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Abstract

The Fiat-Shamir heuristic (CRYPTO ’86) is used to convert any 3-message public-coin proof
or argument system into a non-interactive argument, by hashing the prover’s first message to
select the verifier’s challenge. It is known that this heuristic is sound when the hash function is
modeled as a random oracle. On the other hand, the surprising result of Goldwasser and Kalai
(FOCS ’03) shows that there exists a computationally sound argument on which the Fiat-Shamir
heuristic is never sound, when instantiated with any actual efficient hash function.

This leaves us with the following interesting possibility: perhaps there exists a hash function
that securely instantiates the Fiat-Shamir heuristic for all 3-message public-coin statistically
sound proofs, even if it can fail for some computationally sound arguments. Indeed, the existence
of such hash functions has been conjectured by Barak, Lindell and Vadhan (FOCS ’03), who
also gave a seemingly reasonable and sufficient condition under which such hash functions exist.
However, we do not have any provably secure construction of such hash functions, under any
standard assumption such as the hardness of DDH, RSA, QR, LWE, etc.

In this work we give a broad black-box separation result, showing that the security of such
hash functions cannot be proved under virtually any standard cryptographic assumption via a
black-box reduction.
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1 Introduction

The Fiat-Shamir heuristic. The Fiat-Shamir (FS) heuristic [FS87] allows us to convert an
interactive public-coin protocol between a prover P and a verifier V into a one-message (non-
interactive) protocol. Recall that, in a public-coin protocol, the verifier sends a uniformly random
challenge to the prover in each round. According to the FS heuristic, the prover executes the original
interactive protocol “in his head”, computing the verifier’s challenge in each round by applying
some public hash function to the transcript of the protocol so far. The prover then only sends the
final protocol transcript to the actual verifier, who verifies its validity. The hash function can be
initialized with some randomly chosen public seed, which we think of as a “common random string
(CRS)”, and therefore the compiled protocol is non-interactive in the CRS model. Alternatively,
the seed can also be chosen by the verifier in an additional initial message, in which case the
compiled protocol consists of two messages. This heuristic has numerous remarkable applications
in cryptography, such as constructing practical signature schemes [Sch91, GQ90, Oka93], non-
interactive zero knowledge (NIZK) [BR93], and non-interactive succinct arguments [Mic00].

Soundness of FS. Although the FS heuristic seems to produce secure cryptographic schemes in
practice, its formal security properties remain elusive. Perhaps the most basic question is to under-
stand the soundness of the heuristic when applied to a statistically sound proof or computationally
sound argument for some NP language. We say that an instance of the FS-heuristic is sound if the
resulting non-interactive protocol is a computationally sound argument, for the same language. We
can ask what kind of protocols do we need to start with, and what kind of hash functions should
we use, to make the FS-heuristic sound. Since we are interested in a negative result, we restrict
our attention to 3-message public-coin (3PC) protocols.

Applying FS to arguments. On the positive side, if the FS heuristic uses a random oracle as
its hash function, then it is known to be sound when applied to any 3PC argument [BR93, PS00].
On the other hand, the work of Goldwasser and Kalai [GK03] shows a surprising negative result:
the FS heuristic cannot be securely instantiated with any actual efficient hash function that would
achieve the same result. In particular, there exists some 3PC argument on which the FS heuristic
is never sound, no matter which efficient hash function we try to instantiate it with.

Applying FS to proofs. The above negative result only applies to computationally sound ar-
guments, and therefore we are still left with the following interesting possibility: perhaps the FS
heuristic could be instantiated with some hash function that makes it sound for all 3PC proofs,
even if it can fail for some arguments. We call such a hash function FS-universal. When instan-
tiated with an FS-universal hash function, the FS heuristic should successfully compile any 3PC
(statistically sound) proof into a non-interactive (computationally sound) argument.

Barak, Lindell, and Vadhan [BLV03] conjecture that such FS-universal hash functions should
indeed exist, and define a plausible hash-function property called entropy-preservation, which they
show to be sufficient. Variants of this entropy-preservation property were further studied by Dodis,
Ristenpart and Vadhan [DRV12], who also showed that it is necessary. Nevertheless, despite the
amazing possibility that such hash functions may exist, we do not have any candidate construction
that is provably secure under some “standard” cryptographic hardness assumption.

Relating soundness to ZK. Dwork et al. [DNRS99] show an interesting connection between the
soundness of the FS heuristic and zero-knowledge: if the starting protocol is a zero-knowledge proof
or argument, for a non-trivial language, then applying the FS heuristic to this protocol is never
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sound, no matter which hash function is used. The reason is intuitive: we can always just run
the original zero-knowledge simulator for the “Fiat-Shamir verifier” that chooses its challenges by
hashing the protocol transcript so far. Since this efficient simulator cannot decided the language,
it is likely to output an accepting transcript even for some false statement, and therefore breaks
the soundness of the FS heuristic.

The celebrated work of Barak [Bar01] constructs a constant-round public-coin zero-knowledge
argument; in particular, the FS heuristic is never sound on this argument. The result of [GK03]
cleverly extends this technique to also show the existence of a 3PC argument for which the FS
heuristic always fails. On the other hand, we do not know of any 3PC (or even constant-round)
zero-knowledge proofs for a hard language, and hence we do not have any such negative results
for proofs. Indeed, if true, the prevalent conjecture that there exist FS-universal hash functions
implies that 3PC proofs can never be zero-knowledge.

An alternative to FS. We mention that the work of Kalai and Raz [KR09] offers a provably secure
method for converting any interactive proof into a two-message argument using private information
retrieval (PIR). We can think of this as an alternative to the Fiat-Shamir heuristic. However, the FS
heuristic has a crucial advantage in that it gives us a publicly-verifiable non-interactive argument
in the “common random string model”, where the random string is the seed of the hash function.
In other words, once the seed of the hash function is fixed, anybody can non-interactively compute
and verify proofs (which is needed in central applications, such as digital signatures). This is not
the case for the Kalai-Raz compiler, which gives a two-message protocol where the verifier needs
to keep some secret state associated with the first message (private coins) to later decide if the
prover’s second message is accepting.

1.1 Our Results

In this work, we re-examine the possibility of having an FS-universal hash function, which se-
curely instantiates the FS heuristic for all 3PC statistically sound proofs. As our main result, we
show that the existence of such FS-universal hash functions cannot be proved under virtually any
standard assumption via a black-box reduction. We elaborate on these concepts in the next two
paragraphs. We wish to emphasize that this result does not refute the highly believable conjecture
that FS-universal hash functions exist. However, it shows that we will need to rely on new “non-
standard” assumptions or develop new “non-black box” proof techniques if we ever hope to prove
this conjecture.

Cryptographic-game assumptions. To capture all “standard assumptions”, we consider a gen-
eral class assumptions that have the syntactic format of an interactive cryptographic game between
an attacker and a (possibly inefficient) challenger. For a given game, the associated assumption
states that every efficient attacker has at most negligible probability in winning this game. This
notion, due to [DOP05, HH09], captures, essentially, all of the concrete assumptions we use in cryp-
tography, such as the hardness of factoring, the RSA problem, the discrete logarithm problem, the
computational/decissional Diffie-Hellman problem (CDH/DDH), learning with errors (LWE), etc.
Note that this notion of cryptographic games refers to concrete assumptions (e.g., the RSA function
is one-way) rather than just general assumptions (e.g., one-way function exist). Of course, this also
means that we get a black-box separation from the corresponding general assumption, such as ex-
istence of one-way functions, collision-resistant hashing, trapdoor permutations, oblivious transfer,
fully homomorphic encryption etc., as long as some concrete instantiation of the assumption exists.
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We stress that the notion of cryptographic games is defined as liberally as possible so as to
include essentially everything that could be considered a “standard assumption”, and to make our
negative result as strong as possible. Of course, it may also capture many non-standard (and false)
assumptions, as well as trivially true and uninteresting assumptions.

Black-box reduction for FS. Let’s say that we want to prove the FS-universal security of some

hash-function family H, under some cryptographic-game assumption. We let FS〈P,V 〉H denote the
non-interactive protocol that we get by applying the FS-heuristic with the hash function H to some
proof system 〈P, V 〉. Then, the hash function H fails to be FS-universal if there exists some 3PC
proof system 〈P, V 〉, and an efficient attacker A, that breaks the computational soundness of the

non-interactive protocol FS〈P,V 〉H . Therefore, proving the FS-universal security of H is equivalent
to showing that the existence of any such triple (P, V,A) implies the existence of an efficient attack
against the assumption. A natural and constructive approach for proving this would be via a
black-box reduction. This is an efficient algorithm BP,V,A such that, given black-box access to any
(possibly inefficient) oracles (P, V,A) satisfying the above conditions, the reduction BP,V,A manages
to break the assumption. Notice that we are restricting ourselves to reductions which treat the
attacker A as well as the 3PC proof system 〈P, V 〉 as a black box. This is a natural notion of a
“black-box reduction” for FS-universal hash functions, since the definition of FS-universality treats
all of the components P, V,A as “worst-case” and therefore we treat them as adversarial objects.
We note that, for example, the result of Kalai and Raz [KR09] offering a provably secure alternative
to FS, does use a black-box reduction of the type outlined above in its proof of security.

FS-universal vs. FS for specific proofs. We note that our black-box separation result does not
rule out the possibility of hash functions that provably (under standard assumptions via a black-box
reduction) instantiate the FS heuristic for some specific 3PC proof. In fact, the assumption that a
hash function makes the FS heuristic sound for a particular 3PC proof, is already a cryptographic-
game assumption according to our definition.1 Our result applies to proving FS-universal security,
which is a stronger condition that requires the hash function to securely instantiate the FS heuristic
for all 3PC proofs. The assumption that some hash function is FS-universal no longer has the format
of a cryptographic game assumption, making our result possible.

1.2 Our Techniques

We now give a high-level overview of the techniques that we use to prove the above separation.
We first recall the notion of entropy-preserving hashing introduced by Barak, Lindell and Vadhan
[BLV03], which is tightly connected to FS-universality.

Entropy-preserving hashing. We can think of entropy-preserving hashing as a simple and
compelling but “non-standard” assumption under which FS-universal hash functions exist. A hash
function hs(·) with a public seed s is entropy-preserving if for any efficient attacker A that sees a
uniformly random seed s and adaptively chooses some correlated value x = A(s), the conditional
Shannon entropy H(hs(x) | x) is sufficiently large. In other words, given the adversarial choice of
x = A(s), but no other information about s, the value y = hs(x) should not be uniquely determined.
This property only makes sense when the seed size |s| is bigger than the input size |x| so that the
value x = A(s) loses information about the seed s. Notice that this property is defined in terms

1Indeed, the notion of a cryptographic game will allow the challenger to be inefficient and, in particular, identify
that indeed x /∈ L, even for a hard language L.
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of entropy and does not have the usual format of a cryptographic-game assumption. The works
of [BLV03, DRV12] show that any entropy-preserving hash function (with appropriate parameters)
is also FS-universal. The work of [DRV12] also shows the reverse direction, that any FS-universal
hash function must also be entropy-preserving (at least in some weak sense).

Separation for entropy preserving hashing. As our starting point, we give a black-box sepa-
ration showing that one cannot prove the entropy-preserving security of any hash-function family
H = {hs(·)} from any cryptographic-game assumption via a black-box reduction. We prove this
via the “simulatable attacker” paradigm (also known as the “meta-reduction” paradigm) which
has been used in several prior black-box separation results [BV98, Cor02, Bro05, PV05, GBL08,
DOP05, HH09, GW11, Pas11, Seu12, DHT12, Wic12].

The main idea of this paradigm is to construct a special inefficient attacker A that breaks
the security of the target primitive (in our case, the entropy-preserving security of H), but for
which there is an efficient simulator Sim such that no distinguisher can tell the difference between
“black-box” interaction with Sim and A. This means that any efficient black-box reduction which
can win some cryptographic game, given oracle access to the inefficient attacker A, can also win
the cryptographic game, given oracle access to the efficient simulator Sim. Hence, if we have a
black-box reduction showing the entropy-preserving security of H under some cryptographic-game
assumption, it implies that the reduction, together with the efficient simulator Sim, give us an
efficient stand-alone attack against the assumption, and so it cannot be secure to begin with!

We show that, for any hash function family H, there is a simulatable attack against H. Our
inefficient attacker A breaks the entropy-preserving security of H by outputting values x = A(s) in
a very careful manner so that hs(x) is uniquely determined by x (without any additional knowledge
of s). However, we show that getting polynomially many queries to A on various inputs s, can be
(statistically) simulated by an efficient simulator Sim that just outputs uniformly random values!
Of course, this naive simulator is completely innocuous and unlikely to break the entropy-preserving
security of H, but nobody can tell the difference. Showing the above is the main technical result
of the paper.

Separation for FS-universal hashing. Next, we show that any black-box reduction proving
the FS-universal security of some hash function H under a cryptographic game assumption, would
also give us a black-box reduction showing the entropy-preserving security of H under the same
assumption. Therefore, our separation for entropy-preserving hash functions also gives us a black-
box separation for FS-universal hash functions. Here, we adapt the result of Dodis, Ristenpart and
Vadhan [DRV12], showing that FS-universal hash functions must also be entropy-preserving, to the
setting of black-box reductions.

1.3 Concurrent Work

In a concurrent and independent work, Dachman-Soled, Jain, Kalai and López-Alt [DJKL12] show
a very similar result to ours, namely that the soundness of the Fiat-Shamir heuristic cannot be
proved via black-box reductions from a large class of “standard” assumptions. Interestingly, the
two works rely on very different techniques and the the end results are technically incomparable.
We now provide a brief high-level overview of the main differences between the two results. A
merged version of the two works [BDG+13] will appear at TCC 2013.

Our work focuses on first giving a separation for entropy-preserving hash functions, and then
shows that it implies a similar separation for FS-universal hash functions. On the other hand,
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[DJKL12] take a more direct approach by showing a separation whenever applying the FS heuristic
to any zero-knowledge (ZK) protocol with a super-polynomial-time simulator (cleverly extending a
prior-known result that the FS heuristic is simply insecure when applied to any ZK protocol with a
poly-time simulator). By showing that every honest-verifier zero-knowledge (HVZK) proof is also
ZK with a super-polynomial simulator, [DJKL12] gets a black-box separation for any such 3PC
proof. The different techniques lead to two main differences in the end results. Our negative result
only applies to a universal Fiat-Shamir compiler that must preserve soundness when applied to
any 3PC proof. In contrast, the negative result of [DJKL12] is stronger in that it even applies to
having a Fiat-Shamir compiler for many specific 3PC proof systems. On the other hand, we show a
separation from a somewhat larger class of assumptions, consisting of “cryptographic games” with
a possibly unbounded challenger. In contrast, [DJKL12] show a separation from a smaller class of
“falsifiable assumptions”, where the challenger is required to be efficient.

1.4 Organization

In Section 2, we define the basic concepts discussed in this paper, including FS-universality and
entropy-preserving hashing. In Section 3, we define the concepts of cryptographic games, black-box
reductions, and simulatable attacks. In Section 4 we show that the entropy-preserving security of
any hash function cannot be proved under a black-box reduction from any cryptographic game. In
Section 5, we relate the concept of a black-box reduction for FS-universality and the concept of a
black-box reduction for entropy-preserving hashing, concluding that FS-universality also cannot be
proved via black-box reduction from any cryptographic games.

2 Preliminaries and Definitions

Let n denote the security parameter. We say that a function is negligible in the security parameter,
and denote it by negl(n), if it is asymptotically smaller than the inverse of any polynomial, i.e.
1/nω(1). We consider the class of efficient schemes to be ones that can be implemented by a
probabilistic polynomial-time Turing machine, denoted by PPT. In contrast, we consider the class
of efficient adversaries A = {An} to be non-uniform families of polynomial-size circuits, denoted
by polysize.

Interactive proofs. In an interactive proof system [GMR89] a prover P interacts with a PPT
verifier V to convince him of accepting some common input x. Typically, we require that the
honest prover is also PPT, when given some additional auxiliary input (e.g., a witness). For
common input x and prover auxiliary prover input w, we denote by 〈P (w), V 〉(1n, x) the random
variable representing the output of V at the end of the protocol.

Definition 2.1 (An interactive proof system). A pair of PPT machines 〈P, V 〉 is called an inter-

active proof system for a relation R with an associated language L(R)
def
= { x |(x,w) ∈ R} if the

following two conditions hold:

• Completeness: For every (x,w) ∈ R, we have

Pr[〈P (w), V 〉(1n, x) = 1] ≥ 1− negl(n) .

(We also say that the protocol has perfect completeness if the above probability is exactly 1).
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• Statistical Soundness: For every x /∈ L(R), and every unbounded P ∗,

Pr[〈P ∗, V 〉(1n, x) = 1] ≤ negl(n) .

(We also say that the protocol is ε-sound if the above probability is upper bounded by ε(n).)

The proof system is said to be public-coin if all the messages sent by the verifier are random strings,
and the verifier’s decision is made solely based on the messages exchanged during the protocol.

The Fiat-Shamir heuristic. Throughout the paper, we focus on the special case of applying the
FS heuristic to a 3-message public-coin (3PC) interactive proof system 〈P, V 〉 for an NP relation
R.2 Denote the first message of the prover by α, the verifier’s challenge by β, and the final message
of the prover by γ. Also, let π = (α, β, γ) denote the transcript of the execution.

For security parameter n, let m(n) and k(n) denote the lengths of α and β, respectively. Let
H = {hs : {0, 1}m(n) → {0, 1}k(n)}n∈N,s∈{0,1}`(n) be a family of hash functions mapping m bits to k
bits. The Fiat-Shamir collapse (or FS-collapse in short) of protocol 〈P, V 〉 using H is a two-message

protocol FS〈P,V 〉H = 〈PFS , VFS〉 defined as follows:

• In the first message, the FS verifier VFS(1n, x) selects a random seed s ← {0, 1}`(n) for the
hash function. (We can also skip this step by thinking of s as a common reference string).

• In the second message, the FS prover PFS(1n, x, w) runs P (1n, x, w) to derive its first message
α. It then computes the challenge β := hs(α) by hashing α, and passes β to P to get its third
message γ. Finally, PFS outputs the tuple (α, β, γ).

• The FS verifier VFS(1n, x) accepts the proof if β = hs(α) and the original verifier V (1n, x)
accepts the protocol (α, β, γ) when executed with random-coins β.

We say that the FS-collapse is sound if the resulting protocol FS〈P,V 〉H is a computationally-
sound argument system as specified below.

Definition 2.2 (Fiat-Shamir soundness). We say that FS〈P,V 〉H is computationally sound if, for
any polysize prover P ∗ = {P ∗n} and x /∈ L(R)

Pr
s

$←{0,1}`(n)

V (1n, x, π) = 1

∣∣∣∣∣∣
π ← P ∗n(x, s)
π = (α, β, γ)
hs(α) = β

 ≤ negl(n) .

We call the above probability the advantage of P ∗ in breaking computational soundness.

We could also consider a stronger security definition, according to which P ∗ adaptively chooses
the false theorem statement, depending on the hash function hs. Since we are interested in a
negative result, we focus on the above weaker definition.

As explained in the introduction, we will be interested in the existence of universal Fiat-Shamir
hash function (or a FS-universal hash for short); namely, families of hash functions with respect to
which the FS-collapse of any statistically sound 3PC protocol is a computationally sound argument.

2Indeed, this is the most common but also minimal case for which Fiat-Shamir is expected to work, and therefore
restricting ourselves to this case gives us the strongest negative result.

6



Definition 2.3 ((m, k)-FS-universal hash function). We say that a hash-function family

H = {hs : {0, 1}m(n) → {0, 1}k(n)}s∈{0,1}`(n)

is (m(n), k(n))-FS-universal if for every 3PC (statistically sound) proof system 〈P, V 〉 with first

and second messages of respective lengths m = m(n) and k = k(n), the FS-collapse FS〈P,V 〉H is a
(computational sound) argument.

It is not hard to show that the seed-length `(n) of an FS-universal hash function must depend on
(and exceed) the input length m. Therefore, we cannot have a single fixed-seed-length hash function
family that is FS-universal for all 3PC proofs. Instead, we only desire a (m, k)-FS-universal hash
function which works for all 3-PC proofs whose messages α, β are of lengths m(n), k(n) respectively.
In particular, the seed length `(n) may be any polynomial, which may arbitrarily depend on (m,
k).

Entropy preserving hash functions. Barak et al. [BLV03] formulated a relatively simple
entropy preservation property for hash functions, and showed that it is sufficient for FS-universality.
Recall that the (Shannon) entropy of a random variable x is H(x) = E

x
$←x

[− log(Pr [x = x])]. For

jointly distributed random variables (x,y), the conditional entropy of x given y is defined by
H (x | y) = E

y
$←y

[H (x | y = y)], where x|y=y is a random variable distributed according to x

conditioned on y = y.

Definition 2.4 (Definition 9.2 [BLV03]). We say that a hash function family H = {hs : {0, 1}m(n) →
{0, 1}k(n)}s∈{0,1}`(n) preserves u(n)-entropy, if for any polysize A, and all large enough values of the
security parameter n ∈ N we have

H (hs(x) | x) > u(n) ,

where s,x are correlated random variables defined by choosing s uniformly at random over {0, 1}`(n),
and setting x to be the first m(n) bits of the output of A(1n, s). We say that the hash function (just
plain) preserves entropy if it preserves u(n)-entropy for u(n) = 0.

The work of [BLV03] shows that any hash function family that preserves u(n) = k(n)−O(log n)
entropy, is also (m, k)-FS-universal. An alternative take on the notion of “entropy preserving”
hash functions and a detailed exploration of the parameters is also given in [DRV12]. The work
of [DRV12] also shows an implication in the reverse direction, that any (m, k)-FS-universal hash
function family must also preserve entropy, at least in the weak sense for u(n) = 0. Note that even
this weak notion of preserving entropy is already an interesting and highly non-trivial. In Section
4 we show that it cannot be proved under any standard assumptions via black box reductions.

3 Games, Black-Box Separations, and Simulatable Attacks

Cryptographic games. Cryptographic games present a general framework for defining crypto-
graphic assumptions and security properties. A game is given by a protocol specified via a challenger
who interacts with an arbitrary attacker – security mandates that no efficient attacker should be
able to win the game with better than negligible probability.
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Definition 3.1 (Cryptographic game [HH09]). A cryptographic game G = (Γ, c) is defined by a
(possibly inefficient) random system Γ, called the challenger, and a constant c ∈ [0, 1). On security
parameter n, the challenger Γ(1n) interacts with some attacker An and outputs a bit b. We denote
the output of this interaction by b = (An � Γ(1n)). The advantage of an attacker An in the game
G is defined as

AdvAG (n)
def
= Pr[ (An � Γ(1n)) = 1 ]− c .

A cryptographic game G is secure if for all polysizeattackers A = {An}, the advantage AdvAG (n) is
negligible.

When c = 0, the above definition of cryptographic games captures search problems such as
factoring, the discrete logarithm problem, signature security etc. When c = 1

2 , it captures decisional
problems such as DDH, encryption security etc. Note that cryptographic games may be highly
interactive and may not even have any a-priori bound on the number of rounds of interaction
between A and Γ. The work of [GW11] defined a more restricted notion of cryptographic games
(called “efficiently falsifiable assumptions”) where the challenger is also required to be efficient. We
do not rely on this requirement in the current work.

Remark 3.2 (δ-exponential security). We can also define a cryptographic game G to be δ-

exponentially secure for some constant δ > 0 if for all An of size 2O(nδ) the advantage AdvAG (n) =

2−Ω(nδ).

Black-box reductions. We define what it means to have a black-box reduction showing that
some hash function family H is (m, k)-FS-universal. Recall that an FS-universal hash function
should be able to compile all efficient 3-PC proofs 〈P, V 〉 with first message of length m(n) and
challenge length k(n) into a corresponding 2-message argument system. Therefore, we think of the
proof system 〈P, V 〉 itself as an adversarial entity given to the reduction, and hence it is natural to
require that the reduction is black box in the attacker A as well as the proof system 〈P, V 〉.

Since we are proving a negative result, we want to place as few requirements on the reduction
as possible. Therefore, to simplify things, we will only require that the reduction works if the proof
system 〈P, V 〉 has perfect completeness and near-perfect 2−k-soundness (where k is the challenge
size), meaning that for any choice of a false statement and first message of the prover, there is
at most a single challenge on which the prover can succeed. We also assume the reduction only

works for attackers A that always break the soundness of the FS-collapse argument FS〈P,V 〉H with
advantage 1.

Definition 3.3 (BB reduction for Fiat-Shamir). Let G = (Γ, c) be a cryptographic game assumption
and let H be an (m, k)-hash function family for some polynomials m = m(n), k = k(n). A black-box
reduction showing the (m, k)-FS-universality of H under the assumption G is a PPT oracle-access
machine B(·,·,·), for which there exists some polynomial p(n) such that the following holds. Let
P = {Pn}, V = {Vn} describe an interactive/stateful protocol and A = {An} be any stateless
attacker, all given as (possibly inefficient) circuit-families, such that:

1. The protocol 〈P, V 〉 is a 3PC interactive proof for some relation R, with first-message length
m and challenge-length k. Furthermore, it has perfect completeness and 2−k(n)-soundness.
(See Definition 2.1)
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2. The attacker A breaks the computational soundness of FS〈P,V 〉H with advantage 1.
(See Definition 2.2)

The reduction B gets black-box oracle access to An, along with black-box “rewinding access” to
the stateful entities Pn, Vn, meaning that it can interleave arbitrarily many concurrent executions
and arbitrarily rewind them to any prior state. The statement is also chosen adversarially by the
attacker (and provided to the reduction); however, this choice is independent of the choice of the
hash seed (i.e., it is non-adaptive).

Then the advantage of BPn,Vn,An(1n) in the game G must be at least 1/p(n).

We note that, since we are proving a negative result, requiring that the reductions only work
for proofs with strong soundness 2−k(n) and attackers A with high-advantage 1, and a non-adpative
choice of statement, only makes the result stronger (compared to insisting that the reduction works
for any negl(n)-soundness and 1/poly(n) advantage). On the other hand, we do insist that the
reduction itself has some noticeable advantage 1/p(n) rather than the standard requirement that
its advantage is simply non-negligible. Furthermore, we also insist that the reduction is security-
parameter preserving meaning that when it is called with security parameter 1n it only accesses
the oracles Pn, Vn,An on the same security parameter n. The above two requirements come with
some loss of generality, but they hold for all of the natural reductions in cryptography.

We note that, although in general we need to consider the issue of the reduction running many
executions and rewinding Pn, Vn, in our eventual result this will not play an important role. In
particular, our counterexample will construct a proof system PAnn , V Ann which is efficiently defined
in terms of a single inefficient but stateless adversary An. Therefore, everything the reduction sees
can just be derived from simple oracle access to the stateless An.

We now define an analogous notion of a black-box reduction for entropy-preserving hashing. Since,
without loss of generality, the attacker against entropy-preserving hashing is stateless, we do not
have to worry about issues of rewinding.

Definition 3.4 (BB Reduction for Entropy Preserving Hash). Let G = (Γ, c) be a cryptographic
game and let H be an (m, k)-hash function family for some polynomials m = m(n), k = k(n). A
black-box reduction showing that H is entropy-preserving from the security of the game G is an
oracle-access PPT machine B(·) for which there exists some polynomial p such that the following
holds. Let A = {An} be any (possibly inefficnet) attacker such that H (hs(x) | x) = 0, where

the random variable s,x are defined the same way as in Definition 2.4, i.e., s
$← {0, 1}`(n), and

x← An(s). Then, the advantage of BAn(1n) in the game G is at least 1/p(n).

Remark 3.5 (Reductions from δ-exponential security assumptions). For both of Definition 3.3
and Definition 3.4, we can also consider a variant, where the black-box reduction is from the δ-
exponential security of the cryptographic game G. In this case we allow the reduction B(·) to run
in time 2O(nδ) and only insist that its advantage is ≥ 2−o(n

δ).

BB Separation via Simulatable Attack. We now outline a general strategy for proving a
black-box separations via a technique called a simulatable attack. This strategy has been used in
several prior works [DOP05, HH09, GW11, Pas11, DHT12, Wic12], and was recently formalized as
a general technique in [Wic12]. Here we will rely on the notation and the results from that work.
However, for concreteness, we only restrict ourselves to describing this strategy for the specific case
of entropy preserving hash functions.
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Definition 3.6 (Simulatable Attack for Entropy-Preserving Hashing). Let H be some (m, k)-hash
function family. A ε(n)-simulatable attack on the entropy-preserving security of H consists of: (1)
an ensemble of (possibly inefficient) stateless non-uniform attackers {An,f}n∈N,f∈Fn where {Fn} is
some ensemble of finite sets, and (2) a stateful PPT simulator Sim. We require that the following
two properties hold:

• For each n ∈ N, f ∈ Fn, the (inefficient) attacker An,f successfully breaks the entropy-
preserving security of H.

• For every (possibly inefficient) oracle access machine M(·), making at most q = q(n) queries
to its oracle:∣∣∣∣∣ Pr

f
$←Fn,M

[MAn,r(1n) = 1] − Pr
(M,Sim)

[MSim(1n)(1n) = 1]

∣∣∣∣∣ ≤ poly(q(n)) · ε(n) .

namely, oracle access to An,f for a random f
$← Fn is indistinguishable from that to Sim.

We omit the ε(n) and just say “simulatable attack” as shorthand for an ε(n)-simulatable attack
with some negligible ε(n) = negl(n).

As discussed in the introduction, the existence of a simulatable attack against some scheme H
ensures that one cannot prove the security of H using black-box reduction from cryptographic game
assumption, unless the assumption is false. This is because a reduction must be able to use the
simulatable attacker A against H to break the underlying assumption, but then this means that
the reduction and the simulator together would give us an efficient stand-alone attack against the
assumption to begin with. A general version of this theorem was given in [Wic12] and therefore we
get the following as a special case.

Theorem 3.7 (Special case of [Wic12]). If there exists a simulatable attack against the entropy
preserving security of H, and there is a black-box reduction showing the entropy preserving security
of H from the security of some cryptographic game G, then G is not secure.

Furthermore, for any constant δ > 0, if there exists an (ε(n) = 2−ω(nδ))-simulatable attack
against H and there is a black-box reduction from the δ-exponential security of G, then G is not
δ-exponentially secure.

4 Constructing a Simulatable Attack

We now show that, for any family of hash functions H, there is a simulatable attack against the
entropy preserving security of H.

Theorem 4.1. Let H = {hs : {0, 1}m(n) → {0, 1}k(n)}n∈N,s∈{0,1}`(n) be any family of hash functions.

Then there is a 2−Ω(m−k)-simulatable attack against the entropy preserving security of H.

Proof of Theorem 4.1. Let Fn be the set of functions f : {0, 1}m(n) → {0, 1}k(n), and let
F∗n ⊆ Fn be a subset consisting of all the functions f such that for every s ∈ {0, 1}`(n), there is
some x ∈ {0, 1}m on which hs(x) = f(x). We will define a family of inefficient attackers {Breakf},
indexed by functions f ∈ F∗n, that break the entropy preserving security of H. Before we do so, we
first show that F∗n is non-empty, and in fact forms a very dense subset of Fn.
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Claim 4.2. The subset F∗n is dense in Fn with |F
∗
n|
|Fn| = (1− 2−Ω(2m−k))-fraction of Fn.

Proof of Claim 4.2. If we choose f ← Fn uniformly at random then

1− |F
∗
n|
|Fn|

= Pr
f←Fn

[f 6∈ F∗n] = Pr
f←Fn

[ ∃s ∈ {0, 1}`(n) ∀x ∈ {0, 1}m : hs(x) 6= f(x)]

≤
∑

s∈{0,1}`(n)
Pr

f←Fn
[∀x ∈ {0, 1}m : hs(x) 6= f(x)] ≤ 2`

(
1− 2−k

)2m

≤ 22O(logn)
2−2m−k ≤ 2−Ω(2m−k)

Constructing an attack. Now we are ready to define a family of inefficient attackers {Breakf},
indexed by functions f ∈ F∗n, that break the entropy preserving security of H as follows:

Breakf : f ∈ F∗n

Given input s ∈ {0, 1}`(n), output a random x from the set of all values satisfying hs(x) = f(x).

(By the definition of F∗n, at least one such x always exists.)

Figure 1

The attack is successful. For any fixed f ∈ F∗n, it is easy to see that the attacker Breakf
breaks the entropy preserving security of H. This is because, conditioned on seeing any output
x ← Breakf (s), we can completely determine the value hs(x) without knowing the seed s, via the
relation hs(x) = f(x). Therefore, defining the random variables s to be uniform over {0, 1}`(n) and
x← Breakf (s), we have H(hs(x) | x) = 0 as desired.

The simulator for the attack. The more interesting part of the proof is showing that for random
f ← F∗n, the attacker Breakf can be simulated very efficiently, with a small statistical error. Our
(stateful) simulator is incredibly simple and, on each invocation, just outputs a fresh random value
(which wasn’t output previously). It is easy to see that the simulator satisfies the efficiency

Sim(1n)

Initialize the set X := ∅.
On input s ∈ {0, 1}`(n): Sample x← {0, 1}m \X, add x to the set X, and output x.

Figure 2

requirements of the definition of a simulatable attack.
Indistinguishability of simulator. Our next step is to show that a random attacker from the

class {Breakf} and the above simulator are statistically indistinguishable. In particular, for any
(computationally unbounded) q-query distinguisher M,∣∣∣∣∣ Pr

f
$←F∗n

[
MBreakf (1n) = 1

]
− Pr

Sim

[
MSim(1n)(1n) = 1

]∣∣∣∣∣ ≤ q2 · 2−Ω(m−k) . (1)
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Simi

• Initialize an empty set X := ∅ and an (initially empty) partial mapping f |X : X → {0, 1}k.

• Answer the first i queries the same way as Sim: on input s, sample uniformly at random x ←
{0, 1}m \X and output x. Add x to X and set f |X(x) := hs(x).

• After answering the first i queries, choose the rest of the function f : {0, 1}m → {0, 1}k
extending f |X uniformly at random.

• Answer the rest of the queries the same way as Breakf . That is, on query s, output a random x
such that hs(x) = f(x). If none exists, output ⊥.

Figure 3

To prove the above, we define a series of (inefficient) “hybrid” simulators Sim0, . . . ,Simq, defined
as follows:

We can write Sim0 as equivalent to the oracle Breakf where f ← Fn is chosen as a uniformly
random function. By Claim 4.2, the statistical distance between the uniform distributions over F∗n
and Fn is 2−Ω(m−k) and therefore this bounds the distance between the oracle {Breakf : f ← F∗n}
and Sim0. On the other hand Simq is exactly the same as the original simulator Sim. Therefore,
to prove equation 1, we only need to prove that the oracles Simi and Simi+1 are statistically close;
concretely, we show:∣∣∣Pr

[
MSimi(1n)(1n) = 1

]
− Pr

[
MSimi+1(1n)(1n) = 1

]∣∣∣ ≤
√

2k

2m − i
+ 2i · 2k

2m − i
, (2)

Notice that Simi and Simi+1 behave exactly the same on the first i queries. Let us fix any (worst-
case) sequence of the first i queries and their possible answers. This defines some set X and some
partial mapping f |X : X → {0, 1}k at the end of this sequence. Let us also fix the (i+ 1) query s.
We can bound the statistical distance between Simi and Simi+1 by how they answer the query i+ 1
and the rest of the queries going forward. The oracle Simi chooses the function f extending f |X
uniformly at random and answers the query i+ 1 via a random x such that hs(x) = f(x), and then
answers the rest of the queries after that similarly according to Breakf . Let x, f be random variables
for the above choice of x, f . The oracle Simi+1 answers query i+ 1 with a random x← {0, 1}m \X,
then chooses a function f uniformly at random subject to extending f |X and f(x) = hs(x), and
answers the rest of the queries according to Breakf . Let x′, f ′ be random variables for the above
choice of x, f . We can now bound the distance in equation (2) by ∆ := SD( (x, f) , (x′, f ′) ).
Therefore, we are left to bound ∆.

Let Fext be the set of all functions {0, 1}m → {0, 1}k extending f |X . Then we can write:

2∆ =
∑

f∈Fext

x∈{0,1}m

Pr [(x, f) = (x, f)]− Pr
[
(x′, f ′) = (x, f)

]

Next, for a function f : {0, 1}m → {0, 1}k, we denote by

Cf = {x ∈ {0, 1}m : f(x) = hs(x)}
Df = Cf \X
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the set of elements on which f coincides with hs, and the set of such elements outside of X,
respectively.

Then denoting Mi = |{0, 1}m \X| = 2m − i and K =
∣∣{0, 1}k∣∣ = 2k. We have for each (x, f)

such that x ∈ Cf :

Pr [(x, f) = (x, f)] =
1

|Cf |
·
(

1

K

)Mi

whereas for any other (x, f) this probability is zero. Also, for any (x, f) such that x ∈ Df :

Pr
[
(x′, f ′) = (x, f)

]
=

1

Mi
·
(

1

K

)Mi−1

=
K

Mi
·
(

1

K

)Mi

,

while for any other (x, f) this probability is zero. Thus, we have

2∆ =∑
f∈Fext
x∈Df

(
1

K

)Mi
∣∣∣∣ 1

|Cf |
− K

Mi

∣∣∣∣+
∑

f∈Fext
x∈X∩Cf

(
1

K

)Mi

· 1

|Cf |

Now, recalling that f : {0, 1}m → {0, 1}k is a random function extending f |X , we can rewrite the
last term as:

E
f

[
|Df | ·

∣∣∣∣ 1

|Cf |
− K

Mi

∣∣∣∣]+ E
f

[
|X ∩ Cf | ·

1

|Cf |

]
=

E
f

[
(|Cf | − |X ∩ Cf |) ·

∣∣∣∣ 1

|Cf |
− K

Mi

∣∣∣∣]+ E
f

[
|X ∩ Cf | ·

1

|Cf |

]
=

E
f

[
|Cf | ·

∣∣∣∣ 1

|Cf |
− K

Mi

∣∣∣∣]+ E
f

[
|X ∩ Cf | ·

(
1

|Cf |
−
∣∣∣∣ 1

|Cf |
− K

Mi

∣∣∣∣)] ≤
E
f

[∣∣∣∣1− |Cf | ·
K

Mi

∣∣∣∣]+ E
f

[
|X ∩ Cf | ·

K

Mi

]
≤

E
f

[∣∣∣∣1− |Df | ·
K

Mi

∣∣∣∣ + |X ∩ Cf | ·
K

Mi

]
+ E

f

[
|X ∩ Cf | ·

K

Mi

]
≤

E
f

[∣∣∣∣1− |Df | ·
K

Mi

∣∣∣∣]+ 2 · |X| · K
Mi

We now note that |Df | describes the number of collisions of a random function f |{0,1}m\X with

hsi+1 , and is hence the sum of Mi independent indicators, each with probability 1
K , implying that:

E
f

[|Df |] =
Mi

K
and Var

f
[|Df |] =

Mi

K

(
1− 1

K

)
.
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Using the above, Jensen’s inequality, and the fact that |X| < i:

E
f

[∣∣∣∣1− |Df |
K

Mi

∣∣∣∣]+ 2 · |X| · K
Mi
≤√√√√E

f

[∣∣∣∣1− |Df | ·
K

Mi

∣∣∣∣2
]

+ 2i · K
Mi

=

K

Mi

√√√√E
f

[∣∣∣∣Ef [|Df |]− |Df |
∣∣∣∣2
]

+ 2i · K
Mi

=

K

Mi
·
√

Var
f

[|Df |] + 2i · K
Mi
≤√

K

Mi
+ 2i · K

Mi
.

The above proves the hybrid step in equation (2). By combining q such hybrid steps, we get the
indistinguishability claimed in equation 1, which proves the theorem.
Theorem 3.7 and Theorem 4.1 allow us to conclude the following.

Corollary 4.3. Let G = (Γ, c) be a cryptographic game assumption and let H be an (m, k)-hash
function family for some polynomials m = m(n), k = k(n) such that m(n) − k(n) = ω(log(n)). If
there is a black-box reduction showing that H is entropy-preserving from the security of the game
G, then G is not secure. Furthermore, if m(n)− k(n) = nδ for some constant δ > 0, and there is a
black-box reduction showing that H is entropy preserving from the δ-exponential security of G, then
G is not δ-exponentially secure.

5 Black-Box Impossibility for Fiat-Shamir

As mentioned in the introduction, the work of Dodis, Ristenpart and Vadhan [DRV12], shows that
any FS-universal hash function family H must also be entropy-preserving. Intuitively, this should
imply that our negative result for entropy-preserving hashing from the previous section should yield
a similar negative result for FS-universal hashing. Indeed, we do show a theorem along these lines.
However, formalizing the above intuition requires some care. For example, it becomes important
that our notion of black-box reductions for FS-universal hashing treats the 3PC proof-system as
a black box. Intuitively, this is because the result of [DRV12] uses the attacker A against the
entropy-preserving security of a hash family H to construct a 3PC proof system ΠA = 〈PA, V A〉 as
well as to attacker DA that breaks the soundness of the FS-collapse of ΠA. Therefore, any black-
box reduction that shows the FS-univeraslity of H under some game assumption by treating the
proof system ΠA = 〈PA, V A〉 and the attacker DA as a black box, can also be used as a reduction
showing the entropy-preserving security of H under the same assumption by treating the attacker
A as a black box. We give the full proof for completeness, adapting the result of [DRV12] to the
setting of black-box reductions.

Theorem 5.1. Let G = (Γ, c) be a cryptographic game and let H be an (m, k)-hash function family
for some polynomials m = m(n), k = k(n). Let B(·,·,·) be a black-box reduction showing the (m, k)-
FS-universality of H from the security of the game G (Definition 3.3). Then there exists a black-box
reduction C(·) showing that H is entropy-preserving from the security of the game G (Definition 3.4).
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The reduction C has the same running time as B up to a polynomial blowup; in particular, the
above also holds for the case of δ-exponential security.

Proof. We first show that, given an attacker A that breaks the entropy-preserving security of
H, we can construct a 3-message protocol ΠA, where the honest verifier V has oracle access A,
such that the protocol is a proof, but its FS-collapse is not sound. Indeed, let A = {An} be
any deterministic (and possibly inefficient) attacker against the entropy-preserving security of H.
In other words, we have H(hs(x)|x) = 0, where s,x are correlated random variables defined by

s
$← {0, 1}`(n),x

$← An(s). (For simplicity of notation, we will skip the subscript n for the oracles).
We construct a 3PC protocol ΠA = 〈P, V A〉, where the verifier V A is efficient up to having oracle
access to the (possibly inefficient) oracle A. The protocol will be a proof system for the empty
relation R = ∅, meaning that the verifier should always reject (with all but negligible probability)
when interacting with any prover. We call a protocol of this type an unwinnable protocol. In
this case, we do not need to specify an honest prover P (i.e., the vacuous prover that doesn’t do
anything already meets the definition), and the completeness property just holds trivially. (See
further discussion on the use of unwinnable games below.) The protocol is shown in Figure 4.

〈P, V A〉

• The honest prover P does not do anything at all.

• The verifier V A interacts with a (possibly adversarial) prover P ∗ as follows. In the first round,
it receives some string α ∈ {0, 1}m. In the second round, it responds with a random challenge
β ∈ {0, 1}k. In the third round, it receives some string γ ∈ {0, 1}`. Finally, it outputs 1 if
β = hγ(α) and α = A(γ).

Figure 4

We now show that the above protocol ΠA is an 3PC unwinnable protocol (proof for the empty
relation) with soundness 2−k. This follows by the following simple argument. Recall that the

oracle A is such that H(hs(x)|x) = 0 where s,x are correlated random variables defined by s
$←

{0, 1}`(n),x
$← A(s). This implies that given α, there is a unique value β for which there exists

some γ satisfying: A(γ) = α and β = hγ(α). However the verifier V A in the above protocol chooses
β randomly in {0, 1}k. This implies that no (even unbounded) prover can make the verifier output
1 except with probability 2−k.

Next, let ΠAFS = FSΠA
H be the FS-collapse of ΠA with respect to H. We construct an oracle-

aided (and otherwise efficient) attacker DA that breaks the soundness of ΠAFS with probability 1.
Define DA so that, on input s, it outputs (α, β, γ) where α := A(s), β = hs(α) and γ := s. Note
that the verifier V A on input (α, β, γ) will always output 1 and β = hγ(α). Hence, DA always
breaks the computational soundness of ΠAFS .

To complete the proof, we observe that a black-box reduction showing the FS-universal security
of H based on a cryptographic game G can be converted to a black-box reduction showing the
entropy-preserving security of H from the same game G. Indeed, let B(·,·,·) be a black-box reduction
from the FS-universality of H to a game G, the new reduction C(·), given oracle access to an attacker
A against the entropy-preserving security of H, simply emulates BP,V A,DA(1n), where P, V A are
the prover and verifier of ΠA as defined above, and DA is the attacker on FS-universality defined
above; indeed, all of these algorithms can be efficiently emulated, given oracle-access to A. If A
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breaks the entropy-preserving security of H, then P, V A,DA break its FS-universality, implying
that the reduction BP,V A,DA(1n), and hence also CA(1n), has a noticeable advantage 1/p(n) in the
game G.

The analogous result for δ-exponentially security follows similarly.

Theorem 5.1 along with Corollary 4.3 directly implies the following corollary.

Corollary 5.2. Let G = (Γ, c) be a cryptographic game assumption and let H be an (m, k)-hash
function family for some polynomials m = m(n), k = k(n) such that m(n) − k(n) = ω(log(n)). If
there is a black-box reduction showing the (m, k)-FS-universality of H from the security of the game
G, then G is not secure. Furthermore, if m(n)− k(n) = nδ for some constant δ > 0, and there is a
black-box reduction showing the (m, k)-FS-universality of H from the δ-exponential security of G,
then G is not δ-exponentially secure.

FS-Universality for non-trivial languages and special classes of 3PC proofs. Our negative
result, as stated in the above theorem and corollary, applies to FS-universal hash functions that are
sound for all 3PC proofs and for all languages. In particular, the proof of impossibility discusses
a protocol for the trivial relation R = ∅. Such protocols may indeed seem unnatural, and one
may hope to prove the security of FS-universal hash functions for restricted classes of “interesting
languages,” e.g. some NP-complete language. However, it is not hard to see that the result directly
extends to rule out such FS-universal functions as well. Concretely, looking into the above proof,
we can modify the prover P and verifier V A, by taking any 3PC proof system ΠL (e.g., for some
NP-complete language L) and welding it together with the above unwinnable game; namely, the
prover will act as in the original system ΠL, and the verifier V A will accept if the transcript is
accepting with respect to either ΠL, or the unwinnable game (assume the message lengths are the
same in both ΠA and ΠL).

Another possible approach towards obtaining a positive result is to restrict the class of protocols
for which we require the FS heuristic to work (while still having a rich and interesting enough class
of protocols). Here, a very natural type of restriction, for NP languages, concerns prover privacy.
Indeed, we would, typically, try to apply the FS heuristic to protocols that satisfy some notion of
privacy such as zero-knowledge, witness-hiding, or witness indistinguishability. Intuitively, adding
a privacy guarantee for the prover may be an obstruction to achieving protocols with “stronger
soundness properties”, and in particular, an obstruction to the security of the FS heuristic. For
example, as mentioned in the introduction, we already know that for zero-knowledge protocols the
FS heuristic cannot be sound (however, we also don’t have any public-coin zero-knowledge proofs
candidates to apply it to). It may be interesting to ask whether we can get FS-universality for all
protocols that are not zero-knowledge, but do meet some weaker notion of privacy. For example, all
protocols that are not zero-knowledge but are witness hiding, or witness indistinguishable. However,
our negative result also extends to cover this type of restrictions. As above, this is done by welding
a protocol ΠL that has given privacy properties, e.g. it is witness-hiding but not zero-knowledge,
with an unwinnable game as the above. The new protocol inherits the privacy properties of the
original protocol as it does not effect the honest prover behavior, but rather only the verifier’s
decision algorithm.
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