
A shortened version of this paper appears under the same title in the proceedings of
Indocrypt 2012 (Steven Galbraith and Mridul Nandi, eds.), LNCS, Springer.

A Novel Permutation-based Hash Mode of Operation FP

and

The Hash Function SAMOSA

Souradyuti Paul∗ Ekawat Homsirikamol† Kris Gaj2†

Abstract

The contribution of the paper is two-fold. First, we design a novel permutation-
based hash mode of operation FP, and analyze its security. The FP mode is derived
by replacing the hard-to-invert primitive of the FWP mode – designed by Nandi and
Paul, and presented at Indocrypt 2010 – with an easy-to-invert permutation; since
easy-to-invert permutations with good cryptographic properties are normally easier to
design, and are more efficient than the hard-to-invert functions, the FP mode is more
suitable in practical applications than the FWP mode.

We show that any n-bit hash function that uses the FP mode is indifferentiable from
a random oracle up to 2n/2 queries (up to a constant factor), if the underlying 2n-bit
permutation is free from any structural weaknesses. Based on our further analysis
and experiments, we conjecture that the FP mode is resistant to all non-trivial generic
attacks with work less than the brute force, mainly due to its large internal state. We
compare the FP mode with other permutation-based hash modes, and observe that it
displays the so far best security/rate trade-off.

To put this into perspective, our second contribution is a proposal for a concrete
hash function SAMOSA using the new mode and the P -permutations of the SHA-3
finalist Grøstl. Based on our analysis we claim that the SAMOSA family cannot be
attacked with work significantly less than the brute force. We also provide hardware
implementation (FPGA) results for SAMOSA to compare it with the SHA-3 finalists.
In our implementations, SAMOSA family consistently beats Grøstl, Blake and Skein
in the throughput to area ratio. With more efficient underlying permutation, it seems
possible to design a hash function based on the FP mode that can achieve even higher
performances.

Keywords. Hash mode, indifferentiability, permutation, FPGA implementation

∗University of Waterloo, Canada, and K. U. Leuven, Belgium, souradyuti.paul@uwaterloo.ca
†George Mason University, USA, {ekawat@gmail.com, kgaj@gmu.edu}

1

Contents

Page

1 Introduction 5
1.1 Block-cipher-based hash modes . 5
1.2 Permutation-based hash modes . 6
1.3 Our contribution . 6

1.3.1 The FP mode . 6
1.3.2 Design and FPGA implementation of SAMOSA 8

1.4 Notation and convention . 9

2 Definition of the FP Mode 9

3 Indifferentiability Framework: An Overview 9

4 Main Theorem: Birthday Bound for FP Mode 10

5 Organization of the paper 12
5.1 Proof of main theorem . 12
5.2 Design and implementation of SAMOSA . 12

6 Data Structures 12
6.1 Objects used in pseudocode . 12

6.1.1 Oracles . 12
6.1.2 Global and local Variables . 13
6.1.3 Query and round: definitions . 13

6.2 Graph theoretic objects used in proof of main theorem 14
6.2.1 Reconstructible message . 14
6.2.2 (Full) Reconstruction graph . 14
6.2.3 View . 15

7 Main System G0 15

8 Main System G2 16
8.1 Intuition for the simulator pair (S,S−1) . 16
8.2 Detailed description of the simulator pair (S,S−1) 16

9 Intermediate system G1 18
9.1 Motivation for G1 . 18
9.2 Detailed description of G1 . 20

10 First Part of Main Theorem: Proof of (2) 20

2

11 Type0, 1, 2, 3, and 4 of System G1 21
11.1 Motivation . 21
11.2 Classifying elements of Dπ, branches of Tπ, and π/π−1-queries 21

11.2.1 Elements of Dπ: six types . 21
11.2.2 Branches of Tπ: four types . 22
11.2.3 The π- and π−1-queries: nine types 22

11.3 Type0 and Type1 on Fresh queries . 24
11.3.1 Intuition . 24
11.3.2 Type0: Distance from the uniform 24
11.3.3 Type1: Collision in Tπ . 24

11.4 Type2, Type3 and Type4 on Old queries . 25
11.4.1 Intuition . 25
11.4.2 Type2 . 26
11.4.3 Type3 . 26
11.4.4 Type4 . 28

12 Second Part of Main Theorem: Proof of (3) 28
12.1 Definitions: GOODi and BADi . 28
12.2 Proof of (3) . 29

13 Third (or Final) Part of Main Theorem: Proof of (4) 29
13.1 Estimating probability of Type0 . 30
13.2 Estimating probability of Type1 . 30
13.3 Estimating probability of Type2 . 30
13.4 Estimating probability of Type3 . 30
13.5 Estimating probability of Type4 . 31
13.6 Final computation . 31

14 A New Hash Function Family SAMOSA 31
14.1 Description of SAMOSA . 31
14.2 Security analysis of the SAMOSA family . 32

14.2.1 Security of the FP mode. 32
14.2.2 Security analysis of Grøstl permutations P512 and P1024. 32

15 FPGA Implementations of SAMOSA-256 and SAMOSA-512 33
15.1 Motivation and previous work . 33
15.2 High-speed architectures of SAMOSA and Grøstl 34
15.3 Comparison of SAMOSA and Grøstl in terms of the hardware performance 35

15.3.1 Comparison in terms of Area . 35
15.3.2 Comparison in terms of Throughput 37
15.3.3 Effect of padding in low-area architectures 39

3

15.4 Comparison of SAMOSA with the SHA-3 finalists 39

16 Conclusion and Open Problems 39

A Definitions 44

B Time costs of FullGraph and the simulator-pair (S, S−1) 44

C Proof of (8) 45

4

1 Introduction

1.1 Block-cipher-based hash modes

Iterative hash functions are generally built from two components: (1) a basic primitive
C with finite domain and range, and (2) an iterative mode of operation H to extend the
domain of the hash function; the symbol HC denotes the hash function based on the mode
H which invokes C iteratively to compute the hash digest. Therefore, to design an efficient
hash function one has to be innovative with both the mode H and the basic primitive
C. Merkle-Damgärd mode used with a secure block cipher was the most attractive choice
to build a practical hash function; some examples are SHA-family [30], and MD5 [34].
The security of a hash function based on the Merkle-Damgärd mode crucially relies on
the fact that C is collision and preimage resistant. The compression function C achieves
these properties when it is constructed using a secure block cipher [9]. However, several
security issues changed this popular design paradigm in the last decade. The first concern
is that the security of Merkle-Damgärd mode of operation – irrespective of the strength of
the primitive C – came under a host of generic attacks; the length-extension attack [13],
expandable message attack [22], multi-collision attacks [20] and herding attack [10, 21] are
some of them. Several strategies were discovered to thwart the above attacks. Lucks came
up with the proposal of making the output of the primitive C at least twice as large as the
hash output [26]; this proposal is outstanding since, apart from rescuing the security of
the Merkle-Damgärd mode, it is also simple and easy to implement. Another interesting
proposal was HAIFA that includes a counter injected into the compression function C to
rule out many of the aforementioned attacks [7]. Using the results of [9], it is easy to see
that the Wide pipe and the HAIFA constructions are secure when the underlying primitive
is a secure block cipher.

Despite the aforementioned foolproof design strategies, it turns out that using a block
cipher as the basic primitive of a hash function may not be the best alternative, for several
reasons. (1) A hash function does not need both the encryption and decryption functions
of a block cipher; one of them could be avoided. (2) The key schedule of a block cipher
often turns out to be weak [8]. (3) Furthermore, the key schedule weaknesses of a block
cipher render invalid the very common ideal cipher assumption under which the security
of block-cipher-based hash functions is usually based; note that an ideal cipher assumption
is stronger than an ideal permutation assumption since, in the former case, an extra as-
sumption is that a huge number of ideal permutations need to be independent too. (4) The
amount of memory needed to implement a wide block cipher is larger due to the ‘extra’
key schedule than needed for an equally sized permutation.

5

Table 1: Indifferentiability bounds of permutation-based hash modes, where the hash size is
n-bit in each case; π denotes the permutation, or one of many equally sized permutations.
FPExt1 is a natural variant of FP with parameters shown in the row. The ϵ is a small
fraction due to the preimage attack on JH presented in [6]. Msg-blk denotes the message
block.

Mode of Msg-blk Size of π Rate Indiff. bound # of independent
operation (ℓ) (a) (ℓ/a) lower upper permutations

Hamsi [24] n/8 2n 0.07 n/2 n 1

Luffa [5] n/3 n 0.33 n/4 n 3

Sponge [4] n 3n 0.33 n n 1

Sponge [4] n 2n 0.5 n/2 n/2 1

JH [29] n 2n 0.5 n/2 n(1− ϵ) 1

Grøstl [17] n 2n 0.5 n/2 n 2

FP n 2n 0.5 n/2 n 1

MD6 [14] 6n 8n 0.75 n n 1

FPExt1 6n 7n 0.85 n/2 n 1

1.2 Permutation-based hash modes

For the reasons described in the previous section, the popularity of permutation-based hash
functions has been on the rise since the discovery of weaknesses in the Merkle-Damgärd
mode. Sponge [3], Grøstl [17], JH [39], Luffa [11] and the Parazoa family [1] are some of
them. We note that 9 out of 14 semi-finalist algorithms – and 3 out of 5 finalist algorithms
– of the NIST SHA-3 hash function competition are based on permutations. Also, NIST
selected Keccak as the winner of the SHA-3 competition, which is a permutation-based
Sponge construction. Other notable example is MD6 [35]. In Table 1.2, we compare generic
security and performance (measured in terms of rate) of various well known permutation-
based hash modes.

1.3 Our contribution

1.3.1 The FP mode

Our first contribution is to give a proposal for a new hash mode of operation FP based on
a single wide pipe permutation (see Figure 1). The FP mode is derived from the FWP (or
Fast Wide Pipe) mode designed by Nandi and Paul at Indocrypt 2010 [31].1 The difference
between the FWP and the FP mode is simple: the FP mode is obtained when the underlying

1FP is the shorthand for ‘FWP with a permutation’.

6

mk

π π π π

...m1 m2

IV ′

IV

hash

Figure 1: Diagram of the FP mode. The π is a permutation; all wires are n bits. See
Figure 3(a) for the description.

hard-to-invert function f : {0, 1}m+n → {0, 1}2n of the FWP mode is replaced by an easy-
to-invert permutation π : {0, 1}2n → {0, 1}2n. There are a number of practical reasons for
switching from FWP to FP: (1) Easy-to-invert permutations are usually efficient, and such
permutations with strong cryptographic properties are abundant in the literature (e.g. JH,
Grøstl and Keccak permutations); (2) hard-to-invert functions are difficult to design, or
they are less efficient.

On the other hand, easy-to-invert permutations – even though they are faster – have
some drawbacks; the most crucial of them is that they allow the attacker to use reverse
queries in addition to forward queries, and, as a result, make the adversary inherently more
powerful. Therefore, a good deal of caution is required to design a hash mode of operation
that uses permutations. We show that the FP mode based on an ideal permutation is in-
differentiable from a random oracle up to approximately 2n/2 queries (forward and reverse
together); this means that the FP mode is secure against all generic attacks – including
(multi) collision, 2nd preimage, herding attacks – up to approximately 2n/2 queries, un-
der the assumption that the underlying 2n-bit permutation is structurally strong. Moving
further, we performed experiments to implement our indifferentiability framework with
randomly generated graphs using C programs, and our experiments strongly indicate that
the indifferentiability security of the FP mode could be improved close to n bits. Another
important feature of our work is that the security guarantee is based on only one assump-
tion – like the Sponge and JH – that the underlying permutation should not display any
structural weaknesses; note that the security of many permutation-based hash functions
(e.g. Grøstl and Luffa) requires additional assumptions such as independence of several
ideal permutations. In Figure 1.2, we compare the FP mode and a natural extension of it
FPExt1 with other permutation-based hash functions. It is noteworthy that the FP mode
exhibits the best security/rate trade-off, when the internal permutation size is fixed.

7

1.3.2 Design and FPGA implementation of SAMOSA

Our second contribution is establishing the practical usefulness of the FP mode. As an
example, we design a concrete hash function family SAMOSA.2 It is based on the FP
mode, where the internal primitives are the P -permutations of the Grøstl hash function.
We provide security analysis of SAMOSA, demonstrating its resistance against any known
practical attacks.

As demonstrated by the AES and the SHA-3 competitions, the security of a cryp-
tographic algorithm alone is not sufficient to make it stand out from among multiple
candidates competing to become a new American or international standard. Excellent per-
formance in software and hardware is necessary to make a cryptographic protocol usable
across platforms and commercial products. Assuring good performance in hardware is typ-
ically more challenging, since hardware design requires involved and specialized training,
and, as it turns out, that the majority of designer groups lack experience and expertise in
that area.

In case of SAMOSA, the algorithm design and hardware evaluation have been performed
side by side, leading to full understanding of all design decisions and their influence on
hardware efficiency. In this paper, we present efficient high-speed architecture of SAMOSA,
and show that this architecture outperforms the best known architecture of Grøstl in terms
of the throughput to area ratio by a factor ranging between 24 and 51%. These results
have been demonstrated using two representative FPGA families from two major vendors,
Xilinx and Altera. As shown in [16], these results are also very likely to carry to any future
implementations based on ASICs (Application Specific Integrated Circuits). Additionally,
we demonstrate that SAMOSA consistently ranks above BLAKE, Skein and Grøstl in our
FPGA implementations. Although it still loses to Keccak and JH, nevertheless, a relative
distance to these algorithms substantially decreases compared to Grøstl, despite using the
same underlying operations. This performance gain is accomplished without any known
degradation of the security strength.

Additionally, SAMOSA’s dependence on many AES operations makes it suitable for
software implementations that use general-purpose processors with AES instruction sets,
such as AES-NI. Finally, in both software and hardware, SAMOSA could be an attractive
choice for applications where both confidentiality and authentication are required to share
AES components. One such example is IPSec, protocol used for establishing Virtual Private
Networks, which is one of the fundamental building blocks of secure electronic transactions
over the Internet.

Although SAMOSA comes too late for the current SHA-3 competition, it still has a
chance to contribute to better understanding of the security and performance bottlenecks
of modern hash functions, and to find niche platforms and applications in which it may
outperform the existing and upcoming standards.

2SAMOSA is the name of an Indian food.

8

1.4 Notation and convention

Throughout the paper we let n be a fixed integer. While representing a bit-string, we
follow the convention of low-bit first (or little-endian bit ordering). For concatenation of
strings, we use a||b, or just ab if the meaning is clear. The symbol ⟨n⟩m denotes the m-bit
encoding of n. The symbol |x| denotes the bit-length of the bit-string x, or sometimes

the size of the set x. Let x
parse→ x1x2 · · ·xk means parsing x into x1, x2, · · · , xk such that

|x1| = |x2| = · · · = |xk−1| = n and |xk| = |x|−|x1x2 · · ·xk−1|. Let Dom(T) = {i | T [i] ̸=⊥}
and Rng(T) = {T [i] | T [i] ̸=⊥}. We write AB to denote an Algorithm A with oracle access
to B. Let [c, d] be the set of integers between c and d inclusive, and a[x, y] the bit-string
between the x-th and y-th bit-positions of a. Finally, U [0, N] is the uniform distribution

over the integers between 0 and N . The symbol r
$← A denotes the operation of assigning

r with a value sampled uniformly from the set A. The symbol λ denotes the empty string.

2 Definition of the FP Mode

Suppose n ≥ 1. Let π : {0, 1}2n → {0, 1}2n be the 2n-bit permutation used by the FP
mode. The hash function FPπ is a mapping from {0, 1}∗ to {0, 1}n. The diagram and
description of the FP transform are given in Figures 1 and 3(a), where π is modeled as an
ideal permutation. Below we define the padding function padn(·).
Padding function padn(·). It is an injective mapping from {0, 1}∗ to ∪i≥1{0, 1}ni, where
the message M ∈ {0, 1}∗ is mapped into a string padn(M) = m1 · · · mk−1 mk, such that
|mi| = n for 1 ≤ i ≤ k. The function padn(M) = M ||1||0t satisfies the above properties (t

is the least non-negative integer such that |M |+1+ t = 0 mod n). Note that k =
⌈
|M |+1

n

⌉
.

In addition to the injectivity of padn(·), we will also require that there exists a func-
tion dePadn(·) that can efficiently compute M , given padn(M). Formally, the function
dePadn : ∪i≥1 {0, 1}in → {⊥} ∪ {0, 1}∗ computes dePadn(padn(M)) = M , for all M ∈
{0, 1}∗, and otherwise dePadn(·) returns ⊥. The padding rule described above satisfies this
property also.

3 Indifferentiability Framework: An Overview

We first define the indifferentiability security framework, and briefly discuss its significance.

Definition 3.1 (Indifferentiability framework) [13] An interactive Turing machine
(ITM) T with oracle access to an ideal primitive F is said to be (tA, tS , σ, ε)-indifferentiable
from an ideal primitive G if there exists a simulator S such that, for any distinguisher A,
the following equation is satisfied:

AdvT,F
G,S (A)

def
=

∣∣∣Pr[AT,F = 1]− Pr[AG,S = 1]
∣∣∣ ≤ ε.

9

T SF

A

G
System 1 System 2

(a)

S/S−1

π/π−1

FP1 RO

G0 G1 G2

FP

A A A
≡ ̸≡

S1/S1−1π/π−1

(b)

Figure 2: (a) Indifferentiability framework formalized in Definition 3.1; (b) Schematic
diagram for the security games used in the indifferentiability framework for FP. The arrows
show the directions in which the queries are submitted. System 1 = (T,F) = G0 =
(FP, π, π−1), and System 2 = (G,S) = G2 = (RO, S, S−1). See Section 4 for description.

The simulator S is an ITM which has oracle access to G and runs in time at most tS . The
distinguisher A runs in time at most tA. The number of queries used by A is at most σ.
Here ε is a negligible function in the security parameter of T . See Figure 2(a) for a pictorial
representation. AdvT,F

G,S (A) denotes the advantage of adversary A in distinguishing (T,F)
from (G,S).

The significance of the framework is as follows. Suppose, an ideal primitive G is indif-
ferentiable from an algorithm T based on another ideal primitive F . In such a case, any
cryptographic system P based on G is as secure as P based on TF (i.e., G replaces TF in
P). For a more detailed explanation, we refer the reader to [27]. Some limitations of the
indifferentiability framework have recently been discovered in [15] and [33]. They offer a
deep insight into the framework; nevertheless, the observations are not known to affect the
security of the indifferentiable hash functions in any meaningful way.

An oracle, a system, and a game. An oracle is an algorithm (accessed by another
oracle or algorithm) which, given an input as an appropriately defined query, responds
with an output. For example, in Figure 2(a), T , F , G and S are oracles. A system is a
set of oracles (e.g. System 1 = (T,F), System 2 = (G,S) in Figure 2(a)). A game is the
interaction of a system with an adversary. We refrain from providing a formal definition
of a game, since such formalization will not be necessary in our analysis.

4 Main Theorem: Birthday Bound for FP Mode

Let RO : {0, 1}∗ → {0, 1}n and π : {0, 1}2n → {0, 1}2n are a random oracle and an ideal
permutation. Our indifferentiability framework uses three systems G0 = (FP, π, π−1), G1
= (FP1, S1, S1−1), and G2 = (RO, S, S−1) (see Figure 2(b)). The correspondence between
the entities of Figures 2(a) and 2(b) are as follows: G = RO, T = FP and F = (π, π−1).

10

The description of FP1, S, S−1, S1, and S1−1 will be provided in Section 10. Now we state
our main theorem using Definition 3.1.

Theorem 4.1 (Main Theorem) The hash function FPπ (or FPπ,π−1
) is (tA, tS , σ, ε)-

indifferentiable from RO, where tA =∞, tS = O
(
σ5

)
, and σ ≤ K2n/2, where K is a fixed

constant derived from ε.

In the next few sections, we will prove Theorem 4.1 by breaking it into several compo-
nents. First, we briefly describe what the theorem means: it says that no adversary with
unbounded running time can mount a nontrivial generic attack on the hash function FPπ

using at most K2n/2 queries. The parameter K is an increasing function in ε, and is con-
stant for all n > 0. To reduce the notation complexity, we shall derive the indifferentiability
bound assuming ε = 0.5 for which, we shall derive, K = 1/

√
56.

Outline of the Proof. Our proof of Theorem 4.1 uses the blueprint developed in [28] and
[29] dealing with indifferentiability security analysis of FWP and JH modes of operation.
However, to make the paper self-contained, we write out the proof from scratch. The
proof consists of the following two components (see Definition 3.1): (1) Construction of
a simulator S = (S,S−1) with the worst-case running time tS = O

(
σ5

)
. This is done in

Section 10. (2) Showing that, for any adversary A with unbounded running time,∣∣∣Pr[AG0 ⇒ 1
]
− Pr

[
AG2 ⇒ 1

]∣∣∣ ≤ 28σ2

2n
, (1)

where the systems G0 = (FP, π, π−1) and G2 = (RO,S,S−1). The systems G1 and G2 are
called the main systems. Proof of (1) is, again, composed of proofs of the following three
(in)equations:

• In Sections 8 and 9, we will concretely define the simulator pair (S,S−1) and a new
intermediate system G1. Using them we will show in Section 10,

Pr
[
AG0 ⇒ 1

]
= Pr

[
AG1 ⇒ 1

]
. (2)

• In Sections 11 and 12, we will appropriately define a set of events BADi and GOODi

in the system G1, and will establish that∣∣∣Pr[AG1 ⇒ 1
]
− Pr

[
AG2 ⇒ 1

]∣∣∣ ≤ σ∑
i=1

Pr
[
BADi | GOODi−1

]
. (3)

• In Section 13, we complete proof of (1) by establishing that

σ∑
i=1

Pr
[
BADi | GOODi−1

]
≤ 28σ2

2n
(4)

11

where
σ∑

i=1

Pr
[
BADi | GOODi−1

]
≤ ε = 0.5.3

5 Organization of the paper

5.1 Proof of main theorem

Sections 6 to 13 are devoted to complete the proof of Theorem 4.1. The three parts of
the proof – i.e., proving (2), (3), and (4) – are done in Sections 10, 12, and 13. These
sections make use of the results that are developed in the following sections: Section 6
defines the data structures used by all systems and proofs; Sections 7, 8, 9, and 11 give
detailed description of all the systems.

5.2 Design and implementation of SAMOSA

In Section 14, we propose a new concrete hash function named SAMOSA, and provide its
security analysis. Finally, in Section 15, we give FPGA hardware implementation results
for SAMOSA.

6 Data Structures

The systems G0, G1, and G2 have been mentioned in Section 4 (see schematic diagram in
Figure 2(b)). The pseudocode of them is given in Figures 3(a), 5, and 3(b). In this section
we describe several data structures used by these systems.

6.1 Objects used in pseudocode

6.1.1 Oracles

The main component of a system is the set of oracles that receive queries from the adversary.
In Figure 2(b), any algorithm that receives a query is an oracle. Note that, except the
adversary A, each rectangle denotes an oracle.

The systems use a total of 9 oracles. The oracles FP, FP1, and RO are mappings from
{0, 1}∗ to {0, 1}n. The oracle S is a mapping from {0, 1}2n to {0, 1}2n. The permutations
π, π−1, S1, and S1−1 are all defined on {0, 1}2n, while S−1 is a mapping from {0, 1}2n
to {0, 1}2n ∪ {⊥}. Instruction-by-instruction description of these oracles and the used
subroutines are provided in the subsequent sections.

3Setting 28σ2

2n
≤ ε = 1/2, we get σ ≤ 1√

56
2n/2. Therefore, K = 1/

√
56.

12

6.1.2 Global and local Variables

The oracles described above will use several global and local variables. The local variables
are re-initialized every new invocation of the system, while the global data structures main-
tain their states across queries. The tables Dl, Ds and Dπ are global variables initialized
with ⊥. The graphs Tπ and Ts are also global variables which initially contain only the
root node (IV, IV ′). Other than them, all other variables are local, and they are initialized
with ⊥.

6.1.3 Query and round: definitions

In Figure 2(b), an arrow denotes a query. The submitter and receiver algorithms of a query
are denoted by the rectangles attached to the head and the tail of the arrow.

Long query. Any query submitted to FP, FP1, or RO is a long query. A long query and
its response are stored in the table Dl.

Short query. Queries submitted to S, S1 are s-queries, and those submitted to S−1 and
S1−1 as s−1-queries. The s- and s−1-queries and their responses are stored in table Ds.
Similarly, queries submitted to π, and π−1 are π- and π−1-queries; these queries and their
responses are stored in table Dπ. Each of the above queries is classified as short query.
Note that, for G0, Ds = ∅; for G1, Dπ ⊇ Ds; and, for G2, Dπ = ∅.

Fresh and old queries. The current short query can also be of two disjoint types: (1) an
old query, which is already present in the relevant database (e.g. for G1, when an adver-
sary submits an s-query which is an intermediate π-query of a previously submitted long
query); or (2) a fresh query, which is so far not present in the relevant database.

Message block. In order to compare the time complexities of the oracles FP, FP1 and RO
on a uniform scale, we recall the notion of a message block. A long query M – irrespective
of the oracle – is assumed to be a sequence of k message blocks m1, m2, · · · mk, where
padn(M) = m1m2 · · ·mk. Note that, for FP and FP1, every message block mi corresponds
to a π-query x||mi for some bit-string x. However, it is not known how the RO processes
the message blocks of a long query M . We assume that the RO processes the message
blocks sequentially, and that the time taken to process a message block is the same for all
FP, FP1 and RO.

Round (and query). The time interval to process a short query or a message block
is defined as a round. We assume that each round takes an equal amount of time. To
simplify the analysis, henceforth, unless otherwise specified, a query would mean either a
short query or a message block.

13

Rules of the game. An adversary never re-submits an identical query. Moreover, an
s-query (or s−1-query) is also not submitted, if it matches with the output of a previous
s−1-query (or s-query).

6.2 Graph theoretic objects used in proof of main theorem

In addition to objects defined in the section above, we will use the following notions for a
rigorous mathematical analysis of our results.

Suppose, π : {0, 1}2n → {0, 1}2n is an ideal permutation, and D is a finite set of pairs
of the form (x, π(x)).

6.2.1 Reconstructible message

From the high level, M is a reconstructible message for the set D, if D contains all the
π-queries and responses (x, π(x)), required to compute FPπ(M).
More formally, M is a reconstructible message for D, if, for all 0 ≤ i ≤ k − 1, (yimi+1,
π(yimi+1)) ∈ D, where padn(M) = m1m2 · · ·mk and yi+1y

′
i+1 = π(yimi+1)⊕ (y′i||0).

6.2.2 (Full) Reconstruction graph

To put it loosely, a reconstruction graph stores reconstructible messages on its branches. A
full reconstruction graph stores all reconstructible messages. We now define them formally.
A weighted digraph T = (V,E) is defined by the set of nodes V , and the set of weighted
edges E. A weighted edge (v, w, v′) ∈ E is an ordered triple, such that v, v′ ∈ V , and w is
the weight of the ordered pair (v, v′).

Definition 6.1 (Reconstruction graph) Suppose a weighted digraph T = (V,E) is such
that V is a set of 2n-bit strings, and, for all (a, b, c) ∈ E, the weight b is an n-bit string.

The graph T is called a reconstruction graph for D if, for every (y1y
′
1, m2, y2y

′
2) ∈ E,

the following equation holds: y2y
′
2 = π(y1m2)⊕ (y′1||0) (all variables are n bits each), where

(y1m2, π(y1m2)) ∈ D . (An example of reconstruction graph is given in Figure 4, which
will be discussed in detail in the subsequent sections.)

A branch B of a reconstruction graph T , rooted at IV IV ′, is fertile, if dePadn(m1 m2 · · ·
mk) ̸=⊥, where {m1, m2, · · · , mk} is the sequence of weights on the branch B.
Remark: Each fertile branch of a reconstruction graph corresponds to exactly one recon-
structible message.

Definition 6.2 (Full reconstruction graph) A reconstruction graph T (for the set D)
is full, if, for each reconstructible message M (for D), T contains a fertile branch B that
corresponds to M .

14

FP(M)

01. If M ∈ Dom(Dl) then
return Dl[M];

02. m1m2 . . .mk := padn(M);
03. y0 := IV , y′0 := IV ′;
04. for (i := 1, 2, . . . k)

yiy
′
i := π(yi−1||mi)⊕ (y′i−1||0);

05. r := π(yk||y′k);
06. Dl[M] := r[n, 2n− 1];
07. return Dl[M];

π(x)

11. If x /∈ Dom(Dπ)

then Dπ[x]
$← {0, 1}2n \Rng(Dπ);

12. return Dπ[x];

π−1(r)

21. If r /∈ Rng(Dπ)

then D−1
π [r]

$← {0, 1}2n \Dom(Dπ);
22. return D−1

π [r];

(a) System G0 = (FP, π, π−1). For all i, |mi| = |yi| = |y′
i| = |r/2| = n.

RO(M)

001. If M ∈ Dom(Dl) then
return Dl[M];

002. Dl[M]
$← {0, 1}n;

003. return Dl[M];

S−1(r)

300. x
$← {0, 1}2n;

301. if x ∈ Dom(Ds) then Abort;
302. Ds[x] := r;
303. FullGraph(Ds);
304. return x;

S(x)

100. r
$← {0, 1}2n;

101. if r ∈ Rng(Ds) then Abort;
102. M := MessageRecon(x, Ts);
103. if |M| = 1 then

r[n, 2n− 1] := RO(M);
104. Ds[x] := r;
105. FullGraph(Ds);
106. return r;

MessageRecon(x, Ts)

201. M′ := FindBranch(x, Ts);
202. M := {dePad(X) | X ∈M′};
203. returnM;

(b) System G2 = (RO, S, S−1).

Figure 3: The main systems G0 and G2

6.2.3 View

Very loosely, the data structure view records the history of the interaction between a system
and an adversary. Let xi and yi be the i-th query from the adversary and the corresponding
response from the system. The view of the system after j queries is the sequence of queries
and responses {(x1y1), . . . , (xjyj)}.

7 Main System G0

Following the definition provided in Section 2, the system G0 implements the FP hash
function using the ideal permutations π and π−1. See Figure 3(a).

15

8 Main System G2

See Figure 3(b) for the pseudocode. The random oracle RO defined in Section 4 is imple-
mented through lazy sampling. The only remaining part is to construct the simulator-pair
(S,S−1). Our design strategy for the simulator-pair is fairly straightforward and simple.
Before going into the details, we first provide a high level intuition.

8.1 Intuition for the simulator pair (S,S−1)

The purpose of the simulator pair (S,S−1) is two-pronged: (1) to output values that are
indistinguishable from the output from the ideal permutation (π, π−1), and (2) to respond
in such a way that FPπ(M) and RO(M) are identically distributed. It will easily follow
that as long as the simulator-pair (S,S−1) is able to output values satisfying the above
conditions, no adversary can distinguish between G0 and G2.

To achieve (1), the simulator S, for a distinct input x, should output a random value,
such that the distributions of S(x) and π(x) are close. Similarly, the simulator S−1, for a
distinct input r, should give outputs such that the random variables S−1(r) and π−1(r)
follow statistically close distributions.

To achieve (2), the simulator-pair needs to generate reconstructible messages from the
set Ds. To accomplish this, it needs to do the following:
• Assessing the power of the adversary: To asses the adversarial power the simulator-pair
(S, S−1) maintains the full reconstruction graph Ts for the set Ds that contains all s-,
s−1-queries and responses; this helps the simulator keep track of all ‘FP-mode-compatible’
messages (more formally, all reconstructible messages) that can be formed using the el-
ements of Ds. This is accomplished by a special subroutine FullGraph. The pictorial
representation of the reconstruction graph Ts is given in Figure 4.
• Adjusting the elements of the tables Dl and Ds: Whenever a new reconstructible message
M is found, the simulator makes this crucial adjustment: it assigns FPS(M) := RO(M).
It is fairly intuitive that, if S and π produce outputs according to statistically close dis-
tributions, then the distributions of FPS(M) and FPπ(M) are also close. Since FPS(M) =
RO(M), the distributions of RO(M) and FPπ(M) are also close. This is accomplished by
the subroutine MessageRecon.

8.2 Detailed description of the simulator pair (S,S−1)

We first describe the two most important parts of the simulator-pair: the subroutines Full-
Graph and MessageRecon.

FullGraph(Ds). This routine builds the full reconstruction graph Ts using all the s-, s−1-
queries and responses stored in Ds. Hence the name FullGraph. We do not provide the
pseudocode for this subroutine, since its operation is straight-forward and brute force: ev-
ery invocation FullGraph constructs the graph Ts by searching the elements in Ds, then

16

creating all possible nodes, and finally connecting them to create the graph Ts. In Ap-
pendix B, we compute the running time of FullGraph on the i-th query to be O(i4).

MessageRecon(x, Ts). The graph Ts is already the full reconstruction graph for the set
Ds. Given the current s-query x, this subroutine derives all new reconstructible messages
M , such that, in the computation of FPS(M), the final input to S is x, and all other
intermediate inputs to S are old s-queries.

To determine such messages M , first, FindBranch(x, Ts) collects all branches between
the nodes (IV, IV ′) and x; then, it selects the sequence of weights X = m1m2 · · ·mk for
all such branches. Finally it returns a set {M = dePad(X)} for all X. If no such M ̸=⊥ is
found, then the subroutine returns the empty set.

m2

y0y
′
0 = IV IV ′

ma

yay
′
a

y2y
′
2

m3

y3y
′
3

m1

y1y
′
1

Figure 4: The reconstruction graph Ts (or Tπ) updated by FullGraph of G2 (or PartialGraph
of G1).

With the definition of the above subroutines, we now describe how S and S−1 respond to
queries.

An s-query and response (for S): For an s-query, the simulator S assigns a uniformly
sampled 2n-bit value to r; if r matches an old range point in Ds then the round is aborted.4

Then the subroutine MessageRecon(x, Ts) is invoked which returns a set of reconstructible
messages M. If |M| = 1 then the RO is invoked on M ∈ M, and the value is assigned
to r[n, 2n − 1]. Finally, the graph Ts is updated by FullGraph, before r is returned. In
Appendix B, we show that the worst-case running time of S after σ queries is O(σ5).

An s−1-query and response (for S−1): For an s−1-query, the simulator S−1 assigns
a uniformly sampled 2n-bit value to x; if x matches an old domain point in Ds then the

4This adjustment is required to preserve the permutativity property of Ds.

17

round is aborted. Finally, the graph Ts is updated by FullGraph, before x is returned. In
Appendix B, we show that the worst-case running time of S−1 after σ queries is O(σ5).

9 Intermediate system G1

The pseudocode is provided in Figure 5. For the sake of clear understanding, we first
discuss the motivation for designing this system.

9.1 Motivation for G1

The main motivation for constructing a new system G1 is that it is difficult to compare
between the executions of the systems G0 and G2, instruction by instruction. The diffi-
culty arises from the fact that G2 has a graph Ts, and two extra subroutines FullGraph,
and MessageRecon, while G0 has no such graphs or subroutines. To get around this diffi-
culty, we reduce G0 to an equivalent system G1 by endowing it with additional memory
for constructing a similar graph Tπ, and supplying it with the additional subroutines Mes-
sageRecon and PartialGraph. These additional components do not result in any difference
in the input and output distributions of the systems G0 and G1 for any adversary (this
result is formalized in Proposition 10.1); therefore, in the indifferentiability framework, G0
can be replaced by G1.

Even though G1 and G2 now appear ‘close’, there are still important differences. The
most crucial of them is that, in the former case, the long queries are processed as a sequence
of π-queries; therefore, current s- and s−1-queries of G1 may match old π-queries and
responses, while such events are not possible for G2. This difference comes with two
implications:

1. The reconstruction graph Tπ in G1 is built using s-, s−1-, π-queries, and their re-
sponses stored in the table Dπ; in case of G2, the reconstruction graph Ts is built
using only s-, s−1-queries and responses stored in Ds. This difference can be identi-
fied by separating out, from Tπ, the maximally connected subgraph Ts built from all
the s-, s−1-queries and responses stored in Ds in G1. Now the reconstruction graph
Ts in both systems are comparable.

2. In G1, the reconstruction graph Tπ may not be full for the setDπ, since the subroutine
PartialGraph adds only a few nodes – rather than all nodes – to Tπ every round; by
contrast, the reconstruction graph Ts – built by the subroutine FullGraph – for G2
is necessarily full for the set Ds. In Section 11, we identify a set of events in the
system G1, and then, in Section 12, show that, if those events do not occur, then the
reconstruction graphs in both the systems are full.

18

FP1(M)

001. m1m2 · · ·mk−1mk := padn(M);
002. y0 := IV , y′0 := IV ′;
003. for (i := 1, · · · , k) {
004. r := π(yi−1mi);
005. yiy

′
i := r ⊕ (y′i−1||0);

006. if yi−1mi is fresh then
PartialGraph(yi−1mi, r, Tπ);}

007. if Type3 then BAD := True ;
008. r := π(yky

′
k);

009. if Type0-b then BAD := True ;
010. if yky

′
k is fresh then

PartialGraph(yky
′
k, r, Tπ);

011. Dl[M] := r[n, 2n− 1];
012. return Dl[M];

MessageRecon(x, Ts)

201. M′ := FindBranch(x, Ts);
202. M := {dePad(X) | X ∈M′};
203. returnM;

π(x)

301. if x /∈ Dom(Dπ) then

Dπ[x]
$← {0, 1}2n \Rng(Dπ);

302. return Dπ[x];

π−1(r)

501. If r /∈ Rng(Dπ) then

D−1
π [r]

$← {0, 1}2n \Dom(Dπ);
502. return D−1

π [r];

S1(x)

100. If Type2 then BAD := True ;
101. r := π(x);

102. if Type0-a then BAD := True ;
103. M:=MessageRecon(x, Ts);
104. if |M| = 1 ∧M /∈ Dom(Dl) then

Dl[M] := r[n, 2n− 1];
105. Ds[x] := r;
106. if x is fresh then PartialGraph(x, r, Tπ);
107. return r;

S1−1(r)

601. if Type4 then BAD := True ;
602. x := π−1(r);

603. if Type0-c then BAD := True ;

604. if Type1-c then BAD := True ;
605. Ds[x] := r;
606. if r is fresh then PartialGraph(x, r, Tπ);
607. return x;

PartialGraph(x, r, Tπ)

401. x
parse→ ycm; r

parse→ y∗y′;
402. C := ContactPoints(yc, Tπ);
403. E := {(ycy′c,m, yy′)|y := y∗ ⊕ y′c, ycy

′
c ∈ C};

404. for ∀e ∈ E {
AddEdge(e, Tπ);

if Type1-a∨Type1-b then BAD := True ;}

Figure 5: System G1. |mi| = |m| = |yi| = |y′i| = |yc| = |y′c| = |y| = |y′| = |y∗| = |r/2| = n,
for all i.

19

9.2 Detailed description of G1

Now we describe G1 in detail. For the moment, we postpone the description of the Type0,1,
2, 3 and 4 events until Section 11, since they do not impact the output and the global data
structures of G1. We first discuss the subroutines used by the oracles FP1, S1 and S1−1.

PartialGraph(x, r, Tπ). This subroutine is invoked whenever a fresh π- and π−1-query – with
r = π(x) – is encountered. The subroutine updates the reconstruction graph Tπ with (x, r)
in the following way: First, the subroutine ContactPoints(yc = x[0, n− 1]) is invoked, that
returns a set C containing all nodes in Tπ with yc being least significant n bits. The size of
C determines the number of fresh nodes to be added to Tπ in the current iteration. Using
the members of C and the new pair (x, r), new weighted edges are constructed, stored in
E, and added to Tπ using the subroutine AddEdge. See Figure 4 for a pictorial description.
Note that the reconstruction graph Tπ may not be full for the elements in Dπ; hence the
name PartialGraph.

MessageRecon(x, Ts): This subroutine has been described already in the context of G2,
that determines new reconstructible messages. Note that the graph Ts is the maximally
connected subgraph of Tπ with the root-node (IV, IV ′), generated by the s-, s−1-queries
and responses stored in Ds; x is the current s-query.

Now we describe how the oracles S1, S1−1, and FP1 respond to queries.

An s-query and response (for S1): For the s-query x, S1 computes π(x). Then the
subroutine MessageRecon(x, Ts) is called which returns a set of reconstructible messages
M. If |M| = 1, and the M ∈ M is not a previous long query then Dl[M] is assigned the
value of π(x)[n, 2n − 1]. Before finally returning r, the subroutine PartialGraph is called
with input (x, r), if it is fresh, to update the existing graph Tπ.

An s−1-query and response (for S1−1): For an s−1-query r, x is assigned the value of
π−1(r). Finally, Ds[x] and Tπ are updated, and x is returned.

A long query and response (for FP1): FP1 mimics FP, while updating the graph Tπ

using the subroutine PartialGraph, whenever a fresh π-query is generated. Dl[M] is assigned
r[n, 2n− 1], where r is the output from the final π call. Finally, r[n, 2n− 1] is returned.

10 First Part of Main Theorem: Proof of (2)

From the definitions of systems G0 and G1 – in Sections 7 and 9 – we are well equipped
to prove (2).

20

Proposition 10.1 For any distinguishing adversary A,

Pr
[
AG0 ⇒ 1

]
= Pr

[
AG1 ⇒ 1

]
.

Proof. From the description of S1 and S1−1, we observe that, for all x ∈ {0, 1}2n,
S1(x) = π(x) and S1−1(x) = π−1(x). Likewise, from the descriptions of FP1 and FP, for
all M ∈ {0, 1}∗, FP1(M) = FP(M). 2

11 Type0, 1, 2, 3, and 4 of System G1

In this section, we concretely define the Type0, Type1, Type2, Type3 and Type4 events
of the system G1 (see Figure 5). Informally they will be called ‘bad’ events, since these
events set the variable BAD in G1. We first provide the motivation for these events.

11.1 Motivation

We recall that the adversary submits s-, s−1- and long queries to the system G1 and receives
responses, and based on the history of query-response pairs, known as view – she then tries
to distinguish G1 from G2. Intuitively, those events are called ‘bad’, for which the outputs
from the π and π−1 oracles of G1 can be predicted by the adversary with probability better
than when interacting with G2. These events primarily involve various forms of collision,
occurring in the graph Tπ, allowing the adversary to generate non-trivial reconstructible
messages. Secondly, we need to catch the events where current queries match old queries
too. One can intuit that these events help the adversary in distinguishing G1 from G2. It
is also important to note that, if Tπ is not a full reconstruction graph then the adversary
can also use this fact to compel G1 to produce outputs different from those from G2 (since
G2 always maintains the full reconstruction graph Ts).

Next sections deal with concrete definitions of these events, keeping the above motiva-
tion in mind.

11.2 Classifying elements of Dπ, branches of Tπ, and π/π−1-queries

The Type0 to Type4 events depend on the elements in Dπ, the branches of Tπ, and the
types of π- and π−1-queries. In the following sections we first classify them.

11.2.1 Elements of Dπ: six types

The query-response pairs of Dπ are classified according to its known and unknown parts.
The known part of a query-response pair is the part that is present in the view of the system
G1, or it can be derived from the view with probability 1; the unknown part is not present
in the view, and it cannot be derived from the view with probability 1. We observe that

21

there are six types of such a pair, and we denote them by Q0, Q1, Q2, Q3, Q4 and Q5 in
Figure 6(a); the head and tail nodes – each 2n bits – denote the input to, and the output
from the query. Two-sided arrowhead indicates that the corresponding input-output pair
is generated from either a π-or a π−1-query. The red and green circles – each n bits –
denote unknown and known parts.

11.2.2 Branches of Tπ: four types

The branches of Tπ can be classified into four types, as shown in Figure 6(b). A branch B
is: type I, if the final query is Q1, Q2 or Q5; type II, if the final query is Q3 or Q4; type
III, if the final query is Q0, and if one of the intermediate queries is Q1, Q2, Q3, Q4 or
Q5; type IV, if all queries are Q0. The first three types are called red branch. The fourth
type is called green branch.

11.2.3 The π- and π−1-queries: nine types

We observe that – based on the types described in the sections above – the current π- and
π−1-query can be categorized into the following classes.

1. Current π-query is an s-query. This can be of two types.

(a) The π-query is fresh.

(b) The π-query is one of six types of elements in Dπ described in Section 11.2.

2. Current π−1-query is an s−1-query. This can be of two types.

(a) The π−1-query is fresh.

(b) The π-query is one of six types of elements in Dπ.

3. Current π-query is an intermediate π-query for the current long query. This is of
three types.

(a) Current long query is present on a red branch – as defined in Section 11.2 – of
the graph Tπ. The π-query in this case is necessarily one of six types stored in
Dπ; we divide it into two cases.

i. The π-query is the final one.

ii. The π-query is a non-final one.

(b) Current long query is present on a green branch of the graph Tπ. The π-query
in this case is also one of six types stored in Dπ.

(c) Current long query is not present on a branch of the graph Tπ. We divide the
π-query into two types.

i. The π-query is fresh.

ii. The π-query is one of six types of elements in Dπ.

22

Q0 Q1 Q2 Q3 Q4 Q5
(a) Q0, Q1, Q2, Q3, Q4, and Q5 denote six types of π/π−1-query and
response.

IV IV ′

Q1 Q2 Q3 Q4 Q5

Q0

Q0

Q0

IV IV ′

Q0

Q0

IV IV ′

Q3/Q4
Q0

Q0

Q0

Q0

IV IV ′

Q1/Q2/Q5

(I)
(II) (III) (IV)

y1y
′
1

yky
′
k yky

′
k

y1y
′
1

yky
′
k yky

′
k

y1y
′
1

(b) Several types of a branch in Tπ. (I), (II) and (II) are called red branch. (IV)
is called green branch.

Figure 6: Several types of old π/π−1-queries and branches in Tπ.

23

11.3 Type0 and Type1 on Fresh queries

11.3.1 Intuition

We address the classes 1a, 2a, and 3ci of Section 11.2.3 together, since they are connected
by the fact that the π- or π−1-query is fresh. It is straightforward to notice that, if the
outputs of the fresh queries are uniformly distributed, then distinguishing between G1 and
G2 is difficult: Type0 events are designed to measure the degree to which the outputs of
the π- and π−1-queries are uniformly distributed.

The second scenario is when the adversary is able to generate a non-trivial reconstruc-
tion message, for distinguishing G1 from G2. This is possible, if the fresh π-query causes a
node collision in the graph Tπ, or if it causes an old query to be attached to a fresh node,
or if an s−1-query can be attached to a node of Tπ. Type1 events cover these events. In ad-
dition, we require that the absence of these events make the graph Tπ a full reconstruction
graph. Detailed descriptions are below.

11.3.2 Type0: Distance from the uniform

Type0 event occurs when the output of a fresh π/π−1-query is distinguishable from the
uniform distribution U [0, 22n − 1]. A Type0 event can be of three types: event Type0-a
occurs when a fresh π-query is an s-query; event Type0-b occurs when a fresh π-query
is the final π-query of a long query; event Type0-c occurs when an s−1-query is a fresh
π−1-query.

Fresh Old Fresh

Old

==
Fresh

=

m

y′cyc

Node collision (n bits) Forward query collision (n bits)

y

y′ y′

yc y′c

y

(Type1-a) (Type1-b)

Reverse query collision (n bits)
(Type1-c)

Old

Figure 7: Type1 events of G1. All arrows are n bits each. Red arrow denotes fresh n bits
of output from the ideal permutation π/π−1. The symbol “=” denotes n-bit equality.

11.3.3 Type1: Collision in Tπ

There are three types of Type1 events (see Figure 7). The purpose is to ensure that, if
they do not occur then (1) no non-trivial reconstructible message can be generated by the

24

adversary, (2) the growth of Tπ every round is “small”, and (3) Tπ is a full reconstruction
graph for the set Dπ.

• Type1-a. Suppose yy′ is a fresh 2n-bit node generated when a fresh π-query is
attached to Tπ. This event occurs when yy′ collides with another node in Tπ; this
collision can be used to generate at least two reconstructible messages in the next
rounds – one of them can be used to distinguish G1 from G2. It is important to note
that, even though we are interested in 2n-bit node collision, Type1 event captures
collision on the least significant n bits of the nodes. Therefore, it includes a bigger
set of events than necessary. This is done to bound the growth of the graph; more
precisely, it allows at most one fresh node to be added in the next round, if this event
does not occur.

• Type1-b. Suppose yy′ is a fresh node as defined above. This event occurs if yy′

collides with any element in Dom(Dπ); like before, this event can also be used to
form a non-trivial reconstructible message. In a similar manner as Type1-a, we
define Type1-b event when y collides with the least significant n bits of any element
in Dom(Dπ), and, as a result, it covers more events than required. Exactly like the
Type1-a event, this is used to bound the growth of the graph, that is, it ensures that
no new nodes can be added to Tπ in the present round, if this event does not occur.

• Type1-c. This event occurs when the output of the current s−1-query collides with
any node in Tπ, and thereby, the absence of this event precludes the formation of
a reconstructible message. Like the previous two types, we define this event when
a node and the output of the s−1 query collide on the least significant n bits. The
absence of this event ensures that the s−1-query is not added to Tπ.

Remark: Our conservative choice of Type1 events, eventually, degrades the indifferentia-
bility bound of FP. The bound of n/2 bits of this paper seems likely to be improved by
relaxing the above conditions. We experimented with a smaller set of events than the ones
mentioned above, and obtained an indifferentiability bound very close to n bits. However,
constructing a theoretical proof of that turns out to be an involving task.

11.4 Type2, Type3 and Type4 on Old queries

11.4.1 Intuition

Now we deal with the classes 1b, 2b, 3a, 3b and 3cii of Section 11.2.3. All of them address
the issue when the current queries match old ones.

The classes 1b or 2b happen when an s- or s−1-query matches one of six types of old
elements stored in Dπ; these events can potentially help the adversary in distinguishing
between G1 and G2, and we identify class 1b as Type2, and class 2b as Type4 events; the
case by case analysis of the events will follow in a while.

25

The remaining classes are now 3a, 3b and 3cii, when the adversary submits a long
query – say M – to the oracle FP1, and it is found that M is already present on some
(fertile) branch of the graph Tπ (3a and 3b), or it is not present at all on any branch of Tπ

(3c). The class 3c necessarily includes a fresh π-query, and this scenario has already been
considered in Type0, and Type1; one can also see that class 1b (or Type2 events) already
included the class 3cii. So we skip them here. The other classes – 3a and 3b – are crucial
now, and they represent when M corresponds to an already present red or green branch of
Tπ (definitions in Section 11.2). We ignore the classes 3b, and 3aii, since they do not help
the adversary in distinguishing systems.

So now we focus on the class 3ai, which deals with the final π-query of a red branch.
Depending on the type of branch, the adversary tries to predict the most significant n bits
of the final π-query (i.e., the hash output) with non-trivial probability; she succeeds only
for Type3 events that will be discussed shortly.

11.4.2 Type2

Recall that a query-response pair in Dπ can be of six types: Q0 to Q5. Type2 event is
divided into several cases depending on the type of the current s-query.

Type2-Q1, Type2-Q2, and Type2-Q4 events occur, if the s-query is type Q1, Q2 and
Q4 respectively.

Type2-Q3 event occurs, if the s-query is type Q3, and if the most significant n bits are
distinguishable from the uniform distribution.

Type2-Q5. We observe that a Q5 query can be located in two different types of branch
in Tπ, as shown in Figures 8(b)(I) and (II).

• Type2-Q5-1 occurs if the current s-query is Q5, and is located in a type I branch,
and if the least significant n bits are distinguishable from random.

• Type2-Q5-2 occurs if the current s-query is Q5, and is located in a type II branch.

11.4.3 Type3

In this case, we consider the final π-query of a red branch as the current query. Several
types of red branch – (I), (II), and (III) – are shown in Figure 6(b)(I) to (III).

There are three types of Type3 event: (Type3-a) if the current long query M with
m1m2 · · ·mk = padn(M) forms a red branch of type (I).5 (Type3-b) if M is a red branch of

5Observe that this case implies a node collision in Tπ, since the yky
′
k is the final π-query for two distinct

long queries, the current M and also an old one. Therefore, if Type1 event did not occur in the previous

26

=

Current
Current Current

=

Type2-Q4Type2-Q3

̸∼ U [0, 22n − 1]

Type2-Q2Type2-Q1

==

Current

(a) Type2-Q1 to Type2-Q4 events.

(II) Type2-Q5-2 event

IV IV ′

Q1 Q2 Q3 Q4 Q5

IV IV ′

=

Current

=

Current

=

̸∼ U [0, 2n − 1]

Q0

Q0

Q0

Q0

Q0

Q0

Q0

Q5 Q5

(I) Type2-Q5-1 event

(b) Type2-Q5 events; they are subdivided into Type2-Q5-1 and Type2-Q5-2.
The branches in (I) and (II) represent long queries.

Figure 8: Several types of Type2 events.

27

Current

= = =

= =

Type4-Q1 Type4-Q2 Type4-Q3

Type4-Q5Type4-Q4

Current Current Current

Current

Figure 9: Several types of Type4 events: Type4-Q1 to -Q5

type (II), and if the most significant n bits of output can be distinguished from the uniform
distribution U [0, 2n − 1]. (Type3-c) if M is a red branch of type (III).

11.4.4 Type4

This event is shown in Figure 9. The Type4 event occurs, if the current s−1-query is equal
to the output of an old query of type Q1, Q2, Q3, Q4 or Q5.

12 Second Part of Main Theorem: Proof of (3)

With the help of the Type0 to Type4 events described in Sections 11.3, and 11.4, we are
equipped to prove (3). First, we first fix a few definitions.

12.1 Definitions: GOODi and BADi

GOODi and BADi. BADi denotes the event when the variable BAD is set during round i
of G1, that is, when Type0, Type 1, Type2, Type3 or Type4 events occur. Let the symbol
GOODi denote the event ¬

∨i
j=1 BADi. The symbol GOOD0 denotes the event when no

queries are submitted. From a high level, the intuition behind the construction of the

rounds, this event is impossible in the current round.

28

BADi event is straightforward: we will show that if BADi does not occur, and if GOODi−1

did occur, then the views of G1 and G2 (after i rounds) are identically distributed for any
attacker A.
GOOD1i and BAD1i. In order to get around a small technical difficulty in establishing the
uniform probability distribution of certain random variables, we need to modify the above
events GOODi and BADi slightly. The event BAD1i occurs when Type0, Type2, Type3 or
Type4 events occur in the i-th round. The event GOOD1i is defined as GOODi−1∧¬BAD1i.

12.2 Proof of (3)

To prove (3) we need to show two things:

∣∣∣Pr[AG1 ⇒ 1
]
− Pr

[
AG2 ⇒ 1

]∣∣∣ ≤ Pr
[
¬GOOD1σ

]
, (5)

Pr
[
¬GOOD1σ

]
≤ Pr

[
¬GOODσ

]
≤

σ∑
i=1

Pr
[
BADi | GOODi−1

]
. (6)

The proof of (6) is straight-forward. To prove (5), we proceed in the following way. Observe∣∣∣Pr[AG1 ⇒ 1
]
− Pr

[
AG2 ⇒ 1

]∣∣∣
=

∣∣∣(Pr[AG1 ⇒ 1 | GOOD1σ
]
− Pr

[
AG2 ⇒ 1 | GOOD1σ

])
· Pr

[
GOOD1σ

]
+

(
Pr

[
AG1 ⇒ 1 | ¬GOOD1σ

]
− Pr

[
AG2 ⇒ 1 | ¬GOOD1σ

])
· Pr

[
¬GOOD1σ

]∣∣∣. (7)

If we can show that

Pr
[
AG1 ⇒ 1 | GOOD1σ

]
= Pr

[
AG2 ⇒ 1 | GOOD1σ

]
, (8)

then (7) reduces to (5), since∣∣∣Pr[AG1 ⇒ 1 | ¬GOOD1σ
]
− Pr

[
AG2 ⇒ 1 | ¬GOOD1σ

]∣∣∣ ≤ 1.

As a result, we focus on establishing (8), which is done in Appendix C.

13 Third (or Final) Part of Main Theorem: Proof of (4)

To prove (4), we need individually compute the probabilities Type0, Type1, Type2, Type3
and Type4 events described in Sections 11.3, and 11.4. Since we assume

∑σ
i=1 Pr

[
BADi |

GOODi−1

]
≤ ε = 1/2, (6) implies that GOODi ≥ 1/2 for all 0 ≤ i ≤ σ.

Definition of Type1 event guarantees that Tπ has i nodes after i − 1 rounds, given
GOODi−1. We assume i ≤ 2n/2; this implies (2n − i) ≥ 1

22
n.

29

13.1 Estimating probability of Type0

From Section 11.3.2 we obtain,

Pr
[
Type0i | GOODi−1

]
≤ 3

(1

22n − i
− 1

22n

)
≤ 1

2n
.

13.2 Estimating probability of Type1

From Section 11.3.3 we obtain,

Pr
[
Type1i | GOODi−1

]
≤ Pr

[
Type1-ai | GOODi−1

]
+ Pr

[
Type1-bi | GOODi−1

]
+ Pr

[
Type1-ci | GOODi−1

]
≤ 3i/(2n − i)

≤ 6i/2n.

13.3 Estimating probability of Type2

From Section 11.4.2 we obtain,

Pr
[
Type2i | GOODi−1

]
≤

Pr
[
Type2i

]
Pr

[
GOODi−1

] ≤ 2 · Pr
[
Type2i

]
≤ 2 ·

(
Pr

[
Type2-Q1i

]
+ Pr

[
Type2-Q2i

]
+ Pr

[
Type2-Q3i

]
+ Pr

[
Type2-Q4i

]
+ Pr

[
Type2-Q5i

])
≤ 2 · 5i

2n − i
≤ 20i

2n
.

13.4 Estimating probability of Type3

From Section 11.4.3 we obtain,

Pr
[
Type3i | GOODi−1

]
≤

Pr
[
Type3i

]
Pr

[
GOODi−1

] ≤ 2 · Pr
[
Type3i

]
≤ 2 ·

(
Pr

[
Type3-ai

]
+ Pr

[
Type3-bi

]
+ Pr

[
Type3-ci

])
≤ 2 ·

(
0 +

2

2n − i

)
≤ 8

2n
.

30

13.5 Estimating probability of Type4

From Section 11.4.4 we obtain,

Pr
[
Type4i | GOODi−1

]
≤

Pr
[
Type4i

]
Pr

[
GOODi−1

] ≤ 2 · Pr
[
Type4i

]
≤ 2 ·

(
Pr

[
Type4-Q1i

]
+ Pr

[
Type4-Q2i

]
+ Pr

[
Type4-Q3i

]
+ Pr

[
Type4-Q4i

]
+ Pr

[
Type4-Q5i

])
≤ 2 · 5i

2n − i
≤ 20i

2n
.

13.6 Final computation

We conclude by combining the above bounds into the following inequality which holds for
1 ≤ i ≤ σ:

σ∑
i=1

Pr
[
BADi | GOODi−1

]
≤

σ∑
i=1

[
Pr

[
Type0i | GOODi−1

]
+ Pr

[
Type1i | GOODi−1

]
+ Pr

[
Type2i | GOODi−1

]
+ Pr

[
Type3i | GOODi−1

]
+ Pr

[
Type4i | GOODi−1

]]
≤

σ∑
i=1

55i

2n
≤ 28σ2

2n
.

14 A New Hash Function Family SAMOSA

Now we design a concrete hash function family SAMOSA based on the FP mode defined
in Section 2. In the subsequent sections, we also provide security analysis and hardware
implementation results of SAMOSA.

14.1 Description of SAMOSA

SAMOSA hash family is based on the FP mode and P-permutation of the Grøstl hash
function family. Letting n denote the length of hash in bits (n = 256 and 512 bits), the
complete description of the hash function SAMOSA-n is provided in Figure 10. SAMOSA
is composed of three components: (1) The FP mode and the padding rule padn(·) (see
Section 2), (2) IV IV ′ = ⟨0⟩n||⟨n⟩n, and (3) the Grøstl permutation P2n (see [17]).

31

Figure 10: SAMOSA-256 and SAMOSA-512

SAMOSA-256(M)
01. m1m2 . . .mk−1mk := pad256(M);
02. y0||y′0 := ⟨0⟩256||⟨256⟩256;
03. for(i := 1, 2, . . . k)

yi||y′i := P512(yi−1||mi)⊕ (y′i−1||⟨0⟩256);
04. r := P512(yk||y′k);
05. return r[256, 511];

SAMOSA-512(M)
11. m1m2 . . .mk−1mk := pad512(M);
12. y0||y′0 := ⟨0⟩512||⟨512⟩512;
13. for(i := 1, 2, . . . k)

yi||y′i := P1024(yi−1||mi)⊕(y′i−1||⟨0⟩512);
14. r := P1024(yk||y′k);
15. return r[512, 1023];

14.2 Security analysis of the SAMOSA family

There are two ways to attack the SAMOSA hash function family: (1) Attacking the FP
mode and (2) attacking the underlying permutation P512 or P1024. In the next subsections
we present the analysis results on the mode and the permutations. Based on that we
conjecture that the SAMOSA family cannot be attacked non-trivially with work less than
the brute force.

14.2.1 Security of the FP mode.

In Section 4 we have shown that the FP mode is indifferentiable from a random oracle up
to approximately 2n/2 queries (up to a constant factor) where n is the hash size in bits.
Our rigorous analysis with the FP mode reveals that it may be possible to improve the
bound to nearly 2n queries. The analysis implies that it is hard to attack any concrete
hash function based on the FP mode without discovering non-trivial weaknesses in the
underlying permutation. In our case, the permutations are P512 and P1024 of the Grøstl
hash family.

14.2.2 Security analysis of Grøstl permutations P512 and P1024.

The permutations P512 and P1024 of the Grøstl hash function have been two most heavily
analyzed primitives in the SHA-3 hash function competition [32, 37, 19, 23, 40]. The best
analysis on P512 so far has been the discovery of differential properties up to 9 (out of
10) rounds with work 2368 and memory 264; for the permutation P1024, the best analysis
is the discovery of differential properties up to 10 (out of 14) rounds with work 2392 and
memory 264. Given the enormous costs to implement these attacks, and also given the
huge third-party cryptanalysis the permutations of Grøstl have resisted so far, it seems fair
to say that P512 and P1024 are secure for all practical purposes.

32

15 FPGA Implementations of SAMOSA-256 and SAMOSA-
512

15.1 Motivation and previous work

In case the security of two competing cryptographic algorithms is the same or comparable,
their performance in software and hardware decides which one of them get selected for use
by standardization organizations and industry.

In this section, we will analyze how SAMOSA compares to Grøstl, one of the five final
SHA-3 candidates, from the point of view of performance in hardware. This comparison
makes sense, because both algorithms share a very significant part, permutation P, but
differ in terms of the mode of operation. The FP mode requires only a single permutation
P, while Grostl mode requires two permutations P and Q, executed in parallel. Our goal
is to determine how much savings in terms of hardware area are introduced by replacing
the Grøstl construction for hash function with the FP mode. We also would like to know
whether these savings come at the expense of any significant throughput drop. Finally,
we would like to analyze how significant is the improvement in terms of the throughput to
area ratio, a primary metric used to evaluate the efficiency of hardware implementations
in terms of a trade-off between speed and cost of the implementation.

Multiple hardware implementations of Grøstl (and its earlier variant, referred to as
Grøstl-0) have been reported in the literature and in the on-line databases of results (see
[38], [2]). Most of these implementations use two major hardware architecture types: a)
parallel architectures, denoted (P+Q), in which Groestl permutations P and Q are imple-
mented using two independent units, working in parallel, and b) quasi-pipeline architec-
tures, denoted (P/Q), in which, the same unit, composed of two pipeline stages, is used
to implement both P and Q, and the computations belonging to these two permutations
are interleaved [16]. Additional variants of each architecture type are possible, and the
two most efficient ones are the basic iterative architecture (denoted as x1), and vertically
folded architecture, with the folding factor 2 (denoted as /2(v)) [16].

A summary of implementation results, obtained for various architectures, using Xilinx
Virtex 5 FPGAs, is given in Table 2. Although, the implementation by Latif et al. [25] is
currently the most efficient on Virtex 5, this implementation relies on the use of low-level
Xilinx FPGA primitives, and as a result is not portable to FPGAs of other vendors, such
as Altera. Since our implementation of SAMOSA presented in this paper is fully portable,
and does not use any low-level primitives, we compare it with the second best design of
Grøstl reported earlier in the literature [16], which has the same features. This design is
based on the quasi-pipelined basic iterative architecture denoted as x1 (P/Q). This way,
we will be also able to provide comparison for an alternative FPGA family, Stratix III from
Altera.

33

Table 2: Implementation results for Grøstl-256, without padding unit, obtained using
Xilinx Virtex 5 FPGAs.

Source Architecture Throughput Area Thr/Area
Variant [Mbit/s] [CLB slices] [(Mbit/s)/CLB slices]

Latif et al. [25] x1 (P/Q) 6200 1419 4.37

Gaj et al. [16] x1 (P/Q) 6117 1795 3.41

Homsirikamol et al. [18] x1 (P/Q) 6072 1912 3.18

Gaj et al. [16] /2(v) (P/Q) 3721 1195 3.11

Homsirikamol et al. [18] /2(v) (P+Q) 4014 1598 2.51

Gaj et al. [16] x1 (P+Q) 7213 2906 2.48

Baldwin et al. [2] x1 (P+Q) 7709 3137 2.46

Guo et al. [2] x1 (P+Q) 5027 3798 1.32

15.2 High-speed architectures of SAMOSA and Grøstl

In case of SAMOSA the best high speed architecture is the basic iterative architecture shown
in Figure 11. In this architecture, a single round of the permutation P is implemented as
a combinational logic, and executed in a single clock cycle. As a result, r clock cycles are
required to process each h-bit message block (where r is the number of SAMOSA rounds;
r = 10 for h = 256, and r = 14 for h = 512), and the throughput becomes equal to
h/(r · TCLK) = fCLK · h/r.

In case of Grøstl, the best high-speed architecture, based on Table 2, is a quasi-pipelined
architecture, denoted as x1 (P/Q). This architecture is shown in Figure 12. The most
important difference compared to the architecture of SAMOSA is that the central part of
this architecture can be used to implement either a round of P or a round of Q, depending
on a value of a control signal. We denote this logic as the P/Q round. Additionally, in
order to speed up processing, we introduce a pipeline register that divides this logic into two
independent pipeline stages. As a result, at the same time, one of these stages can process
a part of permutation P, and the other can process a part of permutation Q. A total of
2r+1 clock cycles are required to finish r rounds of both P and Q, and the clock frequency
increases compared to the non-pipelined version. The throughput of this architecture is
given by b/((2r + 1) · TCLK) = fCLK · b/(2r + 1) = fCLK · 2h/(2r + 1), where b = 2h is a
message block size, and the datapath width in the Grøstl architecture.

For fairness, both designs use the same circuit interface, proposed in [12], the same
design methodology, and the same coding style. In particular, both designs use 64-bit input
and output data buses, and the standard I/O units known as SIPO (Serial-In Parallel-Out)
and PISO (Parallel-In Serial-Out).

The padding units of SAMOSA and Grøstl are illustrated in Figure 13. The major
difference between these two padding units is the existence of Block Counter in the padding
unit of Grøstl. This counter and the following multiplexer have a small affect on the area
of the Grøstl implementation with padding unit, but are not likely to affect the critical

34

10 10

SIPO PISO

1 010

2h

din dout

2h

round
P

64
64

unless shown otherwise
hashIV

IV’

yi

y′i−1

yi−1||m′i

y′i

mi+1

m′i+1yi

SAMOSA-256: h=256

SAMOSA-512: h=512

m′i = mi or y
′
k

Note: All buses are h-bit wide,

Figure 11: Basic iterative architecture of SAMOSA.

path, and thus throughput of the entire circuit.

15.3 Comparison of SAMOSA and Grøstl in terms of the hardware per-
formance

Below, we compare SAMOSA and Grøstl in terms of three major hardware performance
metrics: Area, Throughput, and Throughput to Area Ratio. The exact results of the
comparison are shown in Tables 3 and 4. All results were generated using Xilinx ISE v13.1
and Altera Quartus II v11.1. Automated Tool for Hardware EvaluatioN (ATHENa) [2] was
used to automate the optimization and result extraction process. No low-level primitives
and no embedded resources (such as Block Memories or DSP units) were used in our
implementations, which makes them fully portable among multiple FPGA families from
various vendors. Each design has been implemented in two different versions: with and
without padding unit. The designs with padding unit are more complete, while the designs
without padding units are more suitable for comparison with hardware implementations
presented in earlier academic papers on Grøstl and other SHA-3 candidates (as these
implementations typically did not contain padding units).

15.3.1 Comparison in terms of Area

As shown in Tables 3 and 4, for comparable hardware architectures, SAMOSA has sig-
nificantly lower area requirements than Grøstl. For Xilinx FPGAs, the area reduction is

35

SIPO

din
64

10

10

10

1
0

10

PISO

dout

64

P/Q round
stage 2

IV

stage 1
P/Q round

unless shown otherwise mi

hi

hi−1

Grøstl-256 : b=512

Grøstl-512 : b=1024

Note: All buses are b-bit wide,

Figure 12: Basic iterative quasi-pipelined architecture of Grøstl, denoted as x1 (P/Q).

36

Note: All buses are 8−bit wide, unless specified otherwise

10

10

10

Block Counter

64 64

6410

10

10

10

10

10

0x80 0x00

din[7..0]

b)a)

64

din_padded

din_padded

0x80 0x00

din[7..0]

0x80 0x00

din[63..56]

0x80 0x00

din[63..56]

Figure 13: a) SAMOSA padding unit b) Grøstl padding unit.

between 27 and 35%; for Altera FPGAs, it is between 31 and 34%. This reduction is ex-
plained as follows. First, P round is simpler than P/Q round, as the relevant logic does not
need to be switched from implementing P permutation to implementing Q permutation of
Grøstl. Although both permutations are quite similar, they still differ in two out of four
major operations: AddRoundConstant and ShiftBytes. Additional area requirements may
result from inserting a pipeline register between two stages of the P/Q round, as shown
in Figure 12 (in some FPGA families, these registers may be combined with the preceding
logic and no increase in the number of configurable logic units will be observed). Secondly,
SAMOSA requires less surrounding logic than Grøstl. The total width of registers outside
of the P round in the basic iterative architecture of SAMOSA is 3h. In Grøstl, the reg-
isters outside of the P/Q round have the total width of 2b = 4h. The total width of the
multiplexers, outside of the P round in SAMOSA is 4h. The width of similar multiplexers
outside of the P/Q round in Grøstl is 5b = 10h. Finally, the number of the 2-input XOR
gates in SAMOSA is h, while in Grøstl it is 3b = 6h. Additionally, in the designs with
padding unit, SAMOSA benefits from eliminating Block Counter from the padding logic,
as shown in Figure 13. All these differences amount to a significant advantage of SAMOSA
over Grøstl in terms of the circuit area. This advantage is particularly important taking
into account that one of the major weakness of Grøstl is its inherently large area in any
high-speed hardware implementations.

15.3.2 Comparison in terms of Throughput

In terms of Throughput, SAMOSA and Grøstl have very similar equations for Throughput.
For SAMOSA the Throughput is given by fCLK ·h/r, while for Grøstl it is fCLK ·2h/(2r+1).
Since r is relatively large (10 for the 256-bit hash function variants, and 14 for the 512-bit

37

Table 3: Implementation results of Grøstl and SAMOSA for Xilinx Virtex 5. CLB stands
for Configurable Logic Block.

Grøstl Samosa Percentage Grøstl Samosa Percentage
Difference [%] Difference [%]

Without Padding Unit With Padding Unit

256-bit

Frequency (MHz) 250.9 215.5 -14.1 269.5 217.0 -19.5

Throughput (Mbit/s) 6117 5516 -9.8 6572 5556 -15.5

Area (CLB slices) 1795 1305 -27.3 2020 1318 -34.8

Throughput/Area 3.41 4.23 24.0 3.25 4.22 29.6
((Mbit/s)/CLB slices)

512-bit

Frequency (MHz) 217.7 195.0 -10.4 211.3 199.0 -5.9

Throughput (Mbit/s) 7686 7133 -7.2 7462 7276 -2.5

Area (CLB slices) 3853 2559 -33.6 3895 2732 -29.9

Throughput/Area 1.99 2.79 39.7 1.92 2.66 39.0
((Mbit/s)/CLB slices)

Table 4: Implementation results of Grøstl and SAMOSA for Altera Stratix III. ALUT
stands for Adaptive Look-Up Table.

Grøstl Samosa Percentage Grøstl Samosa Percentage
Difference [%] Difference [%]

Without Padding Unit With Padding Unit

256-bit

Frequency (MHz) 246.4 233.2 -5.4 251.8 238.7 -5.2

Throughput(Mbit/s) 6008 5969 -0.6 6140 6111 -0.5

Area (ALUTs) 7386 4851 -34.3 7564 5082 -32.8

Throughput/Area 0.81 1.23 51.3 0.81 1.20 48.1
((Mbit/s)/ALUTs)

512-bit

Frequency (MHz) 232.6 226.9 -2.5 235.4 223.1 -5.2

Throughput (Mbit/s) 8214 8298 1.0 8310 8157 -1.8

Area (ALUTs) 14291 9810 -31.4 14578 9833 -32.5

Throughput/Area 0.57 0.85 47.2 0.57 0.83 45.5
((Mbit/s)/ALUTs)

hash function variants), 2h/(2r + 1) ≈ h/r, and thus the primary difference comes from
different clock frequencies.

As shown in Tables 3 and 4, the quasi-pipelined implementation of Grøstl has higher
clock frequency than the basic iterative architecture of SAMOSA. However, this difference
is relatively small. It does not exceed 20% for Xilinx Virtex 5 implementations, and 6% in
case of Altera Stratix III implementations.

38

The critical paths of both architectures are marked with bold lines in Figures 11 and 12.
In case of SAMOSA the critical path includes P round, one XOR gate, and two multiplexers.
In case of Grøstl, it covers P/Q round stage 2, one XOR gate, and two multiplexers. In
theory, one could expect a larger difference in frequency due to pipelining. However, in
practice, the effect of pipelining is limited due to difficulties of dividing critical path into
two equal halves. Additionally, the frequency of Grøstl before pipelining is already quite
high (and similar to the frequency of SAMOSA), and its increase is limited also by the
delays of other signal paths in the circuit.

15.3.3 Effect of padding in low-area architectures

SAMOSA has a simpler padding unit. The difference is shown in Figure 13 for the case of
byte padding, i.e., padding of messages that end on a boundary of a byte. The elimination
of Block Counter reduces the complexity of the control unit as well as the area associated
with the padding logic. This reduction, although relatively minor for high-speed imple-
mentations, may prove to be quite significant for low area implementations.

15.4 Comparison of SAMOSA with the SHA-3 finalists

Tables 5 and 6 present the comparison between SAMOSA and the SHA-3 finalists using the
best single-message architecture, i.e., architecture capable of processing only one message
at a time. All algorithms have been implemented without padding units, in two variants,
with 256-bit and 512-bit output, in Xilinx Virtex 5 and Altera Stratix III FPGAs. The
primary metric used for comparison is throughput to area ratio. All results, other than
the results for SAMOSA, are based on [16].

In terms of the throughput to area ratio, SAMOSA performs consistently better than
BLAKE, Grøstl and Skein, and loses only to Keccak and JH in both 256-bit and 512-bit
variants. Additionally, it reduces the gap in performance to Keccak and JH as compared
to Grøstl. It also outperforms Skein in the 512-bit variant on Xilinx Virtex 5, where Grøstl
loses to Skein. Furthermore, due to its similarity to Grøstl, SAMOSA has an additional
advantage compared to other SHA-3 candidates when resource sharing with the Advanced
Encryption Standard (AES) is possible, as demonstrated in [36].

16 Conclusion and Open Problems

This paper gives proposal for a novel permutation based hash mode of operation named
FP. Our indifferentiability security analysis establishes that the new mode is secure against
all generic attacks up to approximately 2n/2 queries; more interestingly, our experimental
results, based on randomly generated reconstruction graphs using C programs, suggest that
the security bound can be improved to nearly 2n queries (n is the hash size in bits). We
leave the proof of this improved result as an open problem.

39

Table 5: SAMOSA and the best single message architectures of the SHA-3 finalists for the
256-bit variants of hash functions

Xilinx Virtex 5 Altera Stratix III

Ranking Architecture Throughput Area TP/Area Ranking Architecture Throughput Area TP/Area
(Mbits/s) (CLB slices) (Mbits/s) (ALUTs)

Keccak x1 13337 1369 9.74 Keccak x1 15493 3531 4.39

JH x1 4955 982 5.05 JH x1 5276 3221 1.64

SAMOSA x1 5516 1305 4.23 SAMOSA x1 5969 4851 1.23

Grøstl x1 (P/Q) 6117 1795 3.41 Grøstl /2(v) (P/Q) 3818 3914 0.98

Skein x4 3023 1218 2.48 Skein x4 2475 3943 0.63

BLAKE /4(v)/4(h) 389 231 1.68 BLAKE /2(h) 2158 3553 0.61

Table 6: SAMOSA and the best single message architectures of the SHA-3 finalists for the
512-bit variants of hash functions

Xilinx Virtex 5 Altera Stratix III

Ranking Architecture Throughput Area TP/Area Ranking Architecture Throughput Area TP/Area
(Mbits/s) (CLB slices) (Mbits/s) (ALUTs)

Keccak x1 7612 1320 5.77 Keccak x1 8526 3471 2.46

JH x1 4686 992 4.72 JH x1 5011 3288 1.52

SAMOSA x1 7133 2559 2.79 SAMOSA x1 8298 9810 0.85

Skein x4 3084 1418 2.17 Grøstl /2(v) (P/Q) 5262 7763 0.68

Grøstl /2(v) (P/Q) 4816 2336 2.06 Skein x4 2438 4006 0.61

BLAKE /4(v)/4(h) 560 386 1.45 BLAKE /2(h) 2928 6977 0.42

We also design a concrete hash function family SAMOSA based on the FP mode and the
P permutations of the SHA-3 finalist Grøstl; we claim it is hard to attack SAMOSA with
complexities significantly less than the brute force. Our FPGA hardware implementations
of SAMOSA show remarkable improvement in the throughput to area ratio compared to
the SHA-3 finalists Grøstl, BLAKE and Skein. It is still not known how efficient SAMOSA
is in software. We leave the software implementations of SAMOSA as future work.

Acknowledgments

The authors like to thank Dustin Moody and Daniel Smith-Tone for numerous helpful
discussions.

References

[1] Elena Andreeva, Bart Mennink, and Bart Preneel. The parazoa family: generalizing
the sponge hash functions. Int. J. Inf. Sec., vol. 11, Number 3, pp. 149–165, 2012.
(Cited on page 6.)

[2] ATHENa Project Website, http://cryptography.gmu.edu/athena (Cited on pages 33,
34 and 35.)

40

[3] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge Func-
tions. ECRYPT 2007, 2007. http://sponge.noekeon.org/SpongeFunctions.pdf. Ac-
cessed March 2012. (Cited on page 6.)

[4] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the Indif-
ferentiability of the Sponge Construction. In Nigel P. Smart, editor, EUROCRYPT,
volume 4965 of Lecture Notes in Computer Science, pages 181–197. Springer, 2008.
(Cited on page 6.)

[5] Rishiraj Bhattacharyya and Avradip Mandal. On the Indifferentiability of Fugue and
Luffa. In Javier Lopez and Gene Tsudik, editors, ACNS, volume 6715 of Lecture Notes
in Computer Science, pages 479–497, 2011. (Cited on page 6.)

[6] Rishiraj Bhattacharyya, Avradip Mandal, and Mridul Nandi. Security Analysis of the
Mode of JH Hash Function. In Seokhie Hong and Tetsu Iwata, editors, FSE, volume
6147 of Lecture Notes in Computer Science, pages 168–191. Springer, 2010. (Cited on
page 6.)

[7] Eli Biham and Orr Dunkelman. A framework for iterative hash functions – HAIFA.
Second NIST Cryptographic Hash Workshop, 2006, 2006. (Cited on page 5.)

[8] Alex Biryukov, Orr Dunkelman, Nathan Keller, Dmitry Khovratovich, and Adi
Shamir. Key Recovery Attacks of Practical Complexity on AES-256 Variants with
up to 10 Rounds. In Henri Gilbert, editor, EUROCRYPT, volume 6110 of Lecture
Notes in Computer Science, pages 299–319. Springer, 2010. (Cited on page 5.)

[9] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-Box Analysis of the
Block-Cipher-Based Hash-Function Constructions from PGV. In Moti Yung, edi-
tor, CRYPTO, volume 2442 of Lecture Notes in Computer Science, pages 320–335.
Springer, 2002. (Cited on page 5.)

[10] Simon R. Blackburn, Douglas R. Stinson, and Jalaj Upadhyay. On the complexity of
the herding attack and some related attacks on hash functions. Des. Codes Cryptog-
raphy, 64(1-2):171–193, 2012. (Cited on page 5.)

[11] Christophe De Cannière, Hisayoshi Sato, and Dai Watanabe. The Luffa Hash Function.
The 1st SHA-3 Candidate Conference. (Cited on page 6.)

[12] CERG Group, George Mason University: Hardware Inter-
face of a Secure Hash Algorithm (SHA), available on-line at
http://cryptography.gmu.edu/athena/index.php?id=interfaces (Cited on page 34.)

[13] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya.
Merkle-Damg̊ard Revisited: How to Construct a Hash Function. In Victor Shoup,

41

editor, CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages
430–448. Springer, 2005. (Cited on pages 5 and 9.)

[14] Yevgeniy Dodis, Leonid Reyzin, Ronald L. Rivest, and Emily Shen. Indifferentiability
of Permutation-Based Compression Functions and Tree-Based Modes of Operation,
with Applications to MD6. In Orr Dunkelman, editor, FSE, volume 5665 of Lecture
Notes in Computer Science, pages 104–121. Springer, 2009. (Cited on page 6.)

[15] Ewan Fleischmann, Michael Gorski, and Stefan Lucks. Some Observations on In-
differentiability. In Ron Steinfeld and Philip Hawkes, editors, ACISP, volume 6168
of Lecture Notes in Computer Science, pages 117–134. Springer, 2010. (Cited on
page 10.)

[16] Kris Gaj, Ekawat Homsirikamol, Marcin Rogawski, Rabia Shahid, and Malik Umar
Sharif. Comprehensive Evaluation of High-Speed and Medium-Speed Implementations
of Five SHA-3 Finalists Using Xilinx and Altera FPGAs. Cryptology ePrint Archive,
Report 2012/368, 2012, available online at http://eprint.iacr.org/2012/368.pdf

(Cited on pages 8, 33, 34 and 39.)

[17] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Chris-
tian Rechberger, Martin Schläffer, and Søren S. Thomsen. Grøstl - a SHA-3 candidate.
The 1st SHA-3 Candidate Conference. (Cited on pages 6 and 31.)

[18] Ekawat Homsirikamol, Marcin Rogawski, and Kris Gaj. Throughput vs. Area Trade-
offs in High-Speed Architectures of Five Round 3 SHA-3 Candidates Implemented
Using Xilinx and Altera FPGAs. LNCS 6917, Cryptographic Hardware and Embedded
Systems workshop, CHES 2011, Nara, Japan, Sep. 28-Oct. 1, pp. 491-506. (Cited on
page 34.)

[19] Jérémy Jean, Maŕıa Naya-Plasencia, and Thomas Peyrin. Improved Rebound At-
tack on the Finalist Grstl. FSE 2012, Washington DC, March 19-21, 2012,
http://www.di.ens.fr/~jean/pub/fse2012.pdf (Cited on page 32.)

[20] Antoine Joux. Multicollisions in Iterated Hash Functions: Application to Cascaded
Constructions. In Matthew K. Franklin, editor, CRYPTO 2004, volume 3152 of Lec-
ture Notes in Computer Science, pages 306–316. Springer, 2004. (Cited on page 5.)

[21] John Kelsey and Tadayoshi Kohno. Herding Hash Functions and the Nostradamus
Attack. In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of Lecture Notes in
Computer Science, pages 183–200. Springer, 2006. (Cited on page 5.)

[22] John Kelsey and Bruce Schneier. Second Preimages on n-Bit Hash Functions for Much
Less than 2n Work. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of
Lecture Notes in Computer Science, pages 474–490. Springer, 2005. (Cited on page 5.)

42

[23] Dmitry Khovratovich. Bicliques for permutations: collision and preimage
attacks in stronger settings. Cryptology ePrint Archive, Report 2012/141,
http://eprint.iacr.org/2012/141 (Cited on page 32.)

[24] Özgül Küçük. Design and Analysis of Cryptographic Hash Functions. PhD thesis, KU
Leuven, 2012. http://www.iacr.org/phds/?p=detail&entry=777. (Cited on page 6.)

[25] Kashif Latif, M Muzaffar Rao, Arshad Aziz, and Athar Mahboob, Efficient Hard-
ware Implementations and Hardware Performance Evaluation of SHA-3 Finalists, The
Third SHA-3 Candidate Conference, Washington, D.C., March 22-23, 2012. (Cited on
pages 33 and 34.)

[26] Stefan Lucks. A failure-friendly design principle for hash functions. In Bimal K.
Roy, editor, ASIACRYPT, volume 3788 of Lecture Notes in Computer Science, pages
474–494. Springer, 2005. (Cited on page 5.)

[27] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impos-
sibility results on reductions, and applications to the random oracle methodology. In
TCC, pages 21–39, 2004. (Cited on page 10.)

[28] Dustin Moody, Souradyuti Paul and Daniel Smith-Tone. Indifferentiability Security of
the Fast Widepipe Hash: Breaking the Birthday Barrier. Cryptology ePrint Archive,
Report 2011/630. (Cited on page 11.)

[29] Dustin Moody, Souradyuti Paul and Daniel Smith-Tone. Improved Indifferentiability
Security Bound for the JH Mode. 3rd SHA-3 Candidate Conference, 2012. (Cited on
pages 6 and 11.)

[30] NIST. Secure hash standard. In Federal Information Processing Standard, FIPS 180-2,
April 1995. (Cited on page 5.)

[31] Mridul Nandi and Souradyuti Paul. Speeding up the wide-pipe: Secure and fast
hashing. In Guang Gong and Kishan Chand Gupta, editors, INDOCRYPT, volume
6498 of Lecture Notes in Computer Science, pages 144–162. Springer, 2010. (Cited on
page 6.)

[32] Christian Rechberger. Grøstl Update. 3rd SHA-3 Candidate Conference, 2012, Wash-
ington DC, USA. (Cited on page 32.)

[33] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with Composi-
tion: Limitations of the Indifferentiability Framework. In Kenneth G. Paterson, editor,
EUROCRYPT, volume 6632 of Lecture Notes in Computer Science, pages 487–506.
Springer, 2011. (Cited on page 10.)

43

[34] Ron Rivest. The MD5 message-digest algorithm. In IETF RFC 1321, 1992. (Cited
on page 5.)

[35] Ron Rivest. The MD6 Hash Function. (Cited on page 6.)

[36] Marcin Rogawski and Kris Gaj, A High-Speed Hardware Architecture for AES and the
SHA-3 Candidates Grøstl, 15th EUROMICRO Conference on Digital System Design
Architectures, DSD 2012. (Cited on page 39.)

[37] Martin Schläffer. Updated Differential Analysis of Grøstl. January 2011,
http://www.groestl.info/groestl-analysis.pdf (Cited on page 32.)

[38] SHA-3 Zoo Hardware Implementations,
http://ehash.iaik.tugraz.at/wiki/SHA-3_Hardware_Implementations (Cited on
page 33.)

[39] Hongjun Wu. The JH Hash Function. The 1st SHA-3 Candidate Conference (2009).
(Cited on page 6.)

[40] Shuang Wu, Dengguo Feng, Wenling Wu, Jian Guo, Le Dong, and Jian Zou. (Pseudo)
Preimage Attack on Round-Reduced Grøstl Hash Function and Others (Extended Ver-
sion). Cryptology ePrint Archive, Report 2012/206, http://eprint.iacr.org/2012/206

(Cited on page 32.)

A Definitions

Definition A.1 (Random oracle) A random oracle is a function RO : X → Y chosen
uniformly at random from the set of all |Y ||X| functions that map X → Y . In other words,
a function RO : X → Y is a random oracle if and only if, for each x ∈ X, the value of
RO(x) is chosen uniformly at random from Y .

B Time costs of FullGraph and the simulator-pair (S, S−1)

Since there are i queries after i rounds, the maximum number of nodes in Ts after i round is
i2. Therefore, to construct Ts in the i-th round, the amount of time required by FullGraph
is O(i4). Now, if the adversary submits σ queries, then the time complexity of FullGraph is
O(σ5). Since the time of FullGraph dominates over the other costs such as MessageRecon,
the worst-case simulator time complexity of (S, S−1) is also O(σ5).

44

C Proof of (8)

(8) is as follows: Pr
[
AG1 ⇒ 1 | GOOD1σ

]
= Pr

[
AG2 ⇒ 1 | GOOD1σ

]
.

Let V 1
i and V 2

i denote the views of the systems G1, and G2 respectively, after i queries
have been processed. To prove (8), it suffices to show that given GOOD1σ, the views V 1

σ

and V 2
σ are identically distributed. We do this by induction on the number of queries i = σ.

Induction Hypothesis: Given GOOD1i, V
1
i and V 2

i are identically distributed.

Base: When i = 0, then no query has been made; therefore the hypothesis is true.

Induction Step: Now assume the induction hypothesis holds. We have to show that if
GOOD1i+1 occurred, then V 1

i+1 and V 2
i+1 are identically distributed.

Let (I1i+1, O
1
i+1) and (I2i+1, O

2
i+1) denote the input-output pairs for the systems G1 and G2

respectively in the i+ 1st round. Note that the induction hypothesis implies that V 1
i and

V 2
i are identically distributed given GOODi occurred. Also note that V 1

i+1 = V 1
i ||I1i+1||O1

i+1,
and V 2

i+1 = V 2
i ||I2i+1||O2

i+1.
A little reflection shows that proving the induction step is equivalent to proving the

following proposition.

Proposition C.1 (Proof of Induction Step) Given GOOD1i+1 and V 1
i = V 2

i

1. the input-views I1i+1 and I2i+1 are identically distributed;

2. if I1i+1 = I2i+1 then the output-views O1
i+1 and O2

i+1 are identically distributed.

Proof.
1. This result is easy since V 1

i = V 2
i .

2. To prove this, we first establish the following lemma which is the main ingredient in our
proof.

Lemma C.2 The reconstruction graphs Ts of the systems G1 and G2 are isomorphic after
i rounds, given GOODi and V 1

i = V 2
i .

Proof. For a fresh π- or π−1-query, the graph Tπ of system G1 is augmented in one phase
(see the subroutine PartialGraph of Figure 5). In that phase, all possible nodes generated
from a fresh π-query are added to the graph Tπ. A straightforward analysis of the Type1
events shows that if these events do not occur then no nodes can be added beyond this
phase. In other words, if Type1 events do not occur in i rounds then the Tπ is a full

45

reconstruction graph for Dπ. Consequently, Ts – which is a connected subgraph of Tπ

rooted at IV, IV ′ – is a full reconstruction graph for Ds.
We note that the graph Ts for G2 is also a full reconstruction graph for Ds.
Since V i

1 = V i
2 , the graphs Ts for G1 and G2 are isomorphic after i rounds. 2

Let Ii+1 denote the shared query input Ii+1
1 = Ii+1

2 . We continue by considering all possible
cases based on a set of conditions for the system G1 in the i+1st round. Our decision tree
produced 17 cases, which have been derived from a sequence of questions (see Figure 14):
Cases 1 through 9 consider when Ii+1 is an s-query, cases 10 through 11 consider when
Ii+1 is an s−1-query, while cases 12 through 17 consider when Ii+1 is the round input of a
long query.
Case 1: s-query, Fresh, |M| = 0.
Implication. The condition directly implies that O1

i+1 follows the uniform distribution
U [0, 22n − 1], since a Type0 event did not occur in the i+ 1st round. Since the graphs Ts

are isomorphic in both systems G1 and G2 by Lemma C.2, |M| = 0 for G2. This implies
that O2

i+1 follows the uniform distribution U [0, 22n − 1].

Case 2: s-query, Old, Type Q1, Q2, Q4, or Q5-2, |M| = 0.
Implication. This case is impossible since GOOD1i+1 implies that Type2 event did not
occur for G1 in the current i+ 1st round.

Case 3: s-query, Old, Type Q5-1, |M| = 0.
Implication. Note that Type Q5 query must be the final π-query of some long query M .
The M can be present in Tπ as two different branches. In the present case, all the inter-
mediate queries of the branch – that represents M – are Q0. Now, note that, if M = 0,
then this case is not possible. The other scenario has been considered in Case 2.

Case 4: s-query, Old, Type Q3, |M| = 0.
Implication. The event GOOD1i+1 implies that Type2 event did not occur for G1 in the
current i + 1st round; therefore, since |M| = 0, O1

i+1 follows the uniform distribution
U [0, 22n− 1]. As the graphs Ts are isomorphic in both systems G1 and G2 by Lemma C.2,
|M| = 0 for G2. This implies that O2

i+1 follows the uniform distribution U [0, 22n−1], since
the s-query is fresh for G2.

Case 5: s-query, |M| > 1.
Implication. |M| > 1 implies node collision in Ts which is impossible since GOOD1i+1

ensures that Type1 event did not occur for G1 in the previous i rounds forbidding the
occurrence of node collision in Ts.

Case 6: s-query, Fresh, |M| = 1.
Implication. Since Ii+1 is fresh, O1

i+1 follows the uniform distribution U [0, 22n − 1]. Now,

46

Query-type?

|M|=?
0 1

Impossible

(Not Type1)

>1

s-query
Long query

Final message-

block?

Empty

Outputs

no yes

In Tπ?

yesno

In Ts?

Random

Outputs

(Not

Type0,Not

Type1)

yes no

Identical

Outputs

Random

Outputs

(Not Type0)

1. Inputs I
1
=I
2

2. Isomorph. of Ts’s

3. V
1
=V

2

Fresh?

Identically

Distributed

Outputs

(Not Type2)

yes no

Query type?

Random

Outputs

(Not Type2)

Q5-1
Q3

Impossible

(Not Type2)

Random Outputs

(Not Type0)

Fresh?

Identical

Distribution

(Not Type2)

yes no

Query type?

Random

Outputs

(Not Type2)

Q5-1
Q3

Q1,Q2, Q4,Q5-2

Impossible

(Not Type2)

type of red

branch?

I

II
III

Impossible

(Not Type3) Random Outputs

(Not Type3)
Impossible

(Not Type3)

1

2

3

4

5

6

7 8

9

12

13

14

15 16 17

s
-1
-query

Fresh?

yes

no

Impossible

(Not

Type4)
Random

Outputs

(Not Type0)

Q1,Q2, Q4,Q5-2

10
11

Figure 14: The decision tree for the proof of Proposition C.1. The conditions for the
system G1 are shown inside the diamonds of the decision tree. The leaf-node shows the
implications of the conditions to the outputs of systems G1 and G2.

47

for G1, M ∈M implies that M /∈ Dom(Dl) in the first i rounds, since the current s-query
Ii+1 is fresh. Also note that V 1

i = V 2
i and the isomorphism of Ts’s together imply that Dl

in both systems are identical. Therefore, for G2 too, M /∈ Dom(Dl) in the first i rounds.
This implies that O2

i+1 follows the uniform distribution U [0, 22n − 1].

Case 7: s-query, Old, Type Q1, Q2, Q4, or Q5-2, |M| = 1.
Implication. This case is impossible since GOOD1i+1 implies that Type2 event did not
occur for G1 in the current i+ 1st round.

Case 8: s-query, Old, Type Q5-1, |M| = 1.
Implication.The event GOOD1i+1 implies that Type2 event did not occur in the i + 1st
round of G1; therefore, O1

i+1[0, n − 1] follows the uniform distribution U [0, 2n − 1], and
O1

i+1[n, 2n − 1] is a fixed value. Now, for G1, M ∈ M implies that M ∈ Dom(Dl)
after the first i rounds, since the current s-query Ii+1 is of type Q5-1; also note that
O1

i+1[n, 2n − 1] = Dl[M]. As in the previous case, V 1
i = V 2

i and the isomorphism of Ts’s
together imply that Dl in both systems are identical. Therefore, O2

i+1[n, 2n− 1] = Dl[M];
also note that O2

i+1[0, n − 1] follows the uniform distribution U [0, 2n − 1]. In conclusion,
O1

i+1 and O2
i+1 are identically distributed.

Case 9: s-query, Old, Type Q3, |M| = 1.
Implication. The event GOOD1i+1 implies that Type2 event did not occur for G1 in
the current i + 1st round; therefore, since |M| = 1, O1

i+1 follows the uniform distribution
U [0, 22n−1]. Since the graphs Ts are isomorphic in both systems G1 and G2 by Lemma C.2,
this implies that O2

i+1 is the output of a fresh s-query, and therefore it follows the uniform
distribution U [0, 22n − 1].

Case 10: s−1-query and Fresh.
Implication. The condition implies that Oi+1

1 follows the uniform distribution U [0, 22n−1],
since Type0 event did not occur in the current i + 1st round. Because V i

1 = V i+1
2 , we

have that the s−1-query is also a fresh query for G2. Therefore, Oi+1
2 follows the uniform

distribution U [0, 22n − 1].

Case 11: s−1-query and not Fresh.
Implication. Because of Type4 event, this case is impossible.

Case 12: π-query of long query, Non-final Block.
Implication. Since V 1

i+1 = V 2
i+1, it is easy to verify that O1

i+1 = O2
i+1 = λ, where, λ is the

empty string.

Case 13: π-query of long query not in Tπ, Final Block.
Implication. Let M be the long query in question. Since the event GOOD1i+1 implies that

48

Type1 did not occur in the previous i rounds of G1, there are no node collisions in the
graph Tπ. Therefore, the final π-query is fresh, implying O1

i+1 follows the uniform distri-
bution U [0, 2n − 1]. As before, the table Dl in both systems were identical when the long
query M was submitted; therefore, at that time of submission, M /∈ Dom(Dl) for both
the systems. This ensures that O2

i+1 = RO(M) follows the uniform distribution U [0, 2n−1].

Case 14: π-query of long query in Ts, Final Block.
Implication. Since the graph Ts in both systems are isomorphic by Lemma C.2, O1

i+1 =
O2

i+1.

Case 15, 16 and 17: π-query of long query in Tπ, not in Ts, Final Block. Ii+1 is
the final message block of a long query (denoted by M) which forms a red branch.

Case 15: Final π-query is Type Q1, Q2 or Q5.
Implication. Note that this case implies a node collision in Tπ. By definition, the π-query
– denote by yky

′
k – is already the final π-query of a previous long query, since it is of type

Q1, Q2 and Q5; now, yky
′
k is also the final π-query of the current long query M . Hence

the collision in Tπ. This case is impossible since GOOD1i+1 implies that Type1 event did
not occur in the first i rounds; therefore, Tπ cannot have a node collision.

Case 16: Final π-query is Type Q3 or Q5.
Implication. Since the event Type3 did not occur in the i + 1st round, O1

i+1 follows the
uniform distribution U [0, 2n − 1]. Now, for G1, the long query M /∈ Dom(Dl) when M
was submitted since the final π-query of any long query cannot be of type Q3 or Q4. As
the table Dl of both systems are identical, for G2, M /∈ Dom(Dl) when M was submitted.
Therefore, O2

i+1 = RO(M) follows the uniform distribution U [0, 2n − 1].

Case 17: Final π-query is Type Q0, and an intermediate query is Type Q1, Q2, Q3, Q4 or
Q5.
Implication. This case is impossible since Type3 in the i+ 1st round did not occur.

To conclude, in all 17 cases above we have shown that the outputs O1
i+1 and O2

i+1 are
identically distributed if the variable BAD is not set. This completes the proof. 2

49

