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Abstract. In FSE 2005, transparency order was proposed as a parameter for the
robustness of S-boxes to Differential Power Analysis (DPA): lower transparency order
implying more resistance. However most cryptographically strong Boolean functions
have been found to have high transparency order. Also it is a difficult problem to
search for Boolean functions which are strong cryptographically, and yet have low
transparency order, the total search space for (n, n)-bit Boolean functions being as
large as n22n

. In this paper we characterize transparency order for various classes of
Boolean functions by computing the upper and lower bounds of transparency order for
both even and odd numbers of variables. The transparency order is defined in terms
of diffusion properties of the structures of Boolean functions namely the number of
bit flips in the output of the functions corresponding to the number of bit flips at the
input of the function. The calculated bounds depend on the number of vectors flipping
the input of S-box for which bias of probability of S-box output bit deviates from the
value of 0.5. The transparency order is found to be high in the class of those Boolean
functions which have larger cardinality of input differences for which the probabil-
ity of output bit flip is 0.5. Also we find that instead of propagation characteristics,
autocorrelation spectra of the S-box function F is a more qualifying candidate in decid-
ing the characteristics of transparency order. The relations developed to characterize
transparency order aid in our constrained random generation and search of a class of
balanced 8 × 8 S-boxes with transparency order upper bounded by 7.8, nonlinearity
in range (104, 110) and absolute indicator values of GAC in range (48, 88).

Keywords: Transparency Order, SNR(DPA), Hamming Weight, Walsh Transform,
Nonlinearity, Propagation Criteria, Global Avalanche Characteristics.

1 Introduction

In 1996, alongwith the conventional cryptanalysis like linear [20] and differential [3] crypt-
analysis, another class of threats for block cipher implementations appeared in the crypto-
graphic community called the side channel attacks like timing [16], DPA [17] and electro-
magnetic radiation [26] attacks. Most prominent in this class were the DPA attacks which
still render newly devised cryptosystems vulnerable because of leakages from physical hard-
ware implmentations [18]. In this respect, efficient and leakage-minimized implementation
of standard block ciphers like AES is a well studied problem [6, 23]. Also in the approach
called masking [1], implementations of AES were protected against DPA by randomizing all
intermediate data occurring during the computation of the algorithm. After this, numerous
masking schemes have been proposed [4,13,23]. Meanwhile new attacking techniques were im-
proved and defeated many of these countermeasures [5,19] which started the cat-and-mouse
game: new side-channel attacks developed and subsequent countermeasures proposed. In this
paper, instead of countermeasures, we attempt to develop characteristics of Boolean func-
tions for block cipher primitives of S-boxes which aim at lowering transparency order thus



increasing robustness to DPA attacks. The design of block cipher cryptosystems embedded
in cyptographic devices relies on two fundamental postulates introduced by Shannon [29]:
confusion and diffusion. Whereas confusion makes the relationship between the key and the
ciphertext as complex as possible, diffusion involves spreading out a disturbance done at
input to the ciphertext as much as possible. In a block cipher with good diffusion, if one bit
of intermediate data is changed, then the ciphertext should change completely, in an unpre-
dictable or pseudorandom manner. Both these characteristics are quantified by properties
of Boolean functions of the cipher primitives. Confusion is measured by nonlinearity of the
Boolean function i.e. the minimum Hamming distance of the function from all the affine
functions on the same set of input variables. Diffusion relates to the propagation character-
istics [7] of the Boolean functions i.e. probability of bit flip at the output of the primitive
when one or more bits are flipped at the input of the primitive.
In theoretical framework of side-channel analysis like developing power (Hamming weight,
Hamming distance) and other leakage models [10] and side-channel distinguishers like mutual
information analysis (MIA) [2, 12], the attack strength of adversary has been found to de-
pend on mathematical properties of S-boxes. Transparency Order introduced by Prouff [25]
and SNR(DPA)(F) by Guilley et al. [14] are two parameters which quantify the resistance
of S-box F to DPA attacks. Also Prouff showed that S-boxes with very high nonlinearity
and those which satisfy propagation criteria (PC) of higher order are more susceptible to
DPA attacks. Fan et al. [11] introduced a fast implementation method of computing the
transparency order of an S-box. Claude Carlet [8] showed that some highly nonlinear S-
boxes like inverse function of Rijndael S-box in AES and S-boxes with Gold functions and
Kasami functions have very bad transparency order. Recent criteria such as the nearest rival
distinguishing power based on MIA [31] uses information on data-dependent device leakage
function L to construct a theoretical model M of power traces which have high similarity
to observed power traces for correct key hypothesis. But these criteria do not quantify DPA
resistance of structures of target intermediate functions such as the coordinate functions of
the S-boxes. In [21], it was experimentally validated that S-boxes with lower transparency
order required much higher number of power traces to perform DPA attacks which explain
their higher DPA resistitiviy compared to the S-boxes with high transparency order. In this
light, this paper attempts to recognize characteristics of Boolean functions of block cipher
primitives which define the resistance of the cipher to DPA like side channel analysis in
terms of transparency order. We present the lower and upper bounds of transparency order
for different S-boxes which fall in the same class of propagation characteristics with respect
to same set of input bit flipping vectors. This means the DPA resistance of the S-boxes is
bounded by their propagation characteristics with respect to a certain set of input bit flip-
ping vectors or to be more precise by the autocorrelation spectra of the coordinate functions
of the S-boxes. These bounds help in deciding parameters of S-boxes which form the ele-
ments of constrained random generation and search of S-boxes having both strong classical
cryptographic properties like high nonlinearity [24, 27] as well as good robustness to DPA
attacks (i.e. low transparency order). This also reduces the huge search space of n22

n

of
(n, n)-balanced functions for S-boxes satisying the above criteria.
The paper is organized as follows. Section 2 describes the preliminaries to this paper. In
Section 3, the transparency order of S-box F is expressed in terms of Hamming weight of
bitflips at the output of the S-box when some bits are flipped in the input vector. Section 4
derives the upper and lower bounds of transparency order in terms of cardinalities of sets
A1, A2 and A3 classified according to the polarity of sum of autocorrelation of the coordinate
functions of the S-boxes with shift vector a. In Section 5, the derived upper and lower bounds
are evaluated for some standard S-box classes. Section 6 deals with experimental results of a
constrained random generation and search of S-boxes with low transparency order and high
nonlinearity. To sum up, Section 7 draws the contribution of the paper.



2 Preliminaries

2.1 Notation

In this paper, we study an S-box as an (n, n)-function F , mapping from F
n
2 to F

n
2 . For every

vector x ∈ F
n
2 , n ∈ N, HW (x) represents the Hamming weight of x. To every (n, n)-function

F we represent it as an n-tuple (f1, . . . , fn) of Boolean functions on F
n
2 called the coordinate

functions of F , such that F (x) = (f1(x), . . . , fn(x)) for every x ∈ F
n
2 .

2.2 Transparency Order

In [25], Prouff proposed a new metric to quantify the resistance of S-boxes to DPA attacks
called transparency order of an S-box F = (f1, . . . , fn) on F

n
2 as:

τF = maxβ∈Fn

2

„

| n − 2HW (β) | −
1

22n − 2n

X

a∈Fn∗
2

|
X

v∈Fn
2

HW (v)=1

(−1)v·β
WDaF (0, v)|

«

(1)

where WDaF (u, v) is the Fourier Transform of the sign function of the derivative of F
with respect to vector a ∈ F

n
2 , DaF : x 7→ F (x) ⊕ F (x ⊕ a).

WDaF (u, v) =
X

x∈Fn
2

(−1)v·{F (x)⊕F (x⊕a)}⊕u·x

(2)

Prouff showed that the transparency order degrades for higher values of PC. But accord-
ing to [33], PC is an indicator of local properties as literature shows that Boolean functions
constructed with high PC [28] still have undesirable linear structures which renders them
vulnerable to the linear and differential attacks. So this paper focusses on the variation of
transparency order depending on the variation of parameters which determine the indicators
of global avalanche characteristics (GAC ).

3 Preliminary Technical Results

From previous section, substituting u = 0 in equation (2):

WDaF (0, v) =
X

x∈F
n

2

(−1)v·{F (x)⊕F (x⊕a)}

(3)

As for every (n, n)-function F and for every vector v ∈ F
n
2 :

v · F =
1

2
−

1

2
(−1)v·F

Substituting this in equation (3),

WDaF (u, v) =
X

x∈F
n

2

[1 − 2v · {F (x) ⊕ F (x ⊕ a)}]

⇒ WDaF (u, v) = 2n − 2
X

x∈Fn

2

[v · {F (x) ⊕ F (x ⊕ a)}]
(4)

So transparency order equation (1) modifies to:



τF = max
β∈Fn

2

„

| n − 2HW (β) | −
1

22n − 2n

X

a∈Fn∗
2

|
X

v∈Fn
2

HW (v)=1

X

x∈F
n

2

(−1)v·{β⊕F (x)⊕F (x⊕a)}|

«

From equation (4), we have

τF = max
β∈Fn

2

„

| n − 2HW (β) | −
1

22n − 2n

X

a∈Fn∗
2

|
X

v∈Fn
2

HW (v)=1

{2n − 2
X

x∈Fn

2

v · {β ⊕ F (x) ⊕ F (x ⊕ a)}}|

«

⇒ τF = max
β∈Fn

2

„

| n − 2HW (β) | −
1

22n − 2n

X

a∈Fn∗
2

|n2n − 2
X

x∈F
n

2

HW (β ⊕ F (x) ⊕ F (x ⊕ a))|

«

Next, we propose a theorem where we prove that β = 0 qualifies for transparency order
value in S-boxes with non-bent coordinate functions which have good GAC. For this, we
consider the transparency order expression:

τ = | n − 2HW (β) | −
1

22n − 2n

X

a∈Fn∗
2

|n2n − 2
X

x∈Fn
2

HW (β ⊕ F (x) ⊕ F (x ⊕ a))| (5)

Theorem 1 For S-boxes with autocorrelation spectra of coordinate functions fi satisfying,
∀a ∈ F

n∗
2 , |

∑n

i=1
∆fi

(a)| < 2n+1, the maximum value of transparency order expression
occurs for β = 0, 2n − 1.

Proof. In equation (5) we consider the transparency order expression as difference of two
terms:

τ = t1 − t2

where

t1 = | n − 2HW (β) |

t2 =
1

22n − 2n

X

a∈Fn∗

2

|n2n − 2
X

x∈Fn
2

HW (β ⊕ F (x) ⊕ F (x ⊕ a))|

For all the coordinate functions (f1, f2, . . ., fn) where fi : {0, 1}n → {0, 1} of the S-box F :
{0, 1}n → {0, 1}n, if ∀a ∈ F

n∗
2 ,

∑n

i=1
|∆fi

(a)| < 2n+1, then

|n2n−1 −
n
X

i=1

(2n−1 −
1

2
∆fi

(a))| < 2n
(6)

From [33], the Hamming weight of truth table of fi(x) ⊕ fi(x ⊕ a) is

X

x∈Fn
2

HW (fi(x) ⊕ fi(x ⊕ a)) = 2n−1 −
1

2
∆fi

(a) (7)

From (6) and (7) we get, ∀a ∈ F
n∗
2 ,

|n2n−1 −

n
X

i=1

X

x∈Fn

2

HW (fi(x) ⊕ fi(x ⊕ a))| < 2n

⇒ |n2n−1 −
X

x∈Fn
2

HW (F (x)⊕ F (x ⊕ a))| < 2n



Summing over all a ∈ F
n∗
2 ,

X

a∈Fn∗

2

|n2n−1 −
X

x∈Fn
2

HW (F (x)⊕ F (x ⊕ a))| < 2n(2n − 1)

⇒
1

22n − 2n

X

a∈F
n∗

2

|n2n − 2
X

x∈Fn
2

HW (F (x)⊕ F (x ⊕ a))| < 2

⇒ n −
1

22n − 2n

X

a∈Fn∗
2

|n2n − 2
X

x∈Fn

2

HW (F (x)⊕ F (x ⊕ a))| > n − 2

This corresponds to the transparency order expression in equation (5) for β = 0. So for
β = 0,

τ > (n − 2) (8)

Now as for β = 0, 2n − 1, the corresponding Hamming weight values HW (β) = 0, n, the
first term in the transparency order expression,

t1 = |n − 2HW (β)| = n (9)

Now,
X

x∈Fn
2

HW (F (x)⊕ F (x ⊕ a)) = n2n −
X

x∈Fn
2

HW (F (x)⊕ F (x ⊕ a))

⇒ n2n − 2
X

x∈F
n

2

HW (F (x)⊕ F (x ⊕ a)) = −(n2n − 2
X

x∈F
n

2

HW (F (x)⊕ F (x ⊕ a)))

⇒ |n2n − 2
X

x∈Fn

2

HW (F (x)⊕ F (x ⊕ a))| = |n2n − 2
X

x∈Fn

2

HW (F (x)⊕ F (x ⊕ a))| (10)

Now for β = 0, the second term of the transparency order expression,

t2 =
1

22n − 2n

∑

a∈F
n∗

2

|n2n − 2
∑

x∈F
n

2

HW (F (x) ⊕ F (x ⊕ a))| (11)

while for β = 2n − 1,

t2 =
1

22n − 2n

∑

a∈F
n∗

2

|n2n − 2
∑

x∈F
n

2

HW (F (x) ⊕ F (x ⊕ a))| (12)

From equation (10), equation (11) and equation (12), the second term of the transparency
order expression, t2 evaluates to the same value for β = 0, 2n − 1.

Hence for both the values of β (β = 0, 2n−1), the first term (9) and the second term (11),
(12) in the transparency order expression yields the same transparency order value.

⇒ τ = n −
1

22n − 2n

„

X

a∈Fn∗
2

|n2n − 2
X

x∈Fn

2

HW (F (x)⊕ F (x ⊕ a))|

«

= n −
1

22n − 2n

„

X

a∈Fn∗
2

|n2n − 2
X

x∈F
n

2

HW (F (x)⊕ F (x ⊕ a))|

« (13)



So from equation (8), for β = 0, 2n − 1, the transparency order expression,

τ > (n − 2) (14)

Now for all other values of β (β 6= 0, 2n − 1), as 1 ≤ HW (β) ≤ n − 1, the first term of
the transparency order expression, t1 satisfies

t1 ≤ n − 2 (15)

Also the second term of the transparency order expression t2, being a sum of non-negative
terms has always a non-negative value. In other words,

t2 =
1

22n − 2n

∑

a∈F
n∗

2

|n2n − 2
∑

x∈F
n

2

HW (β ⊕ F (x) ⊕ F (x ⊕ a))|

⇒ t2 ≥ 0

Now as the transparency order expression τ = t1 − t2, so

τ ≤ t1 (16)

From equation (15) and equation (16), for these non-zero values of β (β 6= 0, 2n − 1), the
transparency order expression,

τ ≤ (n − 2) (17)

So from (14) and (17), β = 0, 2n−1 qualifies for the maximum value for the transparency
order expression if

∑n

i=1
|∆fi

(a)| < 2n+1.

From here onwards, we will consider the case of β = 0 for transparency order of S-box
F .

4 Upper and Lower Bounds of Transparency Order

From equation (13), transparency order of S-box F (x) is expressed as:

τF = n −
1

22n − 2n

„

X

a∈F
n∗

2

|n2n − 2
X

x∈Fn
2

HW (F (x)⊕ F (x ⊕ a))|

«

The set A = {a|a ∈ F
n∗
2 } can be represented as A = A1 ∪ A2 ∪ A3 such that:

A1 = {a|a ∈ F
n∗
2 ∧

X

x∈Fn

2

HW (F (x)⊕ F (x ⊕ a)) < n2n−1}

A2 = {a|a ∈ F
n∗
2 ∧

X

x∈Fn

2

HW (F (x)⊕ F (x ⊕ a)) > n2n−1}

A3 = {a|a ∈ F
n∗
2 ∧

X

x∈Fn
2

HW (F (x)⊕ F (x ⊕ a)) = n2n−1}



The sets A1, A2, A3 can also expressed in terms of autocorrelation of coordinate function
fi(x) with shift of vector a:

∆fi
(a) =

X

x∈F
n

2

(−1)fi(x)⊕fi(x⊕a)

A1 = {a|a ∈ F
n∗
2 ∧

n
X

i=1

∆fi
(a) > 0}

A2 = {a|a ∈ F
n∗
2 ∧

n
X

i=1

∆fi
(a) < 0}

A3 = {a|a ∈ F
n∗
2 ∧

n
X

i=1

∆fi
(a) = 0}

Among these sets, A3 corresponds to the set of values of vector a with respect to which S-
box F satisfies PC. In other words, this set comprises of those vectors a such that probability
of bit flip at output of F (x) is 0.5 when exactly HW (a) number of input bits are flipped at
the input. In set A1, the values of vector a correspond to the truth table of F (x)⊕F (x⊕ a)
where number of zeros is greater than number of ones. In other words, A1 represents the set
of those values of vector a for which probability of bit flipping at the output of S-box is less
than 0.5 when HW (a) number of input bits of the S-box are flipped (i.e.

∑n
i=1

∆fi
(a) > 0).

Similarly, A2 corresponds to the set of values of vector a for which the probability of bit
flipping at the output of S-box is greater than 0.5 when HW (a) number of input bits of the
S-box are flipped (i.e.

∑n
i=1

∆fi
(a) < 0).

⇒ τF = n −
1

22n − 2n

„

X

a∈A1



n2n − 2
X

x∈Fn

2

HW (F (x)⊕ F (x ⊕ a))

ff

−



X

a∈A2



n2n − 2
X

x∈Fn
2

HW (F (x)⊕ F (x ⊕ a))

ffff«

⇒ τF = n −
1

22n − 2n

„

n2n(| A1 | − | A2 |) − 2
X

a∈A1

X

x∈Fn
2

HW (F (x)⊕ F (x ⊕ a))

+2
X

a∈A2

X

x∈Fn

2

HW (F (x)⊕ F (x ⊕ a))

« (18)

Upper Bound of Transparency Order of S-box: For upper bound of transparency order
of F (x), lower bound of the expression

∑

a∈A2

∑

x∈F
n

2
HW (F (x) ⊕ F (x ⊕ a)) and upper

bound of the expression
∑

a∈A1

∑

x∈F
n

2
HW (F (x) ⊕ F (x ⊕ a)) in equation (18) is calculated.

In case of balanced F (x)⊕F (x⊕a) (i.e. a ∈ A3), the truth table has Hamming weight n2n−1.
But when a ∈ A2, the lower bound of Hamming weight of truth table of F (x) ⊕ F (x ⊕ a)
is just one more than n2n−1 (∀a ∈ A2, number of ones is greater than number of zeros in
truth table of F (x)⊕F (x⊕ a)). But in truth table of F (x)⊕F (x⊕ a) Hamming weight can
only be even as each entry in truth table occurs exactly twice. So the lower bound of the
Hamming weight will be two more than n2n−1. So ∀a ∈ A2,

X

x∈Fn
2

HW (F (x)⊕ F (x ⊕ a)) ≥ n2n−1 + 2 (19)



Similarly ∀a ∈ A1, the upper bound of HW (F (x)⊕F (x⊕a)) occurs when the Hamming
weight of truth table of F (x) ⊕ F (x ⊕ a) is just two less than n2n−1. So ∀a ∈ A1,

X

x∈Fn
2

HW (F (x)⊕ F (x ⊕ a)) ≤ n2n−1 − 2 (20)

Substituting equation (19) and equation (20) in equation (18), transparency order of F (x)
satisfies:

τF ≤ n −
4

22n − 2n



| A1 | + | A2 |

ff

⇒ τF ≤ n −
4

22n − 2n



2n − 1− | A3 |

ff

This upper bound is interesting as it is tighter than the known upper bound of τ ≤ n men-
tioned by Prouff; the equality holding for bent functions. The upper bound of transparency
order reduces when for lesser number of vectors a, the truth table of F (x) ⊕ F (x ⊕ a) is
balanced (i.e. when |A3| is small). In other words, Boolean functions satisfying PC of higher
order (i.e. high |A3|) has higher transparency order which is in agreement with observation
made by [25]. But this is not the only case in which transparency order is high. Even with
F (x) not satisfying PC of higher order, if the derivative F (x)⊕F (x⊕a) is balanced for large
number of vectors a, then also transparency order is high. For PC of order 1, F (x)⊕F (x⊕a)
is balanced for a where HW (a) = 1. There are

(

n
1

)

possible values of a which satisfy this
condition. Similarly for PC of order k, F (x) ⊕ F (x ⊕ a) is balanced for 1 ≤ HW (a) ≤ k
which comprise of

(

n
1

)

+ . . .+
(

n
k

)

values of a. If F (x)⊕F (x⊕a) is not balanced for above set
of values of a, but for a different set of values of a with the same cardinality, the condition
of PC of order k is not satisfied but still the transparency order is high. So instead of PC,
we believe autocorrelation of F (x) with shift of vector a is a more qualifying candidate to
decide characteristics of transparency order. The autocorrelation function is also the basic
parameter of indicators of global avalanche characteristics (GAC ) [33].

Lower Bound of Transparency Order of S-box (even n): For lower bound of trans-
parency order of S-box F (x), the lower bound of the expression
∑

a∈A1

∑

x∈F
n

2
HW (F (x) ⊕ F (x ⊕ a))

and the upper bound of
∑

a∈A2

∑

x∈F
n

2
HW (F (x) ⊕ F (x ⊕ a))

in equation (18) is calculated. As in case of even n ,∀a ∈ A2,

X

x∈Fn
2

HW (F (x)⊕ F (x ⊕ a)) ≤ 2

n

2
−1
X

i=0

(n − i)

 

n

i

!

+
n

2

 

n
n
2

!

In this, there are 2
(

n
i

)

combinations of x for each of the Hamming weight values from n

to (n
2

+ 1) and for Hamming weight value of n
2
, there are

(

n
n

2

)

combinations of x which yield

maximum value of HW (F (x) ⊕ F (x ⊕ a)).
For even n, ∀a ∈ A1,

X

x∈Fn
2

HW (F (x)⊕ F (x ⊕ a)) ≥ 2

n

2
−1
X

i=1

i

 

n

i

!

+
n

2



 

n
n
2

!

+ 2

ff



In this, there are 2
(

n
i

)

combinations of x for each of the Hamming weight values from 1

to (n
2
− 1) and for Hamming weight value of n

2
, there are

(

n
n

2

)

+ 2 combinations of x which

yield minimum value of HW (F (x) ⊕ F (x ⊕ a)).
So the transparency order of F (x) satisfies:

τF ≥ n −
1

22n − 2n



n2n(| A1 | − | A2 |) + 2

„

| A2 |

„

2

n

2
−1
X

i=0

(n − i)

 

n

i

!

+
n

2

 

n
n
2

!

«

−

| A1 |

„

2

n

2
−1
X

i=1

i

 

n

i

!

+
n

2

„

 

n
n
2

!

+ 2

«««ff

So the lower bound of transparency order of S-box F (x) depends on cardinalities of sets
A1 and A2. In other words, the minimum value of transparency order for a particular n
depends on the number of vectors a for which bias of probability of bit flipping at the output
of S-box deviates from 0.5 when HW (a) number of input bits are flipped at the input.

Lower Bound of Transparency Order of S-box (odd n): In case of odd n, the bounds
of Hamming weight values in previous section differ.

For odd n, ∀a ∈ A2,

X

x∈Fn

2

HW (F (x)⊕ F (x ⊕ a)) ≤ 2

⌊n/2⌋
X

i=0

(n − i)

 

n

i

!

In this case, for each of the Hamming weight values from i = 0 to n−⌊n/2⌋, there are 2
(

n
i

)

combinations of x which ∀a ∈ A yields maximum value of
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5 Upper and Lower Bounds of Transparency Order on Standard

S-box Classes

In this section we evaluate upper and lower bounds on some classes of 8×8 S-boxes which
contain standard S-boxes like AES-128 block cipher [9] and CLEFIA block cipher [30]. This



class is defined to contain those S-boxes whose probability of bit flipping at the output is the
same when some bits are flipped at the input of the S-box. With respect to previous section,
this means the S-boxes which have the same |A1|, |A2| and |A3| fall into the same class. In
Table 1, lower bounds of transparency order with smaller values show that some S-boxes in
the class have higher resistance to DPA attacks.

Table 1. Transparency Order bounds on some classes of 8 × 8 S-boxes

S-box Class
τUpperBound τLowerBound τSbox |A3| |A2|

AES-128 Rijndael 7.986 6.016 7.860 21 138

CLEFIA Sbox S0 7.985 5.909 7.745 8 134

CLEFIA Sbox S1 7.985 5.980 7.852 17 148

FOX Sbox [15] 7.985 5.992 7.788 19 135

We find that not only S-boxes satisfying PC of higher orders have high transparency order
as found out by [25], S-boxes which have balanced truth table of F (x) ⊕ F (x ⊕ a) for more
number of vectors a have higher transparency order even if they don’t satisfy higher orders
of PC. This is clear from lower bound plots of transparency order in Fig. 4 to Fig. 11 (in
Appendix Section) for 8×8 S-boxes where we find that the lower bound of transparency order
increases with increasing |A3| corresponding to same |A2|. In Fig. 11, the lower and upper
bound of transparency order has the same value (i.e. 8). This class of S-boxes correspond
to bent functions, where F (x) ⊕ F (x ⊕ a) is balanced for all possible values of vector a
(i.e.|A3| = 255, |A2| = 0, |A1| = 0) and so have the maximum possible value of transparency
order [25]. Also for a class of S-boxes having balanced truth table of F (x) ⊕ F (x ⊕ a) for
same number of vector a (i.e. same |A3|, |A3| 6= 255), the lower bound of transparency order
is found to decrease when the S-box has positive bias of probability of out bit flip for more
number of vectors a i.e. when the cardinality of set A2 increases. This decrease in lower
bound for increasing |A2| can be seen in the lower bound plots of transparency order in Fig.
4 to Fig. 10 (in Appendix Section) for S-boxes with n = 8 number of input variables.

6 Experimental Results

In the previous section, it was discussed that the lower bound plots of transparency order
have a negative slope with respect to |A2|. So for higher values of |A2| corresponding to a
fixed value of |A3|, the lower bounds have smaller values. This means that higher values of
|A2| when being constrained for search of S-boxes reduces the search space of (n, n)-Boolean
functions from n22

n

. In experiments, we adopted a constrained random S-box generation
phase followed by an S-box searching phase to look for a class of 8 × 8 S-boxes which has
good resistive properties both towards classical cryptanalysis as well as DPA attacks. The
entire experiment of S-box generation and search was repeated 100 times to determine the
cryptographic properties of the class of selected S-boxes. Each simulation run of generating
a pool of 220 S-boxes and further searching takes around 5hr 37mins on 2.3GHz Intel Core
i5-2410M processor with 4GB RAM. The algorithm was implemented in C programming
language and compiled using gcc-4.4.1 on Ubuntu 10.4 operating system.



6.1 Constrained Random Generation Phase

In each experiment, firstly in the S-box generation phase, 220, 8 × 8 balanced S-boxes (con-
strained to high values of |A2|) were generated randomly which were classified according to
their |A3|. We opted for constrained random generation of S-boxes because on an average,
randomly selected balanced Boolean functions has strong cryptographic properties like high
nonlinearity [22] and for a single output balanced Boolean function the expected value of
different forms of information leakage exponentially decreases with n i.e. number of input
variables [32]. The number of generated S-boxes has a normal distribution with respect to
|A3| as shown in Fig. 12 in Appendix Section. The plot shows that all values of |A3| do not
occur which leads to reduced search space and this helps in selecting the range of |A3| for
which S-boxes will be generated. The plot of S-boxes with minimum transparency order and
the corresponding cardinalities |A2| for each value of |A3| in an experiment is shown in Fig.
13 in Appendix Section. In this figure, corresponding to each value of |A3|, the minimum
transparency order is obtained for high values of |A2| as was mentioned in the analysis of
the lower and upper bounds of transparency order in the previous section.

6.2 S-Box Searching Phase

In the S-box searching phase, we implemented a mono-objective optimization algorithm on
the generated S-box class for searching S-boxes which satisfy the objective function in Al-
gorithm 1. The objective function was targetted on two parameters: nonlinearity of the
coordinate functions of the S-box and the transparency order of the S-box. As high non-
linearity resists linear cryptanalysis, the nonlinearities of the coordinate functions of the
S-box (NL1, NL2, . . . , NLn) has been considered in objective function. In this the minimum
of the nonlinearities of all the coordinate functions is targetted for maximization as shown
in step 4 in Algorithm 1. This ensures higher nonlinearity for other coordinate functions
also. In experiments, we find that maximizing the minimum of nonlinearities of coordinate
functions yields S-boxes with better cryptographic properties than maximizing the sum of
nonlinearities of the coordinate functions of the S-boxes in the search space of 220 S-boxes.
Also to thwart DPA attacks, transparency order of the S-box should be as low as possible,
for which the polarity of transparency order of S-box is taken negative since the objective
function gets maximized for lower transparency order values.

But for good GAC as the sum of squares indicator σfi
has to be as close to the minimum

value i.e. 22n [33], the cardinality |A3| should be as high as possible while having low |A2|.
So a tradeoff of low transparency order, high |A3| and low |A2| is done on the class of S-boxes
obtained from above searching phase. This yields another class of 8 × 8 S-boxes which have
their GAC absolute indicator values (∆fi

) in the range (48,88) (close to 2n−2 for n = 8)
as shown in Fig.2 which help in resisting differential cryptanalysis. Also the sum of the
squares indicator (σfi

) for each coordinate function of the S-box is found to be within range
(22n+1,22n+2) for n = 8.

The nonlinearity plot of the coordinate functions of the selected S-boxes in searching
phase is shown in Fig. 3. As shown, for almost all experiments, we find the nonlinearity of the
coordinate functions of the S-boxes to lie within the range (2n−1−2

n

2 +1+2
n

2 −1, 2n−1−2
n

2 −2)
(i.e.(104, 110) for n = 8). The algebraic degree of the coordinate functions of the S-boxes
was either 6 or 7 and the robustness to differential cryptanalysis of the searched S-boxes
was above 0.95. It may also be noted that nonlinearity, algebraic degree and robustness to
differential cryptanalysis for AES Rijndael S-box are 112, 7, and 0.98 respectively. Also the
transparency order values of the obtained S-boxes is upper bounded by 7.8 as shown in Fig.
1. For AES Rijndael S-box, transparency order value is 7.86 [8] which means better DPA
resistance of our proposed class of S-boxes compared to AES S-box. But minimum value of
transparency order (i.e. zero in case of linear S-boxes) does not ensure absolute resistance



Algorithm 1: Steps of Constrained Random Generation and Search of S-boxes with Low
Transparency Order, High Nonlinearity and Good GAC characteristics

Input: n
Output: F (x) with low transparency order (TO), high nonlinearity and minimal indicator

values of GAC

Select the range of |A3| to be satisfied by generated S-boxes1

for each value of |A3| do2

Randomly generate S-boxes with high values of |A2|.3

Select S-box satisfying the objective function :4

maximize[min(NL1, NL2, . . . , NLn) − TO]

Sort the S-boxes with increasing TO.5

Select the S-box F (x) with optimal tradeoff between small TO, large |A3| and small |A2| for6

good GAC.

of the S-box towards DPA; it means linear S-boxes are least vulnerable to DPA attacks. So
for the generated S-boxes, we also computed SNR(DPA) whose lower values ensure lesser
DPA discrimination power of the S-boxes [14]. The paper proposed a DPA model which
reveal the correlation of one bit of predicted plaintext with the Hamming weight of the full
plaintext. In the proposed class of S-boxes, we find from Fig. 1 that for most of the cases,
the SNR(DPA) is lesser than that of AES Rijndael S-box i.e. 9.6. So our constrained random
generation and search algorithm finds a class of S-boxes which have better resistance to
DPA attacks in terms of transparency order and SNR(DPA) than AES Rijndael S-box while
having comparable conventional cryptographic properties.
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Fig. 1. Transparency Order and SNR(DPA) plots of 8 × 8 S-boxes selected in the searching phase

7 Conclusion

In this paper, we find that the parameter to define resistance of S-boxes to DPA attacks,
transparency order depends on Hamming weight of truth table of the function F (x)⊕F (x⊕a)
where a is a vector such that Hamming weight of a number of input bits of S-box are flipped.
The transparency order of S-box is also found to depend on the cardinalities of sets A1, A2

which correspond to vectors a such that the probability of bit flipping of the output bits of
S-box is less or more than 0.5 respectively. Also, the upper and lower bounds of transparency
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Fig. 3. Nonlinearity plots of coordinate functions of 8 × 8 S-boxes selected in the searching phase

order of S-boxes is calculated. We made an extension of the observation made by Prouff et
al. [25] for S-boxes which have higher transparency order. In the analysis of lower and upper
bounds of transparency order, we find that there is higher probability of finding an S-box
with low transparency order when |A2| is higher. This argument is supported by the analysis
of experimental results where for |A2|-constrained randomly generated S-boxes with certain
values of |A3|, we find lesser values of transparency order compared to AES Rijndael S-box.
Also a search algorithm is presented to find a class of S-boxes which maximizes the objective
function targetted for high nonlinearity and low transparency order. The resulting class of
S-boxes is then subjected to further pruning for good diffusion characteristics in terms of
absolute indicator values (∆fi

) and sum of squares values (σfi
) of GAC of the coordinate

function fi of the S-box. We believe that similar approaches of constrained random generation
and search of S-boxes with a suitable multiobjective optimization approach targetting high
nonlinearity or other cryptographic properties as well as low transparency order or low
SNR(DPA) present a future scope of finding S-boxes (and thus reducing the search space of
S-boxes) with increased robustness to DPA attacks and stronger cryptographic properties.
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Fig. 4. Lower and Upper Bound plots of Transparency Order for S-boxes satisfying |A3| = 8 (or PC
of order 1)
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Fig. 5. Lower and Upper Bound plots of Transparency Order for S-boxes satisfying |A3| = 36 (or
PC of order 2)
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Fig. 6. Lower and Upper Bound plots of Transparency Order for S-boxes satisfying |A3| = 92 (or
PC of order 3)
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Fig. 7. Lower and Upper Bound plots of Transparency Order for S-boxes satisfying |A3| = 162 (or
PC of order 4)
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Fig. 8. Lower and Upper Bound plots of Transparency Order for S-boxes satisfying |A3| = 218 (or
PC of order 5)
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Fig. 9. Lower and Upper Bound plots of Transparency Order for S-boxes satisfying |A3| = 246 (or
PC of order 6)
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Fig. 10. Lower and Upper Bound plots of Transparency Order for S-boxes satisfying |A3| = 254 (or
PC of order 7); only two cardinalities of |A2|, |A2| = {0, 1} exists for this case
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Fig. 11. Lower and Upper bounds of Transparency Order for S-boxes satisfying |A3| = 255 (or PC
of order 8)
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Fig. 12. Normal distribution of randomly generated S-boxes w.r.t. |A3| in the S-box generation
phase
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