
Biclique Cryptanalysis Of PRESENT, LED, And KLEIN
Revision 2013-05-20

Farzaneh Abed, Christian Forler, Eik List, Stefan Lucks, Jakob Wenzel

Bauhaus-Universität Weimar, Germany
{firstname.lastname}@uni-weimar.de

Abstract. In this paper, we analyze the resistance of the lightweight ciphers PRESENT, LED, and
KLEIN to biclique attacks. Primarily, we describe attacks on the full-round versions PRESENT-80,
PRESENT-128, LED-64, LED-128, KLEIN-80, and KLEIN-96. Our attacks have time complexities of
279.49, 2127.32, 263.58, 2127.42, 279.00, and 295.18 encryptions, respectively. In addition, we consider attacks
on round-reduced versions of PRESENT and LED, to show the security margin for which an adversary
can obtain an advantage of at least a factor of two compared to exhaustive search.

Keywords: PRESENT, LED, KLEIN, lightweight block cipher, independent biclique, matching-with-pre-
computations

1 Introduction

Biclique cryptanalysis. Biclique cryptanalysis is a rather young generic technique that was introduced
by Khovratovich et al., first in 2011 [18], and later presented at the FSE 2012 [19]. Hereby, a biclique is a
complete bipartite graph, where every element in a set of starting states is connected with every element in
a set of ending states. In the context of cryptanalysis, every path in such a graph represents the encryption
under a unique key over some steps of a primitive. If the paths do not share active non-linear components,
then a biclique allows an adversary to test a set of key candidates very efficiently, which can be used to
reduce the effort or to extend the number of steps in a meet-in-the-middle (MitM) or similar attack.
While their first applications targeted hash functions [18,19], bicliques have proven to be well-suited also
for key-recovery attacks on block ciphers. In June 2011, Bogdanov et al. adapted the approach for their
analysis of the AES. Their work received a high level of attention, since it showed the first attacks on full
versions of the cipher in the single-key model [17,4]. Since then, biclique-based key-recovery attacks have
been successfully applied to a variety of ciphers, including SQUARE, HIGHT, Piccolo, ARIA-256, L-Block,
TWINE, IDEA, KLEIN-64, and mCrypton [1,9,7,13,16,20,24,26,27], all of these works being the first attacks
on full-round versions of these ciphers.

Bicliques for bruteforce-like cryptanalysis. When there exists a MitM attack over the rounds not
covered by a biclique, then an adversary can gain almost the same advantage as from the MitM attack.
However, if there is no MitM attack available, one can still combine a biclique with an optimized bruteforce-
like cryptanalysis, i.e., testing all keys over the remaining rounds; a technique which was introduced by
Bogdanov et al. in [17,4] and which was essential to cover the full number of rounds in their attacks on the
AES. Following this approach, the adversary precomputes and stores a number of computations and later
re-uses the stored values to lower the total effort. As a consequence, the advantage for the adversary is rather
low. The results mentioned above have gained a factor between 0.5 and 8. Moreover, since this approach is
generic, it can be applied to any primitive and any number of rounds. Thus, a successfully mounted attack
does not allow a cryptanalyst to identify cipher-specific weaknesses (cf. Wei et al. [28]). Thus, there is an
ongoing debate on how to rate the importance of bruteforce-like cryptanalysis. Wei et al. stress that even
small advantages can still be helpful for practical attacks, which applies to ciphers with a key length of 64-80
bits. For larger key lengths, such minor improvements were only of academic interest. We share this point



of view; however, we generalize that biclique-based bruteforce-like cryptanalysis is an effective method to
establish a new lower security margin for ciphers.

PRESENT. PRESENT is a 64-bit ultra-lightweight cipher that was proposed by Bogdanov et al. in 2007
[5] and is now standardized in the ISO/IEC Standard 29192-2. In their proposal, the designers described
two versions of PRESENT; a recommended variant, which employs an 80-bit key (PRESENT-80), and a
less important version with a 128-bit key (PRESENT-128). In 2008, Wang demonstrated a first differential
analysis of a 16-round version of PRESENT, which had a time complexity equivalent to 265 encryptions
[25]. Later that year, Albrecht and Cid presented a combined differential-algebraic attack on 19 rounds
with a time complexity equivalent to 2113 encryptions [2]. To the best of our knowledge, the previously
most powerful attack on PRESENT without exhaustive components is the work of Cho [8], which allows to
distinguish 25 rounds of PRESENT-80 from a random permutation. In the same work, the author proposed
an additional attack on 26 rounds, which, in our opinion, is not a stronger analysis, since it requires the entire
codebook. A few weeks after our initial publiciation of this work, Jeong et al. [15] published biclique-based
bruteforce-like attacks on LED, PRESENT and Piccolo, which are similar to ours. Considering PRESENT,
their attacks provide an extremely low advantage for the adversary, of 0.24 bits for PRESENT-80 and 0.19
bits for PRESENT-128.

LED. LED is a family of AES-like lightweight ciphers that was designed by Jian et al. in 2011 [12]. It
supports arbitrary key lengths between 64 and 128 bits, where the two most-relevant versions are LED-64
and LED-128. In their security analysis, the designers of LED claimed that the best probabilistic differential
attacks on LED could cover only 15 out of 32 rounds for the 64-bit and 27 out of 48 rounds for the 128-
bit version. In [14], Isobe and Shibutani proposed a splice-and-cut attack on eight rounds of LED-64 with
a computational complexity equivalent to 256 encryptions. In the same work, the authors applied another
splice-and-cut analysis on 16 rounds of LED-128 which required 2112 encryptions. Mendel et al. analyzed
differential properties of LED and published related-key attacks on up to 16 rounds of LED-64 and up to
24 rounds of LED-128 [21]. At the FSE 2013, Nikolic et al. presented key-recovery attacks on up to eight
rounds of LED-64 and 24 rounds of LED-128 (note, that we consider only the single-key model here), as well
as chosen-key distinguishers on up to 16 rounds of LED-64 and up to 40 rounds of LED-128. Like it is the
case for PRESENT, the best – when considering the number of covered rounds – previous attacks on LED
in the single-key model are due to Jeong et al. [15], who describe an analysis of 29 rounds of LED-64 and
45 rounds of LED-128. Both results provide an advantage of about 0.5 bits. While the authors also consider
an attack on full LED-128, we do not consider this as an attack, since it requires the full codebook.

KLEIN. Like LED, KLEIN is a family of AES-like lightweight block ciphers which was proposed by Gong,
Nikova and Law at the RFIDSec 2011 [11]. The cipher has a 64-bit state and supports key lengths of 64,
80, or 96 bits. The best attacks on KLEIN before 2013 were published by Yu et al. [29], who proposed
integral attacks on up to eight out of 12 rounds of KLEIN-64, and by Aumasson et al., who presented a
practical distinguishing attack and several key-recovery attacks on up to eight rounds of this version. The
best recent attack is due to Ahmadian et al., who published two biclique-based attacks on full KLEIN-64
with workloads of 262.84 and 262.81 encryptions and data complexities of 239 and 243 chosen plaintexts,
respectively. So, since the security of KLEIN-64 has already been analyzed, we only considered the versions
KLEIN-80 and KLEIN-96 in this work.

Contribution. In this paper, we describe our cryptanalytic results of biclique attacks on full PRESENT-
80, PRESENT-128, LED-64, LED-128, KLEIN-80, and KLEIN-96. In addition, we give short descriptions of
attacks on reduced versions of PRESENT, LED, and KLEIN-96 in order to illustrate the number of rounds
required to obtain at least an advantage factor of two compared to a trivial exhaustive search. Our results
are the best attacks on these ciphers in the single-key model regarding the number of rounds covered and

2



Primitive Attack type Rounds Time Data Memory Reference

PRESENT-80/-128

Differential 16 265 264 6 · 229 [25]
Diff. + Algebraic 19 2113 - - [2]
Saturation 24 257 257 218 [10]
Linear 24 - 263.5 - [23]
Linear 25 265 262.4 234 [8]
Linear 26 272 264 234 [8]

PRESENT-80
Biclique 17 278.76 225 234.6 Sec. 4.5
Biclique 31 (full) 279.76 223 27 [15]
Biclique 31 (full) 279.49 225 234.6 Sec. 4

PRESENT-128
Biclique 19 2126.86 223 234.6 Sec. 5.5
Biclique 31 (full) 2127.81 219 26 [15]
Biclique 31 (full) 2127.32 223 234.6 Sec. 5

LED-64

Splice-and-cut 8 256 28 211 [14]
Differential 8 256 211 211 [22]
Biclique 16 262.95 28 211 Sec. 7.5
Biclique 29 263.58 240 211 [15]
Biclique 32 (full) 263.58 28 211 Sec. 7

LED-128

Splice-and-cut 16 2112 216 211 [14]
Differential 16 296 232 235 [22]
Differential 24 2124.4 259 262 [22]
Biclique 32 2126.99 28 211 Sec. 8.5
Biclique 45 2127.45 232 211 [15]
Biclique 48 (full) 2127.37 264 211 [15]
Biclique 48 (full) 2127.42 28 211 Sec. 8

KLEIN-64

Integral 7 - - - [29]
Differential 8 246.80 232 - [29]
Differential 8 235 235 - [3]
Biclique 12 (full) 262.84 239 27.5 [1]
Biclique 12 (full) 262.81 243 27.5 [1]

KLEIN-80
Integral 8 - - - [29]
Biclique 16 (full) 279.00 248 260 Sec. 10

KLEIN-96
Biclique 16 295.00 232 260 Sec. 11
Biclique 20 (full) 295.18 232 260 Sec. 11

Table 1. Best previously published attacks on PRESENT, LED, and KLEIN in the single-key model. Memory
complexity is given in bytes, -: not given.

the computational complexity at the time of writing this paper. A comparison of previous works and our
results is given in Table 1.

Outline. First, in Section 2, we recap the general details of independent-biclique cryptanalysis. Section 3
then provides the details of PRESENT, before we give a description of our attacks on PRESENT-80 and -128
in the Sections 4 and 5. Similarly, in Section 6, we first review the necessary details of LED, before Sections 7
and 8 explain our attacks on LED-64 and -128. Next, we have a short look on KLEIN in Section 9, and show
attacks on full KLEIN-80 and KLEIN-96 in Sections 10 and 11. We conclude our paper in Section 12.

3



Revised aspects. In this version, we take care of the helpful comments we were given by the reviewers of
the initial version of this paper. In our previous attacks, we had constructed bicliques over as many rounds
as possible, which resulted in attacks with relatively high number of 256 and 264 required chosen plaintexts
for LED-64 and LED-128, as well as 260 and 244 chosen plaintexts for PRESENT-80 and PRESENT-128,
respectively. We re-constructed our bicliques in order to reduce the number of plaintexts which have to be
collected by the adversary. In our attacks on LED, we could reduce the numbers to 28; for PRESENT, we
could achieve 225 and 223 for PRESENT-80 and PRESENT-128.
Furthermore, concerning LED, we had mounted attacks on reduced versions without the wrapping key
additions. Since the key injection is located after every fourth round, our reviewers pointed out the necessity
of considering only attacks on full steps, i.e., 4-round intervals which include the wrapping key additions to
be comparable to previous works. We revised our attacks on LED accordingly.

2 Biclique Cryptanalysis

In this section, we give a brief overview on biclique cryptanalysis based on the descriptions by Bogdanov et
al. [4].

2.1 Definition

A biclique is a complete bipartite graph which connects every element in a set of starting states S with every
element in a set of ending states C. We represent the elements in S by Sj , and those in C by Ci. A path
from Sj to Ci represents the encryption under some key K[i, j] over some sub-cipher B. The 3-tuple of sets
[{Sj}, {Ci}, {K[i, j]}] is called a d-dimensional biclique, if

∀i, j ∈ {0, . . . , 2d − 1} : Sj
K[i,j]←−−→
B

Ci.

As a generalization, note that the sets S and C do not need to have identical numbers of elements. Then, we
call the 3-tuple of sets [{Sj}, {Ci}, {K[i, j]}] a (d1, d2)-dimensional (asymmetric) biclique, if

∀i ∈ {0, . . . , 2d1 − 1},∀j ∈ {0, . . . , 2d2 − 1} : Sj
K[i,j]←−−→
B

Ci.

In the following, we regard the simple case of a d-dimensional biclique. Assume, an adversary is given a
cipher E, on which she wants to mount a biclique-based attack. First, she divides the secret-key space into
2k−2d subspaces of 22d keys each, where k denotes the key length and d the dimension of the used bicliques.
Further, she defines a splitting E = B ◦ E2 ◦ E1, where E1 is the subcipher that maps a plaintext P to an
internal state v, E2 maps v to another internal state S and B maps the state at S to the ciphertext C:

P
E1−−→ v

E2−−→ S
B−→ C.

The adversary can construct a biclique over an arbitrary part of the cipher and can use a meet-in-the-middle
or a bruteforce-like procedure to compute the remaining parts. Note, that she needs to have access to only
either an encryption or decryption oracle to obtain plaintext-ciphertext pairs. This setting is illustrated in
Figure 1 for a biclique over the last part of the cipher.
Bogdanov et al. introduced two different paradigms of bicliques for cryptanalysis: independent bicliques,
which can be constructed with low effort, but cover only a small number of rounds, and long bicliques, which
can potentially cover more rounds, but are harder to construct. In the following, we focus on the former
approach.

4



P C

v

Oracle

E (k ,P )1 f E (k ,S )2
–1

b

Sj

ii

ji

Fig. 1. MitM attack with a biclique at the end of the cipher.

2.2 Biclique Construction

Independent bicliques allow the construction of bicliques over some subcipher B from two differentials. The
adversary chooses a so-called base computation, i.e., a 3-tupel {S0, C0,K[0, 0]}, where the key K[0, 0] maps
the internal state S0 to the ciphertext C0:

S0
K[0,0]−−−−→
B

C0.

Then, she searches for 2d forward differentials ∆i, which connect the state S0 with the ciphertexts Ci,

S0
K[0,0]⊕∆K

i−−−−−−−→
B

C0 ⊕∆i = Ci,

and similarly, for 2d backward differentials ∇j , which connect the ciphertext C0 with the states Sj :

Sj = S0 ⊕∇j
K[0,0]⊕∇K

j←−−−−−−−
B−1

C0.

If the trails of all ∆i-differentials do not share active non-linear operations with any of the ∇j-differentials,
then, there exists an encryption path connecting any of the 2d input differences ∇j with any of the 2d output
differences ∆i. Thus, we obtain a set of 22d independent (∆i,∇j)-differential trails:

S0 ⊕∇j
K[0,0]⊕∆K

i ⊕∇
K
j←−−−−−−−−−−→

B
C0 ⊕∆i ∀i, j ∈ {0, . . . , 2d − 1}.

2.3 Matching-with-Precomputations

Khovratovich et al. introduced matching-with-precomputations as an effective technique to perform a match-
ing on the parts not covered by the biclique. For this approach, an adversary first chooses an internal state
v which splits the remaining parts into the sub-ciphers E1 and E2. Then, she precomputes and stores 2d

values −→vi,0 in forward direction from the plaintext P to v, and 2d values←−v0,j in backward direction from each
of the starting states Sj :

Pi
K[i,0]−−−−→
E1

−→vi,0, and ←−v0,j
K[0,j]←−−−−
E−1

2

Sj .

For all 22d − 2d further computations

Pi
K[i,j]−−−−→
E1

−→vi,j , and ←−vi,j
K[i,j]←−−−−
E−1

2

Sj ,

the adversary has to recompute only those parts of the key schedule and the round transformation that
differ from the stored values. By using this method, the computational effort for matching can be reduced
significantly compared to an exhaustive search. A further reduction is possible by matching only in a part
of the state at v (partial matching).

5



2.4 Complexity Calculations

For every biclique, the adversary tests 22d keys. Hence, it needs to construct 2k−2d bicliques to cover the full
key space. Concerning the time complexity, [4] proposed the equation

Cfull = 2k−2d (Cbiclique + Cdecrypt + Cprecomp + Crecomp + Cfalsepos) , (1)

where
– Cbiclique denotes the costs for computing 2 · 2d trails over B,
– Cdecrypt is the complexity of the oracle to decrypt 2d ciphertexts,
– Cprecomp represents the effort for 2d computations of E2 ◦ E1 to determine ←−v0,j and −→vi,0.
– Crecomp describes the costs of recomputing 22d values ←−vi,j and −→vi,j , and
– Cfalsepos is the complexity to eliminate false positives.

The full computational effort of the attack is dominated by the recomputations. The memory requirements
are upper bounded by storing 2d intermediate states vi,j . Note, that in attacks with a low data complexity,
it can be appropriate to ask and store all required plaintext-ciphertext pairs in advance, so that Cdecrypt
becomes a negligible term in the full time complexity.

2.5 Sieve-in-the-Middle

The number of rounds covered by a MitM or a biclique-based attack can be further extended by precomputing
a number of steps near the matching state, as announced by Canteaut et al. [6]. Prior to an attack, the
adversary creates a precomputation table for the possible transitions through some sub-cipher S in the
middle of a given cipher. In the MitM attack, instead of matching by computing the same bits of a matching
state from both directions, the adversary can already stop at the input and output steps of S, and use the
precomputed table to look, if inputs and outputs produce a valid transition to sieve out false keys. Thus, this
procedure transforms the search for collisions at a certain matching point into the search for valid transitions.
Assume, we are given an m ×m-S-box, i.e., inputs and outputs have a state length of m bit. We say that
a transition through the S-box exists with a probability p. Further, we denote by nin the number of fixed
known input bits, by nout the number of known output bits, then, there exist at most 2m−nin values for the
output bits. The probability p for a valid transition is then given by

p ≤ 2m−nin

nout
.

To have an effective sieve, the adversary requires to have an a-priori probability of p < 1. Thus, we require
nin + nout > m.

S

n in

n out

k unknown

Fig. 2. Sieve in the middle. Colored trails indicate known, black trails unknown bits.

If the sieve considers key bits, which we denote by ks, the number of unknown key bits has to be taken into
account as a further parameter. If one denotes by kunknown the number of unknown key bits in a sieve, one
obtains 2nin+nout−m−kunknown bits for sieving.

6



3 Brief Description Of PRESENT

3.1 Round Transformation

PRESENT is a 64-bit lightweight cipher which transforms the state in 31 rounds of a substitution-permutat-
ion network. After the final round, the state is XORed with a post-whitening round key to generate the
ciphertext. Every round consists of three operations: a key addition with a round key (AK), a non-linear
substitution layer (SL) and a permutation layer (PL), as shown in Figure 3 (cf. [5]).

0 16 32 48 64

S S S S S S S S S S S S S S S S

ki

Fig. 3. Round structure in PRESENT. Each trail represents a bit.

3.2 Key Schedule

The key schedule of PRESENT expands the secret key to 32 round keys. At the beginning, the secret key is
stored in a register. After extracting the most-significant 64 bits as the initial round key RK1, the register
is updated with a rotation by 61 positions to the left, an S-box call, and an XOR operation with a round
counter r. This procedure is repeated 31 times until all round keys are generated.
For the 80-bit version, we denote the state of the register by (k79, k78, . . . , k1, k0), where ki represents the
i-th, and k79 the most-significant bit of the key. A formal description of the update function for the key
register, which creates the round key RKr+1, can be written as follows:

– (k79, k78, . . . , k1, k0) = (k18, k17, . . . , k1, k0, k79, k78, . . . , k20, k19)
– (k79, k78, k77, k76) = Sbox(k79, k78, k77, k76)
– (k19, k18, k17, k16, k15) = (k19, k18, k17, k16, k15)⊕ r.

Similarly, the key schedule for the 128-bit version can be described by:

– (k127, k126, . . . , k1, k0) = (k66, k65, . . . , k1, k0, k127, k126, . . . k68, k67)
– (k127, k126, k125, k124) = Sbox(k127, k126, k125, k124)
– (k123, k122, k121, k120) = Sbox(k123, k122, k121, k120)
– (k66, k65, k64, k63, k62) = (k66, k65, k64, k63, k62)⊕ r.

Table 2 in Appendix A summarizes the secret-key bits on which the round keys RKi depend.

3.3 Sieve-in-the-Middle

We can apply the sieve-in-the-middle approach to reduce the recomputational effort in our attacks. Hereby,
we can exploit the limited single-round diffusion of PRESENT. More precisely, over the operation sequence
Es = SL ◦PL ◦AK ◦ SL, we can identify four distinct groups of 16 bits of the output, which depend on only
16 bits of the input, and only 16 bits of the key. Thus, we can precompute a table T−−→vi,j ,←−−vi,j which stores the
transitions −→vi,j ↔ ←−vi,j for 216 possible inputs −→vi,j and 216 possible key bits in RKi over Es with practical
effort.

7



S S S S S S S S S S S S S S S S

RK

63

63

47

47

31

31

15

15

0

0

i

S S S S S S S S S S S S S S S S

Fig. 4. Sieve over the steps SL ◦ PL ◦AK ◦ SL for PRESENT.

In our attacks, we consider one of the four groups, which contains the most-significant 16 bits for the inputs,
and the bits at the indices (63, . . . , 60, 47, . . . , 44, 31, . . . , 28, 15, . . . , 12) for the key and outputs. The
trails of these bits through Es are shown in Figure 4.
Our resulting table stores 232 entries under the indices (−→vi,j‖←−vi,j‖ks), i.e., we require 232 · 16+16+16

8 = 3 · 233
bytes. Note, that the effort for constructing the table is a negligible summand in our attacks on PRESENT.

4 Independent-Biclique Attack On Full PRESENT-80

In this section, we describe an independent-biclique attack on PRESENT-80. The attack consists of three
steps: partitioning the key space, constructing a biclique, and performing a matching over the remaining
rounds. At the end of this section, we explain the resulting complexities of the attack in detail.

4.1 Key Space Partitioning

We divide the 80-bit key space into 266 sets of 214 keys each with respect to the key register state after
extraction of the round key RK30. Since the key schedule of PRESENT is a bijective mapping of every
register state to a unique value of the secret key, this partitioning covers the full secret-key space.
The base keys K[0, 0] of our sets are all 80-bit secret keys with 14 bits fixed to zero, whereas the remaining
66 bits iterate over all possible values. The keys in a set {K[i, j]} are defined relative to the base key K[0, 0]
and two differences ∆K

i and ∇Kj , where i, j ∈ {0, . . . , 27 − 1}. Hereby, we chose the key differences ∆K
i to

iterate over all values of the bits (k61, k60, k59, k58, k57, k56, k55) in the forward trails, and the differences ∇Kj
over all values for the bits (k36, k35, k34, k33, k32, k31, k30) in the backward trails.

4.2 3-Round Biclique Of Dimension 7

We limited our bicliques to cover only three rounds, and we chose the key differences ∆K
i so that we do

not have active bits in RK29. Therefore, we could obtain a relatively low data complexity for this attack.
As a result, we construct bicliques of dimension seven over the rounds 29-31. Figure 5 visualizes the ∆i-
and ∇j-trails with red and blue lines, respectively. As one can see, the trails do not share active non-linear
components (here, S-boxes), and are therefore independent. Additionally, we stress that the red trails affect
only 25 bits of the ciphertexts Ci. Hence, an adversary who fixes the ciphertexts C0 over all bicliques, will
have to collect at most 225 chosen ciphertexts to mount this attack.

4.3 Matching Over 28 Rounds

In the following, we apply a matching-with-precomputations procedure over the rounds 1-28. Hereby, we
locate the states −→vi,j after Round 14 and the states ←−vi,j before the S-box layer of Round 16. At each of
these states, we want to reconstruct 12 out of 16 bits which serve as input to our sieve Es. Considering the
complexity of the attack, we are mostly interested in the number of operations which have to be recomputed.
In order to have a single number which refers best to the total effort, we interpret PRESENT as a nibble-wise

8



RK29

RK30

S

RK31

S S S S S S S S

RK32RK32

S S S S S S S S S S S S S S S S

S S S S S S S S S S S S S S S

S S S S S S S S

Ci

Sj

Fig. 5. The biclique over the rounds 29-31 in our attack on full PRESENT-80. The red colored trails indicate bits
affected by the differences ∆K

i , the blue trails bits affected by the differences ∇K
j .

RK1

S S S S S S S S S S S S S S S S

RK2

S S S S S S S S S S S S S S S S

RK

...

3

S S S S S S S S S S S S S S S S

RK13

S S S S S S S S S S S S S S S S

RK14

S S S S S S S S S S S S S S S S

RK15

S S S S S

S S S

S S S S

S S S S S S S S S S S S

S S S S S S S S S S S

S S S S S S S S S S

S

S S S S

S S

Pi

v

RK26

S S S S S S S S S S S S S S S S

RK27

S S S S S S S S S S S S S S S S

RK28

S S S S S S S S S S S S S S S S

RK17

S S S S S S S S S S S S S S S S

RK18

S S S S S S S S S S S S S S S S

...

S S S S S S

S S S S S SS S S S S S S S S S

S S S SS S S S

S SS S S SS S S S

S S

Sj

v

Fig. 6. Matching for the attack on full PRESENT-80 in forward direction from the plaintexts Pi to vi,j (left), and
in backward direction from the states Sj to vi,j (right).

operating cipher and approximate the recomputation costs in the matching part by counting the number of
required S-box operations in the round transformation and the key schedule. These operations are visualized
by the blue trails in forward direction in Figure 6. All non-highlighted parts of the states and round keys
can be used from the precomputed values. As one can see, there are four active S-boxes in the first round,
eight in the second round, 10 · 16 in the rounds 3-12, 12 S-boxes in Round 13, 12 S-boxes in Round 14, and
four in Round 15. In every forward computation, this sums up to 196 active S-boxes.
The operations which have to be recomputed in backward direction are shown by the red trails in Figure 6.
Again, all non-highlighted trails in the round transformation can be used from the precomputed values. This
time, there are seven active S-boxes in Round 27, 8 · 16 in the rounds 19-26, 12 in Round 18, 12 in Round
17, and four in Round 16, which yields 159 S-boxes for this part. In addition, we have to consider the S-box
operations which have to be recomputed in the key schedule. Concerning the ∆K

i -differences, we have to
invoke the S-box to compute the round keys RK25, RK21, and RK17. For the ∇Kj -differences, we have to
recompute five S-boxes, namely to obtain the updated values of the RK3, RK3, RK7, RK11, RK24, and
RK28. In total, the recomputations sum up to 363 S-boxes.

9



4.4 Complexity

The computational complexity of the attack is given by our equation

Cfull = 2k−2d (Cbiclique + Cprecomp + Crecomp + Cfalsepos) .

The full cipher consists of 31 rounds, where every round has 16 S-box operations in the input transformation
and one in the key schedule. Hence, the recomputation costs can be approximated by Crecomp ≈ 214 ·

363
31·(16+1) ≈ 213.46 full encryptions. The effort for constructing a biclique requires the computation of 28 times
three out of 31 rounds, or approximately Cbiclique ≈ 24.63 full encryptions. The precomputational costs are
given by computing 27 times 28 out of 31 rounds, which is equivalent to Cprecomp ≈ 26.85 encryptions. Note,
that we can ask for the decryption of our 225 chosen ciphertexts before the attack, so we have to consider
the effort for Cdecrypt only once.
It remains to clarify the complexity to eliminate false positives. As mentioned above, we reconstruct 12
bits of −→vi,j and 12 bits of ←−vi,j . Since four input bits (from −→vi,j) to the sieve are unknown, there are at most
216−12 = 24 possible output values for←−vi,j . The chance that a false positive keyK[i, j]matches in all 12 known
bits of ←−vi,j is therefore 24 · 2−12 = 2−8. For a set of 214 keys, we can expect to obtain Cfalsepos = 214−8 = 26

false positives in average, that have to be tested with a full encryption operation each. In total, the time
complexity of the attack is given by

Cfull = 266 · (24.63 + 26.85 + 213.46 + 26) + 225 ≈ 279.49 encryptions.

Concerning the memory complexity, we have to store 225 states, or 228 bytes for the attack, and 3 · 233 bytes
for the sieve, which sums up to approximately 234.6 bytes.

4.5 Independent-Biclique Attack On 17 Rounds Of PRESENT-80

In general, it is desirable to have an advantage of at least one power of two compared to exhaustive search
for the computational complexity. Therefore, we can mount an attack on a reduced version of PRESENT-80,
consisting of the rounds 15-31, by using the same biclique structure and matching procedure as above. This
time, we locate the matching states −→vi,j , i.e., the inputs to the sieve-in-the-middle at the states after Round
19, and the states ←−vi,j , i.e., the outputs of the sieve, at the states before the S-box layer of Round 21. Note,
that we use the same input and ouput bits as in the attack above for matching.
As highlighted by the blue trails in Figure 7, in the forward part, we now have to recompute two S-boxes
in Round 16, ten in Round 17, 12 in Round 18, and 12 in Round 19. Hence, the forward recomputations
requires 36 S-box operations.
Considering the recomputations in the backward part, one can see in the red trails in Figure 7 that there are
still seven active S-boxes in Round 27, 3 · 16 S-boxes in the rounds 24-26, 12 in Round 23, and 12 in Round
22, which sums up to 79 S-box operations for this part. Concerning the key schedule, we have to recompute
only three S-boxes; for the differences ∆K

i one for the key RK25, and two for the differences ∇Kj , namely to
obtain the round keys RK24 and RK28. Thus, we have to recompute 118 S-box operations in total.
Hence, Crecomp is equal to 214 · 118

17·(16+1) ≈ 212.71 encryptions. The construction of the biclique requires to
compute 28 times three out of 17 rounds or 25.50 encryptions, Cprecomp is given by 27 computations of 14
out of 17 or 26.72 encryptions, and Cfalsepos can be expected to be 26 in average. The total time complexity
then results from

Cfull = 266 · (25.50 + 26.72 + 212.71 + 26) + 225 ≈ 278.76 encryptions.

The data and memory complexities remain the same as in the attack on full PRESENT-80.

5 Independent-Biclique Attack On Full PRESENT-128

This section describes our attack on the full version of PRESENT-128.

10



RK15

S S S S S S S S S S S S S S S S

RK16

S S S S S S S S S S S S S S S S

RK17

S S S S S S S S S S S S S S S S

RK18

RK19

RK20

S S S S S S S S S S S S S S S S

S S S S S S S S S S S S S S S S

S S S S S S S S S S S S

S SS S S S S S S S S S

Pi

v

RK26

S S S S S S S S S S S S S S S S

RK27

S S S S S S S S S S S S S S S S

RK28

S S S S S S S S S S S S S S S S

RK22

S S S S S S S S S S S S S S S S

RK23

S S S S S S S S S S S S S S S S

...

S S S S S S

S S S S S SS S S S S S S S S S

S S S SS S S S

S SS S S SS S S S

S S

Sj

v

Fig. 7. Matching for the attack on 17-round PRESENT-80 in forward direction from the plaintexts Pi to vi,j (left),
and in backward direction from the states Sj to vi,j (right). The colored trails indicate the parts of the state that
have to be recomputed.

5.1 Key Space Partitioning

This time, we divide the key space into 2117 sets of 211 keys each, again with respect to the key register
state after extraction of the round key RK30. The base keys K[0, 0] of our sets are all 128-bit keys with 11
bits fixed to zero, whereas the remaining 117 bits iterate over all possible values. The keys in a set {K[i, j]}
are defined relative to the base key K[0, 0] and two differences ∆K

i and ∇Kj , where i ∈ {0, . . . , 23 − 1} and
j ∈ {27 − 1}. We adapted from [15] the choice of the key differences ∆K

i to iterate over all values of the bits
(k19, k18, k17). In addition, for the key differences ∇Kj , we iterate over the bits (k55, k54, . . . , k48).

5.2 4-Round Biclique Of Dimension (3, 8)

Here, we construct bicliques of dimension (3, 8) over the final four rounds. By this choice, we profit from the
low number of active bits in the differences ∆K

i , which allows us to have a low data complexity in the attack.
On the same time, the higher number of active bits in the differences ∇Kj allows us to test more keys for one
biclique than with a 3-dimensional biclique. Therefore, the effort for precomputations and decryptions have
a lower influence on the total time complexity of the attack.
Figure 8 shows the independent ∆i- and ∇j-differentials as red and blue trails. As one can see from the
figure, the red trails affect only 23 bits of the ciphertexts. Hence, an adversary who fixes the ciphertexts C0

over all bicliques, will have to collect at most 223 chosen ciphertexts to mount this attack.

5.3 Matching Over 27 Rounds

We apply a matching-with-precomputations procedure over the rounds 1-27, where the states −→vi,j are placed
after Round 19 and the states ←−vi,j before the S-box layer of Round 21. Again, we want to reconstruct 12 out
of 16 bits of each state −→vi,j and ←−vi,j which serve as input to our sieve Es.
The operations which have to be recomputed in forward and backward direction are highlighted in Figure 9
by the blue and red trails, respectively. From the figure, we can see that there are four active S-boxes in the
second round, eight in the third round, 14 ·16 in the rounds 4-17, 12 in Round 18, and 12 in Round 19, which
yields 260 active S-boxes in forward direction. In the backward computations, we have to take into account
three active S-boxes in Round 26, 12 in Round 25, 16 in Round 24, 12 in Round 23, and 12 in Round 22,
summing up to 55 S-boxes for this part. In addition, we have to consider five S-boxes in the key schedule:

11



RK28

RK29

RK30

RK31

S S S S S S S S S S S S S S S S

RK32RK32

S S S S S S S S S S S S S S S S

S S S S S S S S S S S S S S S S

S S S S S S S S S S S S S S S S

S S S S S S S S

S S S S S S S S S S S S S S S SS S S S S S S S S S S S S S S S

Ci

Sj

Fig. 8. The biclique over the rounds 28-31 in our attack on full PRESENT-128. The red colored trails indicate bits
affected by the differences ∆K

i , the blue trails bits affected by the differences ∇K
j .

one S-box to recompute the round key RK28 in the differences ∆K
i . In addition, there are four S-boxes to

recompute the round keys for the differences ∇Kj ; one S-box to recompute RK21, two S-boxes to recompute
RK19, and one to recompute RK17. Hence, this sums up to 260 + 55 + 5 = 320 S-box operations.

RK1

S S S S S S S S S S S S S S S S

RK2

S S S S S S S S S S S S S S S S

RK3

S S S S S S S S S S S S S S S S

RK4

S S S S S S S S S S S S S S S S

...

RK18

S S S S S S S S S S S S S S S S

RK19

S S S S S S S S S S S S S S S S

RK20

S S S S S S S S S S S

S S S S S S S S S S

S

S S

Pi

v

RK22

RK23

RK24

S S S S S S S S S S S S S S S S

RK25

S S S S S S S S S S S S S S S S

RK26

S S S S S S S S S S S S S S S S

RK27

S S S S S S S S S S S S S S S S

S S S S S S S S S S S S S S S S

S S S S S S S S S S S S S S S SS S S SS S S S

S SS S S SS S S S

S S

Sj

v

Fig. 9. Matching for the attack on full PRESENT-80 in forward direction from the plaintexts Pi to vi,j (top), and
in backward direction from the states Sj to vi,j (bottom). The colored trails indicate the parts of the state that have
to be recomputed.

12



5.4 Complexity

PRESENT-128 invokes the S-box 16 times in each of its 31 rounds, and two times in every iteration of the
key schedule. Hence, we can approximate the recomputation costs Crecomp by 211 · 320

31·(16+2) ≈ 210.20 full
encryptions. The effort for constructing a biclique, Cbiclique, concerns the computation of (1+23−1+28−1) =
263 times four out of 31 rounds, or approximately 25.09 full encryptions. Furthermore, Cprecomp is given by
computing 23 times 20 out of 31 rounds, and 28 times seven out of 31 rounds, which is equivalent to
23 · 2031 + 28 · 7

31 ≈ 26 encryptions. Like in the attack on PRESENT-80, the probability for a false positive is
2−8 for each key, as in our attack on PRESENT-80. Therefore, we can expect to obtain Cfalsepos = 23 false
positives in average. All together, the time complexity of this attack is given by

Cfull = 2117 · (25.09 + 26 + 210.20 + 23) + 223 ≈ 2127.32 encryptions.

We ask a decryption oracle only once for the decryptions of all occuring ciphertexts Ci in the attack, and
store them. Concerning the memory complexity, we have to store 223 plaintexts or 226 bytes for the attack,
and 3 · 233 bytes for the sieve, which sums up to 234.6 bytes.

5.5 Independent-Biclique Attack On 19 Rounds Of PRESENT-128

To obtain an advantage of at least one half of the total effort, we mount an attack on a version of PRESENT-
128 reduced to the rounds 13-31 with the same biclique and matching procedure as in the attack on full
PRESENT-128. As highlighted by the blue trails in Figure 10, in the forward part, we now have to recompute

RK13

S S S S S S S S S S S S S S S S

RK14

S S S S S S S S S S S S S S S S

RK15

S S S S S S S S S S S S S S S S

RK16

S S S S S S S S S S S S S S S S

RK18

S S S S S S S S S S S S S S S S

RK19

S S S S S S S S S S S S S S S S

RK20

S S S S S S S S S S S

S S S S S S S S S S

S

S S

...

Pi

v

Fig. 10. Forward part of the matching for the attack on 19-round PRESENT-128 from the plaintexts Pi to vi,j . The
colored trails indicate the parts of the state that have to be recomputed.

four S-boxes in Round 14, eight in Round 15, 2 ·16 in the rounds 16-17, plus 12 in Round 18 and 13 in Round

13



19, which sums up to 68 S-box operations. Considering the backward part, there are still 55 active S-boxes
in the rounds 22-27, and still five S-boxes in the key schedule, which sums up to 128 S-boxes in total. The
construction of the biclique requires to compute 263 times four out of 19 rounds or 25.79 encryptions, and we
have to compute 23 times seven out of 19 rounds, and 28 times seven out of 19 rounds, which is equivalent to
26.61 encryptions. The recomputations costs can be approximated by 211 · 128

19·(16+2) ≈ 29.58 full encryptions.
And we can expect, again, 23 false positives in average. Therefore, the full computational effort results of
the attack can be approximated by

Cfull = 2117 · (25.79 + 26.61 + 29.58 + 23) + 223 ≈ 278.76 encryptions.

The data and memory complexities remain the same as in the attack on full PRESENT-128.

6 Brief Description Of LED

LED is an AES-like substitution-permutation network, which transforms a 64-bit text input in 32 rounds
for LED-64, and in 48 rounds for LED-128. The internal state of the cipher is represented by a 4× 4-matrix
where every cell in the matrix represents a nibble. The secret key is filled into one 4 × 4-word K or two
words K1 and K2, depending on the key length. For the key lengths from 65 to 128 bits, the first 64 bits of
the given key are used for K1 and the remaining key is padded with zeroes to fill up K2.

6.1 Round Transformation

The encryption process of LED consists of two operations, AddRoundKey (AK[Ki]) and step, as shown in
Figure 12. The step operation itself contains four AES-like rounds, where each round includes the operations
AddConstants (AC), SubCells (SC), ShiftRows (SR), and MixColumnsSerial (MCS) (see Figure 11):

round = MCS ◦ SR ◦ SC ◦ AC
step = round ◦ round ◦ round ◦ round
LED = AK[K1] ◦ step ◦ AK[K2] ◦ step . . . step ◦ AK[K1].

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

AddConstants SubCells ShiftRows MixColumnsSerial

Fig. 11. One round in LED.

6.2 Key Schedule

LED omits a key schedule. In the 64-bit version, the secret key is used in simply every AddRoundKey operation,
while in all larger versions, the key wordsK1 andK2 are used alternatingly. For more details on the individual
operations, we would like to refer the interested reader to the original proposal of LED [12].

7 Independent-Biclique Attack On Full LED-64

This part includes the description of an attack on full LED-64.

14



P C

K1

step step

K1 K1

step

K1 K1

P C

K1

step step

K2 K1

step

K2 K1

Fig. 12. Round structure of LED with 64-bit key (top) and 128-bit key (bottom).

7.1 Key Space Partitioning

We divide the 64-bit key space into sets of 216 keys with respect to the secret key. The base keys K[0, 0] are
all 64-bit secret keys with 16 bits fixed to zero, whereas the remaining 48 bits iterate over all possible values.
The 216 keys in a set {K[i, j]} are defined relative to the base key K[0, 0] and two differences ∆K

i and ∇Kj ,
where i, j ∈ {0, . . . , 255} and i = (i1‖i2) and j = (j1‖j2).

K[0, 0] =
(K ) = 0

0
0
0 ∆K

i (K1) =
(K ) = 

∇K
j (K1) =
(K ) = 

7.2 4-Round Biclique Of Dimension 8

Our biclique covers the rounds 29-32, including the final key addition, as shown in Figure 13. Obviously,
the ∆i- and ∇j-trails are independent, since the key addition is located at the end of the differential trails.
One can see, that only two nibbles are active in the ciphertexts of the ∆i-differentials. Thus, by fixing the
ciphertext C0 over all bicliques, we need at most 28 chosen ciphertexts for the attack.

7.3 Matching Over 28 Rounds

We locate the matching state v after Round 3 and match in two nibbles, as shown in Figure 14. The round
transformation of LED employs constant additions, key additions, S-boxes, row shifts and column-wise
multiplications. Following the argumentation from Bogdanov et al. [4], the bottleneck of AES-like cipher
implementations is given by the number of S-box calls. We have a negligible number of key and constant
additions, compared to the number of S-box calls. So, we can neglect the XOR and shift operations and
consider the number of MixColumnsSerial and SubCell operations. Since the number of S-box calls is the
larger summand compared to the number of mixing operations, we consider only the number of S-boxes.
In the first three rounds, we have to recompute 2 + 4 + 4 = 10 S-boxes in forward direction. In addition,
there are 2 + 8 + 22 · 16 + 4 = 366 S-boxes which have to be recomputed in backward direction, which sum
up to 376 S-boxes in the full matching phase.

7.4 Complexity

There are 32 ·16 = 512 S-boxes in the 32 rounds of the full cipher. Hence, Crecomp is equivalent to 216 · 376512 ≈
215.55 encryptions. The precomputation effort Cprecomp is given by 28 computations of 28 out of 32 rounds,

15



Base computation

Round 29

Round 30

Round 31

Round 32

Forward differential Backward differential

C0 C0Ci

K
iΔ K

j

Δ

S0 SjS0

AC SC SR MCS AC SC SR MCS AC SC SR MCS

AC SC SR MCS AC SC SR MCS AC SC SR MCS

AC SC SR MCS AC SC SR MCS AC SC SR MCS

AC SC SR MCS AC SC SR MCS AC SC SR MCS

K1 K1 K1

Fig. 13. The biclique on LED-64 over the rounds 29-32 with ∆i- and ∇j-differentials.

Backward matching Round 4 Round 5 Round 26 Round 27 Round 28

Forward matching Round 1 Round 2 Round 3

...v

v

K1

K1 K1

AC
SC
SR

MCS

AC
SC
SR

MCS

AC
SC
SR

MCS

AC
SC
SR

MCS

AC
SC
SR

MCS

AC
SC
SR

MCS

AC
SC
SR

MCS

Sj

Pi

Fig. 14. Recomputations for LED-64 in forward and backward direction.

or 27.81 full encryptions, and Cbiclique represents the costs for computing 29 times four out of 32 rounds, or
26.19 encryptions. Thus, the total computational complexity of this attack results from

Cfull = 248 · (26.19 + 27.81 + 215.55 + 28 + 28) ≈ 263.58 encryptions.

The attack requires memory to store 28 states, or 211 bytes.

7.5 Independent-Biclique Attack On 16-Round LED-64

We can mount an attack on a reduced version of the first 16 of LED-64 by using the same key space
partitioning, biclique, and partial matching procedure as before. This time we locate the biclique to cover
the rounds 13-16. Then, we require to recompute 16 full rounds less. We still have to recompute 2+ 4+ 4 =
10 S-boxes in forward direction; though, the recomputation effort in the backward direction reduces to
2 + 8 + 6 · 16 + 4 = 110 S-boxes, which gives a total number of 120 S-boxes to recompute.

16



Since there are 256 S-boxes in the 16 rounds of the cipher, Crecomp is equivalent to 216 · 120
256 ≈ 214.91

encryptions. The effort for constructing one biclique can be approximated by computing 29 times four out
of 16 rounds or 27.42 full encryptions. Cprecomp is given by 28 computations of 12 out of 16 rounds or 27.58
encryptions. The full computational complexity therefore sums up to

Cfull = 248 · (27.42 + 27.58 + 214.91 + 28 + 28) ≈ 262.95 encryptions.

As before, this attack requires the adversary to collect 28 chosen plaintexts, and memory to store 211 bytes.

8 Independent-Biclique Attack On Full LED-128

In this part, we describe an independent-biclique attack on full LED-128.

8.1 Key Space Partitioning

This time, we divide the key space into 2112 sets of 216 keys. The base keys K[0, 0] are all 128-bit secret
keys with 16 bits fixed to zero, whereas the remaining 112 bits iterate over all possible values. The 216

keys in a set {K[i, j]} are defined relative to the base key K[0, 0] and two differences ∆K
i and ∇Kj , where

i, j ∈ {0, . . . , 255} and i = (i1‖i2) and j = (j1‖j2).

K[0, 0] = 0
0

0
0

∆K
i (K1‖K2) = ∇K

j (K1‖K2) =

8.2 8-Round-Biclique Of Dimension 8

At most, for LED-128, one could construct bicliques over up to 4 steps, without the wrapping key additions.
Since, first, we count only full steps, and second, we aim at obtaining a low data complexity, we decided to
limit the biclique to two steps, covering the rounds 41-48. Figure 15 illustrates the ∆i- and ∇j-differentials.
Since, like in the attack on LED-64, the differences ∆K

i affect the state only in the very last operation, both
trails are independent from each other.

8.3 Matching Over 32 Rounds

The matching then covers the rounds 1-40. We locate v in the state after Round 7 and match in two nibbles,
as shown in Figure 16. One can see from there, that the rounds 1 through 4 are not affected by active
bits from the ∇Kj -differences. Thus, regarding the recomputations in the forward part of the matching, we
have to consider only 2 + 4 + 4 = 10 S-boxes in the rounds 5, 6, and 7. In backward direction, there are
2 + 8 + 30 · 16 + 4 = 494 S-boxes which have to be recomputed in the rounds 8-40, which sums up to 504
S-boxes in total

8.4 Complexity

There are 48 ·16 = 768 S-boxes in the 48 rounds of the cipher. Thus, for 216 keys in one set, Crecomp is equal
to 216 · 504768 ≈ 215.39 full encryptions. In the precomputations step, we require to compute 28 times 40 out of
48 rounds, which is equivalent to 27.74 40-round encryptions. The costs to create one biclique are given by
29 computations of eight out of 48 rounds, or 26.68 encryptions. The full computational complexity can be
approximated by

Cfull = 2112 · (26.68 + 27.74 + 215.39 + 28 + 28) ≈ 2127.42 encryptions.

encryptions. The attack requires the adversary to store 211 bytes, and, when fixing C0 over all key sets, to
collect 28 chosen plaintexts.

17



Base computation

Round 41

Round 42

Round 43

Round 44

Round 45

Round 46

Round 47

Round 48

Forward differential Backward differential

C0 C0Ci

K
iΔ K

j

Δ

S0 SjS0

AC SC SR MCS AC SC SR MCS AC SC SR MCS

AC SC SR MCS AC SC SR MCS AC SC SR MCS

AC SC SR MCS AC SC SR MCS AC SC SR MCS

AC SC SR MCS AC SC SR MCS AC SC SR MCS

AC SC SR MCS AC SC SR MCS AC SC SR MCS

AC SC SR MCS AC SC SR MCS AC SC SR MCS

AC SC SR MCS AC SC SR MCS AC SC SR MCS

AC SC SR MCS AC SC SR MCS AC SC SR MCS

K2 K2 K2

K1 K1 K1

Fig. 15. The biclique on full LED-128 over the rounds 41-48 with ∆i- and ∇j-differentials.

Backward matching Round 8 Round 9 Round 38 Round 39 Round 40

Forward matching Round 1 Round 2

K1

Round 3 Round 4 Round 5 Round 6 Round 7

v

v

...

AC
SC
SR

MCS

AC
SC
SR

MCS

AC
SC
SR

MCS

AC
SC
SR

MCS

AC
SC
SR

MCS

AC
SC
SR

MCS

AC
SC
SR

MCS

AC
SC
SR

MCS

AC
SC
SR

MCS

AC
SC
SR

MCS

AC
SC
SR

MCS

K2

K1 K1

Sj

Pi

Fig. 16. Recomputations for LED-128 in forward and backward direction.

18



8.5 Independent-Biclique Attack On 32-Round LED-128

We can mount an attack on a reduced version of LED-128, which covers the first 32 rounds. number of
operations, with the same key space partitioning, biclique, and partial matching procedure as before (see
Section 8). In contrast to the previous attack, the matching phase requires to recompute 16 full rounds less,
and the biclique covers the rounds 25-32. This time, we have to recompute 2+4+4 = 10 S-boxes in forward
direction; the effort in backward direction becomes 2 + 8 + 14 · 16 + 4 = 238 S-boxes, which sums up to 248
S-boxes in total.
There are 512 S-boxes in the 32 rounds of the reduced cipher. Hence, Crecomp is given by 216 · 248512 ≈ 214.95

encryptions. Cprecomp represents the effort of computing 28 times 24 out of 32 rounds, or 27.58 32-round
encryptions. The costs for constructing a biclique, Cbiclique are given by 29 computations of eight out of 32
rounds, or 27.58 encryptions. Thus, the total computational complexity of this attack is given by

Cfull = 2112 · (27.42 + 27.58 + 214.95 + 28 + 28) ≈ 2126.99 encryptions.

32-round encryptions. Again, the attack requires 28 chosen plaintexts and memory to store 211 bytes.

9 KLEIN

9.1 Round Transformation

The structure of KLEIN is a typical substitution-permutation network which combines ideas from the round
transformation of the AES with the small 4 × 4-S-box from PRESENT to have a small implementation
footprint. KLEIN has a fixed block length of 64 bits and supports key lengths of 64, 80 and 96 bits. Depending
on the key length, KLEIN processes the plaintext in NR = 12/16/20 rounds, where each round consists of
four operations.

– AddRoundKey (AK(ski)): A 64-bit round key ski is XORed with the state.
– SubNibbles (SN): The nibbles in the state are replaced using a 4× 4-S-box.
– RotateNibbles (RN): The state is rotated by two nibbles to the left.
– MixNibbles (MN): The state is split into two 32-bit halves, and each half is multiplied with the MDS

matrix of the AES in the GF (24).

After the final round, a final round key skNR+1 is XORed with the state to generate the ciphertext.

9.2 Key Schedule

The key schedule of KLEIN expands the secret key to NR + 1 round keys of 64-bits. The first round key
sk1 is initialized with the secret key. A round key ski+1 is then derived from its previous round key ski as
follows:

1. Divide the subkey ski into two halves, named a and b. For KLEIN-64, one obtains a = ski0, sk
i
1, sk

i
2, sk

i
3

and b = ski4, sk
i
5, sk

i
6, sk

i
7, where skij denotes the j-th byte.

2. Rotate a and b by one byte to the left to obtain a′, b′: a′ = ski1, sk
i
2, sk

i
3, sk

i
0 and b′ = ski5, sk

i
6, sk

i
7, sk

i
4.

3. XOR b′ to a′ and swap both halves to obtain a′′, b′′: a′′ = b′ and b′′ = a′ ⊕ b′.
4. XOR the round counter i with the third byte of a′′, and substitute the second and third byte of b′′ using

the KLEIN S-box.
5. Output the 64 leftmost bits of ski as ski+1.

Figure 17 illustrates the key schedule of KLEIN-64. For further details on the specification of KLEIN, we
refer to the original proposal [11].

19



i

isk0
isk1

isk2
isk3

isk4
isk5

isk6
isk7

isk0
isk1

isk2
isk3

isk4
isk5

isk6
isk7

i+1sk0
i+1sk1

i+1sk2
i+1sk3

i+1sk4
i+1sk5

i+1sk6
i+1sk7

S S

b

bʹ

bʺ

a

aʹ

aʺ

Fig. 17. The key schedule of KLEIN-64.

9.3 Sieve-in-the-Middle

For KLEIN, we can construct a table T−−→vi,j ,←−−vi,j which stores the transitions −→vi,j ↔ ←−vi,j over the operation
sequence Es = SN ◦ AK(ski) ◦ MN ◦ RN ◦ SN. Note, that over this sequence, we can separate the state of KLEIN
into two distinct halves of 32 bit, where each half depends only on 32 bit of the state and 32 bits of the round
key ski. The halves are illustrated by the white and darkened cells in Figure 18. In our concrete attacks on
KLEIN, we construct a table for that half that is visualized by the darkened cells. However, to lower the
memory complexity, we only consider 24 bits of the key ski, i.e., those nibbles in the figure, which are not
struck through. The effort for constructing the table T−−→vi,j ,←−−vi,j is therefore given by 232 computations of the
sequence MN ◦ RN ◦ SN, and 256 computations of SN ◦ AK(ski), both which are negligible in the total effort. We
require to store 256 entries under the index (−→vi,j‖←−vi,j‖ks), which means that we require 256 · 32+24+24

8 < 260

bytes.

MNRNSN AK SN

ski

Fig. 18. Sieve over the steps SN ◦ AK(ski) ◦ MN ◦ RN ◦ SN for KLEIN.

10 Independent-Biclique Attack on Full KLEIN-80

10.1 Key Space Partitioning

The partitioning procedure is very similar to that for KLEIN-80. First, we divide the key space into 264

groups of 216 keys each with respect to the 80-bit key register before the extraction of the second round key
sk2. The base keys K[0, 0] are all 20-nibble values with four nibbles fixed to zero, whereas the remaining
nibbles running over all other possible values.

K[0, 0](sk2) = 0 0

0 0

∆K
i (sk2) = ∇K

j (sk2) =

20



10.2 3-Round Biclique Of Dimension 8

Since four-round bicliques lead to fully active states at both ends of the differentials, we construct a biclique
over three rounds as depicted in Figure 19. From there, one can see that the ∇j-differentials, the plaintexts
Pj are only affected twelve out of 16 nibbles. By fixing the plaintexts P0 over all bicliques in the attack, the
data complexity for the bicliques does not exceed 248 chosen plaintexts.

Base computation

Round 1

Round 2

Round 3

Forward differential Backward differential

P0 P0 Pj

S0 Si S0

SN RN MN SN RN MN SN RN MN

SN RN MN SN RN MN SN RN MN

sk1 sk1 sk1

sk2 sk2 sk2

SN RN MN SN RN MN SN RN MN

sk3 sk3 sk3

Fig. 19. The biclique over the rounds 1-3 in our attack on full KLEIN-80. The light-blue colored trails indicate bits
affected by the differences ∆K

i , the dark-blue trails bits affected by the differences ∇K
j .

10.3 Matching Over 13 Rounds

We perform a matching-with-precomputations over the rounds 4-16. We locate the states −→vi,j after the key
addition with sk8, and the states←−vi,j before the S-box layer of Round 9. We construct a sieve, as described in
Section 9.3, over Round 8 and the key addition and S-box layer of Round 9. The exact matching procedure is
illustrated in Figure 20; the darkened cells indicate those nibbles which have to be recomputed in the states.
In forward direction, we have to recompute two S-boxes in Round 4, ten in Round 5, 16 in Round 6, and
eight in Round 7, which sums up to 36 S-box operations. In backward direction, we have to recompute
eight S-boxes in Round 16, and 6 · 16 S-box operations in the rounds 10-15, which gives 104 S-boxes for the
backward part. In addition, we take into account the bytes which have to be recomputed and that serve
as input to the S-box during the key schedule. Concerning the differences ∇Kj , we have to recompute two
S-boxes in sk4, and two S-boxes in sk5. Concerning the differences ∆K

i , we need to consider two S-boxes in
sk8, two in sk9, two in sk13, and another two S-boxes in sk14. All in all, there are 152 S-boxes.

21



Backward
matching Round 9

...

Round 15 Round 16

Forward matching Round 4
SN
RN
MN

sk4

Round 5 Round 6 Round 7

v

v

sk5 sk6 sk7 sk8

sk10 sk16 sk17

SN
RN
MN

SN
RN
MN

SN
RN
MN

RN
MN

SN
RN
MN Cj

Si

Fig. 20. Matching for the attack on full KLEIN-80 in forward direction from the states Si to vi,j (top), and in
backward direction from the ciphertexts Cj to vi,j (bottom).

10.4 Complexity

In KLEIN-80, there are 16 · 16 = 256 S-boxes in the round transformation and 16 · 4 = 64 S-boxes in the
key-schedule. Crecomp is then equal to 216 · 152

320 ≈ 214.97 full encryptions. Cbiclique is equivalent to 26.58

encryptions and Cprecomp includes 28 computations of 13 out of 16 rounds, or 27.7 encryptions.
One can see from Figure 20, we know four nibbles of the input to our sieve from the first row of −→vi,j . In
addition, we know the full lower half of the state ←−vi,j , i.e., all output bits of the sieve, and, given K[i, j], full
sk9. Given our four out of eight nibbles (16 out of 32 bits) of the input −→vi,j , there may be 216 possible output
transitions, due to the unknown input bits. The probability, that we find a valid transition −→vi,j ↔←−vi,j in our
precomputed table T−−→vi,j ,←−−vi,j for a wrong key, is 216 · 2−24 = 2−8, since it must match in the 24 bits of the
lower half of ←−vi,j , which we have stored as outputs of T−−→vi,j ,←−−vi,j (cf. Section 9.3). Hence, we can expect to have
Cfalsepos = 216 · 2−8 = 28 false positives for every biclique. The full computational complexity is then given
by

Cfull = 264 · (26.58 + 28 + 27.7 + 214.97 + 28) ≈ 279.00 encryptions.

The memory complexity is given by storing 28 states and the table T−−→vi,j ,←−−vi,j or 260 bytes.

11 Independent-Biclique Attack on Full KLEIN-96

11.1 Key Space Partitioning

The key-partitioning procedure is similar to that in our attack on KLEIN-80. We split the key space into
280 sets of 216 keys each, where the base keys K[0, 0] are all 24-nibble values with four nibbles fixed to 0 all
other nibbles running over all possible values. The keys in a group {K[i, j]} are enumerated by all possible
differences i = (i1‖i2) and j = (j1‖j2) with respect to K[0, 0].

K[0, 0](sk2) = 0 0

0 0

∆K
i (sk2) = ∇K

j (sk2) =

22



11.2 3-Round Biclique Of Dimension 8

Again, we construct a biclique over the first three rounds, as depicted in Figure 21. The plaintexts Pj are
affected by the key differences in 8 out of 16 nibbles. So, the data complexity does not exceed 232.

Base computation

Round 1

Round 2

Round 3

Forward differential Backward differential

P0 P0 Pj

S0 Si S0

SN RN MN SN RN MN SN RN MN

SN RN MN SN RN MN SN RN MN

sk1 sk1 sk1

sk2 sk2 sk2

SN RN MN SN RN MN SN RN MN

sk3 sk3 sk3

Fig. 21. The biclique over the rounds 1-3 in our attack on full KLEIN-96. The light-blue colored trails indicate bits
affected by the differences ∆K

i , the dark-blue trails bits affected by the differences ∇K
j .

11.3 Matching Over 17 Rounds

We apply a matching-with-precomputations to the rounds 4-20, where we locate the input states to our
sieve −→vi,j in the states after the key injection with sk6, and the output states ←−vi,j in the states before the
S-box layer of Round 7. The recomputations are illustrated in Figure 22. In the forward part of the round
transformation, we have to recompute four S-boxes in Round 4, and eight in Round 5, which yield 12 for this
part. In backward direction, we have to consider eight S-boxes in Round 20, and 12 · 16 in the rounds 8-19,
which sums up to 200. In the key schedule, we need to consider two S-boxes each in the computation of sk4,
sk11, sk12, sk17, and sk18. Hence, the recomputation costs sum up to 222.

11.4 Complexity

There are 20 · 16 = 320 S-boxes in the round transformation and 20 · 4 = 80 S-boxes in the key-schedule.
Thus, Crecomp is equal to 216 · 222400 ≈ 215.15 full encryptions. The biclique effort is given by computing 3 out
of 20 rounds 29 times. The precomputational costs include 28 computations of 17 out of 20 rounds, or 27.77
encryptions. With the same argumentation as in the attack on KLEIN-80, we can expect Cfalsepos = 28 false
positives for each biclique. The full computational complexity is then equivalent to

Cfull = 280 · (26.26 + 28 + 27.77 + 215.15 + 28) ≈ 295.18 encryptions.

23



Backward 
matching Round 7

...

Round 19 Round 20

Forward matching Round 4 Round 5

v

v
SN
RN
MN

RN
MN

SN
RN
MN

sk4 sk5 sk6

sk8 sk20 sk21

SN
RN
MN

Cj

Si

Fig. 22. Matching for the attack on full KLEIN-96 in forward direction from the states Si to vi,j (top), and in
backward direction from the ciphertexts Cj to vi,j (bottom).

The data complexity of in this attack is upper bounded by 232 chosen plaintexts and the memory complexity
is given by storing 28 states and T−−→vi,j ,←−−vi,j or 260 bytes.
As we can see from our analysis of full KLEIN-80, an attack on the first 16 of KLEIN-96– including a final
wrapping key addition with sk17 – using the same biclique and matching procedure as above would yield a
time complexity of 295.00 encryptions; thus, allowing an advantage factor of two for the adversary.

12 Conclusion

In this paper, we proposed biclique attacks on full and reduced versions of PRESENT and LED, and full
KLEIN-80 and KLEIN-96. In our attacks on full PRESENT-80 and PRESENT-128, the time complexities
are equivalent to 279.49 and 2127.32 full encryptions and the data complexities are given by 225 and 223 chosen
plaintexts, respectively. In our attacks on full LED-64 and LED-128, we obtained computational complexities
of 263.58 and 2127.42 encryptions. In these attacks, the adversary has to collect only a number of 28 chosen
plaintexts. In the attacks on KLEIN-80 and KLEIN-96, the adversary requires 279.00 and 295.18 encryptions
and 248 and 232 chosen plaintexts, respecitively.
Our results on the full-round versions established new lower security margins for these ciphers. Due to the
high number of rounds in PRESENT and LED, our analyses of their full versions gain a relatively low
advantage for the adversary, i.e., a factor of only 0.42 to 0.58 bits. For KLEIN and PRESENT, we can profit
from precomputing a table over one round in the middle. We could achieve the best attacks of the considered
ciphers at the time of writing this paper. As a consequence, our work contributes to establish new lower
bounds on them. Authors of future lightweight ciphers can learn from our results the impact of combining
many rounds decreases the effect of bruteforce-like cryptanalysis effectively.

References

1. Zahra Ahmadian, Mahmoud Salmasizadeh, and Mohammad Reza Aref. Biclique Cryptanalysis of the Full-Round
KLEIN Block Cipher. Cryptology ePrint Archive, Report 2013/097, 2013. http://eprint.iacr.org/.

2. Martin R. Albrecht and Carlos Cid. Algebraic Techniques in Differential Cryptanalysis. In Orr Dunkelman,
editor, FSE, volume 5665 of Lecture Notes in Computer Science, pages 193–208. Springer, 2009.

3. Jean-Philippe Aumasson, María Naya-Plasencia, and Markku-Juhani O. Saarinen. Practical Attack on 8 Rounds
of the Lightweight Block Cipher KLEIN. In Daniel J. Bernstein and Sanjit Chatterjee, editors, INDOCRYPT,
volume 7107 of Lecture Notes in Computer Science, pages 134–145. Springer, 2011.

24

http://eprint.iacr.org/


4. Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique Cryptanalysis of the Full AES. In
Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT, volume 7073 of Lecture Notes in Computer Science,
pages 344–371. Springer, 2011.

5. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann, Matthew J. B. Robshaw,
Yannick Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, CHES, volume 4727 of Lecture Notes in Computer Science, pages 450–466. Springer, 2007.

6. Anne Canteaut, Maria Naya-Plasencia, and B. Vayssiere. Sieve-in-the-Middle: Improved MITM Attacks. To be
published, January 2013.

7. Shaozhen Chen and Tianmin Xu. Biclique Attack of the Full ARIA-256. IACR Cryptology ePrint Archive,
2012:11, 2012.

8. Joo Yeon Cho. Linear Cryptanalysis of Reduced-Round PRESENT. In Josef Pieprzyk, editor, CT-RSA, volume
5985 of Lecture Notes in Computer Science, pages 302–317. Springer, 2010.

9. Mustafa Coban, Ferhat Karakoc, and Özkan Boztacs. Biclique Cryptanalysis of TWINE. Cryptology ePrint
Archive, Report 2012/422, 2012. http://eprint.iacr.org/.

10. Baudoin Collard and FranCcois-Xavier Standaert. A Statistical Saturation Attack against the Block Cipher
PRESENT. In Marc Fischlin, editor, CT-RSA, volume 5473 of Lecture Notes in Computer Science, pages 195–
210. Springer, 2009.

11. Zheng Gong, Svetla Nikova, and Yee Wei Law. KLEIN: A New Family of Lightweight Block Ciphers. In Ari Juels
and Christof Paar, editors, RFIDSec, volume 7055 of Lecture Notes in Computer Science, pages 1–18. Springer,
2011.

12. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The LED Block Cipher. In Bart
Preneel and Tsuyoshi Takagi, editors, CHES, volume 6917 of Lecture Notes in Computer Science, pages 326–341.
Springer, 2011.

13. Deukjo Hong, Bonwook Koo, and Daesung Kwon. Biclique Attack on the Full HIGHT. In Howon Kim, editor,
ICISC, volume 7259 of Lecture Notes in Computer Science, pages 365–374. Springer, 2011.

14. Takanori Isobe and Kyoji Shibutani. Security Analysis of the Lightweight Block Ciphers XTEA, LED and Piccolo.
In Willy Susilo, Yi Mu, and Jennifer Seberry, editors, ACISP, volume 7372 of Lecture Notes in Computer Science,
pages 71–86. Springer, 2012.

15. Kitae Jeong, HyungChul Kang, Changhoon Lee, Jaechul Sung, and Seokhie Hong. Biclique cryptanalysis of
lightweight block ciphers present, piccolo and led. Cryptology ePrint Archive, Report 2012/621, 2012. http:
//eprint.iacr.org/.

16. Dmitry Khovratovich, Gaëtan Leurent, and Christian Rechberger. Narrow-Bicliques: Cryptanalysis of Full IDEA.
In EUROCRYPT, pages 392–410, 2012.

17. Dmitry Khovratovich and Christian Rechberger. A Splice-and-Cut Cryptanalysis of the AES. IACR Cryptology
ePrint Archive, 2011:274, 2011. http://eprint.iacr.org/2011/274.

18. Dmitry Khovratovich, Christian Rechberger, and Alexandra Savelieva. Bicliques for Preimages: Attacks on Skein-
512 and the SHA-2 Family. Cryptology ePrint Archive, Report 2011/286, 2011. http://eprint.iacr.org/.

19. Dmitry Khovratovich, Christian Rechberger, and Alexandra Savelieva. Bicliques for Preimages: Attacks on Skein-
512 and the SHA-2 Family. In Anne Canteaut, editor, FSE, volume 7549 of Lecture Notes in Computer Science,
pages 244–263. Springer, 2012.

20. Hamid Mala. Biclique Cryptanalysis of the Block Cipher SQUARE. Cryptology ePrint Archive, Report 2011/500,
2011. http://eprint.iacr.org/.

21. Florian Mendel, Vincent Rijmen, Deniz Toz, and Kerem Varici. Differential Analysis of the LED Block Cipher.
In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT, volume 7658 of Lecture Notes in Computer Science,
pages 190–207. Springer, 2012.

22. Ivica Nikolic, Lei Wang, and Shuang Wu. Cryptanalysis of Round-Reduced LED. In Shiho Moriai, editor, Fast
Software Encryption, 20th International Workshop – FSE 2013, Lecture Notes in Computer Science. Springer,
2013.

23. Kenji Ohkuma. Weak Keys of Reduced-Round PRESENT for Linear Cryptanalysis. In Michael J. Jacobson
Jr., Vincent Rijmen, and Reihaneh Safavi-Naini, editors, Selected Areas in Cryptography, volume 5867 of Lecture
Notes in Computer Science, pages 249–265. Springer, 2009.

24. M. Shakiba, M. Dakhilalian, and H. Mala. Non-isomorphic Biclique Cryptanalysis and Its Application to Full-
Round mCrypton. Cryptology ePrint Archive, Report 2013/141, 2013. http://eprint.iacr.org/.

25. Meiqin Wang. Differential Cryptanalysis of Reduced-Round PRESENT. In Serge Vaudenay, editor,
AFRICACRYPT, volume 5023 of Lecture Notes in Computer Science, pages 40–49. Springer, 2008.

25

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2011/274
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/


26. Yanfeng Wang, Wenling Wu, and Xiaoli Yu. Biclique Cryptanalysis of Reduced-Round Piccolo Block Cipher. In
Mark Dermot Ryan, Ben Smyth, and Guilin Wang, editors, ISPEC, volume 7232 of Lecture Notes in Computer
Science, pages 337–352. Springer, 2012.

27. Yanfeng Wang, Wenling Wu, Xiaoli Yu, and Lei Zhang. Security on LBlock against Biclique Cryptanalysis. In
WISA2012, Lecture Notes in Computer Science (LNCS), 8 2012.

28. Lei Wei, Christian Rechberger, Jian Guo, Hongjun Wu, Huaxiong Wang, and San Ling. Improved Meet-in-the-
Middle Cryptanalysis of KTANTAN. Cryptology ePrint Archive, Report 2011/201, 2011.

29. Xiaoli Yu, Wenling Wu, Yanjun Li, and Lei Zhang. Cryptanalysis of Reduced-Round KLEIN Block Cipher.
In Chuankun Wu, Moti Yung, and Dongdai Lin, editors, Inscrypt, volume 7537 of Lecture Notes in Computer
Science, pages 237–250. Springer, 2011.

A Round-Key Dependencies Of PRESENT

Table 2 summarizes the secret-key bits on which the round keys RKi depend.

Secret-key bits in round keys Round Secret-key bits in round keys
of PRESENT-80 key of PRESENT-128

79 78 77 76 . . . 19 18 17 16 RK1 127 126 125 124 . . . 67 66 65 64
18 17 16 15 . . . 38 37 36 35 RK2 66 65 64 63 . . . 6 5 4 3
37 36 35 34 . . . 57 56 55 54 RK3 5 4 3 2 . . . 73 72 71 70
56 55 54 53 . . . 76 75 74 73 RK4 72 71 70 69 . . . 12 11 10 9
75 74 73 72 . . . 15 14 13 12 RK5 11 10 9 8 . . . 79 78 77 76
14 13 12 11 . . . 34 33 32 31 RK6 78 77 76 75 . . . 18 17 16 15
33 32 31 30 . . . 53 52 51 50 RK7 17 16 15 14 . . . 85 84 83 82
52 51 50 49 . . . 72 71 70 69 RK8 84 83 82 81 . . . 24 23 22 21
71 70 69 68 . . . 11 10 9 8 RK9 23 22 21 20 . . . 91 90 89 88
10 9 8 7 . . . 30 29 28 27 RK10 90 89 88 87 . . . 30 29 28 27
29 28 27 26 . . . 49 48 47 46 RK11 29 28 27 26 . . . 97 96 95 94
48 47 46 45 . . . 68 67 66 65 RK12 96 95 94 93 . . . 36 35 34 33
67 66 65 64 . . . 7 6 5 4 RK13 35 34 33 32 . . . 103 102 101 100
6 5 4 3 . . . 26 25 24 23 RK14 102 101 100 99 . . . 42 41 40 39

25 24 23 22 . . . 45 44 43 42 RK15 41 40 39 38 . . . 109 108 107 106
44 43 42 41 . . . 64 63 62 61 RK16 108 107 106 105 . . . 48 47 46 45
63 62 61 60 . . . 3 2 1 0 RK17 47 46 45 44 . . . 115 114 113 112
2 1 0 79 . . . 22 21 20 19 RK18 114 113 112 111 . . . 54 53 52 51

21 20 19 18 . . . 41 40 39 38 RK19 53 52 51 50 . . . 121 120 119 118
40 39 38 37 . . . 60 59 58 57 RK20 120 119 118 117 . . . 60 59 58 57
59 58 57 56 . . . 79 78 77 76 RK21 59 58 57 56 . . . 127 126 125 124
78 77 76 75 . . . 18 17 16 15 RK22 126 125 124 123 . . . 66 65 64 63
17 16 15 14 . . . 37 36 35 34 RK23 65 64 63 62 . . . 5 4 3 2
36 35 34 33 . . . 56 55 54 53 RK24 4 3 2 1 . . . 72 71 70 69
55 54 53 52 . . . 75 74 73 72 RK25 71 70 69 68 . . . 11 10 9 8
74 73 72 71 . . . 14 13 12 11 RK26 10 9 8 7 . . . 78 77 76 75
13 12 11 10 . . . 33 32 31 30 RK27 77 76 75 74 . . . 17 16 15 14
32 31 30 29 . . . 52 51 50 49 RK28 16 15 14 13 . . . 84 83 82 81
51 50 49 48 . . . 71 70 69 68 RK29 83 82 81 80 . . . 23 22 21 20
70 69 68 67 . . . 10 9 8 7 RK30 22 21 20 19 . . . 90 89 88 87
9 8 7 6 . . . 29 28 27 26 RK31 89 88 87 86 . . . 29 28 27 26

28 27 26 25 . . . 48 47 46 45 RK32 28 27 26 25 . . . 96 95 94 93

Table 2. Secret-key bits kj , which affect the individual round keys of PRESENT.

26


	Biclique Cryptanalysis Of PRESENT, LED, And KLEIN
	Introduction
	Biclique Cryptanalysis
	Definition
	Biclique Construction
	Matching-with-Precomputations
	Complexity Calculations
	Sieve-in-the-Middle

	Brief Description Of PRESENT
	Round Transformation
	Key Schedule
	Sieve-in-the-Middle

	Independent-Biclique Attack On Full PRESENT-80
	Key Space Partitioning
	3-Round Biclique Of Dimension 7
	Matching Over 28 Rounds
	Complexity
	Independent-Biclique Attack On 17 Rounds Of PRESENT-80

	Independent-Biclique Attack On Full PRESENT-128
	Key Space Partitioning 
	4-Round Biclique Of Dimension (3, 8)
	Matching Over 27 Rounds
	Complexity
	Independent-Biclique Attack On 19 Rounds Of PRESENT-128

	Brief Description Of LED
	Round Transformation
	Key Schedule

	Independent-Biclique Attack On Full LED-64
	Key Space Partitioning
	4-Round Biclique Of Dimension 8
	Matching Over 28 Rounds
	Complexity
	Independent-Biclique Attack On 16-Round LED-64

	Independent-Biclique Attack On Full LED-128
	Key Space Partitioning
	8-Round-Biclique Of Dimension 8
	Matching Over 32 Rounds
	Complexity
	Independent-Biclique Attack On 32-Round LED-128

	KLEIN
	Round Transformation
	Key Schedule
	Sieve-in-the-Middle

	Independent-Biclique Attack on Full KLEIN-80
	Key Space Partitioning
	3-Round Biclique Of Dimension 8
	Matching Over 13 Rounds
	Complexity of the Attack

	Independent-Biclique Attack on Full KLEIN-96
	Key Space Partitioning
	3-Round Biclique Of Dimension 8
	Complexity of the Attack

	Conclusion
	Round-Key Dependencies Of PRESENT


