the data may not be independent). In the latter execution,
the adversary-receiver execution, the incoming message y, τ to the receiver allows to determine a
password candidate and then proceed as in the real-world case, i.e., the simulation is statistically
close. Analogously, in the sender-adversary execution we then act like the real sender would, except
that we let the sender immediately reject if the tokens are unexhausted (whereas in the real-world
there is a negligible probability that the data z still verifies).

In summary, for any possible adversarial strategy the simulation is statistically close to real-
world executions. This proves security. �

5 Conclusion

We view the contribution of this paper as three-fold. First, we raise the issue that, previously,
token-based protocols neglected man-in-the-middle adversaries which can intercept and substitute
tokens while in transmission. Secondly, we show that one can still design secure protocols based
on simple tokens, even when allowing such strong adversaries, and what techniques may be useful.
Thirdly, complementing previous feasibility results, we exemplified for password-based key exchange
that such protocols can be very efficient and still provide high security standards.

One question our solutions leave open is, if there are key exchange protocols with comparable
security, but efficient simulators even for “passwords” of super-logarithmic length. It is tempting
to believe that splitting the longer passwords into smaller chunks and then executing our protocol
for passwords of logarithmic size would be a viable strategy. The main problem with this approach
is that our simulator would need to know where the password chunks of the two parties coincide,
and where they differ; in our proof the simulator acts differently in both cases. However, the
simulator’s password testing for the composed protocol through the ideal functionality only reveals
if the long passwords match or do not, but does not give out the required information about the
individual chunks. It seems as if using error correction or other types of tokens is not helpful in
this regard. The other main question imposed by our paper is if previous results about token-based
cryptography are affected by our stronger token model with insecure transmissions.

References

[1] Michel Abdalla, Dario Catalano, Celine Chevalier, and David Pointcheval. Efficient two-party
password-based key exchange protocols in the UC framework. In Topics in Cryptology — CT-
RSA 2008, volume 4964 of Lecture Notes in Computer Science, pages 335–351. Springer-Verlag,
2008.

[2] Michel Abdalla, Dario Catalano, Céline Chevalier, and David Pointcheval. Password-
authenticated group key agreement with adaptive security and contributiveness. In Bart Pre-
neel, editor, AFRICACRYPT 09: 2nd International Conference on Cryptology in Africa, vol-

21



ume 5580 of Lecture Notes in Computer Science, pages 254–271, Gammarth, Tunisia, June 21–
25, 2009. Springer, Berlin, Germany.

[3] Ross J. Anderson and Markus G. Kuhn. Low cost attacks on tamper resistant devices. In
Security Protocols Workshop, volume 1361 of Lecture Notes in Computer Science, pages 125–
136. Springer, 1997.

[4] Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure computation
without authentication. In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005,
volume 3621 of Lecture Notes in Computer Science, pages 361–377, Santa Barbara, CA, USA,
August 14–18, 2005. Springer, Berlin, Germany.

[5] Boaz Barak and Amit Sahai. How to play almost any mental game over the net - concur-
rent composition via super-polynomial simulation. In FOCS, pages 543–552. IEEE Computer
Society, 2005.

[6] Romain Bardou, Riccardo Focardi, Yusuke Kawamoto, Lorenzo Simionato, Graham Steel,
and Joe-Kai Tsay. Efficient padding oracle attacks on cryptographic hardware. In Reihaneh
Safavi-Naini and Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012, volume 7417
of Lecture Notes in Computer Science, pages 608–625, Santa Barbara, CA, USA, August 19–23,
2012. Springer, Berlin, Germany.

[7] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange secure
against dictionary attacks. In Advances in Cryptology — Eurocrypt 2000, volume 1807 of
Lecture Notes in Computer Science, pages 139–155. Springer-Verlag, 2000.

[8] Anne Broadbent, Gus Gutoski, and Douglas Stebila. Quantum one-time programs. In Ran
Canetti and Juan Garay, editors, Advances in Cryptology – Proc. CRYPTO 2013, LNCS.
Springer, 2013.

[9] Christina Brzuska, Marc Fischlin, Stefan Katzenbeisser, and Heike Schröder. Physically un-
cloneable functions in the universal composition framework. In Advances in Cryptology —
Crypto 2011, Lecture Notes in Computer Science. Springer-Verlag, 2011.

[10] Christina Brzuska, Marc Fischlin, Heike Schröder, and Stefan Katzenbeisser. Physically un-
cloneable functions in the universal composition framework. In Phillip Rogaway, editor, Ad-
vances in Cryptology – CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science,
pages 51–70, Santa Barbara, CA, USA, August 14–18, 2011. Springer, Berlin, Germany.

[11] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of
Cryptology, 13(1):143–202, 2000.

[12] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS) 2001.
IEEE Computer Society Press, for an updated version see eprint.iacr.org, 2001.

[13] Ran Canetti, Dana Dachman-Soled, Vinod Vaikuntanathan, and Hoeteck Wee. Efficient pass-
word authenticated key exchange via oblivious transfer. In Public-Key Cryptography (PKC)’12,
Lecture Notes in Computer Science. Springer-Verlag, 2012.

22



[14] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKenzie. Uni-
versally composable password-based key exchange. In Ronald Cramer, editor, Advances in
Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages
404–421, Aarhus, Denmark, May 22–26, 2005. Springer, Berlin, Germany.

[15] Ran Canetti and Tal Rabin. Universal composition with joint state. In CRYPTO, volume
2729 of LNCS, pages 265–281. Springer, 2003.

[16] Nishanth Chandran, Vipul Goyal, and Amit Sahai. New constructions for uc secure com-
putation using tamper-proof hardware. In EUROCRYPT, volume 4965 of Lecture Notes in
Computer Science, pages 545–562. Springer-Verlag, 2008.

[17] Benôıt Chevallier-Mames, David Naccache, Pascal Paillier, and David Pointcheval. How to
disembed a program? In Marc Joye and Jean-Jacques Quisquater, editors, Cryptographic Hard-
ware and Embedded Systems – CHES 2004, volume 3156 of Lecture Notes in Computer Science,
pages 441–454, Cambridge, Massachusetts, USA, August 11–13, 2004. Springer, Berlin, Ger-
many.

[18] Seung Geol Choi, Jonathan Katz, Dominique Schröder, Arkady Yerukhimovich, and Hong-
Sheng Zhou. (efficient) universally composable two-party computation using a minimal number
of stateless tokens. Cryptology eprint archive, 2011.

[19] Ivan Damg̊ard, Jesper Buus Nielsen, and Claudio Orlandi. Essentially optimal universally
composable oblivious transfer. In Pil Joong Lee and Jung Hee Cheon, editors, ICISC 08: 11th
International Conference on Information Security and Cryptology, volume 5461 of Lecture
Notes in Computer Science, pages 318–335, Seoul, Korea, December 3–5, 2008. Springer,
Berlin, Germany.

[20] Ivan Damg̊ard, Jesper Buus Nielsen, and Daniel Wichs. Isolated proofs of knowledge and
isolated zero knowledge. In EUROCRYPT, volume 4965 of Lecture Notes in Computer Science,
pages 509–526. Springer-Verlag, 2008.

[21] Ivan Damgȧrd and Alessandra Scafuro. Unconditionally secure and universally composable
commitments from physical assumptions. Cryptology ePrint Archive, Report 2013/108, 2013.

[22] Jerome Di-Battista, Jean-Christophe Courrège, Bruno Rouzeyre, Lionel Torres, and Philippe
Perdu. When failure analysis meets side-channel attacks. In Stefan Mangard and François-
Xavier Standaert, editors, Cryptographic Hardware and Embedded Systems – CHES 2010,
volume 6225 of Lecture Notes in Computer Science, pages 188–202, Santa Barbara, California,
USA, August 17–20, 2010. Springer, Berlin, Germany.

[23] Ning Ding and Dawu Gu. A general and efficient obfuscation for programs with tamper-proof
hardware. In Information Security Practice and Experience, volume 6672 of Lecture Notes in
Computer Science, pages 401–416. 2011.

[24] Nico Döttling, Daniel Kraschewski, and Jörn Müller-Quade. Efficient reductions for non-
signaling cryptographic primitives. In Serge Fehr, editor, Information Theoretic Security,
volume 6673 of Lecture Notes in Computer Science, pages 120–137. Springer Berlin Heidelberg,
2011.

23



[25] Nico Döttling, Daniel Kraschewski, and Jörn Müller-Quade. Unconditional and composable
security using a single stateful tamper-proof hardware token. In TCC, volume 6597 of Lecture
Notes in Computer Science, pages 164–181. Springer, 2011.

[26] Nico Döttling, Thilo Mie, Jörn Müller-Quade, and Tobias Nilges. Implementing resettable uc-
functionalities with untrusted tamper-proof hardware-tokens. In TCC, LNCS, pages 642–661.
Springer, 2013.

[27] EMC2. RSA SecureID (commercial website). http://www.emc.com/security/rsa-securid.htm.

[28] Marc Fischlin, Benny Pinkas, Ahmad-Reza Sadeghi, Thomas Schneider, and Ivan Visconti. Se-
cure set intersection with untrusted hardware tokens. In CT-RSA, Lecture Notes in Computer
Science, pages 1–16. Springer-Verlag, 2011.

[29] Juan A. Garay. Efficient and universally composable committed oblivious transfer and applica-
tions. In Moni Naor, editor, TCC 2004: 1st Theory of Cryptography Conference, volume 2951
of Lecture Notes in Computer Science, pages 297–316, Cambridge, MA, USA, February 19–21,
2004. Springer, Berlin, Germany.

[30] Juan A. Garay, Daniel Wichs, and Hong-Sheng Zhou. Somewhat non-committing encryption
and efficient adaptively secure oblivious transfer. In Shai Halevi, editor, Advances in Cryptology
– CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages 505–523, Santa
Barbara, CA, USA, August 16–20, 2009. Springer, Berlin, Germany.

[31] Craig Gentry, Philip MacKenzie, and Zulfikar Ramzan. A method for making password-based
key exchange resilient to server compromise. In Cynthia Dwork, editor, Advances in Cryptology
– CRYPTO 2006, volume 4117 of Lecture Notes in Computer Science, pages 142–159, Santa
Barbara, CA, USA, August 20–24, 2006. Springer, Berlin, Germany.

[32] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs. In
CRYPTO, volume 5157 of LNCS, pages 39–56. Springer, 2008.

[33] Vipul Goyal, Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. Interactive locking, zero-
knowledge pcps, and unconditional cryptography. In Advances in Cryptology — Crypto 2010,
Lecture Notes in Computer Science, pages 173–190. Springer-Verlag, 2010.

[34] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia. Found-
ing cryptography on tamper-proof hardware tokens. In TCC, Lecture Notes in Computer
Science, pages 308–326. Springer-Verlag, 2010.

[35] Matthew Green and Susan Hohenberger. Universally composable adaptive oblivious transfer.
In Josef Pieprzyk, editor, Advances in Cryptology – ASIACRYPT 2008, volume 5350 of Lec-
ture Notes in Computer Science, pages 179–197, Melbourne, Australia, December 7–11, 2008.
Springer, Berlin, Germany.

[36] Adam Groce and Jonathan Katz. A new framework for efficient password-based authenticated
key exchange. In ACM Conference on Computer and Communications Security, pages 516–525.
ACM, 2010.

24



[37] Helena Handschuh, Pascal Paillier, and Jacques Stern. Probing attacks on tamper-resistant
devices. In Çetin Kaya Koç and Christof Paar, editors, Cryptographic Hardware and Embed-
ded Systems – CHES’99, volume 1717 of Lecture Notes in Computer Science, pages 303–315,
Worcester, Massachusetts, USA, August 12–13, 1999. Springer, Berlin, Germany.

[38] Carmit Hazay and Yehuda Lindell. Constructions of truly practical secure protocols using
standard smartcards. In ACM CCS, pages 491–500. ACM, 2008.

[39] Dennis Hofheinz, Dominique Unruh, and Jörn Müller-Quade. Universally composable zero-
knowledge arguments and commitments from signature cards. Tatra Mt. Math. Pub., pages
93–103, 2007.

[40] Jonathan Katz. Universally composable multi-party computation using tamper-proof hard-
ware. In EUROCRYPT, volume 4515 of LNCS, pages 115–128. Springer, 2007.

[41] Jonathan Katz and Vinod Vaikuntanathan. Round-optimal password-based authenticated key
exchange. In Yuval Ishai, editor, TCC 2011: 8th Theory of Cryptography Conference, volume
6597 of Lecture Notes in Computer Science, pages 293–310, Providence, RI, USA, March 28–30,
2011. Springer, Berlin, Germany.

[42] Vladimir Kolesnikov. Truly efficient string oblivious transfer using resettable tamper-proof
tokens. In TCC, Lecture Notes in Computer Science, pages 327–342. Springer-Verlag, 2010.

[43] Huijia Lin and Rafael Pass. Black-box constructions of composable protocols without set-up.
In CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 461–478. Springer,
2012.

[44] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. A unified framework
for concurrent security: universal composability from stand-alone non-malleability. In STOC,
pages 179–188. ACM, 2009.

[45] Yi-Kai Liu. Building one-time memories from isolated qubits. CoRR, abs/1304.5007, 2013.

[46] Hoi-Kwong Lo and H. F. Chau. Is quantum bit commitment really possible? Phys. Rev. Lett.,
78(17):3410–3413, Apr 1997.

[47] Paulo Mateus and Serge Vaudenay. On tamper-resistance from a theoretical viewpoint. In
Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware and Embedded Systems –
CHES 2009, volume 5747 of Lecture Notes in Computer Science, pages 411–428, Lausanne,
Switzerland, September 6–9, 2009. Springer, Berlin, Germany.

[48] Dominic Mayers. Unconditionally secure quantum bit commitment is impossible. Phys. Rev.
Lett., 78(17):3414–3417, Apr 1997.

[49] Tal Moran and Gil Segev. David and goliath commitments: Uc computation for asymmetric
parties using tamper-proof hardware. In EUROCRYPT, volume 4965 of Lecture Notes in
Computer Science, pages 527–544. Springer-Verlag, 2008.

[50] Rolf T. Moulton. A practical approach to system security devices. Computers & Security,
3:9399, 1984.

25



[51] Jesper Nielsen. Separating random oracle proofs from complexity theoretic proofs: The non-
committing encryption case. In Advances in Cryptology — Crypto 2002, volume 1442 of Lecture
Notes in Computer Science, pages 111–126. Springer-Verlag, 2002.

[52] Rafail Ostrovsky, Alessandra Scafuroa, Ivan Visconti, and Akshay Wadia. Universally com-
posable secure computation with (malicious) physically uncloneable functions. In Advances in
Cryptology — Eurocrypt 2013, Lecture Notes in Computer Science. Springer-Verlag, 2013.

[53] David Oswald and Christof Paar. Breaking Mifare DESFire MF3ICD40: Power analysis and
templates in the real world. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic Hard-
ware and Embedded Systems – CHES 2011, volume 6917 of Lecture Notes in Computer Science,
pages 207–222, Nara, Japan, September 28 – October 1, 2011. Springer, Berlin, Germany.

[54] Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol composition.
In Eli Biham, editor, Advances in Cryptology – EUROCRYPT 2003, volume 2656 of Lecture
Notes in Computer Science, pages 160–176, Warsaw, Poland, May 4–8, 2003. Springer, Berlin,
Germany.

[55] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and com-
posable oblivious transfer. In David Wagner, editor, Advances in Cryptology – CRYPTO 2008,
volume 5157 of Lecture Notes in Computer Science, pages 554–571, Santa Barbara, CA, USA,
August 17–21, 2008. Springer, Berlin, Germany.

[56] Manoj Prabhakaran and Amit Sahai. New notions of security: achieving universal compos-
ability without trusted setup. In STOC, pages 242–251. ACM, 2004.

[57] Renato Renner. Security of Quantum Key Distribution. PhD thesis, ETH Zurich, 2005.
http://arxiv.org/abs/quant-ph/0512258.

[58] Alfredo Rial, Markulf Kohlweiss, and Bart Preneel. Universally composable adaptive priced
oblivious transfer. In Hovav Shacham and Brent Waters, editors, PAIRING 2009: 3rd Interna-
tional Conference on Pairing-based Cryptography, volume 5671 of Lecture Notes in Computer
Science, pages 231–247, Palo Alto, CA, USA, August 12–14, 2009. Springer, Berlin, Germany.

[59] Ulrich Rührmair and Marten van Dijk. PUFs in security protocols: Attack models and practical
security evaluations. In IEEE Symposium on Security and Privacy, 2013.

[60] Sergei Skorobogatov. Flash memory ’bumping’ attacks. In Stefan Mangard and François-
Xavier Standaert, editors, Cryptographic Hardware and Embedded Systems – CHES 2010,
volume 6225 of Lecture Notes in Computer Science, pages 158–172, Santa Barbara, California,
USA, August 17–20, 2010. Springer, Berlin, Germany.

[61] Sergei Skorobogatov and Christopher Woods. Breakthrough silicon scanning discovers back-
door in military chip. In Emmanuel Prouff and Patrick Schaumont, editors, Cryptographic
Hardware and Embedded Systems – CHES 2012, volume 7428 of Lecture Notes in Computer
Science, pages 23–40, Leuven, Belgium, September 9–12, 2012. Springer, Berlin, Germany.

[62] M. Smid. Integrating the data encryption standard into computer networks. Communications,
IEEE Transactions on, 29(6):762 – 772, jun 1981.

26



[63] Dominique Unruh. Universally composable quantum multi-party computation. In EURO-
CRYPT 2010, volume 6110 of LNCS, pages 486–505. Springer, May 2010. Preprint on
arXiv:0910.2912 [quant-ph].

[64] Marten van Dijk and Ulrich Rührmair. Physical unclonable functions in cryptographic proto-
cols: Security proofs and impossibility results. Cryptology ePrint Archive, Report 2012/228,
2012.

[65] Mark N. Wegman and Larry Carter. New hash functions and their use in authentication and
set equality. J. Comput. Syst. Sci., 22(3):265–279, 1981.

27


