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Abstract. In this paper, we propose an elaborate geometric approach
to explain the group law on Jacobi quartic curves which are seen as the
intersection of two quadratic surfaces in space. Using the geometry in-
terpretation we construct the Miller function. Then we present explicit
formulae for the addition and doubling steps in Miller’s algorithm to
compute Tate pairing on Jacobi quartic curves. Both the addition step
and doubling step of our formulae for Tate pairing computation on Ja-
cobi curves are faster than previously proposed ones. Finally, we present
efficient formulas for Jacobi quartic curves with twists of degree 4 or 6.
For twists of degree 4, both the addition steps and doubling steps in
our formulas are faster than the fastest result on Weierstrass curves. For
twists of degree 6, the addition steps of our formulae are faster than the
fastest result on Weierstrass curves.
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1 Introduction

In recent years, pairings on elliptic curves have become extremely useful in cryp-
tography, and pairing-based cryptography develops rapidly. The efficient algo-
rithms for pairing computation play a very important role in pairing-based cryp-
tograph. The well-known method for pairing computation is Miller’s algorithm.
Consequently, many improvements on Miller’s algorithm were presented. The
Weierstrass model is widely used in the early stage of elliptic curves cryptogra-
phy, and many efficient formulae for pairing computation for this model can be
found in [1, 7, 5, 14, 16].

One of the ideas to make improvements is to compute pairings on other
elliptic curve models which provides more efficient algorithms for the group law.
Various elliptic curve models and coordinate systems reveal different efficiency of
pairing computation. So it’s very necessary to carry out more research on pairing
computation for different models of elliptic curves. Recently, other models, for
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example, Edwards curves [9, 2] and twisted Edwards curves [3] are widely used.
Pairing computation on twisted Edward curves was first considered by Das and
Sarkar [8] and Ionic and Joux [13]. Then, in 2009, Arène, Lange et al.[1] developed
explicit formulae for pairing computation on twisted Edwards curves. Arène,
Lange et al.’s formulae for computing the Tate pairing on Edwards curves are
as fast as the fastest previously published formulaes on Weierstrass curves.

The use of Jacobi quartic curves in cryptology was explained in [6] and [4].
Then many other formulae for point addition and doubling on Jacobi quartic
curves are given in the literatures, see [11] for a brief development history of
Jacobi quartic curves. Later while pairing computation on Jacobi quartic curves
was proposed by Wang et al. [12] in 2011. A complicated geometric interpretation
of Jacobi quartic curves was given in [12]. They pointed out that the doubling
step of their algorithm for computing Tate pairing was competitive with that
for Weierstrass curves and Edwards curves. However the addition step of Wang
et al.’s algorithm needs to be optimized.

The cost of the algorithm for pairing computation over Jacobi quartic curves
consist three parts: the cost of updating the point, the cost of updating the iter-
ation function, and the cost of evaluating the Miller function at some point Q.
In this paper, we present a geometric interpretation of the group law on Jacobi
quartic curves which is based on the observation that they can be seen as the
intersection of two quadratic surfaces in space. For general elliptic curves given
by intersection of two quadratic surfaces, the geometric interpretation of group
law had been discussed by Merriman et al. in [15]. And we put it into a more
elaborate description for Jacobi quartic curves. Using the geometric interpreta-
tion we construct the Miller function. Then, we present explicit formulae for the
addition step and doubling step in Miller’s algorithm to compute Tate pairing
on Jacobi quartic curves. The Miller function in this paper can reduce the cost
of updating the iteration function in Miller’s algorithm. So, both the addition
step and doubling step of our formulae for pairing computation on Jacobi quar-
tic curve are faster than that proposed by Wang et al. [12]. Finally, to reduce
the cost of evaluating the Miller function on Jacobi quartic curves, we employ
quadratic, quartic or sextic twists to our formulae. The high-twists had been suf-
ficiently studied by Costello, Lange and Naehrig[7] on Weierstrass curves. But
only quadratic and quartic twist had been studied for Jacobi quartic curves in
[12, 10]. We overcome the complexity of sextic twists formulas, and the costs of
substituting in j = 0 case reduce to a third. For twists of degree 4, both the
addition steps and double steps in our formulae for Tate pairing computation on
Jacobi quartic curves are faster than the fastest result on Weierstrass curves. For
twists of degree 6, the addition steps in our formulae for Tate pairing compu-
tation on Jacobi quartic curves are faster than the fastest result on Weierstrass
curves, while the doubling steps are a little slower than the fastest result on
Weierstrass curves.

The remainder of this paper is organized as follows: Section 2 recalls the
preliminaries of Tate pairing and Miller algorithm; the background of Jacobi
quartic curves. Section 3 introduces the geometric interpretation of the group law
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on Jacobi quartic curves. Section 4,5 propose explicit formulae of Tate pairing on
Jacobi quartic curves in. Section 6 shows high-degree twists pairing computation.
Finally we conclude the paper.

Note that we use m and s denote the costs of multiplication and squaring
in the base field Fq; M and S denote the costs of multiplication and squaring
in the extension field Fqk ; mc denotes the cost of multiply by a constant in the
base field.

2 Preliminaries

In this section we briefly review the preliminaries of Tate pairing and the back-
ground of Jacobi quartic curves.

2.1 Tate pairing

Let p > 3 be a prime and Fq be a finite field with q = pn. E is an elliptic
curve defined over Fq with neutral element denoted by O. r is a prime such that
r|#E(Fq). Let k > 1 denote the embedding degree with respect to r, i.e. k is the
smallest positive integer such that r|qk − 1. For any point P ∈ E(Fq)[r], there
exists a rational function fP defined over Fq such that div(fP ) = r(P ) − r(O),
which is unique up to a non-zero scalar multiple. The group of r-th roots of unity
in Fqk is denoted by µr. The reduced Tate pairing is then defined as follows:

Tr : E(Fq)[r]× E(Fqk)→ µr : (P,Q) 7→ fP (Q)(q
k−1)/r.

The rational function fP can be computed in polynomial time by using Miller’s
algorithm ([16]). Let r = (rl−1, · · · , r1, r0)2 be the binary representation of
r, where rl−1 = 1. Let gP1,P2 ∈ Fq(E) be the rational function satisfying
div(gP1,P2) = (P1) + (P2)− (O)− (P1 + P2), where P1 + P2 denotes the sum of
P1 and P2 on E, and additions of the form (P1) + (P2) denote formal additions
in the divisor group. The Miller’s algorithm starts with T = P, f = 1 is written
below as Algorithm 1.

2.2 The Jacobi quartic curves

A Jacobi quartic elliptic curve defined over a finite field Fq is given by the
following equation:

Ea,d : y2 = dx4 + 2ax2 + 1

where d, a ∈ Fq, d 6= 0 and the discriminant4 = 256(a2−d)2 6= 0. In [4], O.Billet
and M.Joye proved that if an elliptic curve defined over Fq has an Fq-point of
order 2 then E is birationally equivalent to a Jacobi quartic curve over Fq.

The projective closure of Ea,d in P2 is

{(X : Y : Z) ∈ P2 : Y 2Z2 = dX4 + 2aX2Z2 + Z4}.
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Algorithm 1 Miller’s algorithm

Ensure: r =
∑l−1

i=0 ri2
i, where ri ∈ {0, 1}. P ∈ E(Fq), Q ∈ E(Fqk ).

return f
(qk−1)/r
r (Q)

1: f ← 1, T ← P
2: for i = l − 2 down to 0 do do
3: f ← f2 · gT,T (Q), T ← 2T
4: if ri = 1 then then
5: f ← f · gT,P (Q), T ← T + P
6: end if
7: end for
8: return f (qk−1)/r

This curve consists of the points (x, y) on the affine curve Ea,d, embedded as
usual into P2 by (x, y) 7→ (x : y : 1), and extra points at infinity, i.e., points
when Z = 0. There is exactly one infinity point, namely Ω = (0 : 1 : 0). This
point is singular.

In fact, the Jacobi quartic curve can be seen as the intersection of two
quadratic surfaces in space. That is, the Jacobi quartic curve can be written
as the form

Ja,d : 2aX2 + Z2 + dW 2 − Y 2 = 0, X2 − ZW = 0. (1)

With the projective coordinates (X : Y : W : Z), the identity element is
represented by the quadruplet O = (0 : 1 : 0 : 1). The negative of (X : Y : W : Z)
is (−X : Y : W : Z).

Dedicated point addition in Ja,d Given P1 = (X1 : Y1 : W1 : Z1) and
P2 = (X2 : Y2 : W2 : Z2) be two different points on E. Let P1 + P2 = (X3 : Y3 :
W3 : Z3), the dedicated point addition is given in [11] as follows:

X3 = (X1Y2 − Y1X2)(W1Z2 − Z1W2),
Y3 = (Y1Y2 − 2aX1X2)(W1Z2 + Z1W2)− 2X1X2(Z1Z2 + dW1W2),
Z3 = (X1Y2 − Y1X2)2,
W3 = (W1Z2 − Z1W2)2

(2)

Without any assumption on the curve constants, Y3 can be alternatively written
as:

Y3 = (W1Z2 + Z1W2 − 2X1X2)(Y1Y2 − 2aX1X2 + Z1Z2 + dW1W2)− Z3.

Dedicated point doubling in Ja,d If P1 = P2, let 2P1 = (X3 : Y3 : W3 : Z3),
the dedicated point doubling is given in [11] as follows:

X3 = 2X1Y1(2Z1
2 + 2aX1

2 − Y12),
Y3 = 2Y1

2(Y1
2 − 2aX1

2)− (2Z1
2 + 2aX1

2 − Y12)2,
Z3 = (2Z1

2 + 2aX1
2 − Y12)2,

W3 = 4X1
2Y1

2

(3)
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3 Geometric interpretation of the group law over Ja,d

To give an elaborate geometric interpretation of the group law on Jacobi quartic
curves, we consider projective planes which are given by homogeneous projective
equations Π = 0. In this paper, we still use the symbol Π to denote projective
planes. In fact, any plane Π intersects Ja,d at exactly four points, counted with
appropriate multiplicities. Although these planes are not functions on Ja,d, their
divisors can be well defined as:

div(Π) =
∑

R∈Π∩Ja,d

nR(R) (4)

where nR is the intersection multiplicity of Π and Ja,d at R. Then the quotient
of two projective planes is a well defined function which gives a principal divisor.
As we will see, this divisor leads to the geometric interpretation of the group
law.

When saying plane Π passes three points P1, P2 and P3(not necessary dis-
tinct), which means Π exactly satisfies div(Π) ≥ (P1) + (P2) + (P3). In fact, by
Riemann-Roch theorem or by explicit discussion on multiplicity, one can prove
that there exists a unique plane which satisfies that inequality. So we may denote
this plane by ΠP1,P2,P3

from now on.

Abel-Jacobi theorem connects the group law with principal divisor. And we
can get the lemma below.

Lemma 1 For quartic Jacobi curve Ja,d with neutral element O = (0 : 1 : 0 : 1).
4 points(not necessary distinct) P1, P2, P3 and P4 satisfy P1 +P2 +P3 +P4 = O
if and only if there is a plane Π with div(Π) = (P1) + (P2) + (P3) + (P4).

Proof. Firstly, it is an easy calculation to get that div(Y − Z − aW ) = 4(O).

Then the ”if” part follows directly: if div(Π) = (P1)+(P2)+(P3)+(P4), the
principal divisor div( Π

Y−Z−aW ) = (P1) + (P2) + (P3) + (P4)− 4(O) is translated
to equation P1 + P2 + P3 + P4 = O by the Abel-Jacobi Theorem.

For the ”only if” part, suppose P1 + P2 + P3 + P4 = O. Consider the plane
ΠP1,P2,P3

, we can assume that div(ΠP1,P2,P3
) = (P1) + (P2) + (P3) + (P ′4), so it

derives P1 + P2 + P3 + P ′4 = O from the ”if” part. Then we get P4 = P ′4, i.e.
div(ΠP1,P2,P3) = (P1) + (P2) + (P3) + (P4). ut

By this lemma, we can easily construct planes to give the group law: The
fourth intersection of ΠP1,O,O and the curve is −P1 i.e. the negative point of P1.
The fourth intersection of ΠP1,P2,O and the curve is −P1 − P2, and its negative
point gives P1 + P2. Actually, this geometric interpretation is parallel with the
tangent and chord law for the cubic plane curves.

The neutral element we chose here is the same with that of [11], so we can
claim that our explicit formulae for in negative point, point addition and point
doubling are equivalent with that of [11].
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4 Miller Function over Ja,d

4.1 Construction of Miler function

In this section we construct the Miller function over Ja,d. Let P1 and P2 be two
points on Ja,d, by Lemma 1 we can get:

div(ΠP1,P2,O) = (P1) + (P2) + (−P1 − P2) + (O)

div(ΠP1+P2,O,O) = (P1 + P2) + 2(O) + (−P1 − P2)

Thus,

div(
ΠP1,P2,O

ΠP1+P2,O,O
) = (P1) + (P2)− (P1 + P2)− (O)

So for addition steps, the Miller function gT,P over Ja,d can be given by setting
P1 = T, P2 = P :

gT,P =
ΠT,P,O

ΠT+P,O,O
(5)

For doubling steps, we set P1 = P2 = T , and the Miller function gT,T over Ja,d
is given as:

gT,T =
ΠT,T,O

Π2T,O,O
(6)

Then the remainder work is to compute the equation of these planes. The
planes we use are of the form CXX+CY (Y −Z)+CWW = 0, because they always
pass through O = (0 : 1 : 0 : 1). Thus we only need to compute CX , CY and
CW . To get a unified description, we use P1, P2 for both addition and doubling
steps, and consider P1 6= P2 and P1 = P2 respectively when necessary. Assume
that P1 = (X1 : Y1 : W1 : Z1), P2 = (X2 : Y2 : W2 : Z2) and P3 = P1 + P2 =
(X3 : Y3 : W3 : Z3).

4.2 Equation of ΠP1,P2,O with P1 6= P2

In the case that P1, P2 and O are pairwise distinct points on Ja,d, by solving
linear equations, we get the coefficients of the plane ΠP1,P2,O as follows:

CX = W1(Z2 − Y2)−W2(Z1 − Y1),
CY = X2W1 −X1W2

CW = X2(Z1 − Y1)−X1(Z2 − Y2)

4.3 Equation of ΠP1,P2,O with P1 = P2

Suppose P1 = P2 6= O. The tangent line to Ja,d at P1 is the intersection of the
tangent planes to 2aX2+Z2+dW 2−Y 2 = 0 andX2−ZW = 0 at P1. The tangent
plane to 2aX2 +Z2 +dW 2−Y 2 = 0 at P1 is 2aX1X+Z1Z+dW1W −Y1Y = 0.
The tangent plane to X2 − ZW = 0 at P1 is 2X1X −W1Z − Z1W = 0. Then
ΠP1,P1,O is of the form:

λ(2aX1X + Z1Z + dW1W − Y1Y ) + µ(2X1X −W1Z − Z1W ) = 0.



7

Note that ΠP1,P1,O passes O, i.e. λ(Z1 − Y1) − µW1 = 0. One can verify that
λ = W1, µ = Z1 − Y1 satisfy the equation. Hence, the equation of ΠP1,P1,O is

W1(2aX1X + Z1Z + dW1W − Y1Y ) + (Z1 − Y1)(2X1X −W1Z − Z1W ) = 0.

Then we can get the coefficients of ΠP1,P1,O as follows:

CX = 2aX1W1 + 2X1(Z1 − Y1),
CY = −Y1W1,
CW = dW 2

1 − Z2
1 + Y1Z1.

4.4 Equation of ΠP3,O,O

Similar with the case above, since ΠP3,O,O passes through the tangent line of
Ja,d at O, it is of the form:

λ(Z − Y )− µW = 0.

For it passes P3, we have λ = −W3, µ = Y3 − Z3, then the equation of ΠP3,O,O

is
W3(Y − Z) + (Z3 − Y3)W = 0.

4.5 Explicit formula of Miller function

We summarize the above results as follows:

Theorem 2 Let Ja,d : 2aX2 +Z2 +dW 2−Y 2 = 0, X2−ZW = 0 be a Jacobi
quartic curve, O = (0 : 1 : 0 : 1). Let P1 = (X1 : Y1 : W1 : Z1), P2 = (X2 : Y2 :
W2 : Z2) be two points on Ja,d. Let P3 = P1 + P2 = (X3 : Y3 : W3 : Z3). Then
the Miller function gP1,P2(X,Y,W,Z) which satisfies

div(gP1,P2) = (P1) + (P2)− (P3)− (O)

is of the form:

gP1,P2(X,Y,W,Z) =
ΠP1,P2,O

ΠP3,O,O
=
CXX + CY (Y − Z) + CWW

W3(Y − Z) + (Z3 − Y3)W
.

In the case P1 6= P2, the coefficients are given by

CX = W1(Z2 − Y2)−W2(Z1 − Y1)
CY = X2W1 −X1W2

CW = X2(Z1 − Y1)−X1(Z2 − Y2).

If P1 = P2, the coefficients are given by

CX = 2aX1W1 + 2X1(Z1 − Y1)
CY = −Y1W1

CW = dW 2
1 − Z2

1 + Y1Z1.



8

5 Tate pairing computation on Ja,d using projective
coordinates

In this section, we analysis steps in Miller’s algorithm explicitly. For an addition
step or doubling step, as is shown in Algorithm 1, each addition or doubling
steps consist of three parts: computing the point T + P or 2T and the function
gT,P or gT,T , evaluating gT,P or gT,P at Q, then updating the variable f by
f ← f · gT,P (Q) or by f ← f2 · gT,T (Q).

The updating part, as operation in Fqk , costs 1M for addition step and
1M + 1S for doubling step. It is usually the main cost, but with little room
for optimization in one step. For the evaluating part, some standard methods
such as denominator elimination and subfield simplification can be used, as we
introduce below.

We assume that embedding degree k is even. Let δ be a generator of Fqk over
Fqk/2 with δ2 ∈ Fqk/2 . Suppose Q′ = (X0 : Y0 : W0 : Z0) ∈ Jaδ2,dδ4(Fqk/2), we
can see that Q = (δX0 : Y0 : δ2W0 : Z0) ∈ Ja,d(Fqk). If P3 = P1 + P2 6= O, for
evaluation of gP1,P2

(Q), we have

gP1,P2(Q) =
ΠP1,P2,O(Q)

ΠP3,O,O(Q)

=
CXδX0 + CY (Y0 − Z0) + CW δ

2W0

W3(Y0 − Z0) + (Z3 − Y3)δ2W0

=
CX

X0

Y0−Z0
δ + CY + CW

W0δ
2

Y0−Z0

W3 + (Z3 − Y3) W0δ2

Y0−Z0

∈ (CXθδ + CY + CW η)F∗qk/2 ,

where θ = X0

Y0−Z0
and η = W0δ

2

Y0−Z0
. Note that θ, η ∈ Fqk/2 and they are fixed

during the whole computation, so they can be precomputed. The coefficients
CX , CY and CW are in Fq, thus the evaluation at Q given the coefficients of the
plane can be computed in km (multiplications by θ and η need k

2m each).

The computation of the coordinates of points and the coefficients of planes,
as a part of much variety, is discussed respectively for addition and doubling
step as follows.

5.1 Addition step

Let P1 = T and P2 = P be distinct points. By Theorem 2 and formulas (2),
the explicit formulas for computing P3 = T + P and CX , CY , CW are given as
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follows:

A = X1 ·X2; B = Y1 · Y2; C = Z1 · Z2; D = W1 ·W2;
E = (X1 − Y1) · (X2 + Y2)−A+B;
F = W1 · Z2; G = W2 · Z1

H = (Y1 −W1) · (Y2 +W2)−B +D;
I = (X2 −W2) · (X1 +W1)−A+D;
J = (X2 + Z2) · (X1 − Z1)−A+ C;
Z3 = E2; X3 = E · (F −G);
Y3 = (F +G− 2A) · (B − 2aA+ C + dD)− Z3;
CX = H + F −G; CY = I; CW = E − J ;

The coordinate W3 is not computed in this step, because it is not used
in the following doubling step. Then the total costs of computing T + P and
CX , CY , CW is 12m+ 1s+ 2mc, where 2mc are multiplication by a and d. Since
P is fixed during pairing computation, we can use the mixed addition which
means Z2 = 1, then the costs reduce to 10m + 1s + 2mc.

So the total costs of an addition step are 1M+ (k+ 12)m+ 1s+ 2mc, while
a mixed addition step costs 1M + (k + 10)m + 1s + 2mc.

5.2 Doubling step

From Theorem 2, for P1 = P2 = T , P3 = 2T , we have:

CX = 2aX1W1 + 2X1(Z1 − Y1)
CY = −Y1W1

CW = dW 2
1 − Z2

1 + Y1Z1

In order to exclude W1, we multiply the coefficients by 2Y1Z1, and get:

C ′X = 2X1Y1(Y 2
1 − 2Y1Z1) + 2X1Y1(2Z2

1 + 2aX2
1 − Y 2

1 )
C ′Y = −2X2

1Y
2
1

C ′W = −2Y1Z1(2Z2
1 + 2aX2

1 − Y 2
1 ) + 2Y 2

1 Z
2
1

Now the explicit formulas for computing 2P and C ′X , C
′
Y , C

′
W are given as

follows:

A = X2
1 ; B = Y 2

1 ; C = Z2
1 ; D = aA; E = 2C + 2D −B;

F = (X1 + Y1)2 −A−B; G = (Y1 + Z1)2 −B − C;
Z3 = E2; W3 = F 2; X3 = ((E + F )2 − Z3 −W3)/2;
Y3 = 2B · (B − 2D)− Z3; C ′X = F · (B −G) +X3;
C ′Y = −W3/2; C ′W = ((G− E)2 − Z3)/2.

The total costs are 2m+ 9s+ 1mc, where 1mc is multiplication by a. Hence,
a doubling step costs 1M + 1S + (k + 2)m + 9s + 1mc.

For doubling step (DBL), mixed addition step (mADD) and addition step
(ADD), we compare the costs of pairing computation on Jacobi curves in [12]
and on twisted Edwards curves [1] in the following table.
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DBL mADD ADD

Edwards [1] 6m + 5s + 2mc 12m + 1mc 14m + 1mc

Jacobi quartic [12] 4m + 8s + 1mc 16m + 1s + 4mc 18m + 1s + 4mc

This paper 2m + 9s + 1mc 10m + 1s + 2mc 12m + 1s + 2mc

6 High Twisted Pairing

Let d|k, an elliptic curve E′ over Fqk/d is called a twist of degree d of E/Fqk/d if
there is an isomorphism ψ : E′ → E defined over Fqk , and this is the smallest ex-
tension of Fqk/d over which ψ is defined. Depending on the j-invariant j(E) of E,
there exist twists of degree at most 6, since char(Fq) > 3. Pairing friendly curves
with twists of degree higher than 2 arise from constructions with j-invariants
j(E) = 0 and j(E) = 1728.

6.1 Jacobi quartic curve with j = 1728

The Jacobi quartic curve J0,d : Y 2 = dW 2 +Z2, X2 = ZW has j-invariant equal
to 1728, hence, there exist twists of degree 4.

Assume that 4|k. Let δ be a generator of Fqk over Fqk/4 and δ4 ∈ Fqk/4 , which
implies δ2 ∈ Fqk/2 . Suppose Q′ = (X0 : Y0 : W0 : Z0) ∈ J0,dδ4(Fqk/4), we can get
Q = (δX0 : Y0 : δ2W0 : Z0) ∈ J0,d(Fqk).

Theorem 2 shows us the explicit formulae of Miller function gP1,P2
, then we

can get:

gP1,P2(Q) =
ΠP1,P2,O(Q)

ΠP3,O,O(Q)

=
CXδX0 + CY (Y0 − Z0) + CW δ

2W0

W3(Y0 − Z0) + (Z3 − Y3)δ2W0

=
CX

X0

Y0−Z0
δ + CY + CW

W0

Y0−Z0
δ2

W3 + (Z3 − Y3) W0

Y0−Z0
δ2

∈ (CXθδ + CY + CW ηδ
2)F∗qk/2 ,

where θ = X0

Y0−Z0
and η = W0

Y0−Z0
. Note that θ, η ∈ Fqk/4 and they are fixed

during the whole computation, so they can be precomputed. The coefficients
CX , CY and CW are in Fq, thus the evaluation at Q given the coefficients of the
plane can be computed in k

2m (multiplications by θ and η need k
4m each).

The high twist not only reduces the cost of evaluating g(Q) but also the
cost of updating f , which is the main multiplication in Miller’s algorithm as a
multiplication in Fqk . Consider Fqk as an Fqk/4-vector space with basis 1, δ, δ2, δ3.
Then an arbitrary element α ∈ Fqk can be denoted as a0 + a1δ + a2δ

2 + a3δ
3

with ai ∈ Fqk/4 , i = 0, 1, 2, 3. And the reduced value of g(Q) we’ve gotten above
can be denoted as β = b0 + b1δ + b2δ

2, where b0 ∈ Fq and b1, b2 ∈ Fqk/4 . When

using the Schoolbook method, multiplying α by β costs 4 · k4m for computing
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ai · b0, i = 0, 1, 2, 3 and costs 8(k4 )2m for ai · b1 and ai · b2. The total cost

(k
2

2 + k)m equals to ( 1
2 + 1

k )M, considering that a general multiplication in Fqk
costs M = k2m. Namely the quartic twist may reduce the cost of the main
multiplication in Miller’s algorithm to (1

2 + 1
k )M.

Addition step: Using the algorithm in section 5.1, 1mc can be saved for a = 0.
Hence, a addition step in Miller’s algorithm costs ( 1

2+ 1
k )M+(k2+12)m+1s+1mc,

and a mixed addition step in Miller’s algorithm costs ( 1
2 + 1

k )M + (k2 + 10)m +
1s + 1mc, where 1mc is multiplication by d.
Doubling step: Using the algorithm in section 5.1, we compute X1Y1 instead
of computing A = X2

1 and F = (X1 + Y1)2 −A−B since a = 0 led to D = 0 in
algorithm. Furthermore, 1mc can be saved for a = 0. Hence a doubling step in
Miller’s algorithm costs ( 1

2 + 1
k )M + 1S + (k2 + 2)m + 8s.

6.2 Jacobi quartic curves with j = 0

The Jacobi quartic curve Ea,d : y2 = dx4 + 2ax2 + 1 has j-invariant ja,d =
16(4a2+12d)3

d(a2−4d)2 . Hence, ja,d = 0 if and only if a2 + 3d = 0. Now we look into the

Jacobi quartic curve

Ea,−a2/3 : y2 = −a
2

3
x4 + 2ax2 + 1

which has j-invariant equal to 0, hence, there exist twists of degree 6.

Lemma 3 Assume that 6|k, δ is a generator of Fqk over Fqk/6 with δ6 ∈ Fqk/6 ,
which implies δ2 ∈ Fqk/2 and δ3 ∈ Fqk/3 . Then the Weierstrass elliptic curve

Wa : v2 = u3 +
64a3

27
δ6

is a twist of degree 6 over Fqk/6 of Ea,−a2/3. The isomorphism can be given as

ψ : Wa −→ Ea,−a2/3

(u, v) 7−→ (x, y) =

(
6uδ + 8aδ3

3v
,

3u− 2aδ2

6δ2
(
6uδ + 8aδ3

3v
)2 − 1

)
.

Proof. Firstly, we check that ψ is well defined, i.e. ψ(u, v) ∈ Ea,−a2/3. Note that

y =
3u− 2aδ2

6δ2
(
6uδ + 8aδ3

3v
)2 − 1 = (

vx

4δ3
− a)x2 − 1

so

y + 1 + ax2 =
vx3

4δ3

=
2

v2
(u+

4aδ2

3
)3

=
2

v2
(u3 +

64a3δ6

27
) +

8aδ2

v2
(u+

4aδ2

3
)2 − 32a2δ4

3v2
(u+

4aδ2

3
)

= 2 + 2ax2 − 16a2δ3

3v
x
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Then we have

(y + 1 + ax2)(y − 1− ax2) = −vx
3

4δ3
16a2δ3

3v
x = −4a2

3
x4,

y2 = −a
2

3
x4 + 2ax2 + 1.

Moreover, it can be easily checked that ψ is invertible and satisfies ψ(O) = O,
i.e. ψ is an isomorphism. Besides, the minimal field that ψ can be defined over
is Fqk which has degree 6 over Fqk/6 . Hence, the twist degree is 6. ut

For Q′ ∈ Wa(Fqk/6), we have (xQ, yQ) = ψ(Q′) ∈ Ea,−a2/3(Fqk). Then its
corresponding point Q ∈ Ja,−a2/3(Fqk) can be given as (XQ : YQ : WQ : ZQ) =
(xQ : yQ : x2Q : 1). One can check by substitution that:

XQ

YQ − ZQ − aWQ
=

xQ
yQ − 1− ax2Q

= −
yQ + 1 + ax2Q

4
3a

2x3Q
= − 3v

16a2δ3

WQ

YQ − ZQ − aWQ
=

x2Q
yQ − 1− ax2Q

= − 3u

8a2δ2
− 1

2a

YQ − ZQ
YQ − ZQ − aWQ

= 1− aWQ

YQ − ZQ − aWQ
=

3u

8aδ2
+

1

2

For θ = 3v
8a and η = 3u

4a , we have

XQ

YQ − ZQ − aWQ
= − 1

2a
θδ−3

WQ

YQ − ZQ − aWQ
= − 1

2a
ηδ−2 − 1

2a

YQ − ZQ
YQ − ZQ − aWQ

= −1

2
ηδ−2 +

1

2

with θ, η ∈ Fqk/6 . Then for the evaluation of gP1,P2(Q) with P3 = P1 + P2 6= O,
we get

gP1,P2
(Q) =

ΠP1,P2,O(Q)

ΠP3,O,O(Q)

=
CXXQ + CY (YQ − ZQ) + CWWQ

W3(YQ − ZQ) + (Z3 − Y3)WQ

=
CX

XQ

YQ−ZQ−aWQ
+ CY

YQ−ZQ

YQ−ZQ−aWQ
+ CW

WQ

YQ−ZQ−aWQ

W3
YQ−ZQ

YQ−ZQ−aWQ
+ (Z3 − Y3)

WQ

YQ−ZQ−aWQ

=
−CX 1

2aθδ
−3 + CY (− 1

2ηδ
−2 + 1

2 )− CW ( 1
2aηδ

−2 + 1
2a )

W3(− 1
2ηδ
−2 + 1

2 )− (Z3 − Y3)( 1
2aηδ

−2 + 1
2a )

=
−CXθδ − (aCY + CW )ηδ2 + (aCY − CW )δ4

(−aW3 + Y3 − Z3)ηδ2 + (aW3 − Z3 + Y3)δ4

∈ (−CXθδ − (aCY + CW )ηδ2 + (aCY − CW )δ4)F∗qk/2 .
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So we can reduce gP1,P2
(Q) to the representative in the last line. Moreover

we may precompute θ and η since they are fixed during the whole computation.
When CX , CY , CW ∈ Fq and θ, η ∈ Fqk/6 are given, the evaluation at Q can

be computed in k
3m + mc, with k

6m each for multiplications by θ and η and a
constant multiplication by a.

Similarly with the j = 1728 case, consider Fqk as an Fqk/6-vector space
with basis 1, δ, δ2, . . . , δ5. Then an arbitrary element α ∈ Fqk can be denoted as
a0 + a1δ + a2δ

2 + . . . + a5δ
5 with ai ∈ Fqk/6 , i = 0, 1, . . . , 5. And the reduced

g(Q) we’ve gotten above can be denoted as β = b0 + b3δ
3 + b4δ

4, where b0 ∈ Fq
and b3, b4 ∈ Fqk/6 . When using the Schoolbook method, multiplying α by β

costs 6 · k6m for computing ai · b0, i = 0, 1, 2, 3 and costs 12(k6 )2m for ai · b3 and

ai · b4. The total cost (k
2

3 + k)m equals to ( 1
3 + 1

k )M, considering that a general
multiplication in Fqk costs M = k2m. Namely the sextic twist may reduce the
cost of the main multiplication in Miller’s algorithm to ( 1

3 + 1
k )M.

Special simplification has not been found for this case. Hence, we use the
algorithm in section 5.1. Then the total cost of addition step using mixed addition
is ( 1

3 + 1
k )M+ (k3 + 10)m+ 1s+ 3mc, where 3mc are multiplication by a, a and

d, and the total cost of doubling step is ( 1
3 + 1

k )M + S + (k3 + 2)m + 9s + 2mc,
where 2mc are both multiplication by a.

6.3 Comparisons

The following table shows the concrete comparison with previous results on
elliptic curves with high-twist. We denote twisted degree by td. So these expenses
in the following table.

DBL mADD ADD

y2 = x3 + ax, td = 4 [7] ( k
2

+ 2)m + 8s + 1mc ( k
2

+ 9)m + 5s ( k
2

+ 12)m + 7s

y2 = x3 + c2, td = 6 [7] ( k
3

+ 3)m + 5s ( k
3

+ 10)m + 2s + 1mc ( k
3

+ 14)m + 2s + 1mc

y2 = x3 + b, td = 6 [7] ( k
3

+ 2)m + 7s + 1mc ( k
3

+ 10)m + 2s ( k
3

+ 14)m + 2s

y2 = dx4 + 1, td = 4 [10] ( k
2

+ 3)m + 7s + 1mc ( k
2

+ 12)m + 7s + 1mc ( k
2

+ 12)m + 11s + 1mc

td = 4 this paper §6.1 ( k
2

+ 2)m + 8s ( k
2

+ 10)m + 1s + 1mc ( k
2

+ 12)m + 1s + 1mc

td = 6 this paper ( k
3

+ 2)m + 9s + 2mc ( k
3

+ 10)m + 1s + 3mc ( k
3

+ 12)m + 1s + 3mc

7 Conclusion

In this paper, we present a elaborate geometric interpretation of the group law on
Jacobi quartic curves which is seen as the intersection of two quadratic surfaces
in space. Using the geometric interpretation we construct the Miller function.
Then, we present explicit formulae for the addition step and doubling step in
Miller’s algorithm to compute the Tate pairing on Jacobi quartic curves. Finally,
we present efficient formulas for Jacobi quartic curves with twists of degree 4 or
6.
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The Miller function in this paper can help to reduce the cost of updating the
iteration function in Miller’s algorithm. So, both the addition step and doubling
step of our formulae for pairing computation on Jacobi quartic curve are faster
than that proposed by Wang et al.[12]. The high-twists can help to reduce the
cost of evaluating the Miller function on Jacobi quartic curves. For twists of
degree 4, both the addition steps and double steps in our formulae for Tate
pairing computation on Jacobi quartic curves are faster than the fastest result
on Weierstrass curves. For twists of degree 6, the addition steps in our formulae
for Tate pairing computation on Jacobi quartic curves are faster than the fastest
result on Weierstrass curves, while the doubling steps are a little slower than the
fastest result on Weierstrass curves.
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