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Abstract. The RSA-768 (270 decimal digits) was factored by Kleinjuhgleon
December 12 2009, and the RSA-704 (212 decimal digits) weteried by Bai
et al. on July 2, 2012. And the RSA-200 (663 bits) was factdngdahr et al.
on May 9, 2005. Until right now, there is no body successfubreak the RSA-
210 (696 bits) currently. In this paper, we would discuss stimation method
to approach lower/upper bound ©fn) in the RSA parameters. Our contribution
may help researchers lock thén) and the challenge RSA shortly.
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1 Introduction

Challenge RSA [12] is an interesting and difficult work. Reityy most scientists and
researchers [1, 4, 8] using general number field sieve (GM®yithm to factor RSA
modulusn. In practical environment, it looks like if you to want to latethe RSA,
you may have best choice to choose GNFS when you already taetonodulus:. In
theoretical, Wiener [17] first proposed a cryptanalysishafrs secret exponents where
thed < N in 1990. Boneh [3] presented ‘Twenty years of attacks on RBA-C
tosystem’ in 1999. He classified and described varietiesktfollowed by Boneh and
Durfee [2], they suggested the provate kkghould be greater thal-2°2 for the se-
curity problem. Even though, some bodies focus on secretikayfactor composite
numbern. Their purpose are clearly. We can not help but think, doexi#t a general
estimation way without factor to challenge RSA? In thisaetiwe would introduce a
new methodology where approach the lower bound and the ugzperd of¢(n). For
this generalize conception, it may match any bit length cositp number..

2 Review of RSA Conception

The signer prepares the prerequisite of a RSA signaturedistimct large prime and
q,n = pq, Lete be a public key so thafcd(e, ¢(n)) = 1, wherep(n) = (p—1)(g—1),
then calculate the private keysuch thated = 1 (mod ¢(n)). The signer publishes
(e,n) and keepsp, ¢, d) secretly. The notation as same in [12].
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2.1 RSA Encryption and Decryption

In RSA public-key encryption, Alice encrypts a plaintéxtfor Bob using Bob’s public
key (n, e) by computing the ciphertext

C=M° (modn) 1)

wheren, the modulus, is the product of two or more large primes, @rtie public
exponent, is an (odd) integer> 3 that is relatively prime tas(n), the order of the
multiplicative groupZ; .

2.2 RSA Digital Signature

s=M?* (mod n) 2)

where(n, d) is the signer's RSA private key. The signature is verifieddorering the
messagée/ with the signer’s RSA public kegn, e):

M = s (mod n) 3)

3 Our Methodology

In this section, we would calculate the upper bound and tiveddound ofp(n) in
RSA scheme. The detail described as below.

Notation:

¢: means lower bound.

u: means upper bound.

e: a decimal expansion number (€9/100 = 0.99 - - -).

3.1 Approaching ¢(n)

If n is composite, hence
¢(n) <n—n, (4)

Sierpinski [15] mentioned it in 1964. It is know that if eqiget (4) is a good upper
bound forg(n). Is there a good lower bound f@fn)? This question also be discussed
by a newsgroup dialog between Ray Steiner and Bob Silverm&899 [16]. Fom >

30, the ¢(n) > n?/3, Kemdall and Osborn proved it [7]; far > 3, the ¢(n) >

k’%& given by Hatalova and Salat [6].

3.1.1 Estimateupper bound Does the equation (4) a good upper bound? In follows,
we would estimate a new value where its smaller than prevaodoptimize.

Theorem 1. Assumep, ¢ are large prime numbers, where = pq, theng(n) = 4k,
k € Z wherel < k < L%J.
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Fig. 1. The lower/upper bound af(n) in RSA scheme.

Proof. As known two varianfy and g are large prime numbers, apdq > 2, since

21p, 214q,

therefore2 | p—1, 2| ¢ — 1.

41 (p—1)(g—1), 4] o(n).

o(n) =4k, k € Z7 .

We will discuss how calculate the range of value

d(n)=(p—1)(¢g—1)
=pg—(p+q +1
=n—(p+q) +1 (5)

And
p+q=2yn,

p+qeZr,

2[p+aq
p+aq=2[Vn].

d(n) <n+1-2[n].
):4k: kezZt.

¢(n

Here, we know the maximum value (limit superior) for< [“=2"1HL | we call
boundary value.
Consequently, according to above inference, we obtain aupger bound: of ¢(n)

whereg(n) < 4| 2=2L/nlEL |

Theorem 2. Assumep, g are large prime numbers, angd,q > 2, n = pq, where
¢(n) <t < n,t € Z. Thent = ¢(n) <= 2> — (n + 1 —t)z + n = 0 have two
positive integer solutions.

Proof. We describe two properties, necessary and sufficient dondias follow:
Necessary condition:
Ift=0(n) =(p-1)(¢—1) =pg—(p+q)+1=n—(p+q)+1,thenn+1—t=p+q,

3
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in the same time, the formula b€ — (p + ¢)z + pg = 0. Itis clearly, the equation of
the two rootg andq are needed to set up.

Sufficient condition:

If equationz? — (n + 1 — t)z + n = 0 have two integer solutions.

Assumer;, 7, be the equation of the two roots, wherg z, € Z*.

The equation could be transformed(to— x;)(x — x2) = 0.

Promptly,z? — (21 + x2)z + z122 = 0.

Thenn = xz129, according tan’s structure, there are two choice:

1)z = 1andzy = n (orz; = nandzs = 1).

2)z1 = pandzy = g (Orze = g andzy = p).

If 21,22 One forl andn.

Now, z1 + z2 = n + 1, because:; + x5 =n + 1 — ¢, hence = 0.

However, in our assumption, the conditiortis- 0, so this inference contradiction.
The equation have two integes@ndq where

r1+x2 =p+g, (7)
then
p+g=n+1-—t. (8)
Promptly,
t=n+1-(p+q)), 9)
and
t = ¢(n). (10)

Thus, for the sufficient condition is setting up.

Theorem 3. Assumep, ¢ are large prime numbers, ang g > 2, n = pq, t = 4k
wherep(n) <t <n,t € Z.If \/(n + 1 — t)2 — 4n is an integer number, the equation
22 — (n+ 1 —t)x + n = 0 has two integer solutions.

Proof. Sincep, ¢ are both prime numbers whene= pq, 2 1 n, but2 | n + 1.
Supposé = 4k, and2 | ¢t. Thus2 | n+ 1 —¢.

If /(n+1—t)2—4n€ Z,502|/(n+1—1)2—4n.

The equation:? — (n + 1 — t)z = 0 of the two solutions are:

_ ntl—tdy/ (n+1—t)2—4n

2
Because | n+ 1 —t, and while\/(n + 1 —t)2 — 4n € Z,
itexists2 | \/(n+1—1t)2 — 4n.
Wheny/(n+1—t)32—4n€Z,2|n+1—t+/(n+1—1)2—4n.
Dueto/(n + 1 —t)2 — 4n € Z, thex is also€ Z.
Here, the two solutions of equatiofl — (n + 1 — t)x +n = 0 are both integers.

3.1.2 Estimate lower bound Loomis et al. [10] thought the Shapiro’s [13] lower
boundg(n) > n°82)/(log3) as a (naive) lower bound faE,, they can determine
when all members of a giveld,, have been found. Powell [11] pointed out that Konya-
gin and Shparlinksi’s lower boun®; (n,p) > (p — 1)/2 — p/?/n wheren > 1is a
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positive integer and thatis an odd prime number with= 1 (mod n); that is a good
bound ifp is a small compared to, and establishes that

Ni(n,p) = (v/(n)( J] ¢/ )/n)p'~1/¢("). Powell also discussed an improve-

q prime
qln

ment the upper and lower bounds in [11]. What is the optimaklobound? The other
discuss in following:

Theorem 4. For all n > 3 we haveg(n) > —i-t—r + O(q5m07mz) Wherey
glogn (log log n)

is the Euler-Mascherone Constant, and the above holds wjttaléy infinitely often.

Remark:note in particular that sincéoglogn — oo asn grows large, we see that the

result > < ¢(n) can not hold for any fixed integen.

Proof. ConsiderR, set of alln such thatn < n implies@ < %. This set is then
all of the ‘record breakingh. If n € Rhask prime factors, leb,* be the product of the
first k prime factors. Ifn £ n* and% < @, which is impossible. Henc®& consist
entirely ofn of the formn = Hp<yp for somey. Now forn € R, we can choosg

so thatlogn = Zp<y logp = 6(y). Then using one of Mertens estimates we see that

@ = Hpgy(:li%) = leO;erO(m). Sincelog logn = log(8(y)) = logy+®(1)

by Mertens estimates again, we haverdor R, ¢p(n) =

ne” " 1
loglogn + O( (loglogn)2 "

RSA-200 Same digits length

TR T2 13T R OB Se e R T 22a0 162 1070446 TR S5 5 2R A3 TAa000552 5326 128400 10760
n 93496710929993608960618223519109513657886371099 34482006 57677909R5R055761357909R
T3950144 178863 178946295 18723786922 1823983

ZTE9 R3S 1R I3 TETORES6 TR T2Ra0 162 1070446 T BS54 2B TA60005525326 128400 10760
o(n) G3456710525855360856050364020022070262634017415134803482520365825322995768594715
1011399122897 3668 1 370855 T2R0A07H53550168

Fig. 2. The same digits op(n) and modulus: parameters in RSA.

From above, it seems so complexity. Does it exist a simplepetgation method? We
observed the modulus with ¢(n), there have some characteristics. An example for
RSA-200, the modulug and the¢(n) are 200 decimal digits. We comparedand
¢(n) each other, there are the same digits from left to ribtit digits. The example
showed in Figure. Discuss on RSA modulus number with haft of the bit presctibe
be introduced some literatures in [5, 9, 14]. To RSA-704,thand ¢(n) had same

Table 1. Comparison of some types in RSA parameters. Unit: decinggtisdi

type Modulusn length | ¢(n) length | plength| g length | same digits: & ¢(n) | same digitsp(n) &u

RSA-200 200 200 100 100 110 101
RSA-210 200 200 105 105 ? ?
RSA-704 212 212 106 106 106 108

RSA-768 232 232 116 116 115 120
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digits 106, it amounts same length withor ¢. We computed the upper bound value
according to Theoren, this upper bound had sam@8 digits with its ¢(n). And
analyzed the RSA-768, thehad 115 digits same withy(n); the ¢(n) had120 digits
same with its upper bound Please see TableWe observed the relationship ¢fn)

and its boundary valuk, wheng(n) divided byk, we obtained this quotient are very
approaching to numbel, these lower bounders are very close to multiples of number
4. We say3.999, and havel 06's 9 after decimal point for case of RSA-210 type. The
lower bound approximation figure diagram be shown in figugnd in Table2. As

lower bound, curve

4.1

39 {
3.8 r — honndary value

37 I — lowwer bound value
R r
3.5
34

lower bound value

0 20 40 &0

Interation Hmes

Fig. 3. The lower bound approximation curve status.

Table 2. The relationship ofy(n) and its boundary valuk.

type | o(n)/k statement
99’s 9
A~ ) X
RSA-2003. 99999 8| there haveéd9’s 9 after the decimal point

106"s 9
RSA-2103. 99999 2|Estimating havd 06s 9 after decimal poir]

107's 9

—~N— . )
RSA-7043. 99999 8| there have07’s 9 after decimal point

117's 9

—~N— . )
RSA-7683. 99999 7| there have 17’s 9 after decimal point

=3

known as the modulus numberof RSA-210, we re-estimated its lower/upper bounds.
We assume:

n—2[yi]+1
4

n—2[yi]+1

(3+e)l ;

| <on) <4] I; (11)
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106"s 9

—~
wheres = 0. 99999. We therefore compute the upper bounand lower bound; those
shown result in Figurd.

RSA-210

24524664490027821197651766557 308801846 70267876755327557434144517150616008300385872
1 | 169522083993320715491026363795254 1924 18535918787 19807574925061 71803735359303932360
5526518763037 740959017744115767482964632705008

24524664490027821197651766557 308801846 70267876755327557434144517150616008300385872
£ | 169622083393320715431026 1798602705172 101 7579734 131 53506633608 7233201 3570325789540
507021898760211318657095838102321352996453835216

Fig. 4. The lower/upper bound parametersigf) in RSA-210.

4 Conclusion

In this paper, we re-estimated a new lower/upper bound saifi&(n) in RSA-210, our
methodology are easily, simply, clearly, no intricatelydantuitive. It may be useful
to researchers who would quickly reduce the searching marigeking back, more
researchers focus on secietr modulusn, such as well known short exponent attack,
side channel attack, or common modulus and cyclic attacks.n@thod is differ to
previous literatures. Finally, We presented what we claimetually.
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