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Abstract. SM3 [11] is the Chinese cryptographic hash standard which was an-
nounced in 2010 and designed by Wang et al.. It is based on the Merkle-Damgård
design and its compression function can be seen as a block cipher used in Davies-
Meyer mode. It uses message block of length 512 bits and outputs hash value of
length 256 bits.
This paper studies the security of SM3 hash function against preimage attack and
pseudo-collision attack. We propose preimage attacks on 29-step and 30-step S-
M3, and pseudo-preimage attacks on 31-step and 32-step SM3 out of 64 steps.
The complexities of these attacks are 2245 29-step operations, 2251.1 30-step oper-
ations, 2245 31-step operations and 2251.1 32-step operations, respectively. These
(pseudo) preimage attacks are all from the first step of the reduced SM3. Mean-
while, these (pseudo) preimage attacks can be converted into pseudo-collision
attacks on SM3 reduced to 29 steps, 30 steps, 31 steps and 32 steps with complex-
ities of 2122, 2125.1, 2122 and 2125.1 respectively. As far as we know, the previously
best known preimage attacks on SM3 cover 28 steps (from the first step) and 30
steps (from the 7-th step), and there is no publicly published result on (pseudo)
collision attack on SM3.

Keywords: Preimage Attack, Collision attack, Differential meet-in-the-middle,
SM3, Hash function.

1 Introduction

Hash functions are an important cryptographic primitive and play a very important role
in modern cryptology. They are supposed to satisfy collision resistance, preimage re-
sistance and second preimage resistance. There is a breakthrough in the collision attack
on hash functions in 2005 [12, 13, 2]. With the collision attacks on a series of standard
hash functions, preimage attack has drawn a great amount of attention from many re-
searchers (see [1, 3, 5, 8, 14] for example). Up to now, the meet-in-the-middle technique
and many improved techniques such as initial structure, splice-and-cut, biclique and so
on have been widely used in the preimage attack. Recently, a differential view on the
meet-in-the-middle technique [5] was proved very useful for the preimage attack on
hash functions with linear message expansion and weak diffusion properties.

SM3 [11] hash function is the Chinese cryptographic hash standard which was de-
signed by Wang et al. and announced in 2010. It has the similar structure as SHA-256.



However, it has a more complex step function and stronger message dependency than
SHA-256. Few attacks were published on SM3 hash function. The work in [15] pre-
sented preimage attacks on 28-step (from the 1-st step) and 30-step (from the 7-th step)
SM3 with complexities of 2249 and 2241.5 respectively. Recently, a boomerang attack on
SM3 reduced to 35 steps [4] was proposed with a complexity of 2117.1.

In this paper, we focus on the security evaluation of the preimage resistance and
collision resistance of SM3 hash function. Based on the differential meet-in-the-middle
technique etc., we successfully present (pseudo) preimage attacks and pseudo-collision
attacks on 29-step, 30-step, 31-step and 32-step reduced SM3 hash function. All of
these attacks start from the first step of SM3. This result provides a better understanding
concerning the message expansion and diffusion properties of SM3 hash function. The
previous results and the summary of our results are given in Table 1.

The rest of this paper is organized as follows. Section 2 introduces the techniques
used throughout the paper. Section 3 gives a brief description of SM3, some notations
used in this paper. Section 4 presents preimage and pseudo-collision attacks on step-
reduced SM3. Section 5 concludes this paper.

Table 1. Summary of the attacks on SM3 compression function (CF) and hash function
(HF)

Attack CF/HF Steps Time Source
Preimage attack HF 28 2241.5 [15]
Preimage attack HF 30∗ 2249 [15]
Boomerang attack CF 32 214.4 [4]
Boomerang attack CF 33 232.4 [4]
Boomerang attack CF 34 253.1 [4]
Boomerang attack CF 35 2117.1 [4]
Preimage attack HF 29 2245 Sect. 4
Preimage attack HF 30 2251.1 Sect. 4
Pseudo-preimage attack HF 31 2245 Sect. 4
Pseudo-preimage attack HF 32 2251.1 Sect. 4
Pseudo-collision attack HF 29 2122 Sect. 4
Pseudo-collision attack HF 30 2125.1 Sect. 4
Pseudo-collision attack HF 31 2122 Sect. 4
Pseudo-collision attack HF 32 2125.1 Sect. 4
∗ The attack starts from the 7-th step.

2 Techniques for Preimage Attack and Pseudo-Collision Attack

In this section, we will introduce the related techniques used throughout the paper.
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2.1 The Meet-in-the-Middle Preimage Attack

The general idea of the meet-in-the-middle preimage attack can be described as fol-
lows(See Fig. 1). It is a type of birthday attack and makes use of a space-time tradeoff.
Split the compression function into two subparts (E f and Eb). E f computes forward
from the splitting point and obtain a set of values at the matching point. Then Eb com-
putes backward and gets another set of results. The two sets of results are compared to
search an intersection. The two computation procedures must be independent on each
other so that the birthday attack rule can be applied.

The meet-in-the-middle technique can be combined with many techniques such as
initial structure technique, splice-and-cut technique, biclique technique, etc. to improve
the preimage attack.

Fig. 1. Schematic view of the meet-in-the-middle attack

2.2 The Differential Meet-in-the-Middle Technique

We review the differential meet-in-the-middle preimage attack [5] which uses the trun-
cated differential [7] in the following.

For a truncation mask vector T ∈ {0, 1}n, the equation A =T B denotes T ∧ (A ⊕
B) = 0, where ∧ is bitwise AND. The compression functions of SM3 can be seen as
CF = E(M, IV) ⊕ IV , where E : {0, 1}k × {0, 1}n → {0, 1}n is a block cipher with
block length n and key length k (k > n). Divide E into two parts, E = E2 · E1, and
find two linear spaces D1,D2 ⊂ {0, 1}k which satisfy the following three conditions.
Firstly, D1∩D2 = {0}. Secondly, for an uniformly chosen message M, for each δ1 ∈ D1,
there is a ∆1 ∈ {0, 1}n such that p1 = Pr[∆1 =T E1(M, IV) ⊕ E1(M ⊕ δ1, IV)], that
is, (δ1, 0) → ∆1 is a related-key differential for E1 with probability p1. Thirdly, for
an uniformly chosen message M, for each δ2 ∈ D2, there is a ∆2 ∈ {0, 1}n such that
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p2 = Pr[∆2 =T E−1
2 (M,H ⊕ IV) ⊕ E−1

2 (M ⊕ δ2,H ⊕ IV)], that is, (δ2, 0) → ∆2 is a
related-key differential for E−1

2 with probability p2.
A candidate preimage can be searched using Algorithm 1. The above second and

third conditions make sure that Algorithm 1 answers correctly with probability p1 · p2.
The error of Algorithm 1 is defined as follows: M⊕δ1⊕δ2 is a preimage, but Algorithm 1
rejects it. The error probability is about 1− p1 p2, which can be obtained by experiment.
For the detailed description, we refer to [5]. We can also know that L1[δ2] =T L2[δ1]
(in the last loop of Algorithm 1) is equivalent to E1(M ⊕ δ1 ⊕ δ2, IV) =T E−1

2 (M ⊕ δ1 ⊕

δ2,H ⊕ IV) which is true if M ⊕ δ1 ⊕ δ2 is a candidate preimage.

Algorithm 1
Testing M⊕δ1⊕δ2 for a candidate preimage

Input: D1,D2 ⊂ {0, 1}k, T ∈ {0, 1}n, M ⊂ {0, 1}k

Output: A candidate preimage of the hash value
H if one is contained in M ⊕ δ1 ⊕ δ2

Algorithm:
1: for all δ2 ∈ D2, do
2: L1[δ2] = E1(M ⊕ δ2, IV)⊕∆2
3: end for
4: for all δ1 ∈ D1, do
5: L2[δ1] = E−1

2 (M ⊕ δ1,H ⊕ IV)⊕∆1
6: end for
7: for all (δ1 × δ2) ∈ D1 × D2, do
8: if L1[δ2] =T L2[δ1], then
8: return M⊕δ1⊕δ2
9: end if
10: end for
11: return No candidate preimage in M⊕δ1⊕δ2

If D1 and D2 both have dimension d, for a random M, the set M ⊕D1 ⊕D2 contains
22d = 2d × 2d different messages. Using Algorithm 1, we can observe that a preimage
can be obtained with a complexity of (2n−dΓ+2n−tΓre)/(p1·p2), where Γ is the cost of
one compression function operation, Γre is the cost of retesting a candidate preimage
and t is the hamming weight of T .

2.3 Converting Pseudo-Preimage Attack into Pseudo-Collision Attack

[10] proposed a technique to convert pseudo-preimage attack into pseudo-collision
attack. Assume we can get a t-bit partial target preimage M with matching point in the
last step with complexity 2k, then by finding 2(n−t)/2 different t-bit partial target preimage
Ms, we can get a pseudo-collision with high probability. The total complexity to get a
pseudo-collision is 2(n−t)/2 × 2k.

If the t-bit partial target preimages are constructed by the meet-in-the-middle tech-
nique, then we can evaluate the complexity as follows. For example, in the case of t = 6
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and d = 5(> t/2), we can find 24(= 25+5/26) 6-bit partial target preimage with complex-
ity 25, which means that a 6-bit partial target preimage is found with the complexity of
2(= 25/24). Then a pseudo-collision can be found with the complexity of 2(n−6)/2 × 2.

3 Description of SM3 and Notations

In this section, we will give a brief description of SM3 and some notations used through-
out the paper.

3.1 Description of SM3

The SM3 hash function compresses any message no more than 264−1 bits into a 256-bit
hash value. The algorithm first pads any given message into n 512-bit message blocks.
The hash function consists of the following two parts: the message expansion and the
state update transformation. For the detailed description of SM3, we refer to [11].
Message Expansion. The message expansion of SM3 splits the 512-bit message block
M into 16 words wi (0 ≤ i ≤ 15), and expands them into 68 expanded message words
wi (0 ≤ i ≤ 67) and 64 expanded message words wi

′ (0 ≤ i ≤ 63) as follows:

wi = P1(wi−16 ⊕ wi−9 ⊕ (wi−3 ≪ 15)) ⊕ (wi−13 ≪ 7) ⊕ wi−6, 16 ≤ i ≤ 67,

wi
′ = wi ⊕ wi+4, 0 ≤ i ≤ 63, where P1(X) = X ⊕ (X ≪ 15) ⊕ (X ≪ 23).

State Update Transformation. The state update transformation starts from an initial
value (A0, B0, C0, D0, E0, F0, G0, H0) = IV of eight 32-bit words and updates them in
64 steps. In step i + 1(0 ≤ i ≤ 63) the 32-bit words wi and wi

′ are used to update the
state variables Ai, Bi,Ci,Di, Ei, Fi,Gi,Hi as follows:

S S 1i = ((Ai ≪ 12) + Ei + (Ti ≪ i))≪ 7,
S S 2i = S S 1i ⊕ (Ai ≪ 12),
TT1i = FFi(Ai, Bi,Ci) + Di + S S 2i + wi

′,

TT2i = GGi(Ei, Fi,Gi) + Hi + S S 1i + wi,

Ai+1 = TT1i, Bi+1 = Ai,Ci+1 = (Bi ≪ 9),Di+1 = Ci,

Ei+1 = P0(TT2i), Fi+1 = Ei,Gi+1 = (Fi ≪ 19),Hi+1 = Gi.

where P0(X) = X ⊕ (X ≪ 9) ⊕ (X ≪ 17).
The bitwise boolean functions FFi(Xi,Yi,Zi) and GGi(Xi,Yi,Zi) are defined as fol-

lows.

FFi(Xi,Yi,Zi) =

{
Xi ⊕ Yi ⊕ Zi, 0 ≤ i ≤ 15,
(Xi ∧ Yi) ∨ (Xi ∧ Zi) ∨ (Yi ∧ Zi), 16 ≤ i ≤ 63,

GGi(Xi,Yi,Zi) =

{
Xi ⊕ Yi ⊕ Zi, 0 ≤ i ≤ 15,
(Xi ∧ Yi) ∨ (¬Xi ∧ Zi), 16 ≤ i ≤ 63.

If M is the last block, then (A64 ⊕ A0, B64 ⊕ B0,C64 ⊕C0,D64 ⊕ D0, E64 ⊕ E0, F64 ⊕

F0,G64 ⊕ G0,H64 ⊕ H0) is the hash value. Otherwise it is part of the input of the next
message block.
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3.2 Notations

– ∆v: the difference corresponding to the variable v.
– ∆x = [α ∼ β]: the bits from the α-th bit to the β-th bit of ∆x (x = wi,w′i) take all

possible values, and the other bits of ∆x are zero.
– ∆y = 〈α ∼ β〉: the bits from the α-th bit to the β-th bit of ∆y (y = Ai, Bi, . . . ,Hi) are

known, and the other bits of ∆y are unknown.
– ∆y = 〈α ∼ β, γ ∼ δ〉: the bits from the α-th bit to the β-th bit and from the γ-th bit

to the δ-th bit of ∆y are known, and the other bits of ∆y are unknown.
– ∆y = 〈α〉: the α-th bit of ∆y is known, and the other bits of ∆y are unknown.
– ∆z =?: ∆z is unknown.

4 Preimage and Pseudo-Collision Attacks on Step-Reduced SM3
Hash Function

In this section, we present the attacks on 29-step and 30-step SM3 hash function and
expand the 30-step attacks to 32-step attacks using the biclique technique. Before de-
scribing the attacks, we give a property of the integer modular addition.
Property 1. Let x, y be two n-bit words and z = x + y. Denote x = xn−1xn−2...x1x0,
y = yn−1yn−2...y1y0 and z = zn−1zn−2...z1z0. x and yi(i = s, ..., n − 1) are known, and
yi(i = 0, ..., s−1) are unknown. Let p represent the probability that zi(i = n− t, ..., n−1)
are known, then p ≥ 2t+s−n, where n − t ≥ s.

Proof. Denote x̄ = xn−1...xs0...0, ȳ = yn−1...ys0...0 and z̄ = x̄ + ȳ. If there is no carry
from the (s − 1)-th bit to the s-th bit, then zi = z̄i(i = n − t, ..., n − 1) are always known.
Assume there is a bit carry from the (s− 1)-th bit to the s-th bit, then there is a bit carry
from the (n − t − 1)-th bit to the (n − t)-th bit if and only if z̄i = 1(i = s, ..., n − t − 1),
which holds with a probability of 2−(n−t−1−s+1) = 2t+s−n.

4.1 Preimage and Pseudo-Collision Attacks on 29-Step SM3

The forward subpart is from the 1-st step to the 15-th step and the backward sub-
part is from the 29-th step to the 16-th step. The linear spaces D1,D2 and the trun-
cation mask vector T29 f ,T29b are chosen as follows: D1 = {x0‖ . . . ‖x15

∣∣∣∣xi = 0, x15 ∈

[0 ∼ 5], 0 ≤ i ≤ 14}, D2 = {x17‖ . . . ‖x32

∣∣∣∣x17 ∈ [26 ∼ 31], xi = 0, 18 ≤ i ≤ 32},
T29 f = {0, 0, 0, 0, 0, 0, 0, f f f f f f f f }, and T29b = {0, 0, 0, 0, 0, 0, 0, 7 f }. The differential
characteristics for steps 1-15 and 29-16 are presented in Table 2 and Table 3 respective-
ly.

In the forward subpart, for all δ1 ∈ D1 and uniformly chosen message M, the equa-
tion Pr[0 =T29 f E1(M, IV)⊕E1(M⊕δ1, IV)] = 1 always holds, which means ∆H15 = 0 al-
ways holds. In the backward subpart, the equation Pr[0 =T29b E−1

2 (M,H⊕IV)⊕E−1
2 (M⊕

δ2,H ⊕ IV)] = 1 always holds, which means ∆H15 = 〈0 ∼ 6〉 always holds. Therefore,
we can choose {0, 0, 0, 0, 0, 0, 0, 7 f } as the truncation mask vector. In this case, the com-
plexity of the preimage attack on 29-step SM3 is 2256−6 + 2256−7 ≈ 2250.58.
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Table 2. Differential characteristic for steps 1-15(29 steps, 6 bits)

Differences Step
1 · · · 11 12 13 14 15

∆w 0 · · · 0 0 0 0 0
∆w′ 0 · · · 0 [0 ∼ 5] 0 0 ?
∆A 0 · · · 0 ? ? ? ?
∆B 0 · · · 0 0 ? ? ?
∆C 0 · · · 0 0 0 ? ?
∆D 0 · · · 0 0 0 0 ?
∆E 0 · · · 0 0 ? ? ?
∆F 0 · · · 0 0 0 ? ?
∆G 0 · · · 0 0 0 0 ?
∆H 0 · · · 0 0 0 0 0

Probability 1 · · · 1 1 1 1 1

The preimage attack on 29-step SM3 can also be carried out in the following im-
plementations. We choose D1 = {x0‖ . . . ‖x15

∣∣∣∣xi = 0, x15 = [3 ∼ 14], 0 ≤ i ≤ 14} and

D2 = {x17‖ . . . ‖x32

∣∣∣∣x17 = [20 ∼ 31], xi = 0, 18 ≤ i ≤ 32}. The differential characteristics
for each subpart are presented in Table 5 and Table 6.

For the forward subpart, according to the algorithm of SM3 and Property 1, we can
get ∆A12 = 〈0 ∼ 2, 23 ∼ 31〉 holds with probability 1 − 2−8. Thus ∆D15 = ∆C14 =

∆B13 ≪ 9 = ∆A12 ≪ 9 = (〈0 ∼ 2, 23 ∼ 31〉) ≪ 9 = 〈0, 11〉 holds with probability
1 − 2−8. We can easily get ∆H15 = 0 always holds. We can get ∆D15 = 〈0, 10〉 and
∆H15 = 〈0〉 in the backward subpart. Therefore, we choose {0, 0, 0, 7 f f , 0, 0, 0, 1} as the
truncation mask vector. Hence, we can obtain a one-block preimage attack on 29-step
SM3 with no padding. The complexity of the attack is (2244 + 2244)/(1 − 2−8) ≈ 2245.

We can use the splice-and-cut technique to move the matching point to the end of
the compression function, combined with the technique described in Section 2.3, a one-
block pseudo-collision attack on 29-step SM3 can be obtained with the complexity of
2(256−12)/2/(1 − 2−8) ≈ 2122.

4.2 Preimage and Pseudo-Collision Attacks on 30-Step SM3

The forward subpart is from the 1-st step to the 16-th step and the backward subpart is
from the 30-th step to the 17-th step. We choose the linear spaces D1 = {x0‖ . . . ‖x15

∣∣∣∣xi =

0, x15 = [0 ∼ 5], 0 ≤ i ≤ 14} and D2 = {x18‖ . . . ‖x33

∣∣∣∣x18 = [26 ∼ 31], xi = 0, 19 ≤ i ≤
33}.

For the forward subpart, Pr[0 ={0,0,0,0,0,0,0,3 f } E1 (M, IV) ⊕ E1(M ⊕ δ1, IV)] holds
with the probability of 0.932(= 1 − 0.035 − 0.017 − 0.009 − 0.004 − 0.002 − 0.001) on
average by experiment (See Table 4). In the backward subpart, ∆H16 = 〈0 ∼ 5〉 holds
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Table 3. Differential characteristic for steps 29-16(29 steps, 6 bits)

Differences Step
29 · · · 19 18 17 16

∆w 0 · · · 0 [26 ∼ 31] 0 0
∆w′ 0 · · · 0 [26 ∼ 31] 0 0
∆A 0 · · · 0 0 0 0
∆B 0 · · · 0 0 0 ?
∆C 0 · · · 0 0 ? ?
∆D 0 · · · 0 ? ? ?
∆E 0 · · · 0 0 0 0
∆F 0 · · · 0 0 0 〈0 ∼ 6〉
∆G 0 · · · 0 0 〈0 ∼ 25〉 〈0 ∼ 25〉
∆H 0 · · · 0 〈0 ∼ 25〉 〈0 ∼ 25〉 〈0 ∼ 6〉

Probability 1 · · · 1 1 1 1

with probability 1. We choose the truncation mask vector as {0, 0, 0, 0, 0, 0, 0, 3 f }, then
the probability of ∆H16 = 〈0 ∼ 5〉 holds with the probability of 0.932. So we can get a
preimage with no padding of 30-step SM3 with a complexity of (2250 + 2250)/0.932 ≈
2251.1.

Table 4. Test the probability for the forward subpart (30-step with dimension 6)∗

Test Number Error Number
H0 H1 H2 H3 H4 H5

220 43367 21711 10820 5558 2622 1371
224 350340 175413 87739 44166 21672 10889
226 2804897 1402582 700876 352625 174518 87331

∗ H16,i denotes the i-th bit of H16 used in the forward subpart.

By moving the matching point to the end of the compression function using the
splice-and-cut technique, combined with the algorithm described in section 2.3, we can
get a pseudo-collision attack on 30-step SM3 with the complexity of 2((256−6))/2/0.932 ≈
2125.1.

4.3 Pseudo-Preimage and Pseudo-Collision Attacks on 32-Step SM3 using
bicliques

Based on the preimage attack on 30-step SM3, we present a preimage attack on 32-step
SM3 by adding 2-step biclique. The forward subpart is from the 17-th step to the 32-nd
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step, and the corresponding compression function is denoted as F1. The backward sub-
part is from the 14-th step to the 1-st step, and the corresponding compression function
is denoted as F−1

2 . The biclique covers the steps 15 and 16, and the corresponding com-

pression function is denoted as Fbic. We choose the linear spaces D1 = {x16‖ . . . ‖x31

∣∣∣∣xi =

0, x31 = [0 ∼ 5], 16 ≤ i ≤ 30} and D2 = {x2‖ . . . ‖x17

∣∣∣∣xi = 0, x2 = [26 ∼ 31], 3 ≤ i ≤ 17}.
From the preimage attack on 30-step SM3, we know that ∆H32 = 〈0 ∼ 5〉 holds with
with probability 0.932 in the forward subpart and ∆H0 = 〈0 ∼ 5〉 holds with with
probability 1 in the backward subpart.

So we focus on how to construct the bicliques. The biclique technique [6] is formal-
ized from the initial structure technique [9]. A biclique for Fbic is a tuple {M,D1,D2, P,Q}
where M is a message, D1 and D2 are linear difference spaces of dimension d, and P is
a list of 2d states P[δ1i] for δ1i ∈ D1, Q is a list of 2d states Q[δ2 j] for δ2 j ∈ D2, such
that for all (δ1i, δ2 j) ∈ D1 × D2, Q[δ2 j] = Fbic(M ⊕ δ1i ⊕ δ2 j, P[δ1i]) holds. With such a
biclique, the set M⊕D1⊕D2 can be searched for candidate pseudo-preimage by testing
F1(M ⊕ δ2 j,Q[δ2 j]) ⊕ ∆2 =T F−1

2 (M ⊕ δ1i, P[δ1i]) ⊕ ∆1 ⊕ H, where H is the hash value.
The details of the 2-step biclique can be explained as follows. From the linear space

D1, we know that ∆wi = 0 (16 ≤ i ≤ 30), ∆w31 , 0 in the forward subpart, which
means ∆w14 = 0, ∆w′14 = 0, ∆w15 , 0 and ∆w′15 , 0. Similarly, from the linear space
D2, we can get ∆w14 = 0, ∆w′14 , 0, ∆w15 = 0 and ∆w′15 = 0. For any randomly chosen
M and P0 = (A14, B14,C14,D14, E14, F14,G14,H14), denote the output of the i-th step as
(Ai, Bi, Ci, Di, Ei, Fi, Gi, Hi) (i = 15, 16). We can obtain that for the message M ⊕ δ2 j

(δ2 j , 0) and P0 = (A14, B14, C14, D14, E14, F14, G14, H14), the output of the 16-th
step is Q[δ2 j] = (Aδ2 j

16 , Aδ2 j

15 , C16, D16, Eδ2 j

16 , F16, G16, H16) where Aδ2 j

16 , A16, Aδ2 j

15 , A15

and Eδ2 j

16 , E16. For the message M ⊕ δ1i (δ1i , 0) and Q0 = (A16, B16, C16, D16, E16,
F16, G16, H16), we can get that the input of the 15-th step is P[δ1i] = (A14, B14, Dδ1i

15 ,
Dδ1i

14 , E14, F14, Hδ1i
15 , Hδ1i

14 ) where Dδ1i
15 , C14, Dδ1i

14 , D14, Hδ1i
15 , G14 and Hδ1i

14 , H14.
According to the algorithm of SM3, we get get that for M ⊕ δ1i ⊕ δ2 j and P[δ1i], the
output of the 16-th step is Q[δ2 j]. Therefore, the 2-step biclique covering steps 15 and
16 can be constructed and the cost of constructing the bicliques is negligible. Thus, the
pseudo-preimage attack on 32-step SM3 hash function with no padding can be obtained
with a complexity of about 2251.1 and the pseudo-collision attack on 32-step SM3 with
no padding can be obtained with a complexity of about 2125.1.

By the way, by adding 2-step biclique covering steps 15 and 16 to the preimage
attack on 29-step SM3, we can obtain a pseudo-preimage attack on 31-step SM3 with
the same complexity as the preimage attack on 29-step SM3. Furthermore, the pseudo-
preimage attack on 31-step SM3 can be converted into the pseudo-collision attack on
31-step SM3 with the same complexity as the pseudo-collision attack on 29-step SM3.
3-step biclique cannot be constructed because of the characteristic of the state update
transformation of SM3.

5 Conclusions

In this paper we have presented some new results on preimage attacks and pseudo-
collision attacks on SM3. We first construct several high probability truncated differen-
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Algorithm 2 Construction of the bicliques
Input: M, D1,D2 ⊂ {0, 1}k

Output: A biclique
Algorithm:
1: For uniformly chosen P0, do P0 → Q0
2: for all δ2 j ∈ D2, do P0 → Q[δ2 j]
4: end for
5: for all δ1i ∈ D1, do P[δ1i]← Q0
7: end for
8: return P[δ1i]→ Q[δ2 j]

tials by taking advantage of some particular weakness of the state update transformation
and linear message expansion of SM3. On the basis of them, we have been able to give
the best preimage attack known on SM3 by applying the differential meet-in-the-middle
technique. Our preimage attack works up to 32 steps (from the first step), while the anal-
ysis for the biggest number of steps in the previous result worked on 28 steps (from the
first step) and 30 steps (from the 7-th step). Furthermore, we convert the preimage at-
tacks to the pseudo-collision attacks on SM3. The time complexities of the (pseudo)
preimage attacks on 29-step, 30-step, 31-step and 32-step SM3 are 2245, 2251.1, 2245 and
2251.1 respectively. The time complexities of the pseudo-collision attacks on 29-step,
30-step, 31-step and 32-step SM3 are 2122, 2125.1, 2122 and 2125.1 respectively.
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Table 5. Differential characteristic for steps 1-15(29 steps, 12 bits)

Differences Step
1 · · · 11 12 13 14 15

∆w 0 · · · 0 0 0 0 0
∆w′ 0 · · · 0 [3 ∼ 14] 0 0 ?
∆A 0 · · · 0 〈0 ∼ 2, 23 ∼ 31〉 ? ? ?
∆B 0 · · · 0 0 〈0 ∼ 2, 23 ∼ 31〉 ? ?
∆C 0 · · · 0 0 0 〈0 ∼ 11〉 ?
∆D 0 · · · 0 0 0 0 〈0 ∼ 11〉
∆E 0 · · · 0 0 ? ? ?
∆F 0 · · · 0 0 0 ? ?
∆G 0 · · · 0 0 0 0 ?
∆H 0 · · · 0 0 0 0 0

Probability 1 · · · 1 1−2−8 1 1 1
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Table 6. Differential characteristic for steps 29-16(29 steps, 12 bits)

Differences Step
29 · · · 19 18 17 16

∆w 0 · · · 0 [20 ∼ 31] 0 0
∆w′ 0 · · · 0 [20 ∼ 31] 0 0
∆A 0 · · · 0 0 0 0
∆B 0 · · · 0 0 0 〈0 ∼ 10〉
∆C 0 · · · 0 0 〈0 ∼ 19〉 〈0 ∼ 19〉
∆D 0 · · · 0 〈0 ∼ 19〉 〈0 ∼ 19〉 〈0 ∼ 10〉
∆E 0 · · · 0 0 0 0
∆F 0 · · · 0 0 0 〈0〉
∆G 0 · · · 0 0 〈0 ∼ 19〉 〈0 ∼ 19〉
∆H 0 · · · 0 〈0 ∼ 19〉 〈0 ∼ 19〉 〈0〉

Probability 1 · · · 1 1 1 1
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