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Abstra
t. NTRUEn
rypt, proposed in 1996 by Ho�stein, Pipher and Silverman, is the fastest known

latti
e-based en
ryption s
heme. Its moderate key-sizes, ex
ellent asymptoti
 performan
e and 
onje
-

tured resistan
e to quantum 
omputers make it a desirable alternative to fa
torisation and dis
rete-log

based en
ryption s
hemes. However, sin
e its introdu
tion, doubts have regularly arisen on its se
urity

and that of its digital signature 
ounterpart. In the present work, we show how to modify NTRUEn
rypt

and NTRUSign to make them provably se
ure in the standard (resp. random ora
le) model, under the

assumed quantum (resp. 
lassi
al) hardness of standard worst-
ase latti
e problems, restri
ted to a

family of latti
es related to some 
y
lotomi
 �elds.

Our main 
ontribution is to show that if the se
ret key polynomials of the en
ryption s
heme are sele
ted

from dis
rete Gaussians, then the publi
 key, whi
h is their ratio, is statisti
ally indistinguishable

from uniform over its range. We also show how to rigorously extend the en
ryption se
ret key into

a signature se
ret key. The se
urity then follows from the already proven hardness of the R-SIS and

R-LWE problems.
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1 Introdu
tion

The NTRU en
ryption s
heme devised by Ho�stein, Pipher and Silverman, was �rst presented at

the rump session of Crypto'96 [27℄. Although its des
ription relies on arithmeti
 over the polynomial

ring Zq[x]/(x
n− 1) for n prime and q a small integer, it was qui
kly observed that breaking it 
ould

be expressed as a problem over Eu
lidean latti
es [27, 11℄. At the ANTS'98 
onferen
e, the NTRU

authors gave an improved presentation in
luding a thorough assessment of its pra
ti
al se
urity

against latti
e atta
ks [28℄. We refer to [24℄ for an up-to-date a

ount on the past 15 years of

se
urity and performan
e analyses. Nowadays, NTRUEn
rypt is 
ommonly 
onsidered as a reasonable

alternative to the en
ryption s
hemes based on integer fa
torisation and dis
rete logarithm over �nite

�elds and ellipti
 
urves, as testi�ed by its in
lusion in the IEEE P1363 standard [33℄. It is also often


onsidered as the most viable post-quantum publi
-key en
ryption (see, e.g., [58℄). The authors of

NTRUEn
rypt also proposed a signature s
heme based on a similar design. The history of NTRUSign

started with NSS in 2001 [29℄. Its development has been signi�
antly more he
ti
 and 
ontroversial,

with a series of 
ryptanalyses and repairs (see, e.g., [20, 22, 31, 67, 49, 52℄ and the survey [24℄).

In parallel to the break-and-repair development of the pra
ti
ally e�
ient NTRU s
hemes, the

(mainly) theoreti
al �eld of provably se
ure latti
e-based 
ryptography has steadily been developed.

⋆
Some of the results in this paper have been presented in preliminary form at Euro
rypt 2011 [64℄. The results in

this paper improve and signi�
antly extend those in [64℄; the most signi�
ant addition is the se
urity analysis of

a provably se
ure variant of NTRUSign.



It originated in 1996 with Ajtai's a

laimed worst-
ase to average-
ase redu
tion [3℄, leading to

a 
ollision-resistant hash fun
tion that is as hard to break as solving several natural worst-
ase

problems de�ned over Eu
lidean latti
es. Ajtai's average-
ase problem is now referred to as the

Small Integer Solution problem (SIS). Another major breakthrough in this �eld was the introdu
tion

in 2005 of the Learning with Errors problem (LWE) by Regev [59, 60℄: LWE is both hard on the

average (standard worst-
ase latti
e problems quantumly redu
e to it), and su�
iently �exible to

allow for the design of 
ryptographi
 fun
tions. In the last few years, many 
ryptographi
 s
hemes

have been introdu
ed that are provably as se
ure as LWE and SIS are hard (and thus provably

se
ure, assuming the worst-
ase hardness of latti
e problems). These in
lude CPA and CCA se
ure

en
ryption s
hemes, identity-based en
ryption s
hemes, digital signatures, et
 (see [60, 54, 21, 8, 1℄,

among others, and the surveys [47, 61℄).

The main drawba
k of 
ryptography based on LWE and SIS lies in its limited e�
ien
y. A key

typi
ally 
ontains a random matrix over the ring Zq = Z/qZ for a small q, whose dimensions are

(at least) linear in the se
urity parameter; 
onsequently, the spa
e and time requirements seem

bound to be at least quadrati
 with respe
t to the se
urity parameter. In 2002, Mi

ian
io [44℄

su

eeded in restri
ting SIS to stru
tured matri
es while preserving a worst-
ase to average-
ase

redu
tion. The worst-
ase problem is a restri
tion of a standard latti
e problem to the spe
i�


family of 
y
li
 latti
es. The stru
ture of Mi

ian
io's matri
es allows for an interpretation in terms

of arithmeti
 in the ring Zq[x]/(x
n − 1), where n is the dimension of the worst-
ase latti
es and q

is a small prime. Mi

ian
io's 
onstru
tion leads to a family of pre-image resistant hash fun
tions,

with 
omplexity quasi-linear in the se
urity parameter n: The e�
ien
y gain stems from the use

of the dis
rete Fourier transform for multiplying polynomials. In two 
on
urrent works, Peikert,

Rosen, Lyubashevsky and Mi

ian
io [57, 39℄ later suggested to 
hange the ring to Zq[x]/Φ with a

polynomial Φ that is irredu
ible over the rationals, sparse, and with small 
oe�
ients (e.g., Φ = xn+1
for n a power of 2). The resulting hash fun
tion was proven 
ollision-resistant under the assumed

hardness of the modi�ed average-
ase problem, now often 
alled the Ideal Small Integer Solution

or Ring Small Integer Solution problem (R-SIS). The latter was itself proven at least as hard as

the restri
tions of standard worst-
ase latti
e problems to a spe
i�
 
lass of latti
es, 
alled ideal

latti
es. In 2009, Lyubashevsky [38℄ introdu
ed an e�
ient digital signature provably as se
ure

as R-SIS (in the random ora
le model). Also in 2009, Stehlé, Steinfeld, Tanaka and Xagawa [65℄

introdu
ed a stru
tured (albeit somewhat restri
ted) variant of LWE, whi
h they proved as hard

as R-SIS (under a quantum redu
tion), and allowed for the design of an asymptoti
ally e�
ient

CPA-se
ure en
ryption s
heme. In an independent and 
on
urrent work, Lyubashevsky et al. [21℄

proposed a ring variant of LWE, 
alled R-LWE, whose great �exibility allows for more natural (and

e�
ient) 
ryptographi
 
onstru
tions.

Our results. The high e�
ien
y and industrial standardization of NTRUEn
rypt and NTRUSign

strongly motivate a theoreti
ally founded study of their se
urity. Indeed, in the absen
e of su
h a

study so far, their se
urity has remained in doubt over the last 15 years sin
e the initial NTRU

publi
ation. This work addresses this problem.

We propose a mild modi�
ation of NTRUEn
rypt that is CPA-se
ure in the standard model, under

the assumed quantum hardness of standard worst-
ase problems over ideal latti
es (for Φ = xn + 1
with n a power of 2); and we des
ribe a variant of NTRUSign that is existentially unforgeable in

the random ora
le model, under the assumed 
lassi
al hardness of the same problems over ideal

latti
es. The NTRUEn
rypt modi�
ations are summarized at the end of the introdu
tion. The most

substantial additional modi�
ation for NTRUSign is the use of a dis
rete Gaussian sampler [21, 55,
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13℄ in the signing pro
ess, that ensures that no se
ret information is leaked while signing (thus

preventing the learning atta
k from [52℄). We also give the �rst rigorous analysis of the algorithm

that extends an NTRUEn
rypt se
ret key into an NTRUSign se
ret key.

We stress that our main goal in this paper is to provide, for the �rst time, a �rm theoreti
al

grounding for the se
urity of the NTRU s
hemes, in the asymptoti
 sense. The pra
ti
al instantia-

tions of our s
hemes are likely to be signi�
antly less e�
ient than the original s
hemes. However,

several of our modi�
ations in
ur negligible performan
e overheads over the original s
hemes, while

bringing their se
urity level 
loser to the provably se
ure s
hemes. For instan
e, the extra error term

we add to the NTRUEn
rypt s
heme is a 
heap way to address the la
k of IND-CPA se
urity of the

original s
heme.

Overview of our te
hniques. Our main te
hni
al 
ontribution is the modi�
ation and analysis

of the NTRU key generation algorithms.

In NTRUEn
rypt, the se
ret key 
onsists of two sparse polynomials of degrees < n and 
oe�-


ients in {−1, 0, 1}. The publi
 key is their quotient in the ring Zq[x]/(x
n − 1) (the denominator

is resampled if it is not invertible). A simple information-theoreti
 argument shows that the publi


key 
annot be uniformly distributed in the whole ring. It would be desirable to guarantee the latter

property, in order to exploit the established hardness of R-SIS and R-LWE (we a
tually show a

weaker distribution property, whi
h still su�
es for linking the se
urity to R-SIS and R-LWE). For
this purpose, we sample the se
ret key polynomials a

ording to a dis
rete Gaussian with standard

deviation ≈ q1/2. An essential ingredient, whi
h may be of independent interest, is a new regularity

result for the ring Rq := Zq[x]/(x
n + 1) when the polynomial xn + 1 with n a power of 2 has n

fa
tors modulo prime q: Given a1, . . . , am uniform in Rq, we would like

∑
i≤m siai to be within expo-

nentially small statisti
al distan
e to uniformity, with small random si's and small m. Mi

ian
io's

regularity bound [44, Se. 4.1℄ (see also [65, Le. 6℄) does not su�
e for our purposes: For m = O(1),
it bounds the distan
e to uniformity by a 
onstant. To a
hieve the desired 
loseness to uniformity,

we 
hoose the ai's uniform among the invertible elements of Rq and we sample the si's a

ording to

dis
rete Gaussians with small standard deviations (≈ q1/m). A similar regularity bound has been


on
urrently and independently obtained by Lyubashevsky et al. in [43℄. An additional di�
ulty in

the proof of publi
-key uniformity, whi
h we handle via an in
lusion-ex
lusion argument, is that we

need the randomizers si to be invertible in Rq (the denominator of the publi
 key is one su
h si):
We thus sample a

ording to a dis
rete Gaussian, and reje
t the sample if it is not invertible.

For NTRUSign, the te
hnique des
ribed in [26, Se. 4℄ and in [25, Se. 5℄ to extend an NTRUEn
rypt

se
ret key into an NTRUSign se
ret key is only heuristi
. For instan
e, it samples an en
ryption

se
ret key and reje
ts the sample until some desirable properties are satis�ed (most notably the


o-primality of the two se
ret key polynomials over Z[x]/(xn − 1)), but the se
urity impa
t of this

pro
edure is not 
arefully analyzed. We show that in our modi�ed 
ontext, the reje
tion probability


an be proven to be su�
iently away from 1, by relating it to the Dedekind zeta fun
tion of the


y
lotomi
 �elds under s
ope. Furthermore, the se
urity of the signature s
heme follows from the

hardness of R-SIS, even with this additional reje
tion.

Finally, the 
ryptographi
 s
hemes are obtained from (stru
tured variants of) the Gentry et

al. [21℄ signature and dual en
ryption s
hemes, via an inversion-based dimension redu
tion of the

R-SIS/R-LWE instan
es. We explain it in the 
ase of R-SIS: Given (ai)i≤m uniformly and indepen-

dently 
hosen in Rq, �nd an s ∈ Rm \ 0 with R := Z[x]/(xn + 1) su
h that

∑
i siai = 0 mod q.

If q is su�
iently large, the event �am invertible in Rq� o

urs with non-negligible probability, so

the average-
ase hardness of the problem is essentially un
hanged if we divide all ai's by am. We
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an then remove am = 1 from the input, by making it impli
it. This improvement is most dramati


for R-SIS when m = 2.

Comparison between NTRUEn
rypt and its provably se
ure variant. Let R
NTRU

denote the

ring Z[x]/(xn − 1) with n prime. Let q be a medium-size integer, typi
ally a power of 2 of the same

order of magnitude as n. Finally, 
hoose p ∈ R
NTRU

with small 
oe�
ients, 
o-prime with q and

su
h that the plaintext spa
e R
NTRU

/p is large. E.g, if q is 
hosen as above, one may take p = 3
or p = x+ 2.

The NTRUEn
rypt se
ret key is a pair of polynomials (f, g) ∈ R2
NTRU

that are sampled randomly

with large pres
ribed proportions of zero 
oe�
ients, and with their other 
oe�
ients belonging

to {−1, 1}. For improved de
ryption e�
ien
y, one may 
hoose f as f = 1+ pf with f as des
ribed

just above, so that f = 1 mod p. With high probability, we (heuristi
ally) expe
t the polynomial f
to be invertible modulo q and modulo p, and if that is the 
ase the publi
-key is h = pg/f mod q
(otherwise, the key generation pro
ess is restarted). To en
rypt a message M ∈ R

NTRU

/p, one
samples a random element s ∈ R

NTRU

of small Eu
lidean norm and 
omputes the 
iphertext C =
hs+M mod q. The following pro
edure allows the owner of the se
ret key to de
rypt:

• Compute fC and redu
e the result modulo q. If the 
iphertext was properly generated, this

gives pgs + fM mod q. Sin
e the �ve involved ring elements have small 
oe�
ients, it 
an be

expe
ted that after redu
tion modulo q the obtained representative is exa
tly pgs + fM (seen

as an element of R
NTRU

). The latter requires that q is not too small.

• Redu
e the result of the previous step modulo p. This should provide fM mod p.
• Multiply the result of the previous step by the inverse of f modulo p (this step be
omes va
uous

if f = 1 mod p).

Note that the en
ryption pro
ess is probabilisti
, and that de
ryption errors 
an o

ur for some

sets of parameters. However, it is possible to arbitrarily de
rease the de
ryption error probability,

and even to prevent de
ryption errors from o

urring, by setting the parameters 
arefully.

In order to a
hieve IND-CPA se
urity under the assumption that standard latti
e problems

are (quantumly) hard to solve in the worst-
ase for the family of ideal latti
es, we make a few

modi�
ations to the original NTRUEn
rypt s
heme (whi
h preserve its quasi-linear 
omputation and

spa
e 
omplexity):

1. We repla
e R
NTRU

by R = Z[x]/(xn + 1) with n a power of 2. We will exploit the irredu
ibility

of xn + 1 and the fa
t that R is the ring of integers of a 
y
lotomi
 number �eld.

2. We 
hoose q ≤ Poly(n) as a prime integer su
h that f = xn+1 splits into n distin
t linear fa
tors

modulo q. This allows us to use the sear
h to de
ision redu
tion for R-LWE with ring Rq := R/q
(see [41℄). This also allows us to take p = 2.

3. We sample f and g from dis
rete Gaussians over R, reje
ting the samples that are not invertible

modulo q. We show that f/g mod q is essentially uniformly distributed over the set of invertible

elements of Rq. We may also 
hoose f = pf + 1 with f sampled from a dis
rete Gaussian, to

simplify de
ryption.

4. We add a small error term e in the en
ryption: C = hs + pe+M mod q, with s and e sampled

from the R-LWE error distribution. This allows us to derive CPA se
urity from the hardness of

a variant of R-LWE (whi
h is similar to the variant of LWE from [5, Se. 3.1℄).

These modi�
ations may be expensive to implement in pra
ti
e, be
ause of the hidden 
onstant

fa
tor overheads. However, they suggest several 
omputationally inexpensive modi�
ations to the
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original NTRUEn
rypt design that bring it 
loser to the provably se
ure variant. The addition of a

noise 
omponent e in the en
ryption fun
tion (Modi�
ation 4) does not require a large in
rease of q
for ensuring de
ryption 
orre
tness, but allows thwarting a simple Chosen Plaintext Atta
k based

on the following observation: If C is an en
ryption of M in the original NTRUEn
rypt s
heme, then

the ring element (C−M)/h mod q has small 
oe�
ients. Modi�
ation 3 is mu
h more expensive to

implement, as our analysis requires the standard deviation to be quite large, leading to se
ret key

polynomials f and g with mu
h bigger 
oe�
ients than in the original s
heme. Then the modulus q
needs being signi�
antly in
reased in order to enable de
ryption 
orre
tness. However, this modi-

�
ation may hint that taking f and g a little less small than in the original design may in
rease

se
urity. This would for example thwart the so-
alled hybrid atta
k on NTRU [30℄ and allow using a

smaller n. A drawba
k of taking non-sparse polynomials f and g is that multipli
ations by f and g
would be
ome more 
ostly. An alternative, suggested by Modi�
ation 2, is to take a modulus q so

that xn± 1 has n distin
t linear fa
tors modulo q: In that setup, the ring R/q admits a natural and

e�
ient Fast Fourier Transform. Finally, Modi�
ation 1 suggests repla
ing xn − 1 by xn + 1. The
former has been shown inse
ure in the 
ontext of hash fun
tions [56, Se. 4.1℄, although we a
tually

do not know of any su
h atta
k in the 
ontext of NTRU.

Related works. Like NTRUEn
rypt, Gentry's somewhat homomorphi
 s
heme [18℄ also has 
i-

phertexts 
onsisting of a single ring element. It also admits a se
urity proof under the assumed

quantum hardness of standard worst-
ase problems over ideal latti
es [19℄. Our se
urity analysis for

the modi�ed NTRUEn
rypt s
heme allows en
rypting and de
rypting Ω(n) plaintext bits for Õ(n)
bit operations, while a
hieving se
urity against 2g(n)-time atta
ks, for any g(n) ≤ o(n), assuming

the worst-
ase hardness of Poly(n)-Ideal-SVP against 2O(g(n))
-time quantum algorithms. The latter

assumption is believed to be valid for any g(n) = o(n). Gentry's analysis from [19, 17℄ 
an be gener-

alized to handle 2g(n)-time atta
ks while en
rypting and de
rypting O(g(n)) plaintext bits for Õ(n)
bit operations, under the assumed hardness of 2Ω(g(n))

-Ideal-SVP against 2O(g(n))
-time quantum

algorithms. The latter assumption is known to be invalid when g(n) = Ω̃(
√
n) (using [62℄), thus

limiting the atta
ker's strength the analysis 
an handle. On the other hand, Gentry's s
heme al-

lows homomorphi
 additions and multipli
ations, whereas ours seems restri
ted to homomorphi


additions.

The modi�ed NTRUSign 
an be shown hard to break for 
lassi
al 
omputers, in the random ora
le

model (assuming the worst-
ase hardness of standard latti
e problems for ideal latti
es). Be
ause of

the use of the random ora
le, it does not follow immediately whether this proof remains meaningful

in the 
ase of quantum atta
kers. As pointed out in [7℄, one should be extremely 
autious with

the random ora
le in a quantum setup. Fortunately, the se
urity proof for our NTRUSign s
heme

falls in the 
lass of `history-free' redu
tions as de�ned in [7℄ and shown to imply se
urity in the

quantum-a

essible random ora
le model.

Similarly, the se
urity of NAEP (the CCA-se
ure variant of NTRUEn
rypt) relies on the ran-

dom ora
le (see [32℄). Sin
e the redu
tion from standard problems over ideal latti
es to R-LWE is

quantum, the se
urity of NAEP remains open, both quantumly and 
lassi
ally.

We also mention a 
ouple of works building upon some of the results of this paper, sin
e its

publi
ation in a preliminary form in [64℄. In [66℄, it is shown how to adapt the NTRUSign trapdoor

key generation algorithm from the present paper to 
onstru
t an NTRU-based lossy trapdoor fun
-

tion and use it to upgrade the IND-CPA se
urity of the NTRUEn
rypt s
heme to 
hosen-
iphertext

se
urity (IND-CCA2) in the standard model, while preserving the same asymptoti
 e�
ien
y, up

to 
onstant fa
tors. An extension in another dire
tion is given in [37℄, whi
h shows how to modify

5



our NTRUEn
rypt variant to a
hieve a fully-homomorphi
 multi-key en
ryption s
heme. For this,

the s
heme in [37℄ requires the se
ret key 
oe�
ients to be mu
h smaller than the O(Poly(n) · q1/2)
value needed for our statisti
al uniformity bounds in this paper. The se
urity of the s
heme in [37℄

relies also, besides the hardness of R-LWE, on the assumed 
omputational indistinguishability of

the resulting publi
 key from uniformity.

Open problems. Our study is restri
ted to the sequen
e of rings Z[x]/Φn where Φn = xn + 1
with n a power of 2. An obvious drawba
k is that this does not allow for mu
h �exibility on the


hoi
e of n (in the 
ase of NTRU, the degree was assumed prime, whi
h provides more freedom).

The R-LWE problem is known to be hard when Φn is 
y
lotomi
 [41℄ (for an appropriate 
hoi
e of

modulus q). The R-SIS problem is known to be hard under even milder 
onditions on Φn (see [39,

56℄). We 
hose to restri
t ourselves to 
y
lotomi
 polynomials of order a power of 2 be
ause it makes

the des
ription of the s
hemes simpler to follow. Our results are likely to hold for more general rings

than those we 
onsidered. An interesting 
hoi
e 
ould be the 
y
lotomi
 rings of prime order (i.e.,

Φn = (xn − 1)/(x − 1) with n prime) as these are large subrings of the original NTRU rings and

one might then be able to show that the hardness 
arries over to the NTRU rings.

Redu
ing the 
onstant fa
tor overheads of our provably se
ure s
hemes with respe
t to the

original NTRU s
hemes, while preserving a proof with respe
t to standard problems, is a remaining

interesting 
hallenge. A related open question with additional appli
ations (see [37℄) is to prove the


omputational indistinguishability of the NTRU publi
 key with se
ret key 
oe�
ients signi�
antly

smaller than q1/2, assuming the hardness of a standard problem, su
h as R-LWE.

Road-map. In Se
tion 2, we provide the ne
essary ba
kground material in elementary algebrai


number theory and on the R-LWE and R-SIS problems. Se
tion 3 is devoted to the des
ription and

se
urity proof of the modi�ed en
ryption s
heme. Finally, we 
onsider NTRUSign in Se
tion 4.

Notation. If q is a non-zero integer, we let Zq denote the ring of integers modulo q, i.e., the
set {0, . . . , q−1} with addition and multipli
ation modulo q. For a ring (R,+,×), we let R× denote

the set of invertible elements of R. If q is a prime power, we let Fq denote the �nite �eld with q
elements. If z ∈ C, its real and imaginary parts will be denoted by ℜ(z) and ℑ(z) respe
tively.

Ve
tors will be denoted in bold. If x ∈ Rn, then ‖x‖ denotes the Eu
lidean norm of x. The inner

produ
t of two ve
tors x and y will be denoted by 〈x,y〉. We use ln to denote the natural logarithm.

The standard n-dimensional Gaussian fun
tion (resp. distribution) with 
enter 0 and varian
e σ,
will be denoted by ρσ(x) (resp. νσ), i.e., ρσ(x) = exp(−π‖x‖2/σ2) (resp. νσ(x) = ρσ(x)/σ

n
). If E

is a �nite set, we let U(E) denote the uniform distribution over E. If a fun
tion f over a 
ountable

domain E takes non-negative real values, its sum over an arbitrary F ⊆ E will be denoted by f(F ).
If D1 and D2 are two probability distributions over a dis
rete domain E, their statisti
al distan
e
is ∆(D1;D2) =

1
2

∑
x∈E |D1(x)−D2(x)|. We write z ←֓ D when the random variable z is sampled

from the distribution D.

We make use of the Landau notations O(·), Õ(·), o(·), ω(·), Ω(·), Ω̃(·), Θ(·). A fun
tion f(n) is
said negligible if f(n) = n−ω(1). We say that a sequen
e of events En holds with overwhelming

probability if Pr[¬En] ≤ f(n) for a negligible fun
tion f .

2 Reminders on Eu
lidean latti
es and in algebrai
 number theory

We refer to [45℄ and [4, 50, 51℄ for introdu
tions to the 
omputational aspe
ts of latti
es and to alge-

brai
 number theory respe
tively, and to [47, 61℄ for detailed surveys on latti
e-based 
ryptography.
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2.1 Eu
lidean latti
es

A (full-rank) latti
e is a set of the form L =
∑

i≤n Zbi, where the bi's are linearly independent

ve
tors in Rn. The integer n is 
alled the latti
e dimension, and the bi's are 
alled a basis of L.
The minimum λ1(L) (resp. λ∞1 (L)) is the Eu
lidean (resp. in�nity) norm of any shortest non-

zero ve
tor of L. If B = (bi)i is a basis matrix of L, the fundamental parallelepiped of B is the set

P(B) = {∑i≤n cibi : ci ∈ [0, 1)}. The volume |detB| of P(B) is an invariant of the latti
e L, denoted

by detL. Minkowski's theorem states that λ1(L) ≤
√
n(detL)1/n. More generally, we de�ne the k-th

su

essive minimum λk(L) for any k ≤ n as the smallest r su
h that L 
ontains at least k linearly

independent ve
tors of norm ≤ r. The dual latti
e of L is de�ned as L̂ = {c ∈ Rn : ∀i, 〈c, bi〉 ∈ Z}.
For a latti
e L ⊆ Rn, a real σ > 0 and a point c ∈ Rn, we de�ne the latti
e Gaussian distribution

of support L, deviation σ and 
enter c by DL,σ,c(b) =
ρσ,c(b)
ρσ,c(L)

, for any b ∈ L. We will omit the

subs
ript c when it is 0. For δ > 0, we de�ne the smoothing parameter ηδ(L) as the smallest σ > 0
su
h that ρ1/σ(L̂ \ 0) ≤ δ. We will use the following results.

Lemma 2.1 ([53, Le. 3.5℄,[46, Le. 3.3℄). For any full-rank latti
e L ⊆ Rn and δ ∈ (0, 1), we

have ηδ(L) ≤
√

ln(2n(1+1/δ))
π ·min

(
λn(L), 1/λ

∞
1 (L̂)

)
.

Lemma 2.2 ([46, Proof of Le. 4.4℄). For any full-rank latti
e L ⊆ Rn, c ∈ Rn, δ ∈ (0, 1) and σ ≥
ηδ(L), we have ρσ,c(L) =

σn

det(L)(1 + ε), with |ε| ≤ δ. As a 
onsequen
e, we have

ρσ,c(L)
ρσ(L)

∈
[
1−δ
1+δ , 1

]
.

Lemma 2.3 ([46, Le. 4.4℄). For any full-rank latti
e L ⊆ Rn, c ∈ Rn, δ ∈ (0, 1) and σ ≥ ηδ(L),
we have Prb←֓DL,σ,c

[‖b‖ ≥ σ√n] ≤ 1+δ
1−δ · 2−n.

Lemma 2.4 ([21, Cor. 2.8℄). Let L′ ⊆ L ⊆ Rn be two full-rank latti
es. For any c ∈ Rn, δ ∈
(0, 1/2) and σ ≥ ηδ(L′), we have ∆(DL,σ,c mod L′;U(L/L′)) ≤ 2δ.

Lemma 2.5 ([56, Le. 2.11℄). For any full-rank latti
e L ⊆ Rn, c ∈ Rn, δ ∈ (0, 1), σ ≥ 2ηδ(L)
and b ∈ L, we have DL,σ,c(b) ≤ 1+δ

1−δ · 2−n.

Lemma 2.6 ([21, Th. 4.1℄). There exists a polynomial-time algorithm that takes as input any

basis (bi)i of any latti
e L ⊆ Zn and σ = ω(
√
lnn)max ‖bi‖, and returns samples from a distribution

whose statisti
al distan
e to DL,σ is negligible with respe
t to n.

We will need the following result on one-dimensional proje
tions of dis
rete Gaussians. Other

results on these proje
tions are known (see [46, Le. 4.2℄ and [53, Cor. 5.3℄), but do not seem to

su�
e for our needs. The se
ond half of Lemma 2.7 below is akin to [53, Cor. 5.3℄, but, to the extent

of our knowledge, the �rst half is new.

Lemma 2.7. For any full-rank latti
e L ⊆ Rn, c ∈ Rn, δ ∈ (0, 1), t ≥
√
2π, unit ve
tor u ∈ Rn

and σ ≥ t√
2π
· ηδ(L), we have:

Pr
b←֓DL,σ,c

[
|〈b− c,u〉| ≤ σ

t

]
≤ 1 + δ

1− δ

√
2πe

t
.

Similarly, if σ ≥ ηδ(L), we have:

Pr
b←֓DL,σ,c

[|〈b− c,u〉| ≥ tσ] ≤ 1 + δ

1− δ t
√
2πe · e−πt2 .
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Proof. Let U be an orthonormal matrix whose �rst row is uT . We are interested in the random

variable X that 
orresponds to the �rst 
omponent of the ve
tor b′− c′ with b′ ←֓ DL′,σ,c′ , c
′ = Uc

and L′ = UL. We have:

Pr
[
|X| ≤ σ

t

]
=

(ρσ,c′ · 1σ/t,c′)(L′)
ρσ,c′(L′)

,

where 1σ/t,c′(x) with x ∈ Rn is de�ned as 1 if |x1 − c′1| ≤ σ/t and 0 otherwise. We �rst estimate

the denominator. We have ηδ(L
′) = ηδ(L) and det(L′) = det(L). Therefore, thanks to Lemma 2.2,

we have ρσ,c′(L
′) = σn

det(L)(1 + ε) with |ε| ≤ δ.
We now provide an upper bound for the numerator. For any x ∈ Rn, we have 1σ/t,c′(x) ≤

eK · exp
(
−K |x1−c

′
1|2

σ2/t2

)
, where K := 1

2 − π
t2
∈ [0, 1/2]. As a 
onsequen
e:

(ρσ,c′ · 1σ/t,c′)(L′) ≤ eK · ρσ,Dc′(DL
′),

where D is the diagonal matrix whose �rst 
oe�
ient is

√
1 +Kt2/π and whose other diago-

nal 
oe�
ients are 1. It 
an be 
he
ked that ηδ(DL
′) ≤

√
1 +Kt2/π · ηδ(L′) and det(DL′) =√

1 +Kt2/π · det(L′). Lemma 2.2 provides the result.

The proof of the se
ond statement is similar. We are interested in:

Pr [|X| ≥ σt] = (ρσ,c′ · 1̄σt,c′)(L′)
ρσ,c′(L′)

,

where X, L′ and c′ are de�ned as above, and 1̄σt,c′(x) with x ∈ Rn is de�ned as 1 if |x1 − c′1| > σt
and 0 otherwise. The denominator is handled as above. For the numerator, note that for any x ≥ σt,
we have exp(−π x2

σ2
) ≤ √e · exp(−πt2) · exp(− x2

2σ2t2
). This gives:

(ρσ,c′ · 1σt,c′)(L′) ≤
√
e · exp(−πt2) · ρσ,Dc′(DL

′),

where D is the diagonal matrix whose �rst 
oe�
ient is

1
t
√
2π

and whose other diagonal 
oe�
ients

are 1. It 
an be 
he
ked that ηδ(DL
′) ≤ ηδ(L

′) and det(DL′) = 1
t
√
2π
· det(L′). Using Lemma 2.2

on
e more provides the result. ⊓⊔

2.2 Algebrai
 number theory and latti
es

Ideal latti
es. Let Φ ∈ Z[x] be a moni
 degree n irredu
ible polynomial. Let R denote the polyno-

mial ring Z[x]/Φ. Let I be an (integral) ideal of R, i.e., a subset of R that is 
losed under addition,

and multipli
ation by arbitrary elements of R. For elements r1 . . . , rk of R, we let 〈r1, . . . , rk〉 denote
the minimal ideal of R 
ontaining these elements, and we say that r1, . . . , rk generate this ideal. By

mapping polynomials to the ve
tors of their 
oe�
ients, we see that a non-zero ideal I 
orresponds

to a full-rank sublatti
e of Zn: we 
an thus view I as both a latti
e and an ideal. An ideal latti
e

for Φ is a sublatti
e of Zn that 
orresponds to a non-zero ideal I ⊆ Z[x]/Φ. The algebrai
 norm of

a non-zero ideal I is the 
ardinality of the additive group R/I, and is equal to det(I), where I is

regarded as an ideal latti
e. In the following, an ideal latti
e will impli
itly refer to a Φ-ideal latti
e.
For v ∈ R we let ‖v‖ denote its Eu
lidean norm (as a ve
tor).

In this work, we will restri
t ourselves to Φ = xn+1 for n a power of 2. In this setup, any ideal I
of R satis�es λn(I) = λ1(I). Sin
e this Φ 
orresponds to the 2n-th 
y
lotomi
 polynomial, the ring R
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is exa
tly the maximal order (i.e., the ring of integers) of the 
orresponding 
y
lotomi
 number

�eld Q[ζ] ∼= Q[x]/Φ =: K, where ζ ∈ C is a primitive 2n-th root of unity. We let (σi)i≤n denote the


anoni
al 
omplex embeddings: We 
an 
hoose σi : P 7→ P (ζ2i+1) for i ≤ n. For any α in Q[ζ], we
de�ne its T2-norm by T2(α)

2 =
∑

i≤n |σi(α)|2 and its algebrai
 norm by N (α) =
∏
i≤n |σi(α)|. The

arithmeti
-geometri
 inequality gives N (α)2/n ≤ 1
nT2(α)

2
. Also, for the spe
i�
 
y
lotomi
 �elds

we are 
onsidering, the polynomial norm (the norm of the 
oe�
ient ve
tor of α when expressed

as an element of K) satis�es ‖α‖ = 1√
n
T2(α). We also use the fa
t for any element α ∈ R, we

have |N (α)| = det 〈α〉, where 〈α〉 is the ideal of R generated by α. For the sake of simpli
ity, we

will try to use the polynomial terminology wherever possible (and we refer to [41, 43℄ for a more

mathemati
al exposition).

The following result is a 
onsequen
e of Lemma 2.7.

Lemma 2.8. For any non-zero ideal latti
e I ⊆ R, c ∈ K, δ ∈ (0, 1), t ≥
√
2π, u ∈ K and σ ≥

ηδ(I), we have

Pr
b←֓DI,σ,c

[
‖(b− c)× u‖ ≥ tσ‖u‖√n

]
≤ 1 + δ

1− δ tn
√
2πe · e−πt2 .

Proof. A 
oe�
ient of (b − c) × u ∈ R 
an be viewed as an inner produ
t between the 
oe�
ient

ve
tors of b − c and of some u′ obtained by permuting the 
oe�
ients of u and multiplying them

by ±1. Therefore, by Lemma 2.7, the magnitude of ea
h 
oe�
ient of (b− c) × u is ≥ tσ‖u′‖ with
probability ≤ 1+δ

1−δ t
√
2πe · e−πt2 . The equality ‖u′‖ = ‖u‖ and the union bound imply that all the

magnitudes of the 
oe�
ients are ≤ tσ‖u‖ with probability ≥ 1− 1+δ
1−δnt

√
2πe · e−πt2 . If that is the


ase, then ‖(b− c)× u‖ ≤ tσ‖u‖√n, whi
h 
ompletes the proof. ⊓⊔

On the redu
tion of the ring modulo q. Let q be a prime integer and Rq := R/qR = Zq[x]/Φ.
Be
ause of the 
hoi
e of Φ = xn + 1 with n a power of 2, the fa
torisation of Φ modulo q is

always of the form Φ =
∏
i≤kq Φi, where all the Φi's are irredu
ible modulo q and share the same

degree dq = n/kq. The number of fa
tors kq is a power of 2 that 
an range from 2 (if q = 3 mod 8)
to n (if q = 1 mod 2n). The Chinese Remainder Theorem provides a ring isomorphism between Rq
and (Fqdq )

kq
:

a 7→
(
a mod Φ1, . . . , a mod Φkq

)
.

Both extreme situations 
an prove interesting. Choosing q su
h that Φ has exa
tly n distin
t linear

fa
tors modulo q allows for faster implementations, as the ring Rq then admits a natural FFT:

Multipli
ation of elements of Rq 
an be performed within O(n lnn) additions and multipli
ations

in Fq (see [16, Ch. 8℄, [40, Se. 2.1℄). Oppositely, 
hoosing q su
h that Φ has only two irredu
ible

fa
tors modulo q makes the ring Rq behave very similarly to a �eld (it has very few zero divisors).

For example, this 
hoi
e allows for proving statisti
al uniformity of the revised NTRU publi
 key

for smaller values of q, and to have the se
urity of the s
hemes rely on weaker assumptions. For

both 
hoi
es of q, Diri
hlet's theorem on arithmeti
 progressions implies that in�nitely su
h primes

exist. Furthermore, Linnik's theorem asserts that the smallest su
h prime is ≤ Poly(n). For our

parti
ular 
hoi
e of n (a power of 2), the smallest su
h primes are known to be O(n2.5), and, after
some Poly(n) threshold, these primes are quite frequent (see [34, 15℄).

Module q-ary latti
es. We 
all an m-dimensional latti
e that 
ontains qZm a q-ary latti
e.

An R-module is a set of the form M =
∑

i≤dRbi ⊆ Km
. If the bi's are K-linearly independent,

we 
all them an R-basis of M . Note that 
ontrarily to latti
es, some R-modules may not admit
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an R-basis (we refer the reader to [10, Ch. 1℄ and [14℄ for alternative 
ompa
t representations).

Let a ∈ Rmq . We de�ne the following families of R-modules:

a⊥ := {(t1, . . . , tm) ∈ Rm :
∑

i

tiai = 0 mod q},

L(a) := {(t1, . . . , tm) ∈ Rm : ∃s ∈ Rq,∀i, ti = ai · s mod q}.

These modules 
orrespond to mn-dimensional integer latti
es, via the mapping of an element of Rm

to the 
on
atenation of the 
oe�
ient ve
tors. Sin
e these latti
es are q-ary, we 
all them module

q-ary latti
es.

In [55℄, Peikert des
ribed a signi�
antly faster algorithm than the dis
rete Gaussian sampler

from [21℄, in the 
ase of q-ary latti
es, and even further for module q-ary latti
es. In the following

adaptation, we bound Peikert's s1(B) by
√
nmax ‖bi‖ (using the Cau
hy-S
hwarz inequality).

Lemma 2.9 (Adapted from [55℄). There exists a Õ(nm)-time o�-line/on-line algorithm that

takes as input an R-basis b1, . . . , bm of a module q-ary latti
e L ⊆ Rm, with q = Poly(n), c ∈ Qmn

and σ = ω(
√
mn lnn)max ‖bi‖, and returns samples from a distribution whose statisti
al distan
e

to DL,σ,c is negligible with respe
t to n. The 
omplexity bound holds assuming pre-
omputations

(o�-line) are performed using q, σ and b1, . . . , bm, but not c.

Re
ently, Du
as and Nguyen [13℄ showed how to perform the pre-
omputations of Lemma 2.9

in expe
ted time Õ(mn).

2.3 Computational problems

The Shortest Ve
tor Problem. The most famous algorithmi
 problem on latti
es is SVP. Given
a basis of a latti
e L, it aims at �nding a shortest ve
tor in L \ 0. It 
an be relaxed to γ-SVP by

asking for a non-zero ve
tor that is no longer than γ(n) times a solution to SVP, for a pres
ribed

fun
tion γ(·). If we restri
t the set of input latti
es to ideal latti
es, we obtain the problem Ideal-SVP
(resp. γ-Ideal-SVP), whi
h is impli
itly parameterized by a sequen
e of polynomials Φ of growing

degrees. No algorithm is known to perform non-negligibly better for (γ-)Ideal-SVP than for (γ-)SVP.
It is believed that no subexponential quantum algorithm solves the 
omputational variants of γ-SVP
or γ-Ideal-SVP in the worst 
ase, for any γ that is polynomial in the dimension. The smallest γ
whi
h is known to be a
hievable in polynomial time is exponential, up to poly-logarithmi
 fa
tors

in the exponent [36, 62, 48℄.

The Small Integer Solution problem over Rings. R-SIS was introdu
ed in [39, 56℄, as an

average-
ase variant of γ-SVP in module q-ary latti
es.

De�nition 2.1. The Ring Small Integer Solution problem with parameters q,m, β and Φ (R-SISΦq,m,β)
is as follows: Given m polynomials a1, . . . , am 
hosen uniformly and independently in Rq, �nd t ∈
a⊥ \ 0 su
h that ‖t‖ ≤ β.

The average-
ase hardness of R-SIS is related to the worst-
ase hardness of Ideal-SVP, as follows.
The result is adapted from [39℄, using tools from [41℄.

Theorem 2.1 (Adapted from [39℄). Let n = 2k, Φ = xn+1 and ε > 0. Let m, q > 0 su
h that q ≥
β
√
n · ω(lnn) and m, ln q ≤ Poly(n). A polynomial-time algorithm solving R-SISΦq,m,β with non-

negligible probability 
an be used to solve γ-Ideal-SVP in polynomial-time with γ ≥ β√n · ω(
√
lnn).
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The Learning With Errors problem over Rings. For s ∈ Rq and ψ a distribution in Rq, we
de�ne As,ψ as the distribution obtained by sampling the pair (a, as + e) with a uniformly 
hosen

in Rq and e sampled independently from ψ. The Ring Learning With Errors problem (R-LWE) was
introdu
ed by Lyubashevsky et al. in [41℄ and shown hard for spe
i�
 error distributions ψ 
losely

related to Gaussians.

De�nition 2.2. Let Γ be a distribution over a family of distributions on R. The Ring Learning

With Errors Problem with parameters q, Γ and Φ (R-LWEΦq,Γ ) is as follows. Let ψ be sampled from Γ
and s be 
hosen uniformly in Rq. Given a

ess to an ora
le O that produ
es samples in Rq × Rq,
distinguish whether O outputs samples from the distribution As,ψ or U(Rq×Rq). The distinguishing
advantage should be non-negligible over the randomness of the input, the randomness of the samples

and the internal randomness of the algorithm.

Note that this de�nition di�ers from the one of [41℄ in the following respe
ts: We use the

polynomial representation (whi
h is handled by applying the 
omplex FFT to the error term); we

use Rq rather than R∗q (for our 
hoi
e of Φ, we have R∗q = 1
nRq); and the noise distributions are

dis
rete.

R-LWE 
an be interpreted as a problem over module q-ary latti
es. Let m be the number of

samples asked to the ora
le, and let (ai, bi)i≤m be the samples. Then solving R-LWE 
onsists in

assessing whether the ve
tor b is generated uniformly modulo the (module) latti
e L(a) or around
the origin a

ording to some Gaussian-like distribution and then redu
ed modulo the latti
e.

Theorem 2.2 (Adapted from [41℄). Assume that αq = ω(n
√
lnn) with α ∈ (0, 1) and q =

Poly(n) prime with q = 1 mod 2n. Consider the distribution Γα de�ned below in this se
tion. There

exists a randomized polynomial-time quantum redu
tion from γ-Ideal-SVP to R-LWEq,Γα
, denoted

by R-LWEq,α in the sequel, with γ = ω(n1.5 lnn)/α.

Variants of R-LWE. For s ∈ Rq and ψ a distribution in Rq, we de�ne A×s,ψ as the distribution

obtained by sampling the pair (a, as+e) with a uniformly 
hosen in R×q and e sampled independently

from ψ. When q = Ω(n), the probability for a uniform element of Rq of being invertible is non-

negligible, and thus R-LWE remains hard even when As,ψ and U(Rq×Rq) are respe
tively repla
ed

by A×s,ψ and U(R×q ×Rq). We 
all R-LWE× the latter variant.

Furthermore, as explained in [5, Le. 2℄, the non
e s 
an also be 
hosen from the error dis-

tribution without in
urring any se
urity redu
tion. We 
all R-LWE×HNF the 
orresponding modi-

�
ation of R-LWE. We re
all the argument, for 
ompleteness. Assume an algorithm A 
an solve

R-LWE×HNF. We use A to solve R-LWE×. The prin
iple is to transform samples ((ai, bi))i into sam-

ples ((a−11 ai, bi − a−11 b1ai))i, where inversion is performed in R×q . This transformation maps A×s,ψ
to A×−e1,ψ, and U(R×q ×Rq) to itself.

We remark that a simpler variant of R-LWE with �xed number of samples and �xed spheri
al

noise distribution is proven hard in [42℄. However, we 
hose not to use this simpler variant in this

work sin
e its proven hardness involves a larger Ideal-SVP approximation fa
tor γ than the variant

of R-LWE 
onsidered in the theorem above. The simpli�ed variant o�ers a di�erent trade-o� between

the underlying hardness assumption and the 
ost of sampling noise ve
tors.

Noise de�nition and noise generation. We now des
ribe the distribution Γα. It is somewhat

tedious to de�ne, but for the present work, the important fa
ts to be remembered are that the
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samples are small (with probability exponentially 
lose to 1), and 
an be obtained in quasi-linear

time. Alternative R-LWE noise generation algorithms are des
ribed in [43, 12℄.

For σ ∈ Rn with positive 
oordinates, we de�ne the ellipti
al Gaussian ρσ as the row ve
tor

of independent Gaussians (ρσ1 , . . . , ρσn), where σi = σi+n/2 for 1 ≤ i ≤ n/2. As we want to de�ne

R-LWE in the polynomial expression of R rather than with the so-
alled �spa
e H� of [41℄, we apply

a matrix transformation to the latter Gaussians. We de�ne a sample from ρ′σ as a sample from ρσ,

multiplied �rst (from the right) by

1√
2

(
1 1
i −i

)
⊗ Idn/2 ∈ Cn×n, and se
ond by V ∈ Cn×n with

upper half equal to

1
n

(
ζ−(2j+1)k

)
0≤j<n/2,0≤k<n and bottom half equal to the 
omplex 
onjugate

of the upper half. These matrix multipli
ations 
an be performed using 
omplex dis
rete Fourier

transforms, i.e., with O(n lnn) 
omplex-valued arithmeti
 operations with the Cooley-Tukey FFT.

Moreover, they are numeri
ally extremely stable: If all operations are performed with a numeri
al

pre
ision of p = Ω(lnn) bits, then the 
omputed output ve
tor fl(y) satis�es ‖fl(y) − y‖ ≤
C ·(ln n)·2−p·‖y‖, where C is some absolute 
onstant and y is the ve
tor that would be obtained with

exa
t 
omputations. We refer to [23, Ch. 24℄ for details. We now de�ne a sample from ρ′σ as follows:

Compute a sample from ρ′σ with absolute error < 1/n2; if it is within distan
e 1/n2 of the middle

of two 
onse
utive integers, then restart; otherwise, round it to a 
losest integer and then redu
e it

modulo q. Finally, a distribution sampled from Υα for α ≥ 0 is de�ned as ρ′σ, where σi = σi+n/2 =

αq
√

1 +
√
nxi with the xi's sampled independently from the distribution Γ (2, 1) for i ≤ n/2. The

distribution Γ (2, 1) has density x exp(−x) for x ≥ 0 and zero for x < 0.

Apart from a s
aling fa
tor and the 
hoi
e of the polynomial representation, our R-LWE variant

di�ers from that of [41℄ in that we round to R using a reje
tion. The R-LWE problem remains hard

be
ause a sample passes the reje
tion step with non-negligible probability, and be
ause rounding


an be performed on the ora
le samples obliviously to the a
tual error.

Sampling from ρ′σ 
an be performed in time Õ(n). Sampling from Υα 
an also be performed

in expe
ted time Õ(n), and the run-time is bounded by a quantity that follows a geometri
 law of

parameter < 1. Furthermore, in our 
ryptographi
 appli
ations, one 
ould pre-
ompute su
h samples

o�-line (i.e., before the message M to be pro
essed is known).

Finally, by taking r = 1 in the result below, we obtain that with probability ≥ 1 − n−ω(1), any
sample from Υα in R has Eu
lidean norm ≤ αqn1/4ω(

√
lnn). The following statement improves on

a bound given in Lemma 6 of the Euro
rypt pro
eedings paper presenting an earlier version of our

results, that exploits the narrower Γ (2, 1) distribution of the xi's. It also �xes a 
ouple of mistakes

in [64, Le. 6℄.

Lemma 2.10. Let y, r ∈ R, with r �xed and y sampled from Υα, with αq ≥ n1/4. Then

Pr
[
‖yr‖ ≥ αqn1/4ω(

√
lnn) · ‖r‖

]
≤ n−ω(1) and Pr

[
‖yr‖∞ ≥ αqn−1/4ω(lnn) · ‖r‖

]
≤ n−ω(1).

Proof. We de�ne Υα exa
tly as Υα, but without the reje
tion step from ρ′σ to ρ′σ. Be
ause of the

bound on the reje
tion probability, it su�
es to prove the result with Υα instead of Υα.

Let y be sampled from Υα. The involved σ satis�es σk = σk+n/2 = αq
√

1 +
√
nxk, with the xk's

sampled independently from the distribution Γ (2, 1). Let (r(k))k be the embedding ve
tor of r.
Multiplying y by r is the same as sampling from ρσ′ with σ′k = σ′k+n/2 = σk|r(k)| (see [42℄, and

also [35, Le. 9℄ for a proof). We have σ′k ≤ αqn1/4ω(
√
lnn) · |r(k)| for all k ≤ n, with probability at

least 1− n−ω(1).
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In order to obtain the 
oe�
ients of yr, it su�
es to apply the matri
es

1√
2

(
1 1
i −i

)
⊗ Idn/2 ∈

Cn×n and V to the row ve
tor of the Gaussian samples. The magnitude of ea
h entry of the

matrix produ
t being ≤ O(1/n), the 
oe�
ients of the polynomial yr are distributed as sta-

tisti
ally independent (one-dimensional) Gaussians of standard deviations ≤ αqn−3/4ω(
√
lnn) ·

T2(r) = αqn−1/4ω(
√
lnn) · ‖r‖. The Eu
lidean norm of the resulting n-dimensional ve
tor is

≤ αqn1/4ω(
√
lnn) · ‖r‖ with probability ≥ 1 − n−ω(1). To 
omplete the proof, observe that all

the 
oordinates are ≤ αqn−1/4ω(lnn) · ‖r‖ with probability ≥ 1− n−ω(1). The additional rounding
error O(

√
n) only 
hanges the hidden 
onstant fa
tor in the ω(lnn) fa
tor, thanks to the 
ondi-

tion αq ≥ n1/4. ⊓⊔

3 A provably se
ure variant of NTRUEn
rypt

In NTRUEn
rypt, the publi
 key h is the ratio of the randomly generated se
ret key polynomials f
and g, whose 
oe�
ients have small magnitudes. In order to derive the IND-CPA se
urity of the

revised s
heme from the hardness of R-LWE, we ensure that the distribution of h is statisti
ally

very 
lose to uniform over R×q . (Computational indistinguishability fromuniformity would a
tually

su�
e, but we do not know how to a
hieve it based on standard latti
e assumptions.) For this

purpose, we sample f and g from the distribution D×σ , obtained by sampling from DZn,σ and

reje
ting if the sample (interpreted as an element of R) is not invertible modulo q. We will eventually


hoose σ ≈ ncq1/2 for some small 
onstant c.

The proof that the ratio g/f is 
lose to uniform when f, g ←֓ D×σ pro
eeds in several steps.

We aim at bounding the quantity

∑
a∈R×

q
|Prf,g[g/f = a] − |R×q |−1| by some small amount ε. To

do that, we show that with overwhelming probability over the 
hoi
e of a, ea
h term |Prf,g[g/f =
a] − |R×q |−1| is < |R×q |−1 · ε. This is equivalent to showing that for the overwhelming majority of

the pairs (a1, a2) ∈ (R×q )
2
, the quantity |Prf,g[fa1 + ga2 = 0]− |R×q |−1| is < |R×q |−1 · ε.

The latter statement 
an be seen as a 
onsequen
e of a regularity bound for (a1, . . . , am,
∑

i tiai)
with m = 2. More pre
isely, we prove a small bound < |R×q |−1 · ε on the statisti
al distan
e ∆ to

uniformity over (R×q )
m × Rq of the distribution of (a1, . . . , am,

∑
i tiai) where the ai's are sampled

uniformly and independently in R×q and the ti's are independently sampled from D×σ . We need an

unusually small bound on the statisti
al distan
e ∆, be
ause we eventually sum this bound over |R×q |
to obtain the uniformity of the publi
 key h. A similar strong regularity was independently used by

Agrawal et al. in [2, Th. 3℄ in the 
ontext of (non-stru
tured) SIS/LWE for proving the se
urity of

an identity-based en
ryption s
heme.

Another unusual fa
et of our regularity bound is the fa
t that the support of the ti's is not a
latti
e. We 
ir
umvent this di�
ulty by writing the support as the latti
e Zn minus the union of the

latti
es LΦi = {x ∈ R : Φi|(x mod q)} 
orresponding to the ideals 〈q, Φi〉 of R. (Re
all that the Φi's
are the irredu
ible fa
tors of Φ modulo q). This observation leads us to obtain the desired regularity

bound by 
ombining regularity bounds for the ti's sampled in latti
es, with an in
lusion-ex
lusion

te
hnique (Theorem 3.1).

The remainder of the proof is more 
lassi
al. The uniformity of

∑
i tiai for the ti's sampled from

a latti
e Gaussian is obtained by proving uniformity of the ve
tor t made of the ti's taken modulo

the kernel of the map t 7→ ∑
tiai mod q. Note that this kernel is a latti
e. As t follows a latti
e

Gaussian distribution, uniformity modulo the kernel follows by studying the smoothing parameter

of the kernel latti
e and using Lemma 2.4. The latter is the purpose of Subse
tion 3.1.
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The bounds in this se
tion improve and generalize the results presented in [64℄. In parti
ular,

they show that, for a given desired 
loseness to uniformity of h = g/f , using a modulus q su
h that

xn + 1 splits into kq = O(1) irredu
ible fa
tors allows to redu
e the required standard deviation σ
for f, g by a fa
tor ≈ √n, versus the 
ase kq = n studied in [64℄.

3.1 New results on random module q-ary latti
es

In the present subse
tion, we exploit the duality between variants of the a⊥ and L(a) latti
es, that
we will use to obtain improved regularity bounds over the ring Rq and its ideals.

We generalize the de�nitions of the a⊥ and L(a) latti
es to in
orporate the ideals of Rq. Let Φ =∏
i≤kq Φi be the fa
torisation as a produ
t of irredu
ible fa
tors modulo q. Re
all that the Φi's share

the same degree dq = n/kq. The ideals of Rq are of the form

IS :=

(∏

i∈S
Φi

)
·Rq =

{
a ∈ Rq : ∀i ∈ S, a = 0 mod Φi

}
, with S ⊆ {1, . . . , kq}.

We also de�ne LS as the latti
e 
orresponding to the ideal

〈
q,
∏
i∈S Φi

〉
of R. More expli
itly, we

have LS = {x ∈ R : (x mod q) ∈ IS}.
For a ∈ Rmq and S ⊆ {1, . . . , kq}, we de�ne the following families of R-modules:

a⊥(IS) :=
{
(t1, . . . , tm) ∈ Rm : ∀i, (ti mod q) ∈ IS and

∑

i

tiai = 0 mod q

}
,

L(a, IS) :=

{
(t1, . . . , tm) ∈ Rm : ∃s ∈ Rq,∀i, (ti mod q) = ai · s mod IS

}
,

where S is an arbitrary subset of {1, . . . , kq}. Note that a⊥(IS) is the interse
tion of a⊥ with the

Cartesian produ
t ofm 
opies of LS . Also, if S = ∅ (resp. S = {1, . . . , n}), then we have a⊥(IS) = a⊥

(resp. L(a, IS) = L(a)).

We now des
ribe an automorphism of R that will help us exhibit the duality between the modules

above. In the ring R, we have x−1 = −xn−1. Therefore, mapping a(x) ∈ R to a⋆(x) = a(x−1) ∈ R
provides ring automorphism. This map indu
es a bije
tion from the set of fa
tors Φi to itself. It has

the following useful matrix interpretation: If we let A denote the n × n matrix having as its i-th
row the 
oe�
ient ve
tor of xi · a(x) for i = 0, . . . , n − 1, then a⋆(x) has 
oe�
ient ve
tor the �rst


olumn of A. For an ideal IS = (
∏
i∈S Φi) ·Rq of R, we let I⋆S denote the ideal (

∏
i∈S Φ

⋆
i ) ·Rq.

Lemma 3.1. Let S ⊆ {1, . . . , kq} and a ∈ Rmq . Let S be the 
omplement of S and a⋆ ∈ Rmq be

de�ned by a⋆i = ai(x
−1), for all i ≤ m. Then (
onsidering both sets are 
onsidered as mn-dimensional

latti
es):

â⊥(IS) =
1

q
L(a⋆, I⋆

S
).

Proof. We �rst prove that

1
qL(a

⋆, I⋆
S
) ⊆ â⊥(IS). Let (t1, . . . , tm) ∈ a⊥(IS) and (u1, . . . , um) ∈

L(a⋆, I⋆
S
). Write ti =

∑
j<n ti,jx

j
and ui =

∑
j<n ui,jx

j
for any i ≤ m. Our goal is to show

that

∑
i≤m,j≤n ti,jui,j = 0 mod q. This is equivalent to showing that the 
onstant 
oe�
ient of the

polynomial

∑
i≤m tiu

⋆
i is 0 modulo q. It thus su�
es to show that 〈t,u⋆〉 = 0 mod q. By de�nition
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of the ui's, there exists s ∈ Rq su
h that (ui mod q) = a⋆i · s + bi for some bi ∈ I⋆S. We have the

following, modulo q:

〈t,u⋆〉 = s⋆ · 〈t,a〉+ 〈t, b⋆〉 = 0,

where we used that 〈t,a〉 = 0 mod q by de�nition of t and 〈t, b⋆〉 = 0 mod q be
ause (ti mod q) ∈ IS
and b⋆i ∈ IS̄ for ea
h i ≤ m. This provides the desired in
lusion.

The reverse in
lusion

1
qL(a

⋆, I⋆
S
) ⊇ â⊥(IS) is equivalent, by duality, to

̂L(a⋆, I⋆
S
) ⊆ 1

qa
⊥(IS). To

show the latter, it su�
es to 
onsider the elements of L(a⋆, IS) 
orresponding to s = 1. ⊓⊔

We now show that for a uniformly 
hosen a ∈ (R×q )
m
, the latti
e L(a, IS) is extremely unlikely

to 
ontain unusually short ve
tors for the in�nity norm, i.e., mu
h shorter than the Minkowski upper

bound det(L(a, IS))
1

mn = q
(1− 1

m
) |S|
kq

on λ∞1 (L(a, IS)). (We have det(L(a, IS)) = q(m−1)|S|dq be
ause

there are q|S|dq+m(n−|S|dq)
points of L(a, IS) in the 
ube [0, q−1]mn.) We provide two lower bounds.

The �rst lower bound is useful for all parameter settings and mat
hes the Minkowski upper bound

up to a fa
tor

1√
n
q−ε for an arbitrarily small 
onstant ε > 0. The se
ond bound is spe
i�
 to the


ase |S| = kq and mat
hes the Minkowski bound up to a fa
tor q−kq·ε, thus improving on the �rst

bound by a fa
tor ≈ √n in the 
ase kq = O(1) (whi
h was not treated in [64℄). Even in the 
ase

kq = n, the �rst bound improves on the bound given in [64℄, by using a point 
ounting bound based

on the minima of the ideals of Rq.

Lemma 3.2. Let n ≥ 8 be a power of 2 and q ≥ 5. Assume that Φ = xn + 1 splits into kq distin
t

irredu
ible fa
tors modulo q, ea
h of degree dq = n/kq. Then, for m ≥ 2 and ε > 0, we have

λ∞1 (L(a, IS)) ≥





1√
n
q
(1− 1

m
) |S|
kq
−ε

for any 0 ≤ |S| ≤ kq
q1−

1
m
−kq·ε

for |S| = kq

ex
ept with probability ≤ 24mnq−εmn over the uniformly random 
hoi
e of a in (R×q )
m
.

Proof. By the Chinese Remainder Theorem, we know that Rq (resp. R
×
q ) is isomomorphi
 to (Fqdq )

kq

(resp. (F×
qdq

)kq) via the isomorphism t 7→ (t mod Φi)i≤kq . Let ΦS =
∏
i∈S Φi: it is a degree |S|dq

generator of IS.

Let p denote the probability (over the randomness of a) that L(a, IS) 
ontains a non-zero

ve
tor t of in�nity norm < B. We bound p from above by using the union bound, summing the

probabilities p(t, s) = Pra[∀i, ti = ais mod IS ] over all possible values for t of in�nity norm < B
and s ∈ Rq/IS . Sin
e the ai's are independent, we have p(t, s) =

∏
i≤m pi(ti, s), where pi(ti, s) =

Prai [ti = ais mod IS].

Wlog we 
an assume that gcd(s, ΦS) = gcd(ti, ΦS) (up to multipli
ation by an element of F×
qdq

):

If this is not the 
ase, there exists j ≤ n su
h that either ti mod Φj = 0 and s mod Φj 6= 0, or
ti mod Φj 6= 0 and s mod Φj = 0; In both 
ases, we have pi(ti, s) = 0 be
ause ai ∈ R×q . We now

assume that gcd(s, ΦS) = gcd(ti, ΦS) = ΦS′
for some S′ ⊆ S of 
ardinality 0 ≤ k ≤ |S|. For

any j ∈ S′, we have ti = ais = 0 mod Φj regardless of the value of ai mod Φj , whereas for j ∈ S \S′,
we have s 6= 0 mod Φj and there exists a unique value of ai mod Φj su
h that ti = ais mod Φj .
Moreover for any j /∈ S, the value of ai mod Φj 
an be arbitrary in F×

qdq
. So, overall, there are

(qdq−1)kq+k−|S| distin
t ai's in R×q su
h that ti = ais mod IS . This leads to pi(ti, s) = (qdq−1)k−|S|.
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So far, we have shown that the probability p 
an be bounded from above by:

p ≤
∑

0≤k≤|S|

∑

S′ ⊆ S
|S′| = k

∑

s ∈ Rq/IS
ΦS′ |s

∑

t ∈ (Rq)m

∀i, 0 < ‖ti‖∞ < B
∀i, ΦS′ |ti

(
qdq − 1

)m(k−|S|)
.

For |S′| = k, let N(B, k) denote the number of t ∈ Rq su
h that ‖t‖∞ < B and t = ΦS′t′ for
some t′ ∈ Rq of degree < n− kdq = n(1− k/kq). We 
onsider two upper bounds for N(B, k), from
whi
h we get the 
laimed bounds on λ∞1 (L(a, IS)).

As our �rst bound for N(B, k), with B = 1√
n
· qβ, we 
laim that N(B, k) ≤ 22nq(β−k/kq)n for

k < β · kq and N(B, k) = 0 for k ≥ β · kq. For this, we observe that N(B, k) is the number of points

of the latti
e IS′ + qZn = 〈ΦS′ , q〉 in the hyper
ube C(2B) of sidelength 2B, where a hyper
ube of

sidelength ℓ is de�ned by C(ℓ) = {v ∈ Rn : ‖v‖∞ < ℓ/2}. Let λ := λ∞1 (IS′ + qZn). If we 
enter a

hyper
ube C(λ) of sidelength λ on ea
h of the N(B, k) points of I ′S + qZn in C(2B), the resulting
N(B, k) hyper
ubes do not interse
t, and yet are all 
ontained within the enlarged hyper
ube

C(2B + λ). It follows that N(B, k) ≤ vol(C(2B+λ))
vol(C(λ)) = (2Bλ +1)n. To derive a lower bound on λ, note

that for any t ∈ IS′
, we have N (t) = N (〈t〉) ≥ N (〈ΦS′ , q〉) = qkdq , where the inequality is be
ause

the ideal 〈t〉 is a sub-ideal of 〈ΦS′ , q〉, and the last equality is be
ause degΦS′ = kdq. It follows

from the arithmeti
-geometri
 inequality that ‖t‖ = 1√
n
T2(t) ≥ N (t)1/n ≥ qk/kq . By equivalen
e of

norms, we 
on
lude that ‖t‖∞ ≥ λ ≥ 1√
n
qk/kq . Hen
e, using B = 1√

n
qβ, for k ≥ β ·kq, we have λ ≥ B

so N(B, k) = 0, while for k < β ·kq , we have N(B, k) ≤ (2Bλ +1)n ≤ (2qβ−k/kq +1)n ≤ 22nq(β−k/kq)n,
as 
laimed.

As our se
ond bound for N(B, k), we 
laim that N(B, k) ≤ (2B)n−kdq = (2B)n(1−k/kq). Indeed,
sin
e the degree of ΦS′

is kdq, the ve
tor t formed by the n−kdq low-order 
oe�
ients of t = ΦS′t′ is
related to the ve
tor t′ formed by the n− kdq low-order 
oe�
ients of t′ by a lower triangular (n−
kdq) × (n − kdq) matrix whose diagonal 
oe�
ients are equal to the non-zero 
onstant 
oe�
ient

of ΦS′
. Hen
e this matrix is non-singular modulo q and the mapping from t′ to t is one-to-one. This

provides the 
laim.

Using the fa
t that the number of subsets of S is 2|S|, and the fa
t that the number of s ∈ Rq/IS
divisible by ΦS′

is qdq(|S|−k), the above upper bound on p implies that

p ≤ 2(m+1)|S| · max
0≤k≤|S|

N(B, k)m

q(m−1)(|S|−k)dq
.

Using our �rst bound on N(B, k) with B = 1√
n
qβ, we get

p ≤ 2(m+1)(|S|+2n) · max
0≤k<β·kq

q
n
(

m(β− k
kq

)−(m−1) |S|−k
kq

)

.

Viewed as a fun
tion of k, the exponent in the right hand side is maximized for k = 0. It then has

the value −mnε, when β = (1− 1
m ) |S|kq − ε. This gives the �rst 
laimed bound on λ∞1 (L(a, IS)).

In the 
ase |S| = kq , using our se
ond bound on N(B, k) with B = qβ, and noting that

N(B, kq) = 0, we get

p ≤ 2(m+1)(|S|+2n) · max
0≤k<kq

q
n((1−β)m−1)

(

k
kq
−1

)

= 2(m+1)(|S|+2n) · q−
n
kq

((1−β)m−1)
,
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where the last equality holds for any β ≤ 1 − 1
m . Using β = 1 − 1

m − kqε gives the se
ond 
laimed

bound on λ∞1 (L(a, IS)). ⊓⊔
In our analysis of the distribution of the NTRU key g/f with kq = O(1), we will also use a lower

bound on λ1(a
⊥(IS)). As in Lemma 3.2, we give two bounds, although in this 
ase our appli
ation

only needs the �rst bound.

Lemma 3.3. Let n ≥ 8 be a power of 2 and q ≥ 5. Assume that Φ = xn + 1 splits into kq distin
t

irredu
ible fa
tors modulo q, ea
h of degree dq = n/kq. Then, for m ≥ 2 and ε > 0, we have

λ∞1 (a⊥(IS)) ≥





1√
n
q

1
m
+(1− 1

m
)
|S|
kq
−ε

for any 0 ≤ |S| ≤ kq
q

1
m
−kq·ε

for |S| = 0

ex
ept with probability ≤ 24nq−εmn over the uniformly random 
hoi
e of a in (R×q )
m
.

Proof. We pro
eed analogously to the proof of Lemma 3.2.

Let p denote the probability (over a) that L(a⊥(IS)) 
ontains a non-zero ve
tor t of in�nity

norm < B. We bound p from above by using the union bound, summing the probabilities p(t) =
Pra[

∑
i≤m aiti = 0 mod q] over all possible values for t of in�nity norm < B and ti ∈ IS for

i = 1, . . . ,m. By the Chinese Remainder Theorem, we have p(t) =
∏
j≤kq pj(t), where pj(t) =

Pra[
∑

i≤m aiti = 0 mod Φj ]. Let ΦS =
∏
i∈S Φi, ΦS̄ =

∏
i∈S̄ Φi and ΦS′ = gcd(t1, . . . , tm, ΦS̄) =∏

i∈S′ Φi for some S′ ⊆ S̄ of 
ardinality 0 ≤ k ≤ |S̄|. For any j ∈ S∪S′, we have∑i≤m tiai = 0modΦj
regardless of the value of ai mod Φj . For any j ∈ S̄\S′, there exists i ≤ m su
h that ti 6= 0 mod Φj so
that for any 
hoi
e of {aj}j 6=i, there is a unique value of ai mod Φj su
h that

∑
i≤m tiai = 0 mod Φj ;

It follows that pj(t) =
1

qdq−1 . As a 
onsequen
e, we have p(t) = 1
(qdq−1)|S̄|−k , and:

p ≤
∑

0≤k≤|S̄|

∑

S′ ⊆ S̄
|S′| = k

∑

t ∈ (Rq)m

∀i, 0 < ‖ti‖∞ < B
∀i, ΦS · ΦS′ |ti

1

(qdq − 1)|S̄|−k
.

For S′ with |S′| = k, let N(B, k) denote the number of t ∈ Rq su
h that ‖t‖∞ < B and t =
ΦSΦS′t′ for some t′ ∈ Rq of degree < n(1 − (k + |S|)/kq). Exa
tly as in the proof of Lemma 3.2,

we derive two upper bounds for N(B, k), from whi
h we get the 
laimed bounds on λ∞1 (L(a, IS)).
The �rst upper bound, with B = 1√

n
qβ, shows that N(B, k) = 0 for k ≥ β · kq − |S|, while

N(B, k) ≤ 22nq(β−(|S|+k)/kq)n for k < β ·kq−|S|. The se
ond bound is N(B, k) ≤ (2B)n(1−(|S|+k)/kq).
The �rst bound on N(B, k) with B = 1√

n
qβ, leads to

p ≤ 22|S̄|+2n · max
0≤k<β·kq

q
n
(

m(β− |S|+k
kq

)− |S̄|−k
kq

)

.

Viewed as a fun
tion of k, the exponent in the right hand side is maximized for k = 0. It then has

the value −mnε, when β = 1
m + (1− 1

m) |S|kq − ε. This gives the �rst 
laimed bound.

In the 
ase |S| = 0, using our se
ond bound on N(B, k) with B = qβ, and noting that N(B, kq) =
0, we get

p ≤ 22|S̄|+n · max
0≤k<kq

q
n(1−mβ)

(

k
kq
−1

)

= 22|S̄|+n · qn(1−mβ)
(

1− 1
kq

)

.

where the last equality holds for any β ≤ 1
m . Using β = 1

m − kq · ε gives the se
ond 
laimed bound.

⊓⊔
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3.2 Regularity bounds for ring Rq

We now study the 
loseness to uniformity of the distribution of (m+1)-tuples from (R×q )
m ×Rq of

the form (a1, . . . , am,
∑

i≤m tiai), where the ai's are independent and uniformly random in R×q , and
the ti's are 
hosen from some distribution on Rq 
on
entrated on elements of small height. Similarly

to [44℄, we 
all the distan
e of the latter distribution to the uniform distribution on (R×q )
m×Rq the

regularity of the generalized knapsa
k fun
tion (ti)i≤m 7→
∑

i≤m tiai. For our NTRU appli
ation we

are parti
ularly interested in the 
ase where m is very small, namely m = 2.

The regularity result in [44, Se. 4.1℄ applies when the ai's are uniformly random in the whole

ring Rq, and the ti's are uniformly random on the subset of elements of Rq of height ≤ d for

some d < q. In this 
ase, the regularity bound from [44℄ is Ω(
√
nq/dm). Unfortunately, this bound

is non-negligible for small m and q, e.g., for m = O(1) and q = Poly(n). To make it exponentially

small in n, one needs to set m ln d = Ω(n), whi
h inevitably leads to ine�
ient 
ryptographi


fun
tions. When the ai's are 
hosen uniformly from the whole ring Rq with q = 1 mod 2n, the
a
tual regularity is not mu
h better than this undesirable regularity bound. This is be
ause Rq

ontains n proper ideals of size qn−1 = |Rq|/q, and the probability ≈ n/qm that all of the ai's fall
into one su
h ideal (whi
h 
auses

∑
tiai to also be trapped in the proper ideal) is non-negligible

for small m. To 
ir
umvent this problem, we restri
t the ai's to be uniform in R×q , and we 
hoose

the ti's from a dis
rete Gaussian distribution. We show a regularity bound exponentially small in n
even for m = O(1), by using an argument similar to that used in [21, Se. 5.1℄ for unstru
tured

generalized knapsa
ks, based on the smoothing parameter of the underlying latti
es. Note that the

new regularity result 
an be used within the R-SIS trapdoor generation of [65, Se. 3℄, thus extending

the latter to a fully splitting q.

Theorem 3.1. Let n ≥ 8 be a power of 2 su
h that Φ = xn + 1 splits into kq irredu
ible fa
tors

modulo prime q ≥ 5. Let m ≥ 2, ε > 0, δ ∈ (0, 1/2) and t ←֓ DZmn,σ, with σ ≥ ln(2mn(1 +

1/δ))/π · min(
√
n · q 1

m
+ε, q

1
m
+kqε). Then for all ex
ept a fra
tion ≤ 24mnq−εmn of a ∈ (R×q )

m
, we

have ηδ(a
⊥) ≤

√
ln(2mn(1 + 1/δ))/π · min(

√
n · q 1

m
+ε, q

1
m
+kq·ε), and the distan
e to uniformity

of

∑
i≤m tiai is ≤ 2δ. As a 
onsequen
e:

∆

[(
a1, . . . , am,

∑

i≤m
tiai

)
; U

(
(R×q )

m ×Rq
)]
≤ 2δ + 24mnq−εmn.

Proof. For ea
h a ∈ (R×q )
m
, let Da denote the distribution of

∑
i≤m tiai where t is sampled

from DZmn,σ. Note that the above statisti
al distan
e is exa
tly

1
|R×

q |m
∑

a∈(R×
q )m ∆a, where ∆a

is the distan
e to uniformity of Da. To prove the theorem, it therefore su�
es to show a uniform

bound ∆a ≤ 2δ, for all ex
ept a fra
tion ≤ 24mnq−εmn of a ∈ (R×q )
m
.

Now, the mapping t 7→∑
i tiai indu
es an isomorphism from the quotient group Zmn/a⊥ to its

range. The latter is Rq, thanks to the invertibility of the ai's. Therefore, the statisti
al distan
e ∆a is

equal to the distan
e to uniformity of t mod a⊥. In the following, sin
e it is needed for our analysis

of the NTRU key generation algorithm (see Theorem 3.2 in Se
tion 3.3) we a
tually study the

distan
e to uniformity of t mod a⊥(IS) for any S ⊆ {1, . . . , kq}. By Lemma 2.4, we have ∆a ≤ 2δ
if σ is greater than the smoothing parameter ηδ(a

⊥(IS)) of a⊥(IS) ⊆ Zmn. To bound ηδ(a
⊥(IS))

from above, we apply Lemma 2.1, whi
h redu
es the task to bounding the minimum of the dual

latti
e from below. By Lemma 3.1, the latter latti
e is â⊥(IS) = 1
q ·L(a⋆, I⋆S) (where a⋆ ∈ (R×q )

m
is
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in one-to-one 
orresponden
e with a), and the latter task has been addressed by Lemma 3.2. Hen
e,

we obtain the following result as a dire
t 
onsequen
e of Lemmata 2.1, 2.4, 3.1 and 3.2.

Lemma 3.4. Let n ≥ 8 be a power of 2 su
h that Φ = xn + 1 splits into kq irredu
ible fa
tors

modulo prime q ≥ 5. Let S ⊆ {1, . . . , kq}, m ≥ 2, ε > 0, δ ∈ (0, 1/2), c ∈ Rmn and t ←֓ DZmn,σ,c,

with

σ ≥
{√

n ln(2mn(1 + 1/δ))/π · q1−(1−
1
m
)(1− |S|

kq
)+ε

for any 0 ≤ |S| ≤ kq√
ln(2mn(1 + 1/δ))/π · q 1

m
+kq·ε

for |S| = 0.

Then for all ex
ept a fra
tion ≤ 24mnq−εmn of a ∈ (R×q )
m
, we have:

∆
[
t mod a⊥(IS); U(R/a⊥(IS))

]
≤ 2δ.

Theorem 3.1 follows by taking S = ∅ and c = 0. ⊓⊔

3.3 Revised key generation algorithm for the NTRUEn
rypt

We now use the results of the previous se
tion on modular q-ary latti
es to derive key generation

algorithms for the NTRU s
hemes, where the generated publi
 keys follow distributions for whi
h

Ideal-SVP is known to redu
e to R-LWE and R-SIS.
The new key generation algorithm for NTRUEn
rypt is given in Fig. 1. The se
ret key polynomi-

als f and g are generated by using the Gentry et al. sampler of dis
rete Gaussians (see Lemma 2.6),

and by reje
ting so that the output polynomials are invertible modulo q. The Gentry et al. sampler

may not exa
tly sample from dis
rete Gaussians, but sin
e the statisti
al distan
e 
an be made

negligible, the impa
t on our results is also negligible. Furthermore, it 
an be 
he
ked that our


onditions on standard deviations are mu
h stronger than the one in Lemma 2.6. From now on, we

will assume we have a perfe
t dis
rete Gaussian sampler.

By 
hoosing a large enough standard deviation σ, we 
an apply the results of the previous se
tion

and obtain the (quasi-)uniformity of the publi
 key. We sample f of the form p ·f ′+1 so that it has

inverse 1 modulo p, making the de
ryption pro
ess of NTRUEn
rypt more e�
ient (as in the original

NTRUEn
rypt s
heme). We remark that the reje
tion 
ondition on f at Step 1 is equivalent to the


ondition (f ′ mod q) 6∈ R×q − p−1, where p−1 is the inverse of p in R×q .

Inputs: n, q ∈ Z, p ∈ R×
q , σ > 0.

Output: A key pair (sk, pk) ∈ R ×R×
q .

1. Sample f ′
from DZn,σ; let f = p · f ′ + 1; if (f mod q) 6∈ R×

q , resample.

2. Sample g from DZn,σ ; if (g mod q) 6∈ R×
q , resample.

3. Return se
ret key sk = f and publi
 key pk = h = pg/f ∈ R×
q .

Fig. 1. Revised key generation algorithm for NTRUEn
rypt.

The following result ensures that for some appropriate 
hoi
e of parameters, the key generation

algorithm terminates in expe
ted polynomial time.

Lemma 3.5. Let n ≥ 8 be a power of 2 su
h that Φ = xn + 1 splits into kq irredu
ible fa
tors

modulo prime q ≥ 5. Let σ ≥
√
n ln(2n(1 + 1/δ))/π · q1/kq , for an arbitrary δ ∈ (0, 1/2). Let a ∈ R

and p ∈ R×q . Then Prf ′←֓DZn,σ
[(p · f ′ + a mod q) 6∈ R×q ] ≤ kq(q−n/kq + 2δ) ≤ n(q−1 + 2δ).
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Proof. We are to bound the probability that p · f ′ + a belongs to I := 〈q, Φk〉 by q−n/kq + 2δ, for
any k ≤ kq. The result then follows from the Chinese Remainder Theorem and the union bound.

We have N (I) = qn/kq , so that λ1(I) ≤
√
nq1/kq , by Minkowski's theorem. Sin
e I is an ideal of R,

we have λn(I) = λ1(I), and Lemma 2.1 gives that σ ≥ ηδ(I). Lemma 2.4 then shows that f mod I
is within distan
e ≤ 2δ to uniformity on R/I, so we have p · f ′ + a = 0 mod I (or, equivalently,

f ′ = −a/p mod I) with probability ≤ q−n/kq + 2δ, as required. ⊓⊔

As a 
onsequen
e of the above bound on the reje
tion probability, we have the following result,

whi
h ensures that the generated se
ret key is small.

Lemma 3.6. Let n ≥ 8 be a power of 2 su
h that Φ = xn+1 splits into kq irredu
ible fa
tors modulo

prime q ≥ 8n. Let σ ≥
√
n lnn · q1/kq . The se
ret key polynomials f, g returned by the algorithm of

Fig. 1 satisfy, with probability ≥ 1− 2−n+3
:

‖f‖ ≤ 2n‖p‖σ and ‖g‖ ≤ √nσ.

If deg p ≤ 1, then ‖f‖ ≤ 4
√
n‖p‖σ with probability ≥ 1− 2−n+3

.

Proof. The probability under s
ope is lower than the probability of the same event without reje
tion,

divided by the a

eptan
e probability. The result follows by 
ombining Lemmata 2.3 and 3.5. ⊓⊔

In the algorithm of Fig. 1, the polynomials f ′ and g are independently sampled from the dis
rete

Gaussian distribution DZn,σ restri
ted (by reje
tion) to R×q − p−1 and R×q , respe
tively. We denote

by D×σ,z the dis
rete Gaussian DZn,σ restri
ted to R×q + z.

Here we apply the result of Se
tion 3.2 to show that the statisti
al 
loseness to uniformity of

a quotient of two distributions (z + p · D×σ,y) for z ∈ Rq and y = −zp−1 mod q. This in
ludes

the 
ase of g/f mod q 
omputed by the algorithm of Fig. 1. Sin
e p ∈ R×q , multipli
ation by p
indu
es a bije
tion of Rq, and thus the statisti
al 
loseness to uniformity 
arries over to the publi


key h = pg/f . The following theorem gives two bounds, whose usefulness depends on the number

of irredu
ible fa
tors kq in the fa
torization of xn + 1 modulo q. The �rst bound is most useful for

large kq = Ω(n), while the se
ond bound is better for small kq = O(1), allowing a smaller σ by a

fa
tor ≈ √n versus the �rst bound.

Theorem 3.2. Let n ≥ 8 be a power of 2 su
h that Φ = xn + 1 splits into kq irredu
ible fa
tors

modulo prime q ≥ 5. Let 0 < ε′ < 1/3, yi ∈ Rq and zi = −yip−1 mod q for i ∈ {1, 2}. Then

∆

[
y1 + p ·D×σ,z1
y2 + p ·D×σ,z2

mod q ; U
(
R×q
)]
≤





210nq
− ⌊ε′kq⌋

kq
·n

if σ ≥ n ·
√
ln(8nq) · q 1

2
+ε′

210nq−ε
′n

if σ ≥
√
n ln(8nq) · q

1+kqε
′

2
and q ≥ n

kq
1−2kqε′ .

Proof. For a ∈ R×q , we de�ne Pra = Prf1,f2 [(y1 + pf1)/(y2 + pf2) = a], where fi ←֓ D×σ,zi for i ∈
{1, 2}. We are to show that |Pra − |R×q |−1| ≤ 22n+5q−n⌊ε

′kq⌋/kq · |R×q |−1 =: ε′′ (resp. ≤ 26n+4q−ε
′n ·

|R×q |−1). This dire
tly gives the 
laimed bounds. The fra
tion of a ∈ R×q su
h that |Pra−|R×q |−1| ≤
ε′′ is equal to the fra
tion of a = (a1, a2) ∈ (R×q )

2
su
h that |Pra − |R×q |−1| ≤ ε′′, where Pra =

Prf1,f2 [a1f1 + a2f2 = a1z1 + a2z2]. This is be
ause a1f1 + a2f2 = a1z1 + a2z2 is equivalent to (y1 +
pf1)/(y2 + pf2) = −a2/a1 (in R×q ), and −a2/a1 is uniformly random in R×q when a ←֓ U((R×q )

2).

20



We observe that (f1, f2) = (z1, z2) =: z satis�es a1f1 + a2f2 = a1z1 + a2z2, and hen
e the set of

solutions (f1, f2) ∈ R to the latter equation is z+a⊥×, where a⊥× = a⊥ ∩ (R×q + qZn)2. Therefore:

Pra =
DZ2n,σ(z + a⊥×)

DZn,σ(z1 +R×q + qZn) ·DZn,σ(z2 +R×q + qZn)
.

For any t ∈ a⊥ we have t2 = −t1a1/a2, so, sin
e −a1/a2 ∈ R×q , the ring elements t1 and t2
must belong to the same ideal IS of Rq for some S ⊆ {1, . . . , kq}. It follows that a⊥× = a⊥ \⋃
S⊆{1,...,n},S 6=∅ a

⊥(IS). Similarly, we have R×q + qZn = Zn \ ⋃S⊆{1,...,n},S 6=∅(IS + qZn). Using the

in
lusion-ex
lusion prin
iple, we obtain:

DZ2n,σ(z + a⊥×) =
∑

S⊆{1,...,n}
(−1)|S| ·DZ2n,σ(z + a⊥(IS)), (1)

∀i ∈ {1, 2} : DZn,σ(zi +R×q + qZn) =
∑

S⊆{1,...,n}
(−1)|S| ·DZn,σ(zi + IS + qZn). (2)

In the rest of the proof, we show that, ex
ept for a fra
tion ≤ 29nq−ε
′n

of a ∈ (R×q )
2
:

DZ2n,σ(z + a⊥×) = (1 + δ0)|R×q |q−2n,
∀i ∈ {1, 2} : DZn,σ(zi +R×q + qZn) = (1 + δi)|R×q |q−n.

where |δi| ≤ 22n+2q−n⌊ε
′kq⌋/kq

(resp. |δi| ≤ 26n+1q−ε
′n
) for i ∈ {0, 1, 2}. The bounds on |Pra −

|R×q |−1| follow by a routine 
omputation.

Handling (1). We �rst noti
e that, sin
e z ∈ Z2n
, we have (for any S ⊆ {1, . . . , kq}):

DZ2n,σ(z + a⊥(IS)) =
ρσ(z + a⊥(IS))

ρσ(Z2n)
=
ρσ(z + a⊥(IS))
ρσ(z + Z2n)

= DZ2n,σ,−z(a
⊥(IS)).

To get our �rst our bound, we pro
eed as follows. For the terms of (1) with |S| ≤ ε′kq , we apply
the �rst bound of Lemma 3.4 with m = 2 and ε = ε′/2. The assumption of Lemma 3.4 on σ holds,

with δ := q−n(1+⌊ε
′kq⌋/kq)

. Further, we have det(a⊥(IS)) = qn(1+|S|/kq): Indeed, sin
e a ∈ (R×q )
2
,

there are qn(1−|S|/kq) elements of a⊥(IS) in [0, q − 1]2n. We 
on
lude that |DZ2n,σ,−z(a
⊥(IS)) −

q−n(1+|S|/kq)| ≤ 2δ, for all ex
ept a fra
tion ≤ 28nq−ε
′n

of a ∈ (R×q )
2
(possibly 
orresponding to a

distin
t subset of (R×q )
2
for ea
h possible S).

For a term of (1) with |S| > ε′kq , we 
hoose S′ ⊆ S with |S′| = ⌊ε′kq⌋. Then we have a⊥(IS) ⊆
a⊥(IS′) and hen
e DZ2n,σ,−z(a

⊥(IS)) ≤ DZ2n,σ,−z(a
⊥(IS′)). By using with S′ the above result for

small |S|, we obtain DZ2n,σ,−z(a
⊥(IS)) ≤ 2δ + q−n(1+⌊ε

′kq⌋/kq)
.

Overall, we have, ex
ept possibly for a fra
tion ≤ 29nq−ε
′n

of a ∈ (R×q )
2
:

∣∣∣∣DZ2n,σ(z + a⊥×)−
n∑

k=0

(−1)k
(
n

k

)
q−n−k

∣∣∣∣ ≤ 2n+1δ + 2

kq∑

k=⌈εkq⌉

(
kq
k

)
q
−n(1+ ⌊ε′kq⌋

kq
)

≤ 2n+1(δ + q
−n(1+ ⌊ε′kq⌋

kq
)
).

We 
on
lude that |δ0| ≤ q2n

(qn/kq−1)kq 2
n+1(δ + q

−n(1+ ⌊ε′kq⌋

kq
)
) ≤ 22n+2q

− ⌊ε′kq⌋

kq
·n
, as required.
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For our se
ond bound, we argue as follows. For the term of (1) with |S| = 0, we apply the se
ond

bound in Lemma 3.4 with ε = ε′/2. By the 
hoi
e of σ, the Lemma 3.4 assumption on σ holds,

with δ := q−2n. We have |R/a⊥(IS)| = det(a⊥(IS)) = qn and hen
e |DZ2n,σ,−z(a
⊥(IS))−q−n| ≤ 2δ,

for all ex
ept a fra
tion ≤ 28nq−ε
′n

of a ∈ (R×q )
2
.

For the terms of (1) with |S| ≥ 1, unlike the argument above, we 
annot 
hoose for |S| = 1 an I ′S
with S′ ⊆ S and deta⊥(IS′) ≈ q(1+ε)n: su
h an ideal IS′

does not exist, as the only possible 
hoi
e for

S′ is the empty set, whi
h gives deta⊥(IS′) = qn, and the latter is too small. Instead, we pro
eed as

follows. Let L′ = N ·Z2n
, where N = ⌈14q1/2+ε

′/2⌉. Note that detL′ = N2n ≥ 2−4nq(1+ε
′)n

, and sin
e

λ2n(L
′) = N ≤ 1

2q
1/2+ε′/2

, we have by Lemma 2.1 with δ = q−2n that ηδ(L
′) ≤

√
n ln(8nq)q1/2+ε

′/2
.

Hen
e, by Lemma 2.4 and the 
hoi
e of σ, we have DZ2n,σ(L
′) ≤ 24nq−(1+ε

′)n + 2δ. To use the last

bound, we now show that, for |S| ≥ 1, we have DZ2n,σ(z + a⊥(IS)) ≤ DZ2n,σ(L
′). For this, we use

a rounding pro
ess φ : Z2n → L′ to map z+a⊥(IS) onto a subset of L′ su
h that the following two

properties hold:

1. The map φ is one-to-one on z + a⊥(IS),
2. For ea
h v ∈ Z2n

, we have ‖φ(v)‖ ≤ ‖v‖.

Sin
e DZ2n,σ(w) ≥ DZ2n,σ(v) for any v,w ∈ Z2n
with ‖w‖ ≤ ‖v‖, property 2 of φ implies that

DZ2n,σ(z+a⊥(IS)) ≤
∑

v∈z+a⊥(IS)
(φ(v)), and by property 1 of φ, the points {φ(v)}v∈z+a⊥(IS)

are

distin
t points of L′, so that
∑

v∈z+a⊥(IS)
(φ(v)) ≤ DZ2n,σ(L

′), as required. It remains to de�ne φ and

show that it has both properties. For v ∈ Z2n
, let φ(v) round ea
h 
oordinate vi of v to the nearest

multiple of N whi
h is less than or equal to |vi| in absolute value, i.e., φ(v) = (v′1, . . . , v
′
2n) with

v′i = ⌊ |vi|N ⌋·N ·sign(vi). Sin
e |v′i| ≤ |vi|, property 2 of φ is 
learly satis�ed. To show property 1, note

that ‖φ(v)−v‖∞ < N for all v in Z2n
. Suppose towards a 
ontradi
tion that φ is not one-to-one on

z+a⊥(IS). Then there exist two ve
tors v1 6= v2 in z+a⊥(IS) with φ(v1) = φ(v2) = v. A triangle

inequality then gives that v1 − v2 is a non-zero ve
tor of a⊥(IS) with ‖v1 − v2‖ < 2N ≤ q1/2+ε′/2.
However, by the �rst bound of Lemma 3.3 with m = 2, |S| = 1, and ε = ε′/2, we have λ∞1 (a⊥(IS)) ≥
1√
n
q

1
2
+ 1

2kq
− ε′

2
, ex
ept for a fra
tion ≤ 24nq−ε

′n
of a ∈ (R×q )

2
. By the 
ondition on q, this gives a


ontradi
tion, so φ has property 1, ex
ept for a fra
tion ≤ 24nq−ε
′n
of a ∈ (R×q )

2
. We 
on
lude that

for the terms with |S| ≥ 1, we have DZ2n,σ,−z(a
⊥(IS)) ≤ 24n+1q−(1+ε

′)n
. Hen
e, similarly to the

�rst bound, we obtain our se
ond bound |δ0| ≤ q2n

(qn/kq−1)kq 2
5n+1q−(1+ε

′)n ≤ 26n+1q−ε
′n
.

Handling (2). For the bounds on δ1 and δ2, we use a similar argument. Let i ∈ {1, 2}. The zi
term 
an be handled like the z term of (1). Therefore, in this 
ase we need a good bound on

DZn,σ,−zi(IS+qZ
n). By Lemma 2.4 this redu
es to �nding a good bound on the smoothing parameter

of the ideal latti
e LS = IS + qZn. For this, we �rst observe that LS = a⊥(IS) in the spe
ial 
ase

m = 1 and a1(x) =
∏
i∈S̄ Φi(x), where S̄ denotes the 
omplement of S. Therefore, by Lemma 3.1,

the dual latti
e L̂S = 1
qL(a

⋆
1, I

⋆
S̄
) = 1

qLS̄′ is also a (s
aled) ideal latti
e, for some S̄′ ⊆ {1, . . . , kq}
with |S̄′| = |S̄|, where we have used the fa
t that the mapping sending a1(x) =

∏
i∈S̄ Φi(x) to

a⋆1(x) indu
es a bije
tion on the fa
tors Φi(x). Sin
e detLS̄′ = qn|S̄|/kq , we have by Minkowski's

theorem that λ∞1 (LS̄′) ≤ q|S̄|/kq . Moreover, sin
e IS + qZn is an ideal latti
e, Lemma 2.1 gives

that ηδ(IS + qZn) ≤ 1
q

√
ln(2n(1 + 1/δ))/π · λ∞1 (LS̄′) ≤

√
n ln(4nq)q|S|/kq ≤ σ, for δ := q−n/2,

assuming |S| ≤ kq/2. Hen
e, for a term of (2) with |S| ≤ kq/2, by Lemma 2.4, we have |DZn,σ,−zi(IS+
qZn)− q−n|S|/kq | ≤ 2δ.
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For a term of (2) with |S| > kq/2, we 
hoose S′ ⊆ S with |S′| = ⌊kq/2⌋ ≥ kq/3 for kq ≥ 2. By
using with S′ the above result for small |S|, we obtain DZn,σ,−zi(IS+ qZ

n) ≤ DZn,σ,−zi(IS′ + qZn) ≤
2δ + q−n/3.

Overall, we have:

∣∣∣∣∣∣
DZn,σ(zi +R×q + qZn)−

kq∑

k=0

(−1)k
(
kq
k

)
q−k

∣∣∣∣∣∣
≤ 2n+1δ + 2

kq∑

k=⌈kq/2⌉

(
kq
k

)
q−n/3 ≤ 2n+1(δ + q−n/3),

whi
h leads to the desired bound on δi. This 
ompletes the proof of the theorem. ⊓⊔

3.4 A revised NTRUEn
rypt s
heme

In this se
tion we present the provably se
ure variant of the NTRUEn
rypt s
heme. We de�ne the

s
heme NTRUEn
rypt with parameters n, q, p, α, σ as follows. The parameters n and q de�ne the

rings R and Rq. The parameter p ∈ R×q de�nes the plaintext message spa
e as P = R/pR. It must

be a polynomial with `small' 
oe�
ients with respe
t to q, but at the same time we require N (p) =
|P| = 2Ω(n)

so that many bits 
an be en
oded at on
e. Typi
al 
hoi
es as used in the original

NTRUEn
rypt s
heme are p = 3 and p = x + 2, but in our 
ase, sin
e q is prime, we may also


hoose p = 2. By redu
ing modulo the pxi's, we 
an write any element of P as

∑
0≤i<n εix

ip,
with εi ∈ (−1/2, 1/2]. Using the fa
t that R = Z[x]/(xn +1), we 
an thus assume that any element

of P is an element ofR with in�nity norm ≤ 1
2

√
deg(p) + 1·‖p‖. The parameter α is the R-LWE noise

distribution parameter. Finally, the parameter σ is the standard deviation of the dis
rete Gaussian

distribution used in the key generation pro
ess (see Se
tion 3.3).

• Key generation. Use the algorithm of Fig. 1 and return sk = f ∈ R×
q with f = 1 mod p, and pk = h = pg/f ∈

R×
q .

• En
ryption. Given message M ∈ P , set s, e ←֓ Υα and return 
iphertext C = hs+ pe+M ∈ Rq .

• De
ryption. Given 
iphertext C and se
ret key f , 
ompute C′ = f · C ∈ Rq and return C′ mod p.

Fig. 2. The en
ryption s
heme NTRUEn
rypt(n, q, p, α, σ).

The 
orre
tness 
onditions for the s
heme are summarized below.

Lemma 3.7. If deg p ≤ 1 ω(n0.25 lnn)α‖p‖2σ < 1, and αq ≥ n0.75, then the de
ryption algorithm

of NTRUEn
rypt re
overs M with probability 1− n−ω(1) over the 
hoi
e of s, e, f, g.

Proof. In the de
ryption algorithm, we have C ′ = p·(gs+ef)+fM mod q. Let C ′′ = p·(gs+ef)+fM

omputed in R (not modulo q). If ‖C ′′‖∞ < q/2 then we have C ′ = C ′′ in R and hen
e, sin
e f =
1 mod p, C ′ mod p = C ′′ mod p =M mod p, i.e., the de
ryption algorithm su

eeds. It thus su�
es

to give an upper bound on the probability that ‖C ′′‖∞ > q/2.
From Lemma 3.6, we know that with probability ≥ 1 − 2−n+3

both f and g have Eu
lidean

norms ≤ 4
√
n‖p‖σ if deg p ≤ 1. This implies that ‖pf‖, ‖pg‖ ≤ 8

√
n‖p‖2σ, with probability ≥

1− 2−n+3
. From Lemma 2.10, both pfs and pge have in�nity norms ≤ 8αqn0.25ω(lnn) · ‖p‖2σ with

probability 1− n−ω(1). Independently, we have:

‖fM‖∞ ≤ ‖fM‖ ≤
√
n‖f‖‖M‖ ≤ 4n‖p‖2σ.
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Sin
e αq ≥ n0.75, we 
on
lude that ‖C ′′‖∞ ≤ 20αqn0.25ω(lnn) · ‖p‖2σ, with probability 1− n−ω(1).
⊓⊔

The se
urity of the s
heme follows by a elementary redu
tion from the de
isional R-LWE×HNF,

exploiting the uniformity of the publi
 key in R×q (Theorem 3.2), and the invertibility of p in Rq.

Lemma 3.8. Suppose that n is a power of 2 su
h that Φ = xn+1 splits into n linear fa
tors modulo

prime q ≥ 5. Let ε ∈ (0, 1/3), δ > 0, p ∈ R×q and σ ≥ n
√

ln(8nq) ·q 1
2
+ε
. If there exists an IND-CPA

atta
k against NTRUEn
rypt that runs in time T and has su

ess probability 1/2+δ, then there exists

an algorithm solving R-LWE×HNF with parameters q and α that runs in time T ′ = T +O(n) and has

su

ess probability δ′ = δ − q−Ω(n)
.

Proof. Let A denote the given IND-CPA atta
k algorithm. We 
onstru
t an algorithm B against

R-LWE×HNF that runs as follows, given ora
le O that samples from either U(R×q ×Rq) or A×s,ψ for some

previously 
hosen s ←֓ ψ and ψ ←֓ Υα. Algorithm B �rst 
alls ora
le O to get a sample (h′, C ′)
from R×q × Rq. Then, algorithm B runs algorithm A with publi
 key h = p · h′ ∈ Rq. When A
outputs 
hallenge messages M0,M1 ∈ P, algorithm B pi
ks b ←֓ U({0, 1}), 
omputes the 
hallenge


iphertext C = p · C ′ +Mb ∈ Rq, and returns C to A. Eventually, when algorithm A outputs its

guess b′ for b, algorithm B outputs 1 if b′ = b and 0 otherwise.

The h′ used by B is uniformly random in R×q , and therefore so is the publi
 key h given to A,
thanks to the invertibility of p modulo q. Thus, by Theorem 3.2, the publi
 key given to A is

within statisti
al distan
e q−Ω(n)
of the publi
 key distribution in the genuine atta
k. Moreover,

sin
e C ′ = h · s + e with s, e sampled from ψ, the 
iphertext C given to A has exa
tly the right

distribution as in the IND-CPA atta
k. Overall, if O outputs samples from A×s,ψ, then A su

eeds

and B returns 1 with probability ≥ 1/2 + δ − q−Ω(n)
.

On the other hand, if ora
le O outputs samples from U(R×q ×Rq), then, sin
e p ∈ R×q , the value
of p ·C ′ and hen
e C, is uniformly random in Rq and independent of b. It follows that in this 
ase,

algorithm B outputs 1 with probability 1/2. The 
laimed advantage of B now follows. ⊓⊔

By 
ombining Lemmata 3.7 and 3.8 with Theorem 2.2 we obtain our main result.

Theorem 3.3. Suppose n is a power of 2 su
h that Φ = xn + 1 splits into n linear fa
tors modulo

prime q = Poly(n) su
h that q
1
2
−ε = ω(n2.25 ln2 n)‖p‖2, with ε = ω(1/n) and ε < 1/3 and p ∈

R×q with deg(p) ≤ 1. Let σ = n
√
ln(8nq) · q 1

2
+ε

and α−1 = ω(n0.25 lnn)‖p‖2σ. If there exists

an IND-CPA atta
k against NTRUEn
rypt whi
h runs in time Poly(n) and has su

ess probability

1/2 + 1/Poly(n), then there exists a Poly(n)-time quantum algorithm for γ-Ideal-SVP with γ =

ω(n2.75 ln2.5 n)‖p‖2q 1
2
+ε
. Moreover, the de
ryption algorithm su

eeds with probability 1− n−ω(1).

Overall, by 
hoosing ε = 1/(ln n), the smallest q for whi
h the analysis holds is Ω̃(n4.5), and the

smallest γ that 
an be obtained is Õ(n5). Finally, we observe that our proof 
an be readily adapted

to o�er se
urity against sub-exponential atta
kers, under the assumption that Ideal-SVP 
annot be

solved in quantum sub-exponential time for some polynomial approximation fa
tor γ.

4 A provably se
ure variant of NTRUSign

In this se
tion, we present our provably se
ure variant of the NTRUSign signature s
heme. The

key generation algorithm for our s
heme extends the NTRUEn
rypt se
ret key (f, g) by 
omputing
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another (linearly independent over the ring R) `short' pair (F,G) satisfying F1h − G1 = 0 mod q,

su
h that a full short basis matrixM =

[
f g
F G

]
is obtained for the NTRU R-module L generated by

the rows of the matrix

[
1 h
0 q

]
. The method we use for generating (F,G) is a variant of the original

NTRUSign key generation algorithm in [25, 26℄.

Sin
e the determinant of the latti
e 
orresponding to the module L is qn, to make M a basis

of L, it su�
es for the module ve
tor (F,G) to satisfy the determinant 
ondition fG− gF = q. The
main idea in [25, 26℄ for generating (F,G) is the observation that if f, g are 
oprime over R, then
it is easy to 
ompute (F1, G1) ∈ R2

su
h that fG1 − gF1 = 1, and this ve
tor 
an be easily lifted

to a module ve
tor (Fq, Gq) = q · (F1, G1) su
h that M is a basis for L. Although (Fq, Gq) is not
short, thanks to the 
oprimality 
ondition fG1 − gF1 = 1, it 
an be easily made short by length

redu
tion, i.e., by subtra
ting from it a multiple ≈ qF1/f of the given ve
tor (f, g) to get a ve
tor

(F,G) ≈ (Fq, Gq)− (qF1/f) · (f, g) = (0, q · (G1−gF1/f)) = (0, q/f), where ‖q/f‖ ≈ q/‖f‖ is short.
However, this pro
edure fails if f and g are not 
oprime over R, and this undesirable event is dealt

with in the key generation pro
edure by reje
ting (f, g) and resampling new random 
andidates

for (f, g) until the 
oprimality 
ondition holds. Sin
e this reje
tion probability p 
ontributes a

deterioration fa
tor

1
1−p in the expe
ted key generation time, and also to the se
urity redu
tion


ost (with respe
t to the 
lose-to-uniform distribution of the publi
 key g/f when (f, g) is sampled

without reje
tion), it is important to bound 1− p from below by a non-negligible fun
tion.

In [25, 26℄, the key generation algorithm, and in parti
ular, the 
oprimality probability 1−p, are
not rigorously analyzed. Here, we rigourously bound the 
oprimality probability 1−p when f and g
are independently sampled from a dis
rete Gaussian distribution DZn,σ over R. Our argument

is based on a generalization of the 
lassi
al analysis of the probability 1 − p that two �random�

integers are 
oprime, whi
h gives the asymptoti
 value 1 − p =
∏
q(1 − 1/q2) = ζ(2)−1, where

ζ(2) =
∏
q

1
1−q−2 = π2

6 is Riemann's zeta fun
tion evaluated at 2, and the produ
ts run over all

prime integers q. Our generalization of this analysis to the ring R leads us to study the value of ζK(2),
where ζK(2) =

∏
J

1
1−N (J)−2 is the Dedekind zeta fun
tion for K = Q[x]/(xn + 1), evaluated at 2,

and the produ
t now runs over all prime ideals J of R = Z[x]/(xn+1). We show that ζK(2) = O(1)
and, using some additional results on ζK , that 1− p ≥ 1

2ζK(2) − o(1), so the a

eptan
e probability

1− p is in fa
t lower bounded by a 
onstant.

As a further improvement on the key generation algorithm in [25, 26℄, we apply Babai's nearest

plane algorithm [6℄ to redu
e the length the extended ve
tor (F,G), rather than applying Babai's

roundo� method as des
ribed above. This allows us to save a ≈ √n fa
tor in the norm of (F,G).

4.1 Additional results on ideal latti
es

For the analysis of the key generation of the signature s
heme (in Subse
tion 4.2), we need the

following result on the inverse (over K = Q[x]/(xn + 1)) of a dis
rete Gaussian sample. If b is

sampled from DI,σ for some ideal I ⊆ R, we expe
t ‖b‖ to be proportional to σ. Sin
e b · b−1 = 1
over K, it is reasonable to expe
t ‖b−1‖ to be proportional to σ−1.
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Lemma 4.1. Let n a power of 2, Φ = xn + 1 and R = Z[x]/Φ. For any ideal I ⊆ R, δ ∈ (0, 1),
t ≥
√
2π and σ ≥ t√

2π
· ηδ(I), we have:

Pr
b←֓DI,σ

[
‖b−1‖ ≥ t

σ
√
n/2

]
≤ 1 + δ

1− δ
n
√
2πe

t
.

Proof. Let (b(i))i≤n (resp. (b−(i))i≤n) be the 
omplex embeddings of b (resp. b−1). We have b−(i) =
(b(i))−1, for all i. We �rst show that it is unlikely that b has a small embedding. Wlog we 
on-

sider b(1) =
∑

j bjζ
j
(where the bj 's are the 
oe�
ients of the polynomial b). We let Re2 =

∑
j ℜ(ζj)2

and Im2 =
∑

j ℑ(ζj)2. By applying Lemma 2.7 twi
e, we obtain:

max

(
Pr

[
|ℜb(1)| ≤ σRe

t

]
,Pr

[
|ℑb(1)| ≤ σIm

t

])
≤ 1 + δ

1− δ

√
2πe

t
.

We have Re2 + Im2 = n, whi
h implies that max(Re, Im) ≥
√
n/2. Therefore:

Pr

[
|b(1)| ≤ σ

√
n/2

t

]
≤ 1 + δ

1− δ

√
2πe

t
.

Now, the union bound implies that Pr[∃i : |b(i)| ≤ σ
√
n/2

t ] ≤ 1+δ
1−δ

n
√
2πe
t . The latter event is

exa
tly the same as maxi |b−(i)| ≥ t

σ
√
n/2

. Finally, the identity ‖b−1‖ ≤ maxi |b−(i)| allows us to


omplete the proof. ⊓⊔

Dedekind Zeta fun
tion. We now review some fa
ts about the Dedekind zeta fun
tion (see, e.g.,

[51, Ch. VII℄). The Möbius fun
tion for ring R is a fun
tion from the ideals of R to {−1, 0, 1} and is

de�ned as follows: Let I =
∏r
i=1(Ji)

ei
denote the unique prime ideal fa
torization of I 6= 0 stri
tly


ontained in R, where the Ji's are distin
t prime ideals in R and ei is a positive integer for i ≤ r;
Then µ(I) = 0 if there exists i with ei ≥ 2, µ(I) = (−1)r if ei = 1 for all i. We extend the de�nition

to I = R by setting µ(R) = 1. The Dedekind zeta fun
tion of the ring R of integers of K is the

fun
tion ζK : R→ R de�ned by

ζK(s) =
∑

I⊆R
N (I)−s,

where the sum is over all non-zero ideals of R. The series ζK(s) 
onverges for s > 1, and:

ζK(s)
−1 =

∏

prime J⊆R

(
1−N (J)−s

)
=
∑

I⊆R
µ(I) · N (I)−s,

where the produ
t is over all prime ideals of R and the sum is over all non-zero integral ideals of R.

Lemma 4.2. Let Kn = Q[x]/Φn, for n ≥ 4 a power of 2. Then we have ζKn(2) = O(1), and for

ε ∈ (0, 1), we have ζKn(1 + ε) ≤ 2 exp(2 · (ε(1 − ε))−1 · n1−ε).

Proof. Let R = Z[x]/Φ. For a prime integer p, we let πK(p) denote the number of prime ideals


ontained in R having norm a power of p, i.e., dividing the prin
ipal ideal 〈p〉 ⊆ R. We re
all that

by Dedekind's theorem, πK(p) is the number of distin
t irredu
ible fa
tors of Φ = xn + 1 over Zp,
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so πK(p) ≤ min(n, p). Also, sin
e K is a normal extension of Q with ∆K a power of 2, all the prime

ideals above p > 2 have identi
al norm pn/πK(p)
(see, e.g., [50, Ch. 4℄). Using this, we have, for s > 1:

ζK(s) =
∏

prime p

∏

prime J |〈p〉
(1−N (J)−s)−1

=
2s

2s − 1

∏

prime p>2

(1− p−sn/πK(p))−πK(p)

≤ 2s

2s − 1

∏

prime p, 2<p≤n
(1− p−sn/p)−p ·

∏

prime p>n

(1− p−s)−n.

We used the fa
t that for �xed x ∈ (0, 1), the fun
tion t 7→ (1−x−1/t)−t is non-de
reasing for t > 0.
We �rst deal with the 
ase s = 2, where we have:

ζK(2) ≤ 4

3

∏

prime p, 2<p≤n/2
(1− p−4)−p ·

∏

prime p, n/2<p≤n
(1− p−2)−p ·

∏

prime p>n

(1− p−2)−n

≤ 4

3
exp

( ∑

prime p, 2<p≤n
(p−3 + p−7) +

∑

prime p, n/2<p≤n
p−1 + n

∑

prime p>n

(p−2 + p−4)
)
,

where we used the inequality ln(1 − x) ≥ −x− x2, for x ∈ [0, 1/3]. We now show that ea
h one of

these sums is O(1). We have:

∑

prime p≤n
p−3 ≤

∫ n

1
x−3dx ≤ 1/2.

Similarly, we have

∑
p≤n p

−7 ≤ 1/6,
∑

p>n p
−2 ≤ n−1 and

∑
p>n p

−4 ≤ n−3/3. It remains to

bound

∑
n/2<p≤n p

−1
. It is proved in [68, Th. 9, p. 16℄ that

∑
p≤x p

−1 = ln lnx+ c+O(1/ ln x), for
some 
onstant c. We thus obtain that:

∑

prime p, n/2<p≤n
p−1 ≤ ln

lnn

ln(n/2)
+O

(
1

lnn

)
= ln

(
1 +

ln 2

ln(n/2)

)
+O

(
1

lnn

)
= O

(
1

lnn

)
.

We now 
onsider the 
ase s = 1 + ε. We have:

ζK(1 + ε) ≤ 2
∏

prime p, 2<p≤n
(1− p−(1+ε)n/p)−p ·

∏

prime p>n

(1− p−(1+ε))−n

≤ 2 exp

( ∑

prime p, 2<p≤n
(p−(1+ε)

n
p
+1 + p−2(1+ε)

n
p
+1) + n ·

∑

prime p>n

(p−(1+ε) + p−2(1+ε))
)
.

where we again used the inequality ln(1 − x) ≥ −x − x2, for x ∈ [0, 1/3]. The �rst sum above is

bounded as:

2 ·
∑

prime 2<p≤n
p−ε ≤ 2 ·

∫ n

2
x−εdx ≤ 2

n1−ε

1− ε .

Similarly, the se
ond sum above is bounded as 2 ·∑p>n p
−(1+ε) ≤ 2ε−1n−ε.This gives the 
laimed

bound on ζK(1 + ε). ⊓⊔
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In our study of the Dedekind zeta fun
tion, we use the following bound.

Lemma 4.3. Let N ≥ 1 and ε ∈ (0, 1). The number H(N) of ideals I ⊆ Rn satisfying N (I) ≤ N
is bounded as H(N) ≤ 2 exp(2 · (ε(1 − ε))−1 · n1−ε) ·N1+ε

.

Proof. For k ≥ 1, letM(k) denote the number of ideals of Rn of norm exa
tly k. Note that for s > 1,
we have ζK(s) =

∑
I⊆RN (I)−s =

∑
k≥1M(k) ·k−s ≥∑k≤NM(k) ·k−s. Using∑k≤NM(k) ·k−s ≥∑

k≤NM(k) ·N−s = H(N) ·N−s, we obtain that H(N) ≤ ζK(s) ·N s
. Setting s = 1+ε and applying

Lemma 4.2 
ompletes the proof. ⊓⊔

The value ζQ(2) = π2/6 is famous be
ause its inverse is the probability that two �random�

integers are 
o-prime. The next lemma 
onsiders the generalization of that fa
t to Kn.

Lemma 4.4. Assume that σ ≥ 7n1.5 ln1.5 n.Then, for n a su�
iently large power of 2:

Pr
f,g←֓DR,σ

[〈f, g〉 6= R] ≤ 1− 1

2ζK(2)
+ 2−n+1.

Proof. By Lemma 2.3, we have:

Pr[〈f, g〉 6= R] ≤ Pr[〈f, g〉 6= R ∧ ‖f‖, ‖g‖ ≤ √nσ] + Pr[‖f‖ > √nσ or ‖g‖ > √nσ]
≤ Pr[〈f, g〉 6= R ∧ ‖f‖, ‖g‖ ≤ √nσ] + 2−n+1.

We bound Pr[〈f, g〉 6= R ∧ ‖f‖, ‖g‖ ≤ √nσ] by using an argument adapted from [63℄. Sin
e

any ideal I 
ontaining the prin
ipal ideal 〈f〉 has norm N (I) ≤ N (〈f〉), the 
ondition ‖f‖ ≤ √nσ
implies N (I) ≤ N (〈f〉) ≤ (

√
nσ)n. Thus, we have Pr[〈f, g〉 6= R ∧ ‖f‖, ‖g‖ ≤ √nσ] ≤ 1− p, with:

p := DT
Z2n,σ

(
Z2n \

⋃

prime I ⊆ R
N (I) ≤ (

√
nσ)n

I × I
)

=
∑

I ⊆ R
N (I) ≤ (

√
nσ)n

µ(I) ·DT
Zn,σ(I)

2,

where in the se
ond equality, we used the in
lusion-ex
lusion prin
iple (and µ is the Möbius fun
tion

for ring R), and DT
σ,Zn denotes the trun
ation of Dσ,Zn

to the ball Bn(
√
nσ) of radius

√
nσ, i.e.

DT
σ,Zn(x) = Dσ,Zn(x) if x ∈ Bn(

√
nσ) and DT

σ,Zn(x) = 0 otherwise.Re
all that ζK(2)
−1 =

∑
µ(I) ·

N (I)−2, where the sum is over all ideals I ⊆ R.We now show that

∣∣p− ζK(2)−1
∣∣ ≤ (2ζK(2))−1.

This implies p ≥ (2ζK(2))−1, as required. We have:

∣∣p− ζK(2)−1
∣∣ ≤

∑

I ⊆ R
N (I) ≤ (

√
nσ)n

∣∣DT
Zn,σ(I)

2 −N (I)−2
∣∣+

∑

I ⊆ R
N (I) > (

√
nσ)n

N (I)−2.

To bound the �rst sum, we re
all that for any (even fra
tional) ideal I, we have λn(I) =
λ1(I) ≤

√
nN (I)1/n, so. for any δ ∈ (0, 1/2), the smoothing parameter ηδ(I) is no greater than

Bδ · N (I)1/n, where Bδ =
√
n ln(2n(1 + 1/δ))/π (by Lemma 2.1). It follows from Lemma 2.2 that∣∣DZn,σ(I)

2 −N (I)−2
∣∣ ≤ 18δ/N (I)2 ifN (I) ≤ (σ/Bδ)

n
and I ⊆ R. We have |DZn,σ(I)−DT

Zn,σ(I)| =
DZn,σ(I \Bn(

√
nσ)) = DI,σ(I \Bn(

√
nσ)) ·DZn,σ(I) ≤ 2−n+2 ·DZn,σ(I), where in the last inequality

we applied Lemma 2.3. We 
on
lude that

∣∣∣DT
Zn,σ(I)

2 −N (I)−2
∣∣∣ ≤ (18δ + 2−n+5)/N (I)2 for I ⊆ R

of norm ≤ (σ/Bδ)
n
. Assume now that (σ/Bδ)

n < N (I) ≤ (
√
nσ)n, and let k =

⌈
N (I)1/n

σ/Bδ

⌉
. Sin
e
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I ⊆ 1
k · I, we have DT

Zn,σ(I) ≤ DT
Zn,σ(

1
k · I). Also, by the 
hoi
e of k, we have ηδ(

1
k · I) = 1

kηδ(I) ≤ σ.
Now:

DT
Zn,σ

(
1

k
· I
)
≤ DZn,σ

(
1

k
· I
)

=
ρσ(

1
k · I ∩ Zn)

ρσ(Zn)
≤ ρσ(

1
k · I)

ρσ(Zn)
≤
(
2Bδ
σ

)n 1 + δ

1− δ ,

where in the last inequality we applied Lemma 2.2 twi
e, using σ ≥ ηδ(Z
n) and det( 1k · I) =

1
kn ·N (I) ≥ ( σ

2Bδ
)n. Therefore, we have DT

Zn,σ(I)
2 ≤ (2Bδ

σ )2n(1+δ1−δ )
2
. Finally, assuming that σ ≥ 2Bδ

and δ = 1
160ζK(2)2

, we obtain:

∑

I ⊆ R
N (I) ≤ (

√
nσ)n

∣∣DT
Zn,σ(I)

2 −N (I)−2
∣∣ ≤

∑

I ⊆ R
N (I) ≤ (σ/Bδ)

n

∣∣DT
Zn,σ(I)

2 −N (I)−2
∣∣+

∑

I ⊆ R
(σ/Bδ)

n < N (I) ≤ (
√
nσ)n

∣∣DT
Zn,σ(I)

2 −N (I)−2
∣∣

≤ (18δ + 2−n+5) ·
∑

I ⊆ R
N (I) ≤ (σ/Bδ)

n

N (I)−2 + 2 ·H((
√
nσ)n) ·

(
2Bδ
σ

)2n

<
1

8ζK(2)
+ 2 ·H((

√
nσ)n) ·

(
2Bδ
σ

)2n

+ o(1),

where in the last inequality we used the 
hoi
e of δ and the fa
t that

∑
I⊆R,N(I)≤(σ√n)n N(I)−2 ≤∑

I⊆RN(I)−2 = ζK(2). Re
all that H(N) is the number of (integral) ideals of R of norm ≤ N .

From Lemma 4.3 with ε = ln lnn
lnn , we know that H(N) ≤ 2 exp( 4n

ln lnn)·N1+ε
. Taking σ ≥ 7n1.5 ln1.5 n

providesH ((
√
nσ)n)·

(
2Bδ
σ

)2n
≤ 1

8ζK(2) , for su�
iently large n, using ζK(2) = O(1) from Lemma 4.2.

Overall, the �rst sum is ≤ 1
4ζK(2) for n su�
iently large.

We now bound the se
ond sum, as follows:

∑

I ⊆ R
N (I) > ⌊(√nσ)n⌋

N (I)−2 =
∑

k>⌊(√nσ)n⌋

H(k)−H(k − 1)

k2
=

∑

k>⌊(√nσ)n⌋

H(k)

k2
−

∑

k≥⌊(√nσ)n⌋

H(k)

(k + 1)2

≤
∑

k>⌊(√nσ)n⌋
H(k)

(
1

k2
− 1

(k + 1)2

)

≤ 2 exp

(
4n

ln lnn

)
·

∑

k≥(√nσ)n

2k + 1

k1−ε(k + 1)2
,

where we used the bound on H(k) from Lemma 4.3 with ε = ln lnn
lnn . Now, noti
e that the summand

is ≤ 2
k2−ε , whi
h allows us to bound the se
ond sum by O(exp( 4n

ln lnn) · (
√
nσ)−(1−ε)n) = o(1), so the

latter is ≤ (4ζK(2))−1 for su�
iently large n, whi
h 
ompletes the proof. ⊓⊔

4.2 A revised NTRUSign key generation algorithm

The revised key generation for NTRUSign is given in Fig. 3. It is inspired from the algorithm of [26,

Se. 4℄ and des
ribed in more details in [25, Se. 5℄. The ve
tor (f, g) produ
ed by the NTRUEn
rypt
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Inputs: n, q ∈ Z, σ > 0.
Output: A key pair (sk, pk) ∈ R2×2 ×R×

q .

1. Sample f from DZn,σ ; if (f mod q) 6∈ R×
q , resample.

2. Sample g from DZn,σ; if (g mod q) 6∈ R×
q , resample.

3. If ‖f‖ > √n · σ or ‖g‖ > √n · σ, restart.
4. If 〈f, g〉 6= R, restart.
5. Compute F1, G1 ∈ R su
h that fG1 − gF1 = 1, e.g., using a Hermite Normal

Form algorithm (see [9, Ch. 2.4℄); set Fq := qF1 and Gq := qG1.

6. Use Babai's nearest plane algorithm [6℄ to approximate (Fq, Gq) by an integer

linear 
ombination of (f, g), (xf, xg), . . . , (xn−1f, xn−1g). Let (F,G) ∈ R2
be the

output, su
h that there exists k ∈ R with (F,G) = (Fq , Gq)− k(f, g).
7. If ‖(F,G)‖ > nσ, restart.

8. Return se
ret key sk =

[

f g
F G

]

and publi
 key pk = h = g/f ∈ R×
q .

Fig. 3. Revised key generation algorithm for NTRUSign.

key generation algorithm is a short ve
tor in the R-module generated by the rows of the matrix[
1 h
0 q

]
with h = g/f mod q. The algorithm of Fig. 3 extends (f, g) into a short module basis

[
f g
F G

]
.

Be
ause of the reje
tion tests, the output publi
 key h may not be uniformly distributed in R×q ,
as it was the 
ase for NTRUEn
rypt. Uniformity is important for us to be able to eventually rely on

Theorem 2.1 to prove the se
urity of the signature s
heme. In fa
t, as we will show in Subse
tion 4.3,

it su�
es that the 
ombined reje
tion probabilities of Steps 3, 4 and 7 is non-negligibly away from 1.
By Lemma 4.4, when no reje
tion is performed in Steps 1�3, the reje
tion probability of Step 4

is (assuming that σ ≥ 7n1.5 ln1.5 n and that n is a su�
iently large power of 2):

Pr
f,g←֓DR,σ

[〈f, g〉 6= R] ≤ 1− 1

2ζK(2)
+ 2−n+1.

We now 
onsider the reje
tion probability of Step 7 (without reje
tion in Steps 1�2).

Lemma 4.5. Assume that σ ≥ 7n1.5 ln1.5 n. Then, as n grows to in�nity:

Pr
f,g←֓DR,σ

[
‖(F,G)‖2 > n2σ2

2
+
q2ω(n)

σ2

∣∣∣∣ 〈f, g〉 = R

]
= o(1),

where F and G are as de�ned in Steps 5 and 6 of the algorithm of Figure 3.

Proof. We de
ompose (F,G) as (F,G) = (Fq, Gq)
∗ + (ef , eg), where (Fq, Gq)

∗
is the proje
tion

of (Fq, Gq) orthogonally to the K-span of (f, g) (whi
h 
an also be viewed as the proje
tion

of (Fq, Gq) orthogonally to the Q-span of (f, g), (xf, xg), . . . , (xn−1f, xn−1g)). We have:

‖(F,G)‖2 = ‖(Fq, Gq)∗‖2 + ‖(ef , eg)‖2.

As we use Babai's nearest-plane algorithm, the ve
tor (ef , eg) is the rounding error of Babai's nearest
plane algorithm, in rounding (Fq, Gq) − (Fq, Gq)

∗
to a 
lose point in the latti
e L(f, g) de�ned as

the Z-span of (f, g), (xf, xg), . . . , (xn−1f, xn−1g).
Sin
e ‖(Fq , Gq)∗‖ = mink∈K ‖(Fq − kf,Gq − kg)‖, to obtain an upper bound on ‖(Fq , Gq)∗‖,

it su�
es to �nd a k ∈ R su
h that ‖(Fq − kf,Gq − kg)‖ is small. From the equation fGq −
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gFq = q, we obtain Gq = qf−1 + g(f−1Fq) (where inversion takes pla
e in K). Taking k := f−1Fq
gives ‖(F,G)∗‖ ≤ ‖(0, qf−1)‖ = q‖f−1‖. From Lemma 4.1 with t = ω(n) and I = R, we get:

Pr
f←֓DR,σ

[
‖f−1‖ ≥ ω(

√
n)

σ

]
≤ o(1).

This remains the 
ase when the event is 
onditioned on 〈f, g〉 = R, as, by Lemma 4.4, the probability

that 〈f, g〉 = R is bounded from below by a 
onstant. Overall, we have that ‖(Fq, Gq)∗‖ ≤ qω(
√
n)

σ
holds ex
ept with probability ≤ o(1).

To bound ‖(ef , eg)‖, note that ‖(ef , eg)‖ ≤
√
n
2 maxi ‖(xif, xig)‖ =

√
n
2 ‖(f, g)‖. By Lemma 2.3,

we have ‖(f, g)‖ ≤
√
2nσ with probability ≥ 1 − o(1), when f, g ←֓ DR,σ. For the same reason as

above, this remains the 
ase when 
onditioning on 〈f, g〉 = R. Overall, we have ‖(ef , eg)‖ ≤ nσ√
2
,

ex
ept with probability ≤ o(1). This 
ompletes the proof. ⊓⊔

We 
an now analyze the overall reje
tion probability of the revised NTRUSign key generation

algorithm.

Lemma 4.6. Assume that q ≥ 64nζK(2) and σ = ω(max(
√
n lnn · q1/kq , q1/2n−1/4, n3/2 ln3/2 n)),

where kq the number of irredu
ible fa
tors of xn + 1 modulo q. Then if n is su�
iently large, the


ombined reje
tion probability of Steps 3, 4 and 7 of the algorithm of Fig. 3 (when f and g are

independently sampled from D×σ ) is ≤ 1− c, for some absolute 
onstant c > 0.

Proof. For i ∈ {3, 4, 7}, we let pi denote the reje
tion probability of the test in Step i, i.e.:

• p3 is the probability that ‖f‖ > √nσ or ‖g‖ > √nσ, with f, g ←֓ D×R,σ.
• p4 is the probability that 〈f, g〉 6= R and ‖f‖, ‖g‖ ≤ √nσ, with f, g ←֓ D×R,σ.
• p7 is the probability that (‖F,G‖) > nσ, 〈f, g〉 = R and ‖f‖, ‖g‖ ≤ √nσ, with f, g ←֓ D×R,σ .

For i ∈ {3, 4, 7}, we de�ne p′i as pi ex
ept that f and g are independently sampled from DR,σ rather

than D×R,σ. Let p1 be the probability of reje
tion of f at Step 1. By the union bound, the probability

of reje
ting f or g at Steps 1 or 2 is ≤ 2p1. Hen
e for i ∈ {3, 4, 7}, we have pi ≤ p′i/(1− 2p1).
The reje
tion probability p1 has already been studied in Subse
tion 3.3. Indeed, by Lemma 3.5

and the 
hoi
e of σ and q, we have p1 ≤ 1
32ζK(2) . Lemmata 2.1 and 2.3 and the 
hoi
e of σ imply

that p′3 ≤ 2−n+2
. Finally, from the 
hoi
e of σ and Lemmata 4.4 and 4.5, we have that p′4 ≤

1− 1
2ζK(2) +o(1) and p

′
7 = o(1). Re
all from Lemma 4.2 that ζK(2) = O(1) when n grows to in�nity.

Therefore, for a large enough n, we have p′3+p
′
4+p

′
7 ≤ 1− 1

4ζK(2) and the total reje
tion probability

satis�es p3 + p4 + p7 ≤ p′3+p
′
4+p

′
7

1−2p1 ≤ 1− 1
8ζK(2) , as required. ⊓⊔

We 
on
lude this se
tion with a 
orre
tness and e�
ien
y statement for the revised NTRUSign

key generation algorithm.

Theorem 4.1. Let n be a power of 2 su
h that Φ = xn+1 splits into kq ∈ {2, n} irredu
ible fa
tors

modulo prime q ≥ 64ζK(2)n. Let ε ∈ (0, 1/3) and σ ≥ max(n
√
ln(8nq) · q1/2+ε, ω(n3/2 ln3/2 n)) if

kq = n, or σ ≥ max(
√
n ln(8nq) · q1/2+ε, ω(n3/2 ln3/2 n)) if kq = 2. Then the algorithm of Fig. 3

terminates in expe
ted polynomial time, and the output matrix

[
f g
F G

]
is an R-basis of the R-

module spanned by the rows of

[
1 h
0 q

]
with h = g/f mod q. Furthermore, we have ‖(f, g)‖ ≤ 2

√
nσ,
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and ‖(F,G)‖ ≤ nσ. Finally, if n is su�
iently large, the distribution of the returned h is reje
ted

with probability c < 1 for some absolute 
onstant c from a distribution whose statisti
al distan
e

from U(R×q ) is ≤ 210nq−⌊εn⌋.

Proof. The �rst statement is provided by Lemma 4.6. For the se
ond statement, we refer to [26,

Th. 1℄. The norm inequalities are obvious from the des
ription of the algorithm. Finally, the last

statement is provided by Theorem 3.2 and Lemma 4.6. ⊓⊔

4.3 A revised NTRUSign s
heme

In this se
tion we present a provably se
ure variant of NTRUSign (in the random ora
le model). The

s
heme is an e�
ient instan
iation of the Gentry et al. signature [21℄, where e�
ien
y is improved

both by using the ring stru
ture (to redu
e 
omputation and storage from Õ(n2) to Õ(n)), and the

NTRU key to redu
e the key length and signature to a single ring element.

Collision-Resistant Preimage Sampleable Fun
tions. We re
all that the Gentry et al. signa-

ture is built from a general 
ryptographi
 primitive introdu
ed in [21℄ and 
alled Collision-Resistant

Preimage Sampleable Fun
tions (CRPSF), whi
h we re
all.

De�nition 4.1 (CRPSF). A CRPSF is spe
i�ed by three probabilisti
 polynomial-time algorithms

(TrapGen,SampleDom,SamplePre) su
h that:

1. Generating a Fun
tion with Trapdoor: Given a se
urity parameter n, TrapGen(1n) returns (a, t),
where a is the des
ription of an e�
iently 
omputable fun
tion fa : Dn → Rn (for some e�-


iently re
ognizable domain Dn and range Rn), and t is a trapdoor string for fa. In the following,

we �x some pair (a, t) returned by TrapGen(1n). Note that the following properties need only hold

for with probability negligibly 
lose to 1 over the 
hoi
e of (a, t) output by TrapGen(1n).
2. Domain Sampling with Uniform Output: Given a se
urity parameter n, SampleDom(1n) re-

turns x sampled from a distribution over Dn su
h that the statisti
al distan
e between fa(x) and
the uniform distribution over Rn is negligible.

3. Preimage Sampling with Trapdoor: Given any y ∈ Rn, SamplePre(t, y) outputs x su
h that

fa(x) = y and the distribution of x is within a negligible distan
e to the 
onditional distribution

of x′ ←֓ SampleDom(1n) given fa(x
′) = y.

4. Preimage Min-Entropy: For ea
h y ∈ Rn, the 
onditional min-entropy of x ←֓ SampleDom(1n)
given fa(x) = y is ω(lnn).

5. Collision-Resistan
e without Trapdoor: For any probabilisti
 polynomial-time algorithm F, the

probability that F(1n, a) outputs distin
t x, x′ ∈ Dn su
h that fa(x) = fa(x
′) is negligible, where

the probability is taken over the 
hoi
e of a and the random 
oins of F.

Our CRPSF 
onstru
tion NTRUPSF(n, q, σ, s) is shown in Fig. 4. The parameters n and q de�ne
the rings R and Rq. The parameter σ is the width of the dis
rete Gaussian distribution used in

the NTRUSign key generation pro
ess, while s is the width of the Gaussian used in the preimage

sampling.

Theorem 4.2. Suppose n is a power of 2 su
h that Φ = xn + 1 splits into kq ∈ {2, n} irredu
ible
fa
tors modulo prime q = Poly(n), with σ = n

√
ln(8nq) · q1/2+ε and q1/2−ε = Ω̃(n7/2) if kq =

n, or σ =
√
n ln(8nq) · q1/2+ε and q1/2−ε = Ω̃(n3) if kq = 2, for some �xed ε ∈ (0, lnnln q ). Let

s = Ω̃(n3/2σ). Then the 
onstru
tion NTRUPSF(n, q, σ, s) from Fig. 4 is a CRPSF se
ure against

32



• Generating a Fun
tion with Trapdoor � TrapGen(1n, q, σ): Run the NTRUSign key generation algorithm

from Fig. 3, using n, q, σ as inputs. It returns an NTRU key h = g/f ∈ R×
q and a trapdoor R-basis sk =

[

f g
F G

]

for the R-module h⊥ = {(z1, z2) ∈ R2 : z2 = hz1 mod q}. The key h de�nes fun
tion fh(z1, z2) = hz1 − z2 ∈ Rq

with domain Dn = {z ∈ R2 : ‖z‖ ≤ s
√
2n} and range Rn = Rq. The trapdoor string for fh is sk.

• Domain Sampling with Uniform Output � SampleDom(1n, q, s): Sample z from DZ2n,s; if ‖z‖ >
√
2ns,

resample.

• Preimage Sampling with Trapdoor � SamplePre(sk, t): To �nd a preimage in Dn for target t ∈ Rq under fh
using the trapdoor sk, note that c = (1, h − t) is a preimage of t under fh (not ne
essarily in Dn). Sample z

from Dh⊥+c,s, using trapdoor basis sk for h⊥
and the algorithm of Lemma 2.9. Return z.

Fig. 4. Constru
tion of CRPSF primitive NTRUPSF(n, q, σ, s).

Poly(n) time algorithms, assuming the hardness of γ-Ideal-SVP against Poly(n) time algorithms,

with γ = Õ(n · s).

Proof. The sets Dn and Rn are easily re
ognizable. Observe that s ≥ max(
√
n, η1/2(Z

2n)), so by

Lemmata 2.3 and 2.6, the distribution of z = (z1, z2) returned by SampleDom is within negligible

statisti
al distan
e of DZ2n,s. To show Property 2 of De�nition 4.1, we apply Theorem 3.1 with

δ = n−ω(1) to 
on
lude that thanks to the 
hoi
e of s, ex
ept for a fra
tion ≤ 28nq−2εn of (a1, a2) ∈
(R×q )

2
, we have ∆(a1z1−a2z2;U(Rq)) ≤ 2δ with (z1, z2) ←֓ DZ2n,s. Sin
e the mapping φ : x 7→ a−12 x

is a bije
tion of Rq, we have ∆(a1z1 − a2z2;U(Rq)) = ∆(a1a
−1
2 z1 − z2;U(Rq)) for ea
h a1, a2.

Moreover, sin
e h = a−12 a1 is uniformly random in R×q when a1 and a2 are independently so, we get

∆(hz1−z2;U(Rq)) ≤ 2δ with (z1, z2) ←֓ DZ2n,s ex
ept for a fra
tion ≤ 28nq−2εn of h ∈ R×q . Finally,
by Theorem 4.1, the distribution Dh of h = g/f generated by TrapGen is obtained by reje
tion

with 
onstant reje
tion probability c < 1 from a distribution within statisti
al distan
e 210nq−⌊εn⌋

of U(R×q ). It follows that ∆(hz1 − z2;U(Rq)) ≤ 2δ with (z1, z2) ←֓ DZ2n,s ex
ept with probability

≤ 1
1−c · (28nq−2εn + 210nq−⌊εn⌋) = q−Ω(n)

over the 
hoi
e of the publi
 key h, as required.
To show Property 3 of De�nition 4.1, we �rst observe that, for any �xed t ∈ Rq, the 
onditional

distribution of z ←֓ DZ2n,s given fh(z) = hz1 − z2 = t is exa
tly F (z) = ρs(z)
ρs(h⊥+c)

= Dh⊥+c,s(z),

where c = (1, h − t). Therefore, Property 3 follows from Lemma 2.9, the upper bound nσ on the

trapdoor basis norm from Theorem 4.1, and the 
hoi
e of s = ω(n3/2
√
lnn · σ).

To show Property 4 of De�nition 4.1, note that the 
onditional preimage distribution isDh⊥+c,s =
Dh⊥,s,−c + c, where c = (1, h − t), so it su�
es to bound the min-entropy of Dh⊥,s,−c from be-

low. By Lemma 2.5, the latter min-entropy is Ω(n) if the 
ondition s ≥ 2η1/2(h
⊥) is satis�ed.

Theorem 3.1 shows that for all ex
ept a fra
tion ≤ 28nq−εn = q−Ω(n)
of a ∈ (R×q )

2
, we have

η1/2(a
⊥) = Õ(

√
nq

1
2
+ε). Sin
e a⊥ = h⊥ with h = a−12 a1, it follows that for all ex
ept a fra
tion

≤ q−Ω(n)
of h ∈ R×q , we have η1/2(h⊥) ≤ Õ(

√
nq

1
2
+ε). By the 
hoi
e of s, the 
ondition s ≥ 2η1/2(h

⊥)

is satis�ed. By Theorem 4.1, the 
ondition is satis�ed ex
ept with probability

q−Ω(n)

1−c = q−Ω(n)
over

the 
hoi
e of the publi
 key h, as required.
Finally, we show Property 5 of De�nition 4.1. Let A be a 
ollision-�nding algorithm for NTRUPSF

with run-time T = Poly(n) and su

ess probability δ = 1/Poly(n) over the 
hoi
e of the publi


key h and the randomness of A. By Theorem 4.1, the su

ess probability of A over the 
hoi
e

of h ←֓ U(R×q ) and the randomness of A is at least δ′ = (1 − c)δ − 210nq−⌊εn⌋. Note that we

have δ′ = 1/Poly(n). We 
onstru
t an algorithm A′ for R-SISq,2,β with β = 2
√
2ns that works as
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follows on input (a1, a2) ←֓ U(R2
q). If (a1, a2) /∈ (R×q )

2
, it aborts. Else, A′ runs A on input h =

a−12 a1. If A su

eeds, it outputs (z1, z2) 6= (z′1, z
′
2) with ‖(z1, z2)‖, ‖(z′1, z′2)‖ ≤

√
2ns su
h that

a1(z1−z′1)+a2(z′2−z2) = 0, and then A′ returns w = (z1−z′1, z′2−z2). Note that 0 < ‖w‖ ≤ 2
√
2ns,

as required. Conditioned on (a1, a2) ∈ (R×q )
2
, the distribution of h given to A is U(R×q ) and thus

A su

eeds with probability ≥ δ′. Sin
e (a1, a2) ∈ (R×q )
2
with probability ≥ 1 − 2n/q = Ω(1), it

follows that A′ su

eeds probability ≥ (1 − 2n/q)δ′ = 1/Poly(n). Applying Theorem 2.1 using the


hoi
e of q = Ω̃(β
√
n), we obtain a Poly(n) time algorithm for γ-Ideal-SVP with the 
laimed γ. ⊓⊔

The revised NTRUSign s
heme. Given the NTRUPSF 
onstru
tion above, the revised NTRUSign

follows the Gentry et al. `Probabilisti
 Full Domain Hash' 
onstru
tion and is shown in Fig. 5.

Besides the NTRUPSF parameters, it has an additional parameter k that indi
ates the randomizer

length. Note that applying the Gentry et al. 
onstru
tion dire
tly on NTRUPSF results in signatures

on a message M 
onsisting of two ring elements (σ1, σ2) and a randomizer r ∈ {0, 1}k satisfying

hσ1 − σ2 = H(r,M), where H is the random ora
le. To redu
e the signature length, our NTRUSign

variant eliminates σ2 from the signature, sin
e it 
an be easily re
overed during veri�
ation from

the remaining information.

• Key Generation � KeyGen(1n, q, σ, k): Run TrapGen(1n, q, σ) of NTRUPSF(n, q, σ, s) to get key h ∈ R×
q and

trapdoor sk for fun
tion fh : Dn → Rn, where Dn = {(z1, z2) ∈ R2 : ‖(z1, z2)‖ ≤
√
2ns}, Rn = Rq

and fh(z1, z2) = hz1 − z2. Return the signer's publi
 key h and se
ret key sk.

• Signing Algorithm � Sign(sk,M): Choose r ←֓ U({0, 1}k), let (σ1, σ2) := SamplePre(sk,H(r,M)). Return
(r, σ1).

• Veri�
ation Algorithm � Ver(h,M, (r, σ1)): Compute t = H(r,M) and σ2 = hσ1 − t. A

ept if (σ1, σ2) ∈ Dn

and r ∈ {0, 1}k, else reje
t.

Fig. 5. Constru
tion of NTRUSign(n, q, σ, s, k) from the NTRUPSF primitive in Fig. 4.

Sin
e σ2 is easily 
omputed from σ1, r and the publi
 information, the se
urity of NTRUSign is

equivalent to that of the Gentry et al. signature obtained from NTRUPSF, whi
h in turn has been

shown in [21, Prop. 6.2℄ to follow from the se
urity of the underlying CRPSF. Combining with

Theorem 4.2, we obtain our se
ond main result.

Corollary 4.1. Let ε, n, q, σ, s satisfy the 
onditions in Theorem 4.2, and let k = ω(lnn). Then,
assuming the random ora
le model for H, the signature s
heme NTRUSign(n, q, σ, s, k) from Fig. 5

is strongly existentially unforgeable against a 
hosen message atta
k with Poly(n) run-time and

1/Poly(n) su

ess probability, assuming the hardness of γ-Ideal-SVP against Poly(n) time algo-

rithms, with γ = Õ(n · s).

Note that if H runs in quasi-linear time, then so does the veri�
ation algorithm. Also, if pre-


omputations are performed, then so does the signing algorithm (see [55, 13℄). The amortized 
ost

per signed bit is then Õ(1). Finally, we remark that the smallest q and γ that 
an be 
hosen in

Theorem 4.2 and Corollary 4.1 are Ω̃(n6/(1−2ε)) if kq = 2 and Ω̃(n7/(1−2ε)) if kq = n. Finally, we
observe that our proof 
an be readily adapted to o�er se
urity against sub-exponential atta
kers (in

the random ora
le model), under the assumption that Ideal-SVP 
annot be solved in sub-exponential

time for some polynomial approximation fa
tor γ.
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