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Bit-Parallel GF (2n) Squarer Using Shifted
Polynomial Basis

Xi Xiong and Haining Fan

Abstract—We present explicit formulae and complexities of
bit-parallel shifted polynomial basis (SPB) squarers in finite field
GF (2n)s generated by general irreducible trinomials xn+xk+1
(0 < k < n) and type-II irreducible pentanomials xn + xk+1 +
xk + xk−1 + 1 (3 < k < (n − 3)/2). The complexities of the
proposed squarers match or slightly outperform the previous best
results. These formulae can also be used to design polynomial
basis Montgomery squarers without any change. Furthermore,
we show by examples that XOR gate numbers of SPB squarers
are different when different shift factors in the SPB definition,
i.e., parameter v in {xi−v|0 ≤ i ≤ n−1}, are used. This corrects
previous misinterpretation.

Index Terms—Finite field, squarer, polynomial basis, shifted
polynomial basis, irreducible polynomial.

I. INTRODUCTION

BSIDES multiplication, squaring is also an important
GF (2n) operation for cryptographic applications. For

example, it is crucial to square-and-multiply-based exponen-
tiation and inversion algorithms. When field elements are
represented in normal bases, squaring operations are trivial
in finite fields of characteristic 2. For this reason, most
previous works in this research field focused on polynomial
basis squarers. In [1], Piontas proposed the explicit squaring
formula for irreducible trinomials xn+x+1. For an arbitrary
irreducible trinomial, Paar et al. and Wu derived complexities
of bit-parallel polynomial basis squarers respectively [2], [3]
and [4]. In [5], Wu also presented an optimized squarer based
on Montgomery algorithm for general irreducible trinomials
xn + xk + 1, where the Montgomery factor xk are used. For
the special type of irreducible pentanomials xn+xk+1+xk+
xk−1+1 (3 < k < (n−3)/2), which is known as type-II irre-
ducible pentanomials, Hariri and Reyhani-Masoleh presented
a Montgomery squarer using Montgomery factor xk [6]. For
an arbitrary irreducible pentanomial, Park recently presented
explicit formulae and complexities of GF (2n) squarers based
on weakly dual basis (WDB) [7].

Besides the above works focusing mainly on bit-parallel
squarers, there are also some other related works. In reference
[8], Wu and Hasan extended the squaring structure to that
of the polynomial basis fourth power. Recently, Järvinen
discussed the problem of computing repeated squarings (ex-
ponentiations to a power of 2) in GF (2n) [9].

In this paper, we propose explicit formulae of some bit-
parallel squarers based on shifted polynomial basis (SPB).
We first consider GF (2n)s generated by general irreducible
trinomials xn + xk + 1 (0 < k < n). Unlike previous works
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on polynomial basis squarers, which presented only explicit
formulae for cases 1 < k ≤ n/2, we present explicit formulae
of SPB squarers for all values of k in the range [1, n − 1].
Then we consider GF (2n)s generated by type-II irreducible
pentanomials xn+xk+1+xk+xk−1+1 (3 < k < (n−3)/2).
The complexities of these two classes of squarers match or
slightly outperform the previous best results. Owing to the
equivalent relationship between GF (2n) Montgomery and
SPB multiplication algorithms [10], these formulae can also
be used to design Montgomery squarers without any change.

In addition to improvements on XOR gate numbers, another
contribution of this work is to show that XOR gate numbers
of SPB squarers are different when different shift factors in
the SPB definition, i.e., parameter v in {xi−v|0 ≤ i ≤ n−1},
are used. Taking GF (2n) generated by irreducible trinomial
xn+xk+1 as an example, it had been shown that the two SPB
bit-parallel Mastrovito multipliers using different shift factors
v = k and v = k − 1 have the same XOR gate numbers and
gate delays [11]. It is then natural to assume that both of these
two shift factors may lead to bit-parallel squarers of the same
complexities too [6, Section 7]. But this is not true: we will
show that XOR gate numbers of the two SPB squarers are
indeed different. Please refer to Table I and Table IV for more
details.

The remainder of this paper is organized as follows: In
Section II, we give a brief review on SPB multipliers. Ar-
chitectures of bit-parallel SPB squarers for general irreducible
trinomials and type-II irreducible pentanomials are presented
in Section III and IV, respectively. Finally, concluding remarks
are made in Section V.

II. SPB MULTIPLIERS

An SPB of GF (2n) over GF (2) is defined as follows [11]:
Definition 1: Let v be an integer and the ordered set M =

{xi|0 ≤ i ≤ n − 1} be a polynomial basis of GF (2n) over
GF (2). The ordered set x−vM := {xi−v|0 ≤ i ≤ n − 1} is
called a shifted polynomial basis with respect to M .

Let f(x) = xn + xk + 1 be an irreducible trinomial over
GF (2). All elements of GF (2n) = GF (2)[x]/(f(x)) can be
represented using an SPB {xi−v|0 ≤ i ≤ n − 1}. Given two
field elements A and B, let A = x−v

∑n−1
i=0 aix

i and B =

x−v
∑n−1

i=0 bix
i be their SPB representations. The SPB product

C = x−v
∑n−1

i=0 cix
i of A and B can be computed using the

following two steps [11].
(i) Perform the conventional polynomial multiplication:

S = AB = x−2v
2n−2∑
t=0

stx
t =

2n−2−2v∑
t=−2v

st+2vx
t = r−+r+r+,
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where r =
∑n−1−v

t=−v st+2vx
t, r− =

∑−1−v
t=−2v st+2vx

t,

r+ =
∑2(n−1−v)

t=n−v st+2vx
t and

st =
∑

i+j=t
0≤i,j<n

aibj =


t∑

i=0

aibt−i 0 ≤ t ≤ n− 1

n−1∑
i=t+1−n

aibt−i n ≤ t ≤ 2n− 2
.

(ii) Reduce r− and r+ using the following two reduction
equations, respectively:

xi = xi+k + xi+n, (1)

where −2v ≤ i ≤ −(v + 1) and

xi = xi−n + xi−n+k, (2)

where n− v ≤ i ≤ 2n− 2− 2v.
The reduced results r̃− and r̃+ are defined as

r̃− =

n−1−v∑
t=n−2v

st+2v−nx
t +

k−1−v∑
t=k−2v

st+2v−kx
t

and

r̃+ =

k+n−2−2v∑
t=k−v

st+2v+n−kx
t +

n−2−2v∑
t=−v

si+n+2vx
t.

Then the SPB product C of A and B is

C =

n−1∑
i=0

cix
i−v =

n−v−1∑
i=−v

ci+vx
i = r + r̃− + r̃+.

In order to reduce the total gate delays of bit-parallel SPB
quadratic multipliers, reference [11] proved that the best values
of shift factor v should be k or k − 1 for all irreducible
trinomials f(x) = xn + xk + 1. It is natural to assume that
these two shift factors are also the best choices for bit-parallel
squarers [6, Section 7]. However, our results will show that
this is not true. In the following, we will first derive explicit
formulae of SPB squarers for the case v = k, and then for
the case v = k − 1. Finally, XOR gate complexities of these
formulae are compared in Table I. Especially, explicit formulae
for the cases k > n

2 , which have not been published before,
will be presented in this section.

III. SPB SQUARERS FOR ALL IRREDUCIBLE TRINOMIALS

A. Explicit Squarer Formulae for the Case v = k

Let f(x) = xn + xk + 1 be an irreducible trinomial over
GF (2), where 0 < k < n. Let A = x−k

∑n−1
i=0 aix

i be the
SPB representation of an arbitrary element in GF (2n) and
define a′i as that in [4]:

a′i =

{
a i

2
if i is even,

0 otherwise.
(3)

The square of A is

C =

n−k−1∑
i=−k

ci+kx
i = A2 = x−2k

n−1∑
i=0

aix
2i

= x−2k
2n−2∑
i=0

a′ix
i =

2n−2k−2∑
i=−2k

a′i+2kx
i

= r− + r + r+, (4)

where

r =

n−k−1∑
i=−k

a′i+2kx
i, r− =

−k−1∑
i=−2k

a′i+2kx
i,

r+ =

2n−2k−2∑
i=n−k

a′i+2kx
i =

2n−2k−1∑
i=n−k

a′i+2kx
i.

Please note that a′2n−1 = 0 in the expression of r+ by (3).
Then we perform reduction operations using the two reduc-

tion equations (1) and (2) and obtain:

r̃− =

−k−1∑
i=−2k

a′i+2k(x
i+k + xi+n)

=

−1∑
i=−k

a′i+kx
i +

n−k−1∑
n−2k

a′i−n+2kx
i,

and

r̃+ =
2n−2k−1∑
i=n−k

a′i+2k(x
i−n + xi−n+k)

=

n−2k−1∑
i=−k

a′i+n+2kx
i +

n−k−1∑
i=0

a′i+n+kx
i.

Finally, we get the expression of C = A2:

C =

n−k−1∑
i=−k

ci+kx
i = r̃− + r + r̃+

=

( −1∑
i=−k

a′i+kx
i +

n−k−1∑
i=0

a′i+n+kx
i

)
+

n−k−1∑
i=−k

a′i+2kx
i

+

(
n−2k−1∑
i=−k

a′i+n+2kx
i +

n−k−1∑
n−2k

a′i−n+2kx
i

)
. (5)

Comparing the coefficients of xi in this formula, we may
obtain explicit formulae of coordinate cis for 0 ≤ i ≤ n− 1.
These formulae are different for there cases of k = n

2 , k < n
2

and k > n
2 . So we present them separately in the following.

Similar to [5], we define the notation “i .= s, . . . , t” as

i =

{
s, s+ 2, s+ 4, . . . , t if |s|+ |t| is even,
s, s+ 2, s+ 4, . . . , t− 1 otherwise.

i.e., i is from s to t or t− 1 and increases by 2.
Case 1: n = 2k
Close observation of (5) reveals that:

ci+k =

{
a′i+k + a′i+n+2k + a′i+2k, iε[−k,−1],
a′i+n+k + a′i−n+2k + a′i+2k, iε[0, n− k − 1].

We can simplify the above expressions by noting that values
of a′is with odd subscripts are zero. Since k is odd and n = 2k
is even, we obtain:

ci+k =


a′i+k, i

.
= −k, . . . ,−1,

a′i+n+2k + a′i+2k, i
.
= −k + 1, . . . ,−2,

a′i−n+2k + a′i+2k, i
.
= 0, . . . , n− k − 1,

a′i+n+k, i
.
= 1, . . . , n− k − 2.

The number of XOR gates required is (−2+k−1
2 + 1) +

(n−k−1−02 + 1) = n
2 and the gate delay is TX .
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Case 2: n < 2k

By comparing the coefficients of xi in (5), we can obtain
the explicit expressions of ci:

ci+k =


a′i+k + a′i+n+2k + a′i+2k, iε[−k, n− 2k − 1],
a′i+k + a′i−n+2k + a′i+2k, iε[n− 2k,−1],
a′i+n+k + a′i−n+2k + a′i+2k, iε[0, n− k − 1].

(6)
Since f(x) is irreducible, at least one of n and k should be

odd. We now simplify the above expressions in three subcases
according to the parities of n and k.

Subcase 2.1: n is even and k is odd.
Based on (3) and (6), we get:

ci+k =


a′i+n+2k + a′i+2k, i

.
= −k + 1, . . . , n− 2k − 2,

a′i+k, i
.
= −k, . . . ,−1,

a′i+n+k, i
.
= 1, . . . , n− k − 2,

a′i−n+2k + a′i+2k, i
.
= n− 2k, . . . , n− k − 1.

In this subcase, the SPB squarer requires n
2 two-input XOR

gates and the gate delay is TX .
Subcase 2.2: n is odd and k is even.

ci+k =


a′i+n+2k, i

.
= −k + 1, . . . , n− 2k − 2,

a′i−n+2k, i
.
= n− 2k, . . . ,−1,

a′i+k + a′i+2k, i
.
= −k, . . . ,−2,

a′i+2k, i
.
= 0, . . . , n− k − 1,

a′i+n+k + a′i−n+2k, i
.
= 1, . . . , n− k − 2.

In this subcase, the SPB squarer requires n−1
2 two-input

XOR gates and the gate delay is TX .
Subcase 2.3: both n and k are odd.

ci+k =


a′i+k + a′i+n+2k, i

.
= −k, . . . , n− 2k − 2,

a′i+2k, i
.
= −k + 1, . . . ,−2,

a′i+k + a′i−n+2k, i
.
= n− 2k, . . . ,−1,

a′i−n+2k, i
.
= 1, . . . , n− k − 1,

a′i+n+k + a′i+2k, i
.
= 0, . . . , n− k − 2.

In this subcase, the SPB squarer requires n+1
2 two-input

XOR gates and the gate delay is TX .
Case 3: n > 2k

Careful comparison in (5) shows that:

ci+k =


a′i+k + a′i+n+2k + a′i+2k, iε[−k,−1],
a′i+n+k + a′i+n+2k + a′i+2k, iε[0, n− 2k − 1],
a′i+n+k + a′i−n+2k + a′i+2k, iε[n− 2k, n− k − 1].

(7)
Similarly, we present three different explicit formulae of cis

according to the parities of n and k in the following.
Subcase 3.1: n is even and k is odd.
From (3) and (7), we can get:

ci+k =


a′i+k, i

.
= −k, . . . ,−1,

a′i+n+2k + a′i+2k, i
.
= −k + 1, . . . , n− 2k − 2,

a′i+n+k, i
.
= 1, . . . , n− k − 2,

a′i−n+2k + a′i+2k, i
.
= n− 2k, . . . , n− k − 1.

In this subcase, the SPB squarer requires n
2 two-input XOR

gates and the gate delay is TX .

Subcase 3.2: n is odd and k is even.

ci+k =


a′i+n+2k, i

.
= −k + 1, . . . ,−1,

a′i+k + a′i+2k, i
.
= −k, . . . ,−2,

a′i+n+k + a′i+n+2k, i
.
= 1, . . . , n− 2k − 2,

a′i+2k, i
.
= 0, . . . , n− k − 1,

a′i+n+k + a′i−n+2k, i
.
= n− 2k, . . . , n− k − 2.

In this subcase, the SPB squarer requires n−1
2 two-input

XOR gates and the gate delay is TX .
Subcase 3.3: both n and k are odd.

ci+k =


a′i+2k, i

.
= −k + 1, . . . ,−2,

a′i+k + a′i+n+2k, i
.
= −k, . . . ,−1,

a′i+n+2k, i
.
= 1, . . . , n− 2k − 2,

a′i−n+2k, i
.
= n− 2k, . . . , n− k − 1,

a′i+n+k + a′i+2k, i
.
= 0, . . . , n− k − 2.

In this subcase, the SPB squarer requires n+1
2 two-input

XOR gates and the gate delay is TX .
In summary, for any k ∈ [1, n−1], the gate delays of all SPB

squarers is TX when the shift factor is selected as v = k. But
the XOR gate numbers are different according to the parities
of n and k. We list them in the middle row of Table I.

TABLE I
XOR GATE NUMBERS OF SPB SQUARERS FOR IRREDUCIBLE xn + xk + 1

WHERE 2k 6= n

n even, k odd n odd, k odd n odd, k even
v = k n/2 (n+ 1)/2 (n− 1)/2
v = k − 1 n/2 (n− 1)/2 (n+ 1)/2

From Table I, it is clear that the case “n odd, k odd” requires
1 more XOR gate than the case “n odd, k even” when the
shift factor v is selected as v = k. Is it possible to reduce
this number? The answer is yes. If we define v as v = k− 1,
then we can obtain a squarer with only n−1

2 XOR gates for
the case “n odd, k odd”. In fact, for the purpose of obtaining
all complexity results, we have also derived explicit formulae
for all three cases using the shift factor v = k − 1. Their
complexities are listed in the last row of Table I. But for
simplicity, we omit the deriving procedure and present only the
explicit formulae for the case “n odd, k odd” in the following.

Case 1: n < 2k and v = k − 1

ci+k−1 =


a′i+k−2 + a′i+n+2k−2, i

.
= −k + 2, . . . , n− 2k,

a′i+2k−2, i
.
= −k + 1, . . . , 0,

a′i+k−2 + a′i−n+2k−2, i
.
= n− 2k + 2, . . . ,−1,

a′i−n+2k−2, i
.
= 1, . . . , n− k − 1,

a′i+n+k−2 + a′i+2k−2, i
.
= 2, . . . , n− k.

(8)
Case 2: n > 2k and v = k − 1

ci+k−1 =


a′i+2k−2, i

.
= −k + 1, . . . , 0,

a′i+k−2 + a′i+n+2k−2, i
.
= −k + 2, . . . ,−1,

a′i+n+2k−2, i
.
= 1, . . . , n− 2k,

a′i−n+2k−2, i
.
= n− 2k + 2, . . . , n− k − 1,

a′i+n+k−2 + a′i+2k−2, i
.
= 2 . . . , n− k.

(9)
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TABLE II
COMPARISON OF BIT-PARALLEL SQUARERS FOR IRREDUCIBLE xn + xk + 1

1 < k < n/2 n/2 < k < n
Proposals XOR gates Gate delays XOR gates Gate delays

n even, k odd
[4] PB (n+ k − 1)/2 2TX - -
[5] Montgomery d(n− 1)/2e TX - -
Proposed (v = k) d(n− 1)/2e TX d(n− 1)/2e TX

n odd, k even
[4] PB (n+ k − 1)/2 TX - -
[5] Montgomery d(n− 1)/2e TX - -
Proposed (v = k) d(n− 1)/2e TX d(n− 1)/2e TX

n odd, k odd
[4] PB (n− 1)/2 2TX - -
[5] Montgomery (n+ 1)/2 TX - -
Proposed (v = k − 1) (n− 1)/2 TX (n− 1)/2 TX

B. Comparison

Table II compares three different implementations of bit-
parallel squarers for irreducible trinomials. For the case “n
odd, k odd”, we note that the XOR gate complexity of Mont-
gomery squarers of [5, formulae (28) and (29)] is not correct,
and it should be k−1

2 + 1 + n−2−k
2 + 1 = n−3

2 + 2 = n+1
2 .

These Montgomery squarers use factor xk, and they are in
fact the same as the SPB squarers we derived using the shift
factor v = k because of the equivalent relationship between
GF (2n) Montgomery and SPB multiplication algorithms.

For odd values of n, it can be seen from Table I and Table
II that GF (2n) SPB squarers have the lowest time and space
complexities.

C. An Example

As an example, we list explicit formulae of two SPB
squarers in GF (27), which is generated by f(x) = x7+x3+1.
These two squarers use different shift factors. Clearly, the SPB
squarer using v = k − 1 = 2 requires 1 less XOR gate than
that using v = k = 3.

TABLE III
EXPLICIT FORMULAE OF TWO GF (27) SPB SQUARERS

v = 2 v = 3
c0 = a1 c0 = a0 + a5
c1 = a0 + a5 c1 = a2
c2 = a2 c2 = a1 + a6
c3 = a6 c3 = a3 + a5
c4 = a3 + a5 c4 = a0
c5 = a0 c5 = a4 + a6
c6 = a4 + a6 c6 = a1

An interesting property of this example is that c2 = a2 when
the shift factor v is v = k−1 = 2. This means that coefficient
c2 is always unchanged in each exponentiation operation C =
A2i , where i > 0. In fact, careful observation of (8) and (9)
reveals that this property always exists for the case “n odd,
k odd” when the shift factor v is k − 1, i.e., ck−1 = ak−1 is
always true. Similarly, when the shift factor v is defined as v =
k, we have ck = ak for the case “n odd, k even”. Furthermore,
this property also exists in some polynomial basis squarers [4].

IV. SPB SQUARERS FOR TYPE II IRREDUCIBLE
PENTANOMIALS

A. Architectures

In this section, we present explicit formulae of SPB squarers
for type-II irreducible pentanomials f(x) = xn+xk+1+xk+
xk−1 + 1. Intuitively, we first consider the shift factor v = k.
Similar to the trinomial case, the two terms r− and r+ in (4)
are reduced respectively by the following reduction equations:

xi = xi+k−1 + xi+k + xi+k+1 + xi+n,

where −2k ≤ i ≤ −(k + 1) and

xi = xi−n + xi−n+k+1 + xi−n+k + xi−n+k−1,

where n− k ≤ i ≤ 2n− 2− 2k. And the reduced results are:

r̃− =

−2∑
i=−k−1

a′i+k+1x
i +

−1∑
i=−k

a′i+kx
i

+

0∑
i=−k+1

a′i+k−1x
i +

−k−1+n∑
i=−2k+n

a′i+2k−nx
i

and

r̃+ =

n−2k−1∑
i=−k

a′i+n+2kx
i +

n−k∑
i=1

a′i+n+k−1x
i

+

n−k−1∑
i=0

a′i+n+kx
i +

n−k−2∑
i=−1

a′i+n+k+1x
i.

Moreover, a′0x
−k−1 in the first term of r̃− should be

reduced again, i.e.,

−2∑
i=−k−1

a′i+k+1x
i = a′0(x

−2 + x−1 + x0 + xn−k−1)

+

−2∑
i=−k

a′i+k+1x
i.

And the second term
∑n−k

i=1 a
′
i+n+k−1x

i in r̃+ equals to∑n−k−1
i=1 a′i+n+k−1x

i since a′2n−1 = 0 by the definition of
a′i in (3).
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Therefore, we obtain the following expression of C = A2:

C =

n−k−1∑
i=−k

ci+kx
i = r̃− + r + r̃+

=

−2∑
i=−k

a′i+k+1x
i +

−1∑
i=−k

a′i+kx
i

+

0∑
i=−k+1

a′i+k−1x
i +

−k−1+n∑
i=−2k+n

a′i+2k−nx
i

+ a′0(x
−2 + x−1 + x0 + xn−k−1)

+

n−k−1∑
i=−k

a′i+2kx
i

+

(
n−2k−1∑
i=−k

a′i+n+2kx
i +

n−k−1∑
i=1

a′i+n+k−1x
i

+
n−k−1∑
i=0

a′i+n+kx
i +

n−k−2∑
i=−1

a′i+n+k+1x
i

)
.

Comparing the coefficients of xi in this formula, we can
obtain explicit expressions of coordinates cis for 0 ≤ i ≤ n−1.
These expressions are different according to the value of i. For
the case 3 < k < (n− 1)/2, these n coordinate formulae can
be grouped into ten cases depending on the values of i. We
note that the number of cases depends on both k and the field
generating irreducible polynomial. Similar to [6] and [7], we
consider only the case “n odd” in this work.

Case 1: i = −k

c0 = a′0 + a′k + a′n+k;

Case 2: −k + 1 ≤ i ≤ −3

ci+k = a′i+k+1 + a′i+k + a′i+k−1 + a′i+2k + a′i+n+2k;

Case 3: i = −2

ck−2 = a′k−1 + a′k−2 + a′k−3 + a′2k−2 + a′n+2k−2 + a′0;

Case 4: i = −1

ck−1 = a′k−1 + a′k−2 + a′2k−1 + a′n+2k−1 + a′n+k + a′0;

Case 5: i = 0

ck = a′k−1 + a′2k + a′n+2k + a′n+k + a′n+k+1 + a′0;

Case 6: 1 ≤ i ≤ n− 2k − 2

ci+k = a′i+2k + a′i+n+2k + a′i+n+k−1 + a′i+n+k + a′i+n+k+1;

Case 7: i = n− 2k − 1

cn−k−1 = a′n−1 + a′2n−k−2 + a′2n−k−1 + a′2n−k;

Case 8: n− 2k ≤ i ≤ n− k − 3

ci+k = a′i+2k−n + a′i+2k + a′i+n+k−1 + a′i+n+k + a′i+n+k+1;

Case 9: i = n− k − 2

cn−2 = a′k−2 + a′n+k−2 + a′2n−2;

Case 10: i = n− k − 1

cn−1 = a′k−1 + a′n+k−1 + a′2n−2 + a′0.

These expressions can be further simplified since a′i = 0
when i is odd. Therefore, we have the following explicit
formulae of ci+k for the case “n odd, k even”:
ci+k =

a′0 + a′k, i = −k,
a′i+k+1 + a′i+k−1 + a′i+n+2k, i

.
= −k + 1, . . . ,−3,

a′i+k + a′i+2k, i
.
= −k + 2, . . . ,−4,

(a′k−2 + a′0) + a′2k−2, i = −2,
(a′k−2 + a′0) + a′n+2k−1, i = −1,
a′2k + a′n+k+1 + a′0, i = 0,
a′i+n+2k + a′i+n+k, i

.
= 1, . . . , n− 2k − 2,

a′i+2k + a′i+n+k−1
+a′i+n+k+1, i

.
= 2, . . . , n− 2k − 3,

a′n−1 + a′2n−k−2 + a′2n−k, i = n− 2k − 1,
a′i+2k−n + a′i+n+k, i

.
= n− 2k, . . . , n− k − 4,

a′i+2k + a′i+n+k−1
+a′i+n+k+1, i

.
= n− 2k + 1, . . . , n− k − 3,

a′k−2 + a′2n−2, i = n− k − 2,
a′n+k−1 + a′2n−2 + a′0 i = n− k − 1.

Since term “(a′k−2+a
′
0)” appears in both cases i = −1 and

i = −2, they can be reused once. Therefore, the SPB squarer
requires 3n+1

2 XOR gates and its gate delay is 2TX .
Similarly, for the case “n odd, k odd”, we have
ci+k =

a′0 + a′n+k, i = −k,
a′i+k+1 + a′i+k−1 + a′i+2k, i

.
= −k + 1, . . . ,−4,

a′i+k + a′i+n+2k, i
.
= −k + 2, . . . ,−3,

(a′k−1 + a′0) + a′k−3 + a′2k−2, i = −2,
(a′k−1 + a′0) + a′n+2k−1
+a′n+k, i = −1,

(a′k−1 + a′0) + a′2k + a′n+k, i = 0,
a′i+n+2k + a′i+n+k−1
+a′i+n+k+1, i

.
= 1, . . . , n− 2k − 2,

a′i+2k + a′i+n+k, i
.
= 2, . . . , n− 2k − 3,

a′n−1 + a′2n−k−1, i = n− 2k − 1,
a′i+2k−n + a′i+n+k−1
+a′i+n+k+1, i

.
= n− 2k, . . . , n− k − 3,

a′i+2k + a′i+n+k, i
.
= n− 2k + 1, . . . , n− k − 4,

a′n+k−2 + a′2n−2, i = n− k − 2,
(a′k−1 + a′0) + a′2n−2 i = n− k − 1.

Term “(a′k−1 + a′0)” appears in cases i = −2,−1, 0 and
n−k− 1, so it can be reused three times. Therefore, the SPB
squarer requires 3n+3

2 XOR gates and its gate delay is 2TX .
The above two explicit formulae are derived using the shift

factor v = k. In fact, we have also obtained explicit formulae
using shift factors k − 1 and k + 1. The formulae using shift
factor k − 1 are the same as those of Montgomery squarers
proposed in [6]. As for the complexities, the gate delays of
these three cases are the same, i.e., 2TX , but their XOR gate
numbers, which are listed in Table IV, are different.

For the case “n odd, k odd”, Table IV shows that the shift
factor v = k + 1 leads to an SPB squarer of the minimal
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TABLE IV
XOR GATE NUMBERS OF SPB SQUARERS FOR TYPE II IRREDUCIBLE

PENTANOMIALS

n odd, k odd n odd, k even
v = k (3n+ 3)/2 (3n+ 1)/2
v = k − 1 (3n+ 1)/2 (3n+ 3)/2
v = k + 1 (3n− 1)/2 (3n+ 5)/2

XOR gate number. So we present this explicit formula in the
following:
ci+k+1 =

a′i+k+1 + a′i+2k+2 + a′i+k+3, i
.
= −k − 1, . . . ,−6

a′i+n+2k+2 + a′i+k+2, i
.
= −k, . . . ,−5,

(a′k−1 + a′0) + a′k−3 + a′2k−2, i = −4,
a′n+2k−1 + a′k−1, i = −3,
a′k−1 + a′2k, i = −2,
a′n+2k+1 + a′n+k+2 + a′0, i = −1,
a′i+n+k+2 + a′i+2k+2, i

.
= 0, . . . , n− 2k − 3,

a′i+n+2k+2 + a′i+n+k+1

+a′i+n+k+3, i
.
= 1, . . . , n− 2k − 4,

a′i−n+2k+2 + a′i+n+k+1

+a′i+n+k+3, i
.
= n− 2k − 2, . . . , n− k − 5,

a′i+n+k+2 + a′i+2k+2, i
.
= n− 2k − 1, . . . , n− k − 4,

(a′k−1 + a′0) + a′2n−2, i = n− k − 3,
a′0 + a′n+k i = n− k − 2.

B. Comparison

Table V compares XOR gate numbers of the proposed SPB
squarers to those of [6] and [7]. The Montgomery squarer of
[6] uses the Montgomery factor xk−1. These squarers have
the same gate delays: 2TX . But their XOR gate numbers vary
slightly.

TABLE V
COMPARISON OF BIT-PARALLEL SQUARERS FOR TYPE II IRREDUCIBLE

PENTANOMIALS

n odd, k odd n odd, k even
Proposals XOR gates XOR gates

[6] Montgomery ≤ (3n+ 1)/2 ≤ (3n+ 5)/2
[7] WDB − ≤ (3n+ 3)/2
Proposed (3n− 1)/2 (3n+ 1)/2

V. CONCLUSIONS

We have presented explicit formulae and complexities of bit-
parallel SPB squarers in GF (2n)s generated by general irre-
ducible trinomials and type-II irreducible pentanomials. Their
complexities match or slightly outperform the previous best
results. Owing to the equivalent relationship between GF (2n)
Montgomery and SPB multiplication algorithms, these formu-
lae can also be used to design Montgomery squarers without
any change. Contrary to previous speculation, we also show
that XOR gate numbers of SPB squarers are different when
different SPB shift factors are used.
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