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Abstract

We further the study of order-preserving symmetric encryption (OPE), a primitive for allow-
ing efficient range queries on encrypted data, recently initiated (from a cryptographic perspec-
tive) by Boldyreva et al. (Eurocrypt ’09). First, we address the open problem of characterizing
what encryption via a random order-preserving function (ROPF) leaks about underlying data
(ROPF being the “ideal object” in the security definition, POPF, satisfied by their scheme.)
In particular, we show that, for a database of randomly distributed plaintexts and appropriate
choice of parameters, ROPF encryption leaks neither the precise value of any plaintext nor the
precise distance between any two of them. The analysis here introduces useful new techniques.
On the other hand, we show that ROPF encryption leaks approximate value of any plaintext as
well as approximate distance between any two plaintexts, each to an accuracy of about square
root of the domain size. We then study schemes that are not order-preserving, but which nev-
ertheless allow efficient range queries and achieve security notions stronger than POPF. In a
setting where the entire database is known in advance of key-generation (considered in several
prior works), we show that recent constructions of “monotone minimal perfect hash functions”
allow to efficiently achieve (an adaptation of) the notion of IND-O(rdered) CPA also considered
by Boldyreva et al., which asks that only the order relations among the plaintexts is leaked.
Finally, we introduce modular order-preserving encryption (MOPE), in which the scheme of
Boldyreva et al. is prepended with a random shift cipher. MOPE improves the security of OPE
in a sense, as it does not leak any information about plaintext location. We clarify that our
work should not be interpreted as saying the original scheme of Boldyreva et al., or the variants
that we introduce, are “secure” or “insecure.” Rather, the goal of this line of research is to help
practitioners decide whether the options provide a suitable security-functionality tradeoff for a
given application.
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1 Introduction

BACKGROUND AND MOTIVATION. An order-preserving symmetric encryption (or OPE) scheme is a
deterministic symmetric encryption scheme whose encryption algorithm produces ciphertexts that
preserve numerical ordering of the plaintexts. OPE was proposed in the database community by
Agrawal et al. [I] in 2004 as a tool to support efficient range queries on encrypted data. (When
encryption is done using an OPE scheme, a range query simply consists of the encryptions of the
two end-points.) However, the first formal cryptographic treatment of OPE did not appear until
recently, in the paper by Boldyreva et al. [§]. The authors formalized a security requirement for
OPE and proposed an efficient blockcipher-based scheme provably meeting their security definition.

Yet despite having an OPE scheme that provably satisfies their security notion, the authors
warn against its practical use before further studies of its security are performed. To explain this,
consider the security notion from [g], called pseudorandom order-preserving function security under
chosen-ciphertext attacks (POPF-CCA).

The POPF-CCA notion (hereafter shortened to POPF) calls an OPE scheme secure if oracle ac-
cess to its encryption algorithm is indistinguishable from oracle access to a random order-preserving
function (ROPF) on the same domain and range. An ROPF is thus the “ideal object” in the POPF
definition, analogous to the way that a random function is the ideal object in the classical security
notion of pseudorandom function (PRF). However, the ideal objects here, an ROPF and a random
function, have fundamentally different security properties. A random function’s behavior is well
understood: on a new input the output is a uniformly random point in the range, independent of
other outputs. Hence, an adversary seeing a function value learns absolutely no information about
the pre-image, unless the former happens to coincide with one it has previously seen. But the
situation with a random OPF is much harder to describe. It is clear that a random OPF cannot
provide such strong security, but what exactly is leaked about the data and what is protected? The
distribution of ciphertexts is known and it is not immediately clear if encryption is even one-way.

Despite its authors’ warning of lingering unanswered questions, the OPE scheme from [8] imme-
diately received attention from the applied community [3} 21], [I8] 17, 14, 19]. We agree that a secure
OPE is better than no encryption at all and understand why the idea of its implementation may
sound appealing. But practical use without a clear security understanding can be very dangerous
and thus it is very important to clarify the security questions as soon as possible.

In this work we first address this open problem. We revisit the security of the ideal object,
an ROPF, and provide results that help characterize what it leaks and what it protects about
the underlying data. In addition, we observe that it may be possible to achieve stronger security
notions than POPF using schemes that fall outside the OPE class but nevertheless allow efficient
range queries on encrypted data, and propose two such schemes. We now discuss our contributions
in more detail.

NEW DEFINITIONS FOR STUDYING ROPF SECURITY. As pointed out by [8], a random order-
preserving function—the ideal object in the POPF definition from that paper— itself (perhaps
surprisingly) requires a cryptographic treatment.

In order to better understand the strengths and limitations of encryption with an ROPF we
first propose several security notions. One captures a basic one-wayness security and measures the
probability that an adversary, given a set of ciphertexts of random messages, decrypts one of them.
(The fact that messages are chosen uniformly at random we call the “uniformity assumption,”
and it will be discussed later.) We give the adversary multiple challenge ciphertexts because this



corresponds to practical settings and because the ciphertexts are not independent from each other:
learning more points of the OPE function may give the adversary additional information. We
actually consider a more general security notion that asks the adversary, given a set of ciphertexts
of random messages, to guess an interval (window) within which the underlying challenge plaintext
lies. This definition helps us get a better sense of how accurately the adversary can identify the
location of a data point. The size of the window and the number of challenge ciphertexts are
parameters of the definition. When the window size is one, the notion collapses to the case of
simple one-wayness.

Our subsequent definitions address leakage of information not about the location of the data
points but rather the distances between them, which seems crucial in other applications (e.g., a
database of salaries). Indeed, [§] showed that on a practically-sized ciphertext space, an ROPF,
like any OPE, must leak some information relating to distances between plaintexts. We attempt
to clarify this intuition. We consider a definition measuring the adversary’s success in (precisely)
guessing the distance! between the plaintexts corresponding to any two out of the set of ciphertexts
of random messages given to the adversary. Again, we also consider a more general definition where
the adversary is allowed to specify a window in which the distance falls.

We analyze security of an ROPF under these definitions as we believe this helps to understand
secure pseudorandom OPE schemes’ security guarantees and limitations, and also to evaluate the
risk of their usage in various applications. (Indeed, we believe they capture the information about
data, namely location and relative distances, that real-world practitioners are most likely to care
about.) However, especially in light of the uniformity assumption (which is unlikely to be satis-
fied in practice), while we view our results as providing important steps in the direction of this
understanding (as even under this assumption our results are challenging to prove), we still advise
against practical use of OPE unless a practitioner is fully aware, and accepting, of what has and
has not been provably shown about its security.

ANALYSIS OF AN ROPF. We first give an upper bound on the one-wayness advantage of any adver-
sary attacking an ROPF. The proof is quite involved (and is explained in detail in the Appendix),
but the result is a very concise, understandable bound that, under reasonable assumptions, does
not even depend on the size of the ciphertext space. (Intuitively, an ROPF’s one-wayness comes
from the function’s probability of deviating from points on the linear OPF m +— (N/M)m. Increas-
ing the ciphertext space size beyond a certain amount has little to no effect on these deviations.)
We evaluate the bound for several parameters to get an idea of its quality. Our evaluation demon-
strates that on practical parameters ROPF and POPF-secure OPEs significantly resist one-wayness
attacks, i.e. the maximum one-wayness advantage of any adversary is quite low.

On the other hand, our ROPF analysis under the window one-wayness definition shows that
a very efficient adversary can successfully break window one-wayness if the size of the window is
not very small. In particular, for message space size M and arbitrary constant b, if the window
size is approximately byv/M, there exists an adversary A whose window one-wayness advantage is
at least 1 — 2e~"/2. Thus, for b large enough (say, b > 8), there exists an adversary with window
one-wayness advantage very close to one.

We then extend our analysis of an ROPF to the distance one-wayness and window distance
one-wayness definitions. Using similar techniques we show entirely analogous results, namely that

!Technically, for purposes that will become clear in the paper, “distance” actually refers to “directed modular
distance,” i.e. the distance from one point “up” to the other point, possibly wrapping around the space. As such,
distance in this context is non-commutative.



the former is very small but the latter becomes large when the adversary is allowed to specify a
window of size approximately bV M.

We conclude our ROPF analysis with several important supplemental remarks regarding the
effect of known-plaintext attacks in the schemes, choosing an appropriate ciphertext space size, and
the need to satisfy the uniformity assumption in practical implementations.

ACHIEVING STRONGER SECURITY. We next consider the question of whether different types of
schemes that support efficient range queries can achieve stronger security than POPF. To capture
such schemes we introduce a general notion of efficiently orderable encryption (EOE), that covers
all schemes supporting standard range queries by requiring a publicly computable function that
determines order of the underlying plaintexts given any two ciphertexts. Since EOE leaks order of
ciphertexts, the indistinguishability under ordered chosen plaintext attacks (IND-OCPA) definition,
which [8] introduced and showed is unachievable by OPE, is an ideal level of security for EOE
schemes.

AN OPTIMALLY SECURE COMMITTED EOE SCHEME. We focus on a scenario where we can show
something like IND-OCPA security is possible. We define “committed” versions of EOE and IND-
OCPA, called CEOE and IND-CCPA, corresponding to a setting where the database is static and
completely known to the user in advance of encryption. Such a scenario is apparently important as it
was considered in the first paper to propose an order-preserving scheme [I], and was also studied in
several works including [I3] for the case of exact-match queries. We observe that the more restrictive
functionality in this setting allows one to achieve IND-CCPA. We propose a new scheme that uses
a monotone minimal perfect hash function (MMPHF) directly as an “order preserving tagging
algorithm” for the given message set, together with a secure encryption. The construction allows
for easy implementation of range queries while also achieving the strongest security. Moreover,
while MMPHFSs are known to require long keys [4], recent constructions [4] are close to being
space-optimal. Thus, this application of MMPHFs for tagging seems to be a novel, nearly efficient-
as-possible way to support range queries, leaking nothing but the order of ciphertexts, when the
database is fixed in advance.

A NEW MODULAR OPE SCHEME AND ITS ANALYSIS. Finally, we propose a technique that improves
on the security of any OPE scheme without sacrificing efficiency. Recall that our ROPF analysis
reveals information leakage in OPE not alluded to by [§], namely about the locations of the data
points rather than just the distances between them. We suggest a modification to (that can be
viewed as a generalization of) an OPE scheme that overcomes this. The resulting scheme is not
order-preserving per se, but still permits range queries—in this case, modular range queries. (When
the left end of the queried range is greater than the right end, a modular range query returns the
“wrap-around range,” i.e. everything greater than the left end or less than the right end.) The
modification to the scheme is simple and generic: the encryption algorithm just adds (modulo the
size of the message space) a secret offset to the message before encryption. (The secret offset is the
same for all messages.) We call a scheme obtained this way a modular OPE scheme, and generalize
the security notion: the ideal object is now a random modular OPF (RMOPF), i.e. a random OPF
applied to messages with a randomly picked offset. It is easy to see that any secure OPE scheme
yields a secure modular OPE scheme using the above transformation.

We show that a random modular OPF, unlike a random OPF, completely hides the locations
of the data points (but has the same leakage with respect to distance and window-distance one-
wayness). On the other hand, if the adversary is able to recover a single known plaintext-ciphertext



pair, security falls back to that of a random OPF.
We also note that the technique with a secret offset can be applied to the CEOE scheme to
enhance its security even beyond IND-CCPA when support for modular range queries is sufficient.

RELATED WORK. Efficient (sub-linear time) search on encrypted data for the case of simple exact-
match queries has been addressed by [2] in the symmetric-key setting and [0, 10} [7] in the public-key
setting. The work of [16] suggested enabling efficient range queries on encrypted data not by using
OPE but so-called prefiz-preserving encryption (PPE) [22, 5]. But as discussed in [16, 2], PPE
schemes are subject to certain attacks. Allowing range queries on encrypted data in the public-key
setting was studied in [I1l 20], but the solutions are not suitable for large databases, requiring
to scan the whole database on every query. As we mentioned, order preserving encryption as an
efficient solution for range queries has been proposed in [I], however, they do not provide any formal
security analysis.

2 Preliminaries

NoTATION. If M is an integer, then [M] denotes the set {1,...,M}. For a set S and n < |5,
let Combg denote the set of n-element subsets of S. If Enc is an encryption function with key
K, x = (z1,...,x) is a vector, and X = {x1,...,x¢} is a set, then Enc(K,x) is shorthand for
(Enc(K,x1),...,Enc(K,xz¢)) and Enc(K, X) is shorthand for {Enc(K, x1),...,Enc(K,z)}. The
same holds for decryption Dec.

If S is a finite set then x & S denotes that z is selected uniformly at random from S. For
convenience, for any k € N we write x1, o, ..., xg & S as shorthand for the series of assignments
1 & S, xo & S, ..., Ty & S, If Ais a randomized algorithm and Coins is the set from where it

draws its coins, then we write a & A(z,y,...) as shorthand for R & Coins; a «— A(z,y,...; R),
where the latter denotes that variable a obtains the result of running A on inputs z,y,... and
coins R.

We denote the probability of event A by Pr[A]. If A depends on a random variable X, we
write Pr [A(X)] for the probability of A when X sampled randomly from distribution D. If B is

x&p
another event, Pr [A(X) | B ] denotes the conditional probability of A(X) given B, for random
x&p

variable X sampled from distribution D. Often, the distribution being used is clear and we omit

it, as in Pr[A(X)] (where X & D is implied).

A CONVENTION. For simplicity, in many cases we will assume a domain/plaintext space [M] and
range/ciphertext space [N], for N > M. Naturally, all results for arbitrary spaces D, R can be
derived from those of [|D]], [|R|] (though, of course, describing the results for strange spaces can
be difficult—and is beyond the scope of this paper.)

TYPES OF RANGE QUERIES. For fixed plaintext and ciphertext spaces [M] and [N], a range query
target is a pair of plaintexts (mr,mp) that comes in two varieties: standard if my, < mpg, or wrap-
around if my, > mpg. If (mp,mpg) is a target, its associated range is [mr, mpg] in the standard case
and [mr, M| U[1,mpg] in the wrap-around case.

To model the intended application with encryption scheme (K, Enc, Dec): using a key K & K,
data is encrypted and stored on the server. For a standard range query, the user submits two



unordered ciphertexts {c1,c2} to the server. Let (mi,mg) = Dec(K, (¢1,c2)). Then the target is
(min{m, ma}, max{my,ma}), and the server must return the set of ciphertexts in the database
whose decryptions fall into the associated range. Notice that these targets are always standard.
In a modular range query, the user submits two ordered ciphertexts (cr,cgr). Let (mp,mpg) =
Dec(K, (cp,cr)). Then the range query target is (mpr, mp), and the server must return the set
of ciphertexts in the database whose decryptions fall into the associated range. Notice that these
targets can be standard or wrap-around.

SYMMETRIC ENCRYPTION. A symmetric encryption scheme SE = (K, Enc, Dec) with associated
plaintext space D and ciphertext space R consists of three algorithms.

e The randomized key generation algorithm K returns a secret key K.

e The (possibly randomized) encryption algorithm Enc takes a secret key K and a plaintext m
to return a ciphertext c.

e The deterministic decryption algorithm Dec takes a secret key K and a ciphertext ¢ to return
a plaintext m or a special symbol L indicating that the ciphertext was invalid.

We require the usual correctness condition, Dec(K, (Enc(K, m)) = m for all K output by K and
all m € D. Finally, we say that S€ is deterministic if Enc is deterministic.

ORDER-PRESERVING ENCRYPTION (OPE). For A, B C N with |[A| < |B|, a function f: A — B
is order-preserving (a.k.a. monotonically increasing) if for all 4,5 € A, f(i) > f(j) iff i > j. We
say that deterministic encryption scheme SE€ = (K, Enc, Dec) with plaintext and ciphertext spaces
D, R is an order-preserving encryption (OPE) scheme if Enc(K,-) is an order-preserving function
from D to R for all K output by K (with elements of D, R interpreted as numbers, encoded as
strings).

SECURITY OF OPE. We recall the security definition for OPE from [§]. Fix an order-preserving
encryption scheme SE = (K, Enc, Dec) with plaintext space D and ciphertext space R, |D| < |R].
For an adversary A against S&, define its pseudorandom order-preserving function advantage under
chosen-ciphertext attacks (POPF-CCA) advantage against SE as

Advg%?f—cca(A) - Pr AEnc(K,-),Dec(K,-) T Pr Ag(')’g_l(') —1],
K&k g OPFp 1

where OPFp  denotes the set of all order-preserving functions from D to R. We say S is POPF-
secure if this advantage is small.

Informally, an OPE scheme is POPF-secure if oracle access to its encryption and decryption
functions is indistinguishable from oracle access to a random order-preserving function (ROPF) on
the same domain and range, and that function’s inverse. In other words, any secure OPE scheme
(including the only currently known blockcipher-based scheme from [8]) should “closely” imitate
the behavior of an ROPF. Accordingly we focus in this paper on analyzing the ideal object, an
ROPF.

AN “IDEAL” SCHEME, ROPF. We define the “ideal” ROPF scheme as follows. Let OPFp  denote
the set of all order-preserving functions from D to R. Define ROPFp r = (K., Enc,, Dec,) as the
following deterministic order-preserving encryption scheme:

e I, returns a random element g of OPFp .

7



e Enc, takes the key and a plaintext m to return g(m).

e Dec;, takes the key and a ciphertext ¢ to return g=!(c).

It should be clear that ROPFp % is optimally POPF-secure, by design. Of course, it is not compu-
tationally efficient, but this is fine as our goal is analyzing its security for the purpose of clarifying
security of all POPF-secure constructions.

MOST LIKELY PLAINTEXT. Let S€pgr = (K,&nc,Dec) be a symmetric encryption scheme on
domain D, range R. For given ¢ € R, if m, € D is a message such that Pr [Enc(K,m) = c]
$
K&K
achieves a maximum at m = m,, then we call m. a (if unique, “the”) most likely plaintext for c.
MOST LIKELY PLAINTEXT DISTANCE. Let SEu v = (K, Enc, Dec) be a symmetric encryption
scheme on domain [M], range [N]. For given c¢1,co € R, if d¢, e, € {0,...,M — 1} such that
Pr [mg —mj mod M =d | (m1,mq) = Dec(K, (c1,c2)) | achieves a maximum at d = dg, ¢,, then
$
K~K
we call de, ¢, a (if unique, “the”) most likely plaintext distance from c; to cs.

3 New Security Definitions

As explained in the introduction, the “ideal” ROPF scheme defined in Section [2] itself requires a
cryptographic treatment. Toward this end, we propose several generalized security definitions that
help us understand its security.

Let SE () = (K, Enc, Dec) be a deterministic symmetric encryption scheme.

WINDOW ONE-WAYNESS. The most basic question left unanswered by [8] is whether a POPF-secure
scheme is even one-way. Towards this end we start with the one-wayness definition. Our definition
is a stronger and more general version of the standard notion of one-wayness. For 1 <r < M and
z > 1, the adversary is given a set of z ciphertexts of (uniformly) random messages and is asked to
come up with an interval of size r within which one of the underlying plaintexts lies. We call our
notion r, z-window one-wayness (or r, 2-WOW). Note that when r = 1, the definition collapses to
the standard one-wayness definition (for multiple ciphertexts), and we will call it one-wayness for
simplicity.
The r, z-window one-wayness (r,z-WOW) advantage of an adversary A against SE N 18
AdV[Tw(A) = Pr | Bxpl ™ (4)=1] |

T,2-WOW

SEqnn vy (A) above is defined in Figure[I] Notice that the latter success

condition allows the adversary to specify a window that “wraps around” the message space. Grant-
ing this extra power to the adversary will be useful in analyzing the MOPE scheme of Section (5.2

where the experiment Exp

WINDOW DISTANCE ONE-WAYNESS. To identify the extent to which an OPE scheme leaks distance
between plaintexts, we also provide a definition in which the adversary attempts to guess the interval
of size r in which the distance between any two out of z random plaintexts lies, for 1 < r < M
and z > 2. We call the notion r, z-window distance one-wayness (r, z-WDOW). When r = 1, the
adversary has to guess the exact distance between any two of z ciphertexts.

The r, z-window distance one-way (r,z-WDOW) advantage of adversary A against scheme
SE(a vy 18

r,z-wdow o r,z-wdow o
AV (4) = Pr | Expg v (4) = 1],



r,2=WOW
SEM,IN] (4)

KﬁlC; m & Comb M ; ¢« Enc(K,m)

$
(mr,mg) < A(c)
Return 1 if (mp —mp) mod M + 1 < r and there exists m € m so that
either m € [mr,mg] or (mg, > mpg and m € [mp, M| U [1,mg])
Return 0 otherwise

Experiment Exp

Figure 1: The window one-wayness experiment.

where the experiment Expg?[]tfm (A) above is defined in Figure

r,z-wdow
SE[MMNJ( )
K& K;m & CombM! ; ¢« Enc(K, m)
$
(d17 d?) — A(C)
Return 1 if do — d; +1 < r and there exist distinct m;, m; € m
with m; —m; mod M € [dy, do]
Return 0 otherwise

Experiment Exp

Figure 2: The distance window one-wayness experiment.

4 One-Wayness of a Random OPF

This section is devoted to analyzing the “ideal” scheme ROPF(,/ ;5] under the security definitions
given in the previous section. The first result shows an upper bound on 1,2-WOW advantage
against the scheme. This demonstrates that on practical parameters, ROPF and POPF-secure
OPEs significantly resist (size-1-window) one-wayness attacks. In contrast, the second result shows
the ideal ROPF scheme is susceptible to an efficient large-window (a constant times v/M) one-
wayness attack, by constructing an adversary and lower-bounding its r, z-WOW advantage.

The analysis then proceeds similarly for window distance one-wayness definitions: we will show
analogous contrasting results for small- versus large-window experiments. We now turn to the
details of the analysis.

4.1 Upper and lower bounds on window one-wayness

AN UPPER BOUND ON ONE-WAYNESS ADVANTAGE. The following theorem states an upper bound on
the 1, 2-WOW advantage of any adversary against ROPF(/) (n). [Note: the multiplicative constant
in the bound has been improved from 9 in the proceedings version [9] to 4 in this version of the
paper, due to tighter analysis in Lemma [D.41]

Theorem 4.1. For any challenge set of size z and adversary A, if N > 2M and M > 15+ z then

4z

AdviZY (A< —
v ( ) VM —2z+1

ROPF a1, 1]



The formal proof is quite involved and is relegated to Appendix [A] The idea is to first bound 1, 2-
WOW security in terms of 1, 1-WOW security; because ciphertexts are correlated, a simple hybrid
argument does not work and our reduction instead uses a combinatorial approach, demonstrating a
bijection between objects in relevant definitions. Then, to bound 1, 1-WOW security, we again take
a combinatorial strategy, as follows. We consider a ciphertext’s most likely plaintext (m.l.p.) and
recall the negative hypergeometric distribution (NHGD). We first relate the middle ciphertext’s
m.l.p.’s NHGD probability for a given plaintext/ciphertext space to that of a space twice the size;
iterating this result produces a formula for the middle ciphertext’s m.l.p.’s NHGD probability in
a large space given the analogous value in a small space. We then relate any ciphertext’s m.l.p.’s
NHGD probability to that of the middle ciphertext in the space. Finally, we approximate the sum
of m.l.p. NHGD probabilities over the ciphertext space in terms of that of the middle ciphertext,
and hence to that of the middle ciphertext in a smaller space. Plugging in a value for the m.l.p.
NHGD probability on the small space and simplifying yields the bound.

EVALUATING THE BOUND. The bound of Theorem (4.1l is quite succinct—it does not even rely on
N (as long as N > 2M). The result in essence shows that as long as the challenge set size z is
small compared to M, the bound is a small constant times z/ VM. This in turn is small as long
as z is small compared to v/M. Table [1| shows some sample evaluations of the bound for several
message space and challenge set sizes.

M z Clean bound || M 2z  Clean bound
224 1 2—10 280 1 2—38
240 1 2—18 280 220 2—18
280 1 2—38 280 238 1
2120 1 2758

Table 1: Sample evaluation of Theorem [4.1Fs clean bound for various plaintext space sizes M and
challenge set sizes z. All require ciphertext space size N > 2M.

We see that ROPF[y) (] has very good one-wayness security for reasonably-sized parameters.
Given the results of [§] our bound for ROPF can be easily adjusted for their POPF construction,
by taking into account pseudorandomness of an underlying blockcipher. But as we discussed in the
introduction, standard one-wayness may not be sufficient in all applications and we have to also
analyze the schemes under other security notions. Thus, we turn to the next result.

A LOWER BOUND ON LARGE WINDOW ONE-WAYNESS. Here we show that there exists a very
efficient adversary attacking the window one-wayness of an ROPF for a sufficiently large window
size. A more intuitive explanation of the result follows the theorem.

Theorem 4.2. For any window size v and challenge set size z, there exists an efficient adversary

A such that

(=12 (M-1)

T,2~WOW r,1-wow 5
AdVROPF[M],[N](A) > AdVROPF[MHN](A) > 1-2e 2 M

The proof is in Appendix [F] There, we construct a straightforward adversary and demonstrate
that it has the above probability of success, using some bounds by Chvatal on the tail probabilities
of the hypergeometric distribution.

10



Intuitively, Theorem implies that for r &~ bv/M, where b is a large enough constant (say
b > 8), there exists an adversary A whose r-window one-wayness is very close to 1. More precisely,
letr=05 \/% + 1, and the theorem implies there exists an A such that

AdVEESY (A) > 1—2e70/2

Flan, v 7 =
4.2 Upper and lower bounds on distance window one-wayness

AN UPPER BOUND ON DISTANCE ONE-WAYNESS ADVANTAGE. The following theorem, with the
proof in Appendix [G] states an upper bound on the 1, z-distance one-wayness of a random OPF
that is very similar to the bound in Theorem K.l

Theorem 4.3. For any challenge set size z and adversary A, if N > 2M and M > 16 + z then

Adviiordov (4 < Gl I
[7],[V] VM =2z+1

Naturally, as this result looks very much like that of Theorem 4.1 the proof follows the same
strategy and achieves similar results. The only differences are that the initial reduction relates r, z-
WDOW security to r,2-WDOW security, incurring a factor z(z — 1) advantage increase as opposed
to just z, and the initial (tight) bound formula replaces parameters N, M with N —1, M — 1. See
Appendix [G] for proof details.

Thus, the 1, z-window distance one-wayness of a random OPF is upper-bounded in a similar
fashion as the 1, z-window one-wayness, and we conclude that random OPF's have good 1, z-WDOW
security. Again, though, that is not the whole story, as we see next.

A LOWER BOUND ON LARGE WINDOW DISTANCE ONE-WAYNESS. Here, we derive a result similar
to that of Theorem [4.2] but for the window distance one-wayness of a random OPF.

Theorem 4.4. For any window size r and challenge set size z, there exists an efficient adversary
A such that

(=12 (M-2)

r,z-wdow r,1-wdow
) > ) > _ 2 (M-1)2
AdVROPF[MHN] (A) > AdVROPF[M]y[N] (A) 1—2e .

The proof appears in Appendix [} Intuitively, Theorem [.4] implies that for r =~ bv/M, where
b is a large enough constant (say, b > 8), there exists an efficient adversary A whose r-window

distance one-wayness advantage is very close to 1. More precisely, let r = b \/A% + 1, and the

theorem implies there exists an A such that

\2- —b2/2
Advigerr (A) > 1—2e70/2

4.3 Further security considerations for ROPF's

In this section, we explore several important questions regarding our ROPF security analysis.

EFFECT OF KNOWN-PLAINTEXT ATTACKS. It is a natural question to ask what happens to the
security of an ROPF scheme when the adversary knows a certain number of plaintext-ciphertext
pairs. In general, we can answer this question for each definition of one-wayness using a simple
extension of the arguments above.
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In the scheme ROPFp %, known plaintext-ciphertext pairs split the plaintext and ciphertext
spaces into subspaces. On each subspace, the analysis under each one-wayness definition reduces
to that of an ROPF on the domain and range of the subspace. For instance, if (m1, ¢1) and (ma, c2)
are known for m; < mse, and no other known plaintext-ciphertext pairs occur between these two,
then for D' ={m € D |mi1 <m <ma} and R' ={c € R |c¢1 < ¢ < ca}, we analyze the behavior
of the function on this subspace by considering the one-wayness bounds on ROPFp/ /.

This brings up an important issue. For much of our analysis to apply to a scheme, it must be
the case that the ciphertext space is at least twice the size of the message space. Therefore, in order
to make sure that our analysis will still apply to most subspaces once several plaintext-ciphertext
pairs are discovered by the adversary, we would like to choose the initial parameters in such a way
that subspaces are unlikely to violate this condition.

CHOOSING THE CIPHERTEXT SPACE SIZE. This brings us to the question posed in [§]: given a
plaintext space of size M, what should be the size N of the ciphertext space? The recommendation
and justification given in [8] was ad-hoc, necessarily so because the paper lacked a notion of security
that would in any way depend on the size of N compared to M. Indeed, the choice of N has to
do with the nature of the ideal object, an ROPF, while [8] was focused only on pseudorandomly
sampling that ideal object, not analyzing it. Now that we have ways of characterizing the security
of an ROPF using our one-wayness definitions, we can more justifiably discuss the question of what
to choose for N.

For g € OPF |y (n), if 1 < mg € [M] exist such that g(mg) — g(m1) < 2(ma — m1), then we
say that g is shallow on the ciphertext interval [g(m1), g(m2)]. The bounds found in the previous
sections assume that N > 2M. Thus, any non-shallow interval can be analyzed through our
theorems about one-wayness, and as a result we would like to choose N to avoid shallow intervals,
both in the original space and in potential subspaces.

In particular, consider the following result, which bounds the probability that an interval be-
tween encryptions of two random plaintexts is shallow.

Proposition 4.5. Lett = (N —1)/(M — 1), and assume t > 7. Let my & [M], ma & [M]\ {m1},
K& Ky, Enc (K, (my, ma)) = (¢1,¢2), w =c2 — ¢y mod M, and d = mg — mq mod M. Then

Pr [2d>w]< 3 ! .
K,m1,mz ty/(M—1)/InM

The proof can be found in Appendix [K] Besides using Lemma [F2] the proof is mostly algebraic
fiddling.

This bound gives us an idea of good values for ¢t & N/M. In particular, it seems that choosing
a constant for ¢ > 7, that is, taking /N to be a constant multiple of M, is sufficient in order to make
the above probability negligible. Whether the constant should be large or small depends on one’s
tolerance for random intervals to be shallow.

ON IMPLEMENTING A SCHEME TO SUPPORT RANGE QUERIES USING POPF. We stress that most
of our analysis relies on the uniformity assumption, namely that challenge messages come from a
uniform distribution. Thus, practitioners relying on our one-wayness analysis should take steps
to satisfy the uniformity assumption. In particular, underlying messages that are encrypted in a
database, as well as queries, should “look” uniform in terms of their location in the message space.
These uniformity restrictions could possibly be met by a scheme that performs “dummy” queries,
in addition to legitimate queries, in order to make queries look uniformly random.
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It is an open problem to extend our analysis to other input distributions other than uniform.
However, it seems unlikely that anything positive can be said about OPE schemes’ one-wayness
for arbitrary distributions or for models where the adversary can choose challenge messages or
distributions.

5 Achieving Stronger Security

We study new ways to achieve better security than the OPE scheme of [8] while still allowing
for efficient range queries on encrypted data. But first, we define a general primitive, efficiently
orderable encryption (EOE), that includes all schemes that support efficient standard range queries,
including OPE. The security notion indistinguishability under ordered chosen-plaintext attack (IND-
OCPA), defined and shown to be unachievable by OPE in [8], is the ideal security definition for
such schemes.

We define “committed” analogues of EOE and IND-OCPA, namely CEOE and IND-CCPA,
that apply to the practical scenario where the database to encrypt is pre-determined and static.
Such a setting has been studied in several works on searchable encryption, including the first paper
to propose an order-preserving scheme [I, [I3]. We then propose a new CEOE scheme that is
CCPA-secure.

Finally, we develop a generic modification of an OPE that supports modular range queries (but
not standard range queries) and overcomes some of the security weaknesses of any OPE that we
studied in Section @l The scheme is not EOE because it does not leak order; rather, it leaks only
“modular” order.

EFFICIENTLY ORDERABLE ENCRYPTION. We say that EOE = (K, Enc, Dec, W) is an efficiently-
orderable encryption (EOE) scheme if IC, Enc, Dec are the algorithms of a symmetric encryption
scheme, W is an efficient algorithm that takes two ciphertexts as input, and defining Cx =
{Enc(K, m) | m € M} as the set of valid ciphertexts for key K,

1 if Dec(K,cp) < Dec(K, 1)
W(cp,c1) =40  if Dec(K,cy) = Dec(K, c1)
—1 if Dec(K,cp) > Dec(K, c1)

for any key K and all ¢g,c; € Ck. It is easy to see that such a scheme permits efficient standard
range queries, as the server can keep the encrypted database sorted using W.

It is also clear that any OPE scheme (K, Enc, Dec) corresponds to an EOE scheme with the
same key generation, encryption, and decryption algorithms, and W (¢, ¢1) outputting 1, 0, or —1
if the relation between ¢y and ¢; is <, =, or >, respectively. But in general an EOE scheme does
not have to be deterministic.

5.1 Committed efficiently-orderable encryption

RANGE QUERIES ON A PREDETERMINED STATIC DATABASE. Now we consider schemes for the
settings when it is possible for the user to preprocess the whole data before encrypting and sending
it to the server. For that we allow the key generation of an EOE scheme to take the message set
as input, which we rename a committed EOE scheme.
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COMMITTED EFFICIENTLY-ORDERABLE ENCRYPTION. A committed efficiently-orderable encryption
(CEOE) scheme on domain D is a tuple (K, Enc, Dec, W) satisfying the following.

e The randomized key generation algorithm K takes a message space M C D (called the
committed message space) as input and outputs a secret key K.

e For any committed message space M C D, (K(M),Enc, Dec, W) is an EOE scheme on M.

We will show that a CEOE scheme can achieve very strong security. In particular, it can achieve
the “committed” adaptation of the IND-OCPA notion from [8], where the adversary outputs two
vectors of plaintexts with the same order and equality pattern and is asked to guess whether it
is given encryptions of the first or second vector. We define indistinguishability under committed
chosen plaintext attack (IND-CCPA). The definition mimics IND-OCPA except that the adver-
sary chooses the challenge vectors (now viewed as message spaces) before key generation, and the
scheme’s key generation algorithm takes the appropriate message space as input.

INDISTINGUISHABILITY UNDER COMMITTED CHOSEN-CIPHERTEXT ATTACKS. Let CEOE = (K, Enc, Dec, W)
be a CEOE scheme on message space M. For an adversary A = (A1, As), define its indistinguisha-
bility under committed chosen plaintext attack (IND-CCPA) advantage against SE as

AdVEEGE™ P (A) = Pr | Bxpiioe™ ™ (4) = 1] - Pr | Bxplie™ ™ (4) = 1] .

where for b € {0,1} the experiments Expasas™ P*’(A) are defined in Figure[d] Note that o

ind-com-cpab

Experiment Exp;co¢ (A)
(Mo, Mi,0) & 4,
If | My| # | M| then output L
Letlé ’Mo’lz | M| A
Let m] < m} < ... <mj be the elements of M, for j = 0,1
If there exist 1 < i <[ so that |m{| # |m}| then output L
K & K(My)
cj — Snc(K,mg’-) forj=1,...,1

a& As(o,c1,¢1,...,0)
Return d

Figure 3: The IND-CommittedCPA experiment.

denotes a state the adversary can preserve. We say that CEOE is IND-CCPA-secure if the IND-
CCPA advantage of any adversary against CEOE is small.

Our CEOE CONSTRUCTION AND ITS SECURITY. We now propose a CEOE scheme that will achieve
IND-CCPA security. A ciphertext in our scheme consists of a semantically-secure ciphertext of the
message concatenated with the tag, which indicates the order of the message in the ordered message
list. As a building block for our scheme we use monotone minimal perfect hash functions, defined
as follows.

Let M be a set with a total (lexicographical) order. h is a monotone minimal perfect hash
function [4] (MMPHF) on M if h sends the ith largest element of M to i, for i =0,1,...,|M|—1.
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Notice that the MMPHF on any given domain M is unique. So that we can use MMPHF's in the
upcoming construction, let an index tagging scheme (KC,7) be a pair of algorithms such that X
takes a domain M and outputs a secret key Kpq so that 7(Kxy, ) is the (unique) MMPHF for M,
while 7(K,m) =L for any m ¢ M.

Our CEOE construction is based on two building blocks: MMPHF tagging and any symmetric
encryption scheme.

Construction 5.1. Let (IC;,7) be an index tagging scheme. Let SE = (K',Enc',Dec’) be any
symmetric encryption scheme on a fixed universe D. We construct a CEOFE scheme CEOE =
(K, Enc, Dec, W) as follows.

o I takes M C D as input, runs Ky «— Ky(M) and K, «— K', and returns K = K¢|| K.

o Enc takes key K = K| K. and message m as input, and computes i = 7(Ky, m). If i =L then
Enc returns L, otherwise it returns i||Encd (Ke,m).

e Dec takes key K = K¢||K. and ciphertext ¢ = i||c' as input, and returns Dec (Ke, ).

o W takes ciphertexts co = io||c(, and ¢1 = i1||c} as input, and returns 1 if ig < i1, 0 if ig = i1,
and —1 ifi() > 107
We note that unlike the scheme with pre-processing for exact-match queries [13], when using

the above scheme the server does indexing and query processing as for unencrypted data, which is
a practical advantage. Also, as the following result shows, the scheme is secure under IND-CCPA.

Theorem 5.2. The CEOE scheme of Construction is IND-CCPA-secure provided the under-
lying symmetric encryption scheme is IND-CPA secure.

Proof. Let D be the domain, and suppose A = (A1, A2) is an adversary with nontrivial IND-CCPA
advantage against CEOE. We construct an IND-CPA adversary B against S€. B has access to O,
a left-right encryption oracle for S€ under a random secret key.

B runs A; to receive Mg, M1, 0. Let [ be the lengths of [Myl,|M;|. After sorting (separately)
the elements of My and My, B assigns label m} to the ith smallest element of My, fori=1,...,1
and b = 0,1. B queries its left-right S€-encryption oracle with matched pairs of these messages:

¢l «— O(mb,m?) for i =1,...,1. Note that each pair consists of messages of equal length. Then, B
prepends indices ¢; = i||c} for i = 1,...,l. Finally, it runs As(o,c1,...,¢) to receive d, and outputs
d.

It is clear that B’s communication with A perfectly mimics the IND-OCPA experiment, and
thus the IND-CPA advantage of B is equal to the IND-CCPA advantage of A. Clearly, B is efficient,
since it only needs to sort the elements of | Mo, |M;]. O

Note that our secure CEOE construction relies on an efficient MMHPF implementation. Luckily,
MMHPFs were studied recently by [4]. They showed that for a universe of size 2* and for n > log w,
the shortest possible description of an MMPHF function (and thus, best possible key length for
a tagging scheme) on n elements is unfortunately quite large at Q(n) bits. This is somewhat
disheartening, as a naive solution, in which the MMPHEF key consists of an n-entry array whose
ith entry is the ith largest element in the domain, has a key length of O(nw). Nevertheless, the
authors of [4] were able to generate MMPHF descriptions that are closer to the optimal bound: one
construction uses O(nloglog w) bits and has query time O(log w), and the other uses O(n log w) bits
and has constant query time. This is still large, but may be practical depending on the parameters
involved.
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5.2 Modular OPE and analysis of an ideal MOPE scheme

MobpuLAR OPE. We propose a modification to (that can be viewed as a generalization of) an
OPE scheme that improves the security performance of any OPE. The resulting scheme is no
longer strictly order-preserving, but it still permits range queries. However, now the queries must
be modular range queries. Standard range queries are not supported, as only “modular order”
rather than order is leaked. The modification from OPE is simple, generic, and basically free
computation-wise.

Let (K, Enc, Dec) be an order-preserving encryption scheme. Define a modular order-preserving
encryption scheme (MOPE) SE 7 v = (K, Encm, Decy) as follows.

e Ky, runs K to get K, picks j ki [M] and returns (K, j).
e Ency on input (K, j) and m returns Enc(K, m — j mod M).
e Decy, on inputs (K, j) and ¢ returns Dec(K, ¢) + j mod M.

Notice that a MOPE is suitable for modular range query support as follows. To request the
ciphertexts of the messages in the range [m1, mo| (if my < mag), or [my, M| U [1,mg] (if m1 > ma),
the user computes ¢; «— Ency (K, my),ca «— Ency (K, mg) and submits ciphertexts (¢1,c2) as the
query. The server returns the ciphertexts in the interval [c1, ca] (if ¢1 < ¢2) or [c1, N] U [1,¢o] (if
c1 > c2).

MOPE SECURITY AND RANDOM MOPF. In order to define the security of an MOPE scheme, we
introduce a generalization of OPFs. For j € [M], let ¢; : [M] — [M] be the cyclic transformation
¢j(x) = (x —j — 1) mod M + 1. We define the set of modular order preserving functions from [M]
to [N] as

MOPF vy = {f o ¢; | f € OPFup Ny J € [M]}.

Note that all OPFs are MOPFs; on the other hand, most MOPFs are not OPFs. However, a
MOPF g is “modular order-preserving” in that the function g — g(0) mod N is order-preserving.

Now, define RMOPF[MHN] = (Km, Encem, Decyn ), the random modular order-preserving func-
tion scheme, as the following (inefficient) encryption scheme:

® Kyim returns a random instance g of MOPF /a7
e Encyy takes the key g and a plaintext m to return g(m).
e Decyy, takes the key g and a ciphertext ¢ to return g—!(c).

Note that an MOPF could alternatively be defined with a random ciphertext shift following the
OPF rather than a random plaintext shift preceding it. The advantage of the above definition is
that the map from (OPF, ciphertext offset) pairs to MOPFs is bijective whereas in the alternative
it is not one-to-one.

We now are ready to define MOPE security. Fix an MOPE scheme S& ), (n) = (K, Encm, Decn,).
Let RMOPF[MHN] = (Kim, Encim, Decyy) be as defined above. For an adversary A, define its pseu-
dorandom modular order-preserving function (PMOPF) advantage against SE as

AdVERP () = Pr [Afmes() Zq] = py a0 =1].
K&K, gERMOPF 1) (]
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It is straightforward to show that the MOPE scheme obtained from any POPF-secure OPE
scheme via the transformation defined in the beginning of Section is PMOPF-secure, under the
same assumption as the base scheme. We omit the details.

We now analyze the ideal object, RMOPF, under the one-wayness definitions.

WINDOW ONE-WAYNESS OF RMOPF. The following proposition establishes that RMOPF is op-
timally r, z-window one-way (and hence optimally one-way, taking » = 1) in the sense that an
adversary cannot do better than an adversary that outputs a random window independent of the
challenge set. (Reminder: “window” includes windows that wrap around the edge of the space.)

Proposition 5.3. Fiz any window size r and challenge set size z. Let Apana(r) be an r,z-WOW

adversary that, on any input, outputs a random r-window from [M]. Then for any adversary A,
T2 -WOW T,Z-WOW

AdVRMOPF[MHN](A) < AdVRMOPF[M],[N] (Arana(r)) <rz/M .

Proof. Let Vi, be the set of r-windows in [M] that contain an element of m. Notice that [Vi,| < rz,

as each element of the challenge set is contained in at most r windows. Also, the total number of

r-windows in [M] is M. An adversary wins if it outputs an element in Vy,. Since A;,nq outputs a

random 7-window, it is clear that Advgﬁggv,:v[m,w] (Arana) < 7z/M.

Fix a function f € OPFpy n] and challenge set c. Let f~!(c) = {x € [M] | f(x) € c}. Let S
be the set of modular intervals I’ C [M] such that I’ N f~!(c) # 0, and let n = |S|. For offset j,
an adversary wins if it picks I = (mp,mp) such that the interval I + j = (mz + j mod M, mp +
jmod M) isin S. For each I, note that there are precisely n values for j € [M] for which I+j € S,
and precisely M — n for which I + j ¢ S. Thus, over the choice of j, each interval I has the same
probability of winning (namely, n/M.) Hence, a random choice of interval has the same probability
of success as any other choice of interval. This is true for any function f and challenge set c, so
the result follows. O

As one might surmise, the above “optimal” characterization of the one-wayness of a random
MOPF fails to show a complete picture of the information a random MOPF leaks. To investigate
further, we turn to distance one-wayness.

WDOW ADVANTAGE BounNDS FOR RMOPF. We claim that the distance one-wayness analysis
for RMOPF is exactly the same as for ROPF. To see this, consider the following proposition.

Proposition 5.4. Let ¢1,co € [N]. Then for any d € {0,...,M — 1},

Pr [Dec;(K,c2) — Decy(K,c1) =d] = Pr [Decim(K,c2) — Deeym(K,c1) = d].
K&K, KEKom

Proof. Let w = cg —c¢; mod N. Note that among the (ﬁ:g) OPFs f with c1, co € f([M]), there are
(15:11) (é\\;ﬂflj) such that f~!(cy) — f1(e¢1) mod M = d. On the other hand, among the (ﬁ:g) -M
MOPFs g with ¢1, co € g([M]), there are (’5:11) (f,\v[_’gj) -M such that g~ 1(c2)—g~!(c1) mod M = d.
The result follows. O

Therefore, the 1, 2-WDOW advantage upper bound of Theorem [£.3] and the r, 2-WDOW ad-
vantage lower bound of Theorem [4.4] against ROPF schemes also apply to RMOPF schemes on the
same parameters.
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So, while an RMOPF has similar security to that of an ROPF for distance and window distance
one-wayness, it is better in terms of one-wayness and window one-wayness. The analysis easily
transfers to any secure MOPE scheme. We now discuss a few supplemental security considerations
for RMOPF schemes.

EFFECT OF A KNOWN-PLAINTEXT ATTACK ON RMOPF. In the RMOPF5/ n] scheme, if the
adversary learns a single plaintext-ciphertext pair, then the one-wayness analysis reduces to that
of ROPF(3;_q),(n—1]- To see this, note that if g is a random function in MOPF 37 ], and it is
revealed that g(mg) = co, then f(m) = g(m + mo mod M) — ¢o mod N is a random function in
ON IMPLEMENTING A SCHEME TO SUPPORT RANGE QUERIES USING PMOPF. We note that when
a pseudorandom MOPF scheme is used to implement a range-query-supporting database, even
wrap-around target range queries must be made, for otherwise an adversary may infer the secret
offset of the MOPF scheme after observing many non-wrap-around target queries.

REMARK. We finally note that the tagging scheme CEOE defined in Section Bl could be similarly
modified so that its tag receives a secret offset. The resulting scheme would support modular range
queries in the predetermined static database scenario, and satisfy a stronger version of IND-CCPA,
leaking only “modular” order.

6 Conclusions

We revisited security of symmetric order-preserving schemes defined in [8]. We formally clarified
the strengths and limitations of any OPE scheme proven to be a pseudorandom order-preserving
function (POPF), and in particular, the efficient OPE scheme proposed in [§]. Namely, for any
POPF-secure OPE our analysis together with the result of [8] provides upper bounds on the ad-
vantages of any adversaries attacking the one-wayness and distance one-wayness, (2) lower bounds
on the window one-wayness and window distance one-wayness advantages. We hope our results
help practitioners to estimate the risks and security guarantees of using a secure OPE in their
applications. Our analysis also gives directions in selecting the size of the ciphertext space. Finally
we proposed a simple and efficient transformation that can be applied to any OPE scheme. Our
analysis shows that the transformation yields a scheme with improved security in that the scheme
resists the one-wayness and window one-wayness attacks.
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Proving Theorem [4.1]

Before proceeding, we define probabilities relating to the hypergeometric distribution, and note
their connection to random OPFs, which was demonstrated in [§]. These probabilities will show
up at several points in the analysis.
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Let N> M,0<y <N,0< 2z < M. Recall hypergeometric and negative hypergeometric
probabilities

v\ (N—-y
Prpap(N,M,y,z) = M

()
(=) (r—s)
PNHGD(Nanya'%):% (.’IZ}y#O)
()
For convenience, define a third, related probability:
y—1\(N—y
P*(N,M,y,fv)Zw (z,y #0).

N—1
(h-1)

As shown in [8], random OPFs are naturally linked to negative hypergeometric probabilities.
We will use the fact that for (IC;, Ency, Decy) = ROPF 3 v and m € [M], ¢ € [N,

KPl;C [Enc(K,m) = c¢] = Pvuap(N,M,c,m) .

To improve understanding of the proof of Theorem [.1], we first give an extended sketch.

PROOF SKETCH. The first component result, Lemma [A.I] bounds the r, 2-WOW advantage of
an adversary against ROPFy; v by 2 times the r,1-WOW advantage of an adversary against
ROPF(p;_.], [N~z This reduction is achieved as the combination of two sub-reductions, going
through an intermediate security notion, specified r, 2-WOW security, that we define in the proof.

The second component result, Lemma [A.2] states and proves a tight upper bound on the 1, 1-
WOW advantage of an adversary against ROPF[;7 nj. Note that the analysis is information-
theoretic; we do not assume any bound on the running-time of the adversary. Though the resulting
bound is optimal, it is quite difficult to directly calculate for reasonably-sized parameters: the bound
is essentially an average of “most likely plaintext (m.l.p.) negative hypergeometric distribution
(NHGD) probabilities.” In computing the bound, not only do we need to evaluate N many NHGD
probabilities, but each probability must be computed for very large parameters. For instance, in our
tests it took Mathematica about 90 seconds to directly compute the optimal bound for M = 219,
N = 28 and each doubling of the spaces tended to increase the time needed by a factor of more
than 4, so by extrapolation it may take years to compute the bound exactly for even M = 220,
N = 2%,

Thus, a simpler bound is needed. The third component result, Lemma[A.3] provides this.
It takes the expression of the previous lemma and, through numerous algebraic and analytical
methods, loosens and simplifies the bound. Though the resulting bound is no longer tight, it is a
much more useful and understandable result. (And in fact, it is not too far from being tight, as we
discuss informally in Appendix [E]) Essentially, Lemma gives a bound on the average of m.l.p.
NHGD probabilities on arbitrarily large parameters that is a function of a single m.l.p. NHGD
probability, agp, on small parameters. We achieve this result in several steps, as follows. (1) Relate
the middle ciphertext’s m.l.p. probability for a given plaintext/ciphertext space to that of a space
twice the size, using an algebraic argument. (2) Iterate the previous result to find a formula for
the middle ciphertext’s m.l.p. probability in a large space given the analogous value g in a small
space. (3) For a fixed space, relate an arbitrary ciphertext’s m.l.p. probability with that of the
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middle ciphertext. (4) Tie the results together, approximating the sum of m.l.p. probabilities over
the ciphertext space in terms of that of the middle ciphertext, and hence to that of the middle
ciphertext in a smaller space.

The final component result, Corollary [A4] is a simple extension of Lemma[A3] plugging in
a value for the single small-parameter NHGD probability «g. This yields the final bound in
Theorem 4.1

Now, we turn to the proof.

MAIN LEMMAS AND PROOF. The proof relies on two lemmas and a corollary to a third lemma, as
follows.

Lemma A.1. For window size r, challenge set size z, and any adversary A, there exists a OW-
adversary A’ such that

7,2 =WOW r,1-wow !
AdVROPF[MHN] (4) < ZAdVROPF[M—z+1],[N—z+1] ().

The proof is in Appendix [B]

Lemma A.2. For any adversary A,

where me = L\%‘ﬂ for any c € [N].

The proof is in Appendix [C]

Lemma A.3. Let Ny > 2My be (positive) multiples of 2 and let M = 29My and N = 29Ny for
integer ¢ > 1. Define ag = Pyx(No, Mo, No/2,mp, 2). Then

Wel/MO

N
1 2
N E P*(N,M,C,mc)<ﬁ+a()w.

c=1

The proof is in Appendix

Corollary A.4. If N > 2M > 32 and m, = L\]]\ﬁcl—‘ for any ¢ € [N], then

N
1
¥ Z P.(N,M,c,m,)
c=1

4
< —=.
vM
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Proof. Let My = 16. Then Ny > 32, and we have

ag = Py(No, Mo, No/2, My/2)
— P.(Np, 16, No/2, 8)

(7D (Y)

("% )
(No/2—=1)---(No/2 = T)(No/2) -~ (No/2 — 7)15!
(Ng — 1) -+ (No — 15)7!8!
No(No — 2)%(No — 4)% -+ (No/2 — 14)215!
(Ng — 1) -+ (Ng — 15)2157!8!
_ No(No —2)(No — 4) - -+ (No/2 — 14)15!
~ (Ng—1)(No —3) - -- (Ng — 15)2157!8!

=(1+ ! 1+ ! 1+ ! 15!
N No—1 No—3 Ny — 15 ) 215718|

<1+ ) (1+1 L
= 31 29 17 ) 215718

< 0.278.

Since M = 29My = 27+ we have 2¢/2 = YM Ty,

2 maget/Mo 1/\/E+47r(0.278)el/16

— <
M + 2‘1/ 2 v M /M
4
< —.
v M
The result then follows from Lemma [A.3] O

Now, we are ready to prove the main, general result.

Proof of Theorem[{.1. Let M' =M —z+1, NN =N —z+ 1.

1,z-wow 1,1-wow

AdvVRopr,, i (A) < ZAAVRORF 0 o (A) (Lemma [AT])
1 &

<25 ) PN M cme) (Lemma [A2)
c=1

<ir (Corollary ()

z . orollar
Nev Y
In the final step, N > 2M and M > 15+ z imply N —z+1>2(M —z+ 1) > 32. O

B Proving Lemma [A 1]

We first introduce a concept related to r, z-WOW security called specified r, 2-WOW security. The
proof then proceeds in two steps. First, we construct an adversary A’ whose specified r, 2-WOW
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advantage is at least a factor 1/z of the r, 2-WOW advantage of A (which, in fact, works for general
schemes). In the second step, we exhibit a bijection between OPFs on the space [M], [N] that hit
a fixed set ¢ C [N] of size z — 1, and OPFs on the space [M — z + 1], [N — z + 1]. This allows us to
construct an efficient r, 1-WOW adversary against ROPFy;_ 1] v—.41) using an efficient specified
r,2-WOW adversary against ROPF[/1 ), with the same advantage. Putting these constructions
together yields the result.

AN INTERMEDIATE SECURITY DEFINITION. The specified r, z-window-one-wayness advantage of
adversary A with respect to scheme SEp r = (K, Enc, Dec) is

Advgg’;;‘:ow (A) =Pr [ExpggZTgOW(A) =11,
where the security experiment is as follows.
Experiment Expggggow(fl)
K&K, mE compM
mo & m; ¢« Enc(K,m) ;co«— Enc(K,mp)
(mz,mpr) < Ae, co)
Return 1 if (mr —mr + 1 mod M) < r and either

mg € [mr,mg] or (my > mpg and mg € [my, M]U [1,mg]);
Return 0 otherwise.

The only difference between this experiment and the standard r, 2-WOW one is that here, the
experiment demands that the adversary return an r-window containing the pre-image of the specified
ciphertext ¢g € ¢ (rather than any ciphertext from c.)

REDUCING 7, 2-WOW SECURITY TO SPECIFIED 7, 2-WOW SECURITY FOR ANY SCHEME. As our
first step, we show that for any efficient r, 2-WOW adversary against a general scheme S&, there
exists an efficient specified 7, 2-WOW adversary A’ whose success probability is at least a factor of
1/z of that of A.

Lemma B.1. For any scheme SEpr and r, z, and any r,z-WOW adversary A, there exists an
equally efficient specified v, z-WOW adversary A’ such that

AdVEE(A) < ZAdVELE T (A) .

Proof. Given A, let A’ on input (c,c¢) run (mp,mg) & A(c) and return (mp,mpg). Whenever A
outputs (mr, mpg) such that Im € m with m € [mr, mg] or (my > mgr and m € [mr, M]U[1,mRg)),
then A’ wins if m = mg. Since myg is random from m, independent of the rest of the experiment, we
conclude that A’ wins the specified experiment at least 1/z of the times that A wins the standard
experiment. The result follows. O

REDUCING SPECIFIED 7,2-WOW SECURITY TO 7,1-WOW SECURITY FOR ROPFS. Now, fix
scheme ROPFy5 n] = (Ky, Ener, Deey) = and r, 2. It is left to reduce the success probabil-
ity of a specified r, z-adversary A against this scheme to that of an r, 1-WOW adversary against
ROPF a2y 1), (N =241

We first introduce a number of notations that will be useful in the proof. Let 2z’ = z — 1. For
orderable sets D, R, and H C R, let OPFp zr(H) denote {f € OPFpr | H C f(D)}, i.e., the set
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of OPFs from D to R with all elements of H in their range. Similarly, for a set U, n < |U|, and
H C U with |H| < n, let CmbY [H] denote the set of n-element subsets of U that contain H. For
set S with elements 71 < 29 <...z|g, and x € S, H C S, i € [|S]], I C[|S]], let

Index? = j such that = = z; , Indices?; = {j | z; € H} ,
Element? = z; , Elements? = {z; |i € I} .
Finally, for equal-sized orderable sets S, Sa, let UniqueOPF(S1,.S2) be the unique OPF from S
to Ss.

The next lemma demonstrates the connection between OPF's in space [M], [N] that hit a certain
z'-element subset of [N], and general OPF's in space [M — 2/], [N — 2/].

Lemma B.2. Fizc C [M] with |c| = 2'. There is a chain of natural bijections between the following
sets.

B

B Bs n B
OPFunm(e) = Cublyle] = Comby\, = Comi} %) = OPFu_.v_.)

Proof. The bijective functions and their inverses can be defined as follows:

Br:f = F(IM]); Byt S — UniqueOPF([M], S)
Ba: S S\c; ﬂ;leHSUc

P38 — IndiC@S[gN}\c ; Bgt:iTws Elements[IN]\c

B4 : S+ UniqueOPF([M — 2'], S) ; Bl fe f(IM = 2)

Since all functions are well-defined, the bijections are clear. See Figure [4] for a visual depiction of
elements associated through the bijections. O

Before we show the final reduction, we state and prove a small lemma.

Lemma B.3. Let ROPF ) 5] = (Ki, Ency, Decy), and z > 1. Then for any set ¢ € Comb[zN],

N

Pr c={&nc;(K,m)|mem}|=1 .

e [c = {&nc:(K,m) | m e m}] /(z)
(M)

mi Combs

Proof. The probability that some ¢ C [N] is chosen as the encryptions of the elements of m is equal
to the probability that Enc,(K,-) sends some z plaintexts m’ C [M] to ¢, times the probability
that the appropriate m was picked from [M]. The former probability is equal to the likelihood that
c is a subset of a random M-element subset of IV, or (Aj\g:i ) / (A]\;) The latter probability is 1/ (Aj )
Hence, the desired probability is

(N 1 (N = 2)IMI(N — M)1I(M — 2)!
() () (M =2)(N = M)INIM!
(V= 2)t!
N
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30 30 = 30 = —
27 .
25| 25 = 25 =
24 24 ®
: 22 =
19} 19 e
15]-
: 15 = 15 = 14
8 g = 7
6
2l m
[ R R R 2w om 2= [ R
123 458678 _ - R 12 3 45

5} B: B
UniqueOPF([8], X) = X = X \c = Indices[)?f}\c = UniqueOPF([E)],Indices[)?f]\c)

Figure 4: Example of associated elements in the chain of bijections from Lemma[B.2l In the
example, N = 32, M = 8, ¢ = {6,19,24}, and we are looking at the particular OPF f €
OPFig) 32)(c) with range X = {2,6,8,15,19,24,25,30}.

Now, here is the second reduction.

Lemma B.4. Fiz r, z, M, and N. Let 2/ = z — 1. For any efficient specified r,z-WOW ad-
versary A to scheme ROPFyp Ny, there exists an efficient r,1-WOW adversary A’ to scheme
ROPF[M—Z’],[N—z’] such that

S-T,2-WOW r,1-wow /
) < )
AdVRopr 1 (4) < AdvROPF[M—z’L[N—z’I(A) '

Proof. Let A be an adversary in experiment Exp‘;_g’;;mrvm (A). We construct a similarly efficient

r,1-wow

adversary A’ to experiment EprOPF[M S (A’) using A as follows.

Adversary A'({c'})
o & Comb[zj,w ;Co— Element[c],v]\cl ; ¢ —c U{c}
(mp,mg) <& Alc, )
2 —Kyecly<cl
my —mp — 2z mly —mp— 2.
Return (m/,, m’,).

Assume that ¢ is a random ciphertext in [N—2'] (asit is in Expg(l)_F‘,’VFO[ o — (A"), by Lemma [B.3]).

. . . §-T,2-WOW
Then we must show that the input (c, ¢) to A accurately mimics the experiment EXPROPF[M]’[N] (A)

26



That is, it must be that ¢ looks random from Comb”! (recalling Lemma [B.3] applied to the exper-

iment’s challenge sets), and ¢’ looks random from c. Note that ¢ looks uniformly random among
[N]\ ¢’ because ¢ is a random index in [N — 2’| and c¢ is chosen as the (¢/)th largest element of

, . . S-T,2-WOW
[N]\ c. Hence, A" accurately simulates the experiment EXpRopF[M]’[N]( )

Let (31,..., 34 be as defined in Lemma For any OPF f from [M] to [N] with c in its range,
let
B = (BaoB30P20p61)(f)

be the associated (unique) OPF from [M — 2/] to [N — 2]. For fixed c and ¢, let 2/ = |{d' € c | <
c}|. Then note that for any m € [M], if f(m) = ¢ ¢ c then Bf(m — z.) = ¢ — 2__ and vice versa.
Thus, if A correctly guesses a window my, mg that succeeds in Exp‘;_or’lf,}‘x;vm (A) when f is

r,1-wow ( /)

chosen as the random OPF, then the output m/,m} of A’ succeeds in EprOPF[M A

when (¢ is chosen as the random OPF; and the converse is also true. Hence, A and A’ have the
same advantage in their respective experiments.

We also note that A’ is efficient if A is efficient, as the extra steps of sampling an element of
CombL]y} and re-indexing ¢, m/;, and m’, are all efficient operations. O

We are now ready to prove the main lemma of this section.

Proof of Lemma[Adl For any r, z, and any efficient r, 2-WOW adversary A, there exist efficient
algorithms A”, A’ such that

7,2-WOW =1, 2-WOW
AdVROPF[M]y[N] (A) < ZAdVROPF[M],[N] (A”) (Lemma [B.1))
r,1-wow /
< ZAAVRoRE i (A")  (Lemma [B4)
The result follows. t

C Proving Lemma

The proof uses two supporting lemmas. One has already been proved, as Lemma [B.3]in the special
case z = 1 establishes that the uniform choice of plaintext in the experiment ensures a uniformly
distributed challenge ciphertext. The second lemma, stated next, allows us to calculate the most
likely plaintext for a given ciphertext.

Lemma C.1. For fited N,M,c € N, Pyyap(N, M, c,-) achieves its mazimum over [M] at some

Mc Mec

S ——
N+1’N+1+

mg €

In particular, if N = tM for some positive integer t, then Pxgap(N, M, c,-) achieves its maximum
over [M] at the unique point
mo = [Mc/N| = [c/t].

Proof. Suppose that Pypep (N, M, c,-) achieves its maximum over [M] at mg. Then the function
must have a local maximum there; that is,

Pnuap(N,M,c,my — 1) < Pygep(N, M, c,mp) ,
Pnuap(N,M,c,mg) > Pvuap(N, M, c,mo+ 1) .
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Notice that for m > 2,

PNHGD(Nv M7 C, m) _ (TfLill) (]g:ﬁl)
PNHGD(Na Ma c,m — 1) ((mc_iﬁ_l) (Mi\f;nc_l))

is at least 1 ifandonlyif%—l >N,orm< 1%14—1; it is at most 1 ifandonlyif%—l <N,
orm—12> ]\J}/fl. The former implies mg < NLfl + 1; the latter implies mg > lel

So, the maximum value of Pygap(N, M, ¢, m) occurs at either a unique point, or two adjacent
points in [M]. Thus, these local maxima are global maxima, and the necessary condition ]\%fl <
mo < NL-s-Cl + 1 is also sufficient for mg to be a global maximum.

To see the second property, note that N = tM implies

Mc | e N e c B Fw
N+1| |t\N+1)| |t tN+1)| Itl’
where the last step is implied by the following: note that the fractional part of ¢/t is either 0 or at
least 1/t. In either case, subtracting ¢/(t(N + 1)) < 1/t from ¢/t will not change the value of its

ceiling. Also note that in this case, Mc¢/(N + 1) = Mc/(tM + 1) is not an integer and thus my is
unique. O

Corollary C.2. Fiz encryption scheme (Ky,Ency, Dec,) = ROPF a7, (v, and let ¢ € [N]. Then m,
18 a most likely plaintext for c if and only if

Me < < Mce
N+l "> N¥1

+1.

In particular, if N = tM for some positive integer t, then m. is unique for each ¢ and
me. = [Mc/N]| = [c¢/t] .

Proof. For any m, ¢, the probability that Enc, (K, m) = c over random K € K, is Pvgap(N, M, ¢, m).
Thus, the result follows directly from Lemma O

We are now ready to prove the lemma.

Proof of Lemma[4.2. In the one-wayness experiment, notice that an adversary A is not allowed
any oracle access, and in fact the only information A receives is the ciphertext c. Thus, given ¢, the
adversary’s best recourse is to output the most likely plaintext for ¢. By Lemma [B.3] the ¢ given
to A is uniform from [N], so the OW advantage of A is bounded above by the average probability
(over all ¢ € [N]) that c is the image of its most likely plaintext m. under random f € OPFjyz a7,
knowing that c is the image of some plaintext under f.
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Fix ¢ € [N]. Given that ¢ € {f(m) | m € [M]}, the probability that f(m.) = c is equal to the
number of OPFs going through (m,, ¢), over the number of OPF's that have a point (z, c) for some
x € [M], or

-1 N—
(1) (%)
N—1
(1)
Thus, in the one-wayness experiment, the probability that the (randomly determined) challenge

ciphertext is the image of its most likely plaintext is the average of the above quantity for each
value of c. [

= P.(N,M,c,m,.) .

D Proving Lemma [A.3

The proof proceeds in several steps. Here is an outline:

e Lemma [D.1] relates the middle ciphertext’s most likely plaintext’s NHGD probability for a
given plaintext /ciphertext space to that of a space twice the size, using an algebraic argument.

e Corollary [D.2]iterates this result, producing a formula for the middle ciphertext’s most likely
plaintext’s NHGD probability in a large space given the analogous value g in a small space.

e Lemma [D.3] and Lemma [D.4] together relate any ciphertext’s most likely plaintext’s NHGD
probability to that of the middle ciphertext in the space, using Stirling’s approximation and
certain bounds on the gamma function.

e Finally, the proof of Lemma [A3] ties these results together, approximating the sum of most
likely plaintext NHGD probabilities over the ciphertext space in terms of that of the middle
ciphertext, and hence to that of the middle ciphertext in a smaller space.

For readability, we introduce the following notation. For a, b,t positive integers such that a > b
and t < a/b, let

(@)p =ala—1)(a=2)---(a—(b-1));
(@) = ala—t)(a—2t)--(a—(b—1)t).

APPROXIMATING MOST LIKELY NHGD PROBABILITIES FOR THE MIDDLE CIPHERTEXT. Set a
domain size M and range size N, larger domain size M* = 2M and range size N* = 2N, and
consider “middle ciphertexts” ¢ = N/2 and ¢* = N*/2 = N. We show that if M and N — M are
large, then the relative most likely NHGD probabilities for ¢ and ¢* (knowing that the ciphertexts
are hit) in their respective spaces is approximately equal to the constant 1//2.

Lemma D.1. Let N, M be multiples of 2 such that N > 2M, let M* = 2M and N* = 2N, and let

¢c=N/2 and ¢* = N*/2 = N. For any c € [N], let m. = Lf\,/_[fl—|. If M is large, then

P.(N*, M*, c*,me») 1

~
~

PN, M,c,me) V2

In particular,
1 P.(N*, M*,c*, me~) 1 1/(2M)
‘e .

J— < —
\/§ P*(N,M,c,mc) \/é

QN
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Proof. Set M’ = N — M. Observe that

_1\2
PN* MY me) () ()
PN Meme) (G073 () ()
3
(a1)

GG
_ ONBERM)(2M ) (M/2)12(M'/2)!?
N M!3(M")13(2N)!(N/2)!2
N2 N! (M/2)!? (2M)! (M'/2)!1? (2M")!
(N/2)12 (2N)! M2 M! (M2 (M)
C((Mvy2)? M)y M)y
O @N)iy ((M)agg2))? (M) age )2

C2Y((N)vy)® M)y (2M")(ar
2N)vp 2M((M)ary2))? 2M (M) agr2))?
(2N)inj221)®  (2M)pg (2M")ps

2N)inp (CM)rj2:9))? (M) (g j2,9))?
_ CN)vjag (M = Dpajag) (M7 — 1) a2
(2N - 1)[N/2;2] (2M)[M/2,2] (2M/)[M’/2;2]

Define the above quantity to be a. Also, let

5= (2N = D)ny2:2) (2M = 2)(ar/2:2) (2M" = 2) (a1 /2,2
(2N = 2)(vy/2;9) (2M — 1) agy2,9) (2M" — 1) (g 259

, N+ Dnyzg (2M)prge (2M") a1 /2.9
(2N)(nj221 (M + 1) (ar/22) (2M" + 1) g /259

and notice that for large M and N,

On the other hand,

g2V M (N — M) , 2N4+1M+1 (N-M+1)
(0% =——— =
N 2M (2N — 2M) N+12M+12N —2M +1

=1/2 <2 1+ 1/2 1+ 1/2
- ’ 2 2M +1 2 9N —2M +1

305) (- aw')

L 1@y vyee-nn)
2
/M
2

<

<
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Hence,

O

1/(2M)
a:\/aﬁi,\/aﬁ:\}ﬁ; a:\/o?é\/aﬂ’<eﬂ

Now, we can easily approximate most likely NHGD probabilities for middle ciphertexts in large
spaces, in the following manner.

Corollary D.2. Let Ny > 2My be multiples of 2, let M = 29My and N = 29Ny, and let ¢ = N/2

a= P.(N,M,c,m,.);
and cg = Ng/2. Define T ’ Then
0 o/ i { ag = Py(No, Mo, co, mye,) -
@0 Sa< @0 el/Mo,

2q/2 =~ 24q/2

Proof. The left side of the statement directly follows from repeated application of Lemma [D.1]
Similarly, by the lemma,

q

Qo 1/(2" Mo)

a< o Hle
1=

— 0 /M) 27
2q/2

40 1Mo O

< 2q/2€

RELATING GENERAL MOST LIKELY NHGD PROBABILITIES TO THAT OF THE MIDDLE CIPHERTEXT.
In this section we show how to approximate most likely NHGD probabilities for any ciphertext in
a large space using the probability corresponding to the middle ciphertext.

Recall the definition of the gamma function: for = a real number,

The gamma function satisfies the following properties, for x real.
MNx+1)=al'(z); ra=t.

For notational convenience, we will let I'(z) = I'(z 4+ 1). The above properties imply that I'(z) is
an extension of the factorial function to real numbers. In particular, for positive integer n,

A

I'(n)=T(n+1)=n!

Also, Stirling’s approximation applies to I': for real x > 0,
D(z) =D(z+ 1) = V2rz(z/e)e |
where
; <\, < —
120+1 7 12z

We first prove a short lemma that will be used in the next proof.
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Lemma D.3. Let M, N be multiples of 2 and N > 2M. Let k € (0,1). For ease of notation, let
EF=1—kand M' =N — M. Then

(kN) (2) Fz(z/ < 1
T (kM)T <ka> M)T (M) (5)T(5) ~ 2Vkk
Proof. Using Stirling’s approximation,
LT RN ()T () E ()
I (kM)T <ka> <k/ )LMIT (5)T(F)
ey DENTWNE T ()
ENSLT (kM)T (kM) T (WM)T (K M") T2 (§)
, oM/2 [ ppr\2M'/2
\ J RNEN () () MR (T ()
- 2 . , A1 ( NN\2N/2
kMkM’k’Mk’M’(%) (KM )*M (kMM (J! MK M (! MR M (%) /
kK’
where
)\ - )\kN +)\k/N +2)\M/2 +2)‘M’/2 - )\kM - )\kM/ - )\k/M - )\k/M/ - 2>‘N/2
Ll(t ot o2 2N 1/ 1112
T12\kN KN T M/2 T M'/2) 12\kM kM’ "KM KM N/2
_1(1, 1 1N(, 11
12\M M N kK
6 kK’
<0,
since the maximum value of kk' = k(1 — k) for k € (0,1) is 1/4. O

Now, we provide a bound on the ratio between the most likely plaintext probability of a cipher-
text ¢, with 1/M < ¢ < (M —1)/M, versus that of the middle ciphertext.

Lemma D.4. Let M, N be multiples of 2 and N > 2M. Let k be a multiple of 1/N such that
1/M <k<M-—1/M. Then

P*(N,M,kN,mkN) 1

Proof. We use the following bounds of D. Kershaw [15]: for > 0 and 0 < s < 1,

<w+;>1_s<m< <x—;—|— (s+i>1/2>1_
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Rewriting the bounds, for y > 1 and 0 < § < 1, we have

T (y) 3 (5 O\ T (y — ) 51\
r<y—5><<yz*<45) ) f<(m373)

For ease of notation, let ¥ = 1 —k, M' = N — M, and ¢ = [kM] — kM. By Lemmal[C2]
mgn = [kM| = kM + e. Then using Lemma [D.3]

P*(N,M, kN,mkN)

P*(N,M,%,m%)

(nj2—) (31)2)

(N (FN)T ()T (4) 12 (%)
Or

I'(kM+e)T (kM' — )T (K'M — )T (KM’ + )T ()T (§)
1 T (kM) f(k:M’) L(K¥M) T (&M
~ 2VEkK T (kM +€) T (kM' — €) T (k’M—e)A(k’M’—l—e)
1 (k:M’ %—}—w/% e< f—e)
" 2V (31 5] @ 57
o (i (s dn/i o)
VK (k+ S) (K + 5i7)
L w(ae)esm) ( a (i) s
= F 1+ k e—1 1+ k! e+1
2kk + 5 + &5
) H%(m/g—e—l)ﬂ—e 1+(2,/3—e—1)—%(e+1)
N 2MEk+¢€—1 2Mk/+%(€_’_1)
1 2\/73—€—¢€ 2 f—e
1
kk' Jr2Ml<:+e—1 Jr2M(1—k)
_ glek, M)
WEE

€ €
2./3 —e— /5 _
where g(e, k, M) = (1 + 2}4;:;;) (1 + M&_;) . Notice that the bounds on k imply Mk > 1

and M(1—k)>1,so

2¢/2 —e—¢ ‘
gle, k, M) < f(e) = <1+i—|—e) (1—1—“2—&) ,
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which, for € € [0,1], is bounded by 2, as can be seen in Figure i

ZOj
LS:
1ol
L4:

12

10

T S T O B S
0.0 0.2 0.4 0.6 0.8 1.0

2,/3 —e—e¢ ‘ ¢
Figure 5: Graph of f(e) = <1 + 14+6> (1 +4/2 - e) for e € [0, 1].
Therefore,
P.(N, M, kN, myx) 1

O]

< .
N _
PN M, 5 my) ~ /R(I— )

As a side note, the maximum value of f(e€) for € € [0, 1] in the above proof is slightly lower than
2. Mathematica finds a bound of approximately 1.927:

In[83]:= f[x]=(1+(2(1.25-x)"0.5 -x)/(1+x))"x (1+(2(1.25-x)70.5)/2) x;
Maximize [{f [x],0<=x<=1},x]
Out [84]= {1.92692,{x->0.664124}}

Also, one could try to bound the value of g(e, k, M) in the proof (which is more difficult to do
computationally) to achieve a tighter bound; empirical evidence shows it can be made very close

to 1. Mathematica can handle this if we place some lower bound on M. For instance, forcing
M > 1000000:

In[85]:

glx,k,M]=(1.0+(2(1.25-x)"(0.5)-x) /(2 k M+x-1))"x (1.0+(2(1.25-x)7(0.5))/(2(1-k) M))"x;
FindMaximum[{g[x,k,M],{0<= x<= 1,M>1000000,1.0<= M k<= M-1}},{x,{k,0.5},M}]
Out [86]1= {1.,{x->0.420798,k->0.500004,M->1.03175%10"6}}

We are content, however, to proceed with the looser upper bound of 2.
The preceding results can now be put together to prove the main lemma statement.
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Proof of Lemma[A.3 By Lemma [D.4 and Corollary [D.2]

| X 5 N—N/M
NZP*(N,M, eme) < 5t > PuN,M,c,m)
c=1 c=N/M
2 P*(N7M7N/27mN/2) pley 1
<=+ >
M N c=N/M \/(C/N)(l _C/N)

2
< = 4+ PN, M, N/2,mp/

! 1
)'/o Vvl —x) e

M
2 . 1
= + P«(N, M, N/2,mp ) arcsin(2z — 1){0
2
:M+P*(N7M7N/27mN/2)7T
2 mel/Mo

E Comparing tight and simple bounds

In Table [2, we compare the tight bound of Lemma [A2] and the simple bound of Lemma [A.3] for
several values of M and N and see that the results are close. We have separated the constant factor
2 in each simple bound to illustrate how close the bounds would be if the factor 2 were improved
to 1 (as described after the proof of Lemma [D.4])

Table 2: Sample evaluation of tight vs. simple bounds. For the simple bounds, My = 26.
M N Tight Simple
28 216 0.077 0.087-2
29 217 0.055 0.060 -2
210 218 0.039 0.042-2

F Proving Theorem 4.2

The first half of the result,

T,2=WOW r,1-wow

AdvVRopr,,, 1y (A) = AdVRopr,, o (A);

is obvious, as giving the adversary more challenge ciphertexts can only help it win. It is left to
r,1-wow

prove the bound on AdVROPF[M] . (A).
We use the following notation for the tail probabilities of the hypergeometric distribution.

M
H+(C,N, M,mo) = Z PHGD(N7M’Cam)7

m=mgo

mo
H_(c,N,M,mg) =Y _ Pugp(N,M,c,m).

m=0
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The proof of the theorem appears after a lemma.

Lemma F.1. Let M, N, ¢ € [N], and r € [M] be given. Let § = "1, and let my,mgr € [M] be

2M
defined as { my, = max{m, — [0M], 1},

- — | Mc
mp = min{me, + |6M ], M}, where m, = [NH—" Then

mLfl M
Z P*(N7 M, c, m) < 6—252(1\/[—1) and Z 17:)*(]\/'7 M, e, m) < 6_262(M_1).
m=1 m=mp+1

Proof. We will use a bound by Chvétal [12] on the upper tail of the hypergeometric distribution:

H, (c, N, M, (% n d) M> < ¢ 2M

Chvatal’s upper tail bound implies a similar lower tail bound:

c (¢/N—d)M
H_ (c, N, M, <N _ d) M) = Y Pucp(N, M,c,i)
=0
(¢/N—=d)M
= > Puep(N,M,N —c,M —i)
1=0
M
= > Pugp(N,M,N —c,j)
j=M—(c/N—d)M

—H, (N—c,N,M,(N]\;C—i—d) M)

2
< 672d M'

Notice that mp > AL + M > (;\:{—_11 + 5) (M —1). So

M M (c—l ) ( N—c )
Z P*(Na Mv C,’I’)’L) = Z milN,]\lJim
m=mpgr+1 m=mpr+1 (M—l)

|
M7
21
L
3

=H(c—1,N—-1,M —1,mpg)
c

-1
< — — — —
<H, (c LN -1, M 1,( — +5) (M 1))

052(M—
o—20%(M-1).

IN
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Similarly, my, — 2 < 47— 0M — 1 < (§2 = 6) (M~ 1). So

mp—1 mr—1 (cfl)(Nfc)
> PN, Me,m)= )~
m=1 m=1 (M—l)

H
<H (e—t,N—1,Mm—1, (<=L 5 =1
— _ ) ) ) N—]_

We now prove the theorem.

Proof of Theorem[].3 As already mentioned, the first inequality of the theorem is trivially true.
It is left to prove the second inequality.
Consider the following r, -WOW adversary A.

Adversary A({c})

Mc
Me = {N-ﬁ-l
0 — S
my, < max{m. — [0M], 1}
mpg < min{m.+ |0M |, M}

Return (mp, mpg)

(mr,mp) is a legal response in the r,1-WOW experiment since the associated window has size
mprp—mp+1<20M + 1 < r. The probability that the adversary succeeds is the probability that
c € [mg, mg], or

ey =12 (M-1)
> PAN,M,e,m)>1-2e 2 aZ
m=my,

where the inequality follows from Lemma [F.1l Since A only performs efficient operations, the result
follows. O

G Proving Theorem 4.3

The proof of the theorem parallels that of Theorem [4.1l As such, it requires several intermediate
results that are now stated.

Lemma G.1. For window size r, challenge set size z, and any adversary A, there exists a OW-
adversary A’ such that
,2-wdo ,2-wdo !
AdVEéFYVFMX[N](A) < z2(z — 1)Advygop ™ (A') .

ROPF(as— 242, [N—242]

The proof is in Appendix [H]
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Lemma G.2. For any adversary A,

,2-wdo
Adle(Z)PF[M (A) <

1,[V]

where dy, = {%-‘

The proof is in Appendix [J]
Notice that the bound in Lemma is precisely the bound in Lemma [A.2], only with parameters
M —1, N —1 instead of M, N. Thus, we will be able to use the simple bound from Corollary [A.4]

The proof of the theorem now easily follows.

Proof of Theorem[[.3 Let M' =M — 242, N' =N — z + 2.

1,2- 1,2-
AdvRéPV,VfEAVZHN] (A) < 2(z — 1)AdVRO|§;’:CEj\V4'],[N'] (A) (Lemma [GT])
=
§z(z—1)m czl PN —1,M" — 1, w,dy) (Lemma [G.2))
4

< z(z— 1)W (Corollary

(- D

=z2(z—-1)——.

M—-z+1
In the third step, N > 2M and M > 15+ z imply N' —1 >2(M' — 1) > 32. O

H Proving Lemma

Define specified r, z-window-distance-one-wayness advantage of adversary A with respect to scheme
Sépr = (K,Enc, Dec) as

Adv5EEY(A) = Pr [Expg'ggjngW( A) = 1] :

where the security experiment is as follows.
Experiment Expggg;zvow(A)
K&k ;m & Comb[zM]
$ $
mo—m ;m; < m\ {mp}
c — Enc(K,m) ; (co,c1) «— Enc(K, (mo,m1))
$

(dr,dr) < A(c, co, 1)
Return 1 if dy —dy +1 < r and m; — mo mod M € [dy, ds];
Return 0 otherwise.

Lemma H.1. For any scheme SEpr and r, z, and any r,z-WDOW adversary A, there exists an
equally efficient specified v, z-WDOW adversary A’ such that

r,z-wdow s-r,z-wdow
Advge o (A) < z(z— 1>Adv$513,7z (A).

38



Proof. Given A, let A’ on input (¢, co, ¢1) simply run (dy,dg) & A(c) and return (dr,,dr). When-
ever A outputs legal (dr,dgr) such that Im(, m| € [M] with m} — m{ mod M € [d,ds], then A’
wins if mg = my, and m; = m). Since mg is random in [M] and m; is random in [M]\ {mo},
independent of the rest of the experiment, we conclude that A’ wins the specified experiment at
least ﬁ of the times that A wins the standard experiment. The lemma follows. O

Lemma H.2. Fiz r, z, M, and N. Let 2/ = 2 — 2. For any efficient specified r,z-WDOW
adversary A to scheme ROPF N1, there exists an efficient 7,2-WDOW adversary A’ to scheme
ROPF(ps_.),(N—21 such that

s-r,z-wdow r,2-wdow !
AdVROPF[MHN] (A) < AdvROPF[M ) (A).

Proof. Let A be an adversary to experiment Exp‘;_or’lf;{j;f[‘j’v] (A). We construct an adversary A’ to

experiment EXPQ?)_;T%ZXZ'] - (A") using A as follows.

Adversary A'({c(,c}})

o & Combg,v]
I for 4 = 0,1
c—cu {co,ci}

(dr.dr) & Alc,corer)

gy = Hyecla<y<all
dp —dp— =z, dy—dr—2z,
Return (d7, d).

¢; +— Element

Assume that ¢, ] are random (distinct) ciphertexts in [N — 2’| (as they are in the experi-
r,2-wdow

ment EXpROPF[M,zr] - (A’), by Lemma[B.3]). Then we must show that the input (c,cg,c1) to

A accurately mimics the experiment Exp‘;_orﬁ;ﬁfm] (A). That is, it must be that ¢ looks random

from Comb!" (recalling Lemma applied to the experiment’s challenge sets), and {cg, ¢1} looks
random from Comb3. Note that cg,c; are uniformly random distinct elements of [N] \ ¢ because
¢y, ) are random distinct indices in [N — 2] and ¢; is chosen as the (¢})th largest element of [N]\ ¢

for ¢ = 0,1. Hence, ¢ looks random from Comb™ and {co, c1} looks random from Comb§. Thus,

A" accurately simulates the experiment EXPE_S;'_:‘[KJ/;]OETV] (A)

Let 1, ..., 34 be as defined in Lemma [B.2l For any OPF f from [M] to [N] with c in its range,
let

By = (BaoBzofaopBr)(f)

be the associated (unique) OPF from [M — 2] to [N —2]. Let 2, = |{¢ € c|co < ¢ < 1}
Then note that for any mg,m; € [M], if f(mg) = co ¢ ¢ and f(m1) = ¢1 ¢ ¢ then m; —mg =
Bf(m1) — Bf(mo) + 21, and vice versa.

Thus, if A correctly guesses a window dj,dr that succeeds in Exp?é’,f,?{jﬁ& (A) when f is

chosen as the random OPF, then the output d’; , d}; of A’ succeeds in Expgé_FV,VFd[Z:V_Z/HN_ZI] (A’) when

By is chosen as the random OPF; and the converse is also true. Hence, A and A’ have the same
advantage in their respective experiments.
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We also note that A’ is efficient if A is efficient, as the extra steps of sampling an element of
Comb[Z],V] and re-indexing co, ¢1, d}, and d}, are all efficient operations. ]

We are now ready to prove the main lemma of this section.

Proof of Lemma[G 1. For any r, z, and any efficient r, 2-WDOW adversary A, there exist efficient
algorithms A”, A’ such that

r,z-wdow S$=1,Z2=WOW 7
Advropr,, (A = 2Advgepg, (A7) (Lemma [HL.T)
< r,1-wow /
< ZAdVROPF[Msz],[Nsz] (A’)  (Lemma [H.2))
The result follows. O

I Proof of Theorem [4.4]

Proof of Theorem[[.4. As in Theorem [4.2] the first inequality is trivially true. It is left to prove
the second inequality, which we do by constructing an r,2-WDOW adversary A as follows.

Adversary A({cy,ca2})
w «— ¢y —cy mod N

g [ 050

0 — 2(?\4_—11)
dr, < max{dy, — [6(M —1)],1}
dr «— min{d,, + [6(M —1)|, M — 1}

Return (dr,dR).

(dr,dR) is a legal response in the r, 2-WDOW experiment since the associated window has size
dR—dL+1§2(5(M—1)+1§7’.
Note that d, = {W—‘ is the most likely plaintext distance between ¢y and co by Corollary

The probability that the adversary succeeds in the r,2-WDOW experiment is the probability that
mg —mq mod M =d € [dr,dR], or

dr (=12 (M-2)
SUP(N-LM-lLuwd)>1-2 2 002,
d=dr,

by Lemma [F-1l Since A only performs efficient operations, the result follows. O

J Proving Lemma

A FORMULA FOR THE MOST LIKELY PLAINTEXT DISTANCE. In Corollary [J.2] below, we derive
a formula for the most likely plaintext distance between two given ciphertexts. But first, the
following lemma determines the probability that a given ciphertext pair corresponds to a given
plaintext distance, which is used to prove the corollary.
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Lemma J.1. For ci,cz € [N], let OPFp n™ = {f € OPFup vt c1,c2 € f([M])}. Then for any
de[M—1],

. Pr [ (e2) = fHer) mod M =d] =P.(N -1, M — 1,w,d) ,

where w = ¢y — ¢; mod N.

Proof. Let c1,co € [N]. If ¢1 = ca, the result easily follows, so suppose ¢; # ca. ¢1 and ¢ partition
the rest of the ciphertext space into two sets S and S”:

S:{c1+1,cl+2,...,02—1 c1 < co
ca+l,ec14+2,....,N,1,2,...;co—1 c1>c
S" = [M]\ (SU{er,ce2}) .
Let w =co — ¢y mod N. Then 1 <w < N — 1, and note that |S| =w —1and |S'|=N —w — 1.
The probability, over random f € OPFp ny*, that fYe2) — f~ Y1) mod M = d is equal

to the number of OPFs g on [M],[N] such that {c1,co € g([M]), |g([M])N S| = d— 1, and
lg([M]) N S’| = M — d — 1}, over the number of OPFs g such that ¢, o € g([M]), or

(=) G a)

oS PN —1,M —1,w,d).
M-2

In particular, for fixed c1, ca, d, letting w = co — ¢; mod N the lemma says that
Pr [Dec,(K,c2) — Decy(K,c1) mod M =d | c1,c9 € Enc, (K, [M]) ]
K&K,
=P(N—-1,M - 1,w,d).

Now, we can locate the most likely plaintext distance for ¢y, co.

Corollary J.2. Let ¢1,co € [N] with ¢ < co, and w = ¢3 —c¢; mod N. Then in ROPF a1, (V)5 dey e
18 a most likely plaintext distance from c1 to co if and only if
(M — 1w (M - 1w
N N
Proof. By Lemma [CT], for N, M, w fixed, Pyggp(N—1, M —1,w,-) has a maximum at dy € [M —1]
where

Sdeje, < + 1.

(M - 1w (M- 1w
N N
Therefore, P.(N—1, M—1,w,-) also has a maximum at dy, so the result follows from Lemma [Tl [

<dp < + 1.

Note in particular that d, ., depends only on the difference w = c¢2 — ¢; mod N. Thus, for
w € [N — 1], we define d,, to be the most likely plaintext distance for w and d,, = d., ¢, for all
c1,¢2 € [N] with w = ¢g — ¢; mod N.

THE PLAINTEXT DISTANCE IS UNIFORMLY RANDOM. Here we establish that no plaintext distance
(from 1 to M — 1) is more or less likely than any other, if the challenge plaintexts are uniformly
random and distinct.
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Lemma J.3. For any w € [N — 1], over K &K, and {m1,ma} & C’omb[QM],
1
P — = = —
K,mlr,mz [Eney (K, m2) — Ency (K, m1) mod N = w] N1

Proof. In the following, we consider addition and subtraction of ciphertexts to be taken mod NN.

Pr  [Enc(K,m2) —Enc(K,mp) = w]

K,m1,m2
= Z Pr [&Enc(K,m1) =c N Enc (K, ma) = c+ w]
c€[N] Komama
= %’{r[c,c%—wegncr(K, [M])]-
cE[N]
Pr [Enc(K,m1) =c N Enc(K,me) =c+w | e,c+w € Enc (K, [M]) ]
my,ms
S (2 1 1
= N —
ey () MM =1
1
N1 -

We are now ready to prove the lemma.

Proof of Lemma[G2. In the DOW experiment, since the adversary A is given only the challenge
ciphertexts c1, co, the adversary will have highest probability to win the game if it outputs the most
likely plaintext distance for ¢1,c2. By Lemmal[l3l w = ¢2 — ¢; mod N is uniform from [N — 1],
so the DOW advantage of A is bounded above by the average probability (over all w € [N — 1])
that dy, = Dec;(K,c3) — Decy(K, c2), where K is a random key output by K, such that ¢1,co €
Ency (K, [M]). Thus, the result follows from Lemma [T.1] O

K Proof of Proposition 4.5

Proof of Proposition[f.5 Let t = (N —1)/(M —1). Let b be a fixed value (less than v/M — 1) to

be determined later. Define 3 = thti V_J‘g_l
By Lemma [J.3] w is uniformly random in [N — 1], so

g+1
P < 1] < )
K,m1I:m2[w ﬂ+ ]_ N-—-1

(1)

Recall from Corollary [J.2] that d,, = {W—‘ is the most likely plaintext distance of w. Let

o= \/%, and define

dr = min{d,, + [6(M —1)],M — 1}.
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Then note that whenever w > 8+ 1,
dr < dy + L(S(M — I)J
<ZH148(M - 1)

:%+1+b\/M—1
2bv M — 1
§W+b\/M_1+1 (since w > )
bv/M —1(2+1t—2)
— +1
t—2
tbvM — 1
S |
t—2
=p5/2+1
<w/2 (since w > B+ 1.)
Hence,
Pr [2d>w|w>p+1]< Pr [d>dr|w>p[+1]
K,m1,m2 K,m1,m2
M—1
= > P(N-1,M-1uwd
d=dr+1
< e 2 (M-2) (by Lemma [F-T])
:e_QbQJ\N/fii
<e ¥ (2)

Now, putting equations and together,
Pr [2d>w]< Pr [2d>w|w>pF+1]+ Pr [w<p+1]

K,m1,ma K,m1,mz K,m1,mz
+1
<oty BAL
<e + N_1
,b2 th\/ M - 1 + ].
t—2)(N—-1) N-1
—b2 + 2b + 1
(t—2yM—-1 N-1
We may now select a value for b, say b = v/In M. Then this bound becomes

2+/log M

P 2d > <1/M + +1/(N -1
K,mlr,mz[ wl<1/ (t—2)vVM —1 /( )
1
< 2/M +
/ t—2 (M —1)/InM
3 1
< - )
t/(M—1)/InM
assuming t > 7. O
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