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Abstract. NTRUEncrypt, proposed in 1996 by Hoffstein, Pipher and Silverman, is the fastest known
lattice-based encryption scheme. Its moderate key-sizes, excellent asymptotic performance and conjec-
tured resistance to quantum computers make it a desirable alternative to factorisation and discrete-log
based encryption schemes. However, since its introduction, doubts have regularly arisen on its security
and that of its digital signature counterpart. In the present work, we show how to modify NTRUEncrypt
and NTRUSign to make them provably secure in the standard (resp. random oracle) model, under the
assumed quantum (resp. classical) hardness of standard worst-case lattice problems, restricted to a
family of lattices related to some cyclotomic fields.

Our main contribution is to show that if the secret key polynomials of the encryption scheme are selected
from discrete Gaussians, then the public key, which is their ratio, is statistically indistinguishable
from uniform over its range. We also show how to rigorously extend the encryption secret key into
a signature secret key. The security then follows from the already proven hardness of the R-SIS and
R-LWE problems.
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1 Introduction

The NTRU encryption scheme devised by Hoffstein, Pipher and Silverman, was first presented at
the rump session of Crypto’96 [27]. Although its description relies on arithmetic over the polynomial
ring Zg[z]/(z™ — 1) for n prime and ¢ a small integer, it was quickly observed that breaking it could
be expressed as a problem over Euclidean lattices [27,11]. At the ANTS’98 conference, the NTRU
authors gave an improved presentation including a thorough assessment of its practical security
against lattice attacks [28]. We refer to [24] for an up-to-date account on the past 15 years of
security and performance analyses. Nowadays, NTRUEncrypt is commonly considered as a reasonable
alternative to the encryption schemes based on integer factorisation and discrete logarithm over finite
fields and elliptic curves, as testified by its inclusion in the IEEE P1363 standard [33]. It is also often
considered as the most viable post-quantum public-key encryption (see, e.g., [58]|). The authors of
NTRUEncrypt also proposed a signature scheme based on a similar design. The history of NTRUSign
started with NSS in 2001 [29]. Its development has been significantly more hectic and controversial,
with a series of cryptanalyses and repairs (see, e.g., [20,22,31,67,49,52] and the survey [24]).

In parallel to the break-and-repair development of the practically efficient NTRU schemes, the
(mainly) theoretical field of provably secure lattice-based cryptography has steadily been developed.

* Some of the results in this paper have been presented in preliminary form at Eurocrypt 2011 [64]. The results in
this paper improve and significantly extend those in [64]; the most significant addition is the security analysis of
a provably secure variant of NTRUSign.



It originated in 1996 with Ajtai’s acclaimed worst-case to average-case reduction [3], leading to
a collision-resistant hash function that is as hard to break as solving several natural worst-case
problems defined over Euclidean lattices. Ajtai’s average-case problem is now referred to as the
Small Integer Solution problem (SIS). Another major breakthrough in this field was the introduction
in 2005 of the Learning with Errors problem (LWE) by Regev [59,60]: LWE is both hard on the
average (standard worst-case lattice problems quantumly reduce to it), and sufficiently flexible to
allow for the design of cryptographic functions. In the last few years, many cryptographic schemes
have been introduced that are provably as secure as LWE and SIS are hard (and thus provably
secure, assuming the worst-case hardness of lattice problems). These include CPA and CCA secure
encryption schemes, identity-based encryption schemes, digital signatures, etc (see [60,54, 21,8, 1],
among others, and the surveys [47,61]).

The main drawback of cryptography based on LWE and SIS lies in its limited efficiency. A key
typically contains a random matrix over the ring Z, = Z/qZ for a small ¢, whose dimensions are
(at least) linear in the security parameter; consequently, the space and time requirements seem
bound to be at least quadratic with respect to the security parameter. In 2002, Micciancio [44]
succeeded in restricting SIS to structured matrices while preserving a worst-case to average-case
reduction. The worst-case problem is a restriction of a standard lattice problem to the specific
family of cyclic lattices. The structure of Micciancio’s matrices allows for an interpretation in terms
of arithmetic in the ring Z,[x]/(z™ — 1), where n is the dimension of the worst-case lattices and ¢
is a small prime. Micciancio’s construction leads to a family of pre-image resistant hash functions,
with complexity quasi-linear in the security parameter n: The efficiency gain stems from the use
of the discrete Fourier transform for multiplying polynomials. In two concurrent works, Peikert,
Rosen, Lyubashevsky and Micciancio [57, 39| later suggested to change the ring to Z,[x]/® with a
polynomial @ that is irreducible over the rationals, sparse, and with small coefficients (e.g., ® = x"+1
for n a power of 2). The resulting hash function was proven collision-resistant under the assumed
hardness of the modified average-case problem, now often called the Ideal Small Integer Solution
or Ring Small Integer Solution problem (R-SIS). The latter was itself proven at least as hard as
the restrictions of standard worst-case lattice problems to a specific class of lattices, called ideal
lattices. In 2009, Lyubashevsky [38] introduced an efficient digital signature provably as secure
as R-SIS (in the random oracle model). Also in 2009, Stehlé, Steinfeld, Tanaka and Xagawa [65]
introduced a structured (albeit somewhat restricted) variant of LWE, which they proved as hard
as R-SIS (under a quantum reduction), and allowed for the design of an asymptotically efficient
CPA-secure encryption scheme. In an independent and concurrent work, Lyubashevsky et al. [21]
proposed a ring variant of LWE, called R-LWE, whose great flexibility allows for more natural (and
efficient) cryptographic constructions.

Our results. The high efficiency and industrial standardization of NTRUEncrypt and NTRUSign
strongly motivate a theoretically founded study of their security. Indeed, in the absence of such a
study so far, their security has remained in doubt over the last 15 years since the initial NTRU
publication. This work addresses this problem.

We propose a mild modification of NTRUEncrypt that is CPA-secure in the standard model, under
the assumed quantum hardness of standard worst-case problems over ideal lattices (for @ = 2™ 4 1
with n a power of 2); and we describe a variant of NTRUSign that is existentially unforgeable in
the random oracle model, under the assumed classical hardness of the same problems over ideal
lattices. The NTRUEncrypt modifications are summarized at the end of the introduction. The most
substantial additional modification for NTRUSign is the use of a discrete Gaussian sampler [21,55,



13] in the signing process, that ensures that no secret information is leaked while signing (thus
preventing the learning attack from [52]). We also give the first rigorous analysis of the algorithm
that extends an NTRUEncrypt secret key into an NTRUSign secret key.

We stress that our main goal in this paper is to provide, for the first time, a firm theoretical
grounding for the security of the NTRU schemes, in the asymptotic sense. The practical instantia-
tions of our schemes are likely to be significantly less efficient than the original schemes. However,
several of our modifications incur negligible performance overheads over the original schemes, while
bringing their security level closer to the provably secure schemes. For instance, the extra error term
we add to the NTRUEncrypt scheme is a cheap way to address the lack of IND-CPA security of the
original scheme.

Overview of our techniques. Our main technical contribution is the modification and analysis
of the NTRU key generation algorithms.

In NTRUEncrypt, the secret key consists of two sparse polynomials of degrees < n and coeffi-
cients in {—1,0,1}. The public key is their quotient in the ring Zy[z]/(z™ — 1) (the denominator
is resampled if it is not invertible). A simple information-theoretic argument shows that the public
key cannot be uniformly distributed in the whole ring. It would be desirable to guarantee the latter
property, in order to exploit the established hardness of R-SIS and R-LWE (we actually show a
weaker distribution property, which still suffices for linking the security to R-SIS and R-LWE). For
this purpose, we sample the secret key polynomials according to a discrete Gaussian with standard
deviation &~ ¢/2. An essential ingredient, which may be of independent interest, is a new regularity
result for the ring R, := Z4[z]/(z™ + 1) when the polynomial 2™ 4+ 1 with n a power of 2 has n
factors modulo prime ¢: Given ay, ..., a,, uniform in Ry, we would like ) |, s;a; to be within expo-
nentially small statistical distance to uniformity, with small random s;’s and small m. Micciancio’s
regularity bound [44, Se. 4.1] (see also [65, Le. 6]) does not suffice for our purposes: For m = O(1),
it bounds the distance to uniformity by a constant. To achieve the desired closeness to uniformity,
we choose the a;’s uniform among the invertible elements of R, and we sample the s;’s according to
discrete Gaussians with small standard deviations (=~ ¢'/™). A similar regularity bound has been
concurrently and independently obtained by Lyubashevsky et al. in [43]. An additional difficulty in
the proof of public-key uniformity, which we handle via an inclusion-exclusion argument, is that we
need the randomizers s; to be invertible in R, (the denominator of the public key is one such s;):
We thus sample according to a discrete Gaussian, and reject the sample if it is not invertible.

For NTRUSign, the technique described in [26, Se. 4] and in [25, Se. 5] to extend an NTRUEncrypt
secret key into an NTRUSign secret key is only heuristic. For instance, it samples an encryption
secret key and rejects the sample until some desirable properties are satisfied (most notably the
co-primality of the two secret key polynomials over Z[z]/(z™ — 1)), but the security impact of this
procedure is not carefully analyzed. We show that in our modified context, the rejection probability
can be proven to be sufficiently away from 1, by relating it to the Dedekind zeta function of the
cyclotomic fields under scope. Furthermore, the security of the signature scheme follows from the
hardness of R-SIS, even with this additional rejection.

Finally, the cryptographic schemes are obtained from (structured variants of) the Gentry et
al. [21] signature and dual encryption schemes, via an inversion-based dimension reduction of the
R-SIS/R-LWE instances. We explain it in the case of R-SIS: Given (a;)i<p, uniformly and indepen-
dently chosen in Ry, find an s € R™ \ 0 with R := Z[z]/(z™ + 1) such that ), s;a; = 0 mod gq.
If ¢ is sufficiently large, the event “a,, invertible in R,” occurs with non-negligible probability, so
the average-case hardness of the problem is essentially unchanged if we divide all a;’s by a,,. We



can then remove a,, = 1 from the input, by making it implicit. This improvement is most dramatic
for R-SIS when m = 2.

Comparison between NTRUEncrypt and its provably secure variant. Let Ryrry denote the
ring Z[z]/(z™ — 1) with n prime. Let ¢ be a medium-size integer, typically a power of 2 of the same
order of magnitude as n. Finally, choose p € Ryrry with small coefficients, co-prime with ¢ and
such that the plaintext space Ryrry/p is large. E.g, if ¢ is chosen as above, one may take p = 3
orp=ux+42.

The NTRUEncrypt secret key is a pair of polynomials (f,g) € R2 sy that are sampled randomly
with large prescribed proportions of zero coefficients, and with their other coefficients belonging
to {—1,1}. For improved decryption efficiency, one may choose f as f = 1+ pf with f as described
just above, so that f =1 mod p. With high probability, we (heuristically) expect the polynomial f
to be invertible modulo ¢ and modulo p, and if that is the case the public-key is h = pg/f mod ¢
(otherwise, the key generation process is restarted). To encrypt a message M € Ryrru/p, One
samples a random element s € Ryrgy of small Euclidean norm and computes the ciphertext C' =
hs + M mod q. The following procedure allows the owner of the secret key to decrypt:

e Compute fC and reduce the result modulo ¢. If the ciphertext was properly generated, this
gives pgs + fM mod g. Since the five involved ring elements have small coefficients, it can be
expected that after reduction modulo ¢ the obtained representative is exactly pgs + fM (seen
as an element of Ryrry). The latter requires that ¢ is not too small.

e Reduce the result of the previous step modulo p. This should provide fM mod p.

e Multiply the result of the previous step by the inverse of f modulo p (this step becomes vacuous
if f =1 mod p).

Note that the encryption process is probabilistic, and that decryption errors can occur for some
sets of parameters. However, it is possible to arbitrarily decrease the decryption error probability,
and even to prevent decryption errors from occurring, by setting the parameters carefully.

In order to achieve IND-CPA security under the assumption that standard lattice problems
are (quantumly) hard to solve in the worst-case for the family of ideal lattices, we make a few
modifications to the original NTRUEncrypt scheme (which preserve its quasi-linear computation and
space complexity):

1. We replace Ryrry by R = Z[z]/(z™ + 1) with n a power of 2. We will exploit the irreducibility
of 2" + 1 and the fact that R is the ring of integers of a cyclotomic number field.

2. We choose ¢ < Poly(n) as a prime integer such that f = 2™ +1 splits into n distinct linear factors
modulo ¢. This allows us to use the search to decision reduction for R-LWE with ring R, := R/q
(see [41]). This also allows us to take p = 2.

3. We sample f and g from discrete Gaussians over R, rejecting the samples that are not invertible
modulo g. We show that f/g mod ¢ is essentially uniformly distributed over the set of invertible
elements of R,. We may also choose f = pf + 1 with f sampled from a discrete Gaussian, to
simplify decryption.

4. We add a small error term e in the encryption: C' = hs + pe + M mod ¢, with s and e sampled
from the R-LWE error distribution. This allows us to derive CPA security from the hardness of
a variant of R-LWE (which is similar to the variant of LWE from [5, Se. 3.1]).

These modifications may be expensive to implement in practice, because of the hidden constant
factor overheads. However, they suggest several computationally inexpensive modifications to the



original NTRUEncrypt design that bring it closer to the provably secure variant. The addition of a
noise component e in the encryption function (Modification 4) does not require a large increase of ¢
for ensuring decryption correctness, but allows thwarting a simple Chosen Plaintext Attack based
on the following observation: If C' is an encryption of M in the original NTRUEncrypt scheme, then
the ring element (C' — M)/h mod ¢ has small coefficients. Modification 3 is much more expensive to
implement, as our analysis requires the standard deviation to be quite large, leading to secret key
polynomials f and g with much bigger coefficients than in the original scheme. Then the modulus ¢
needs being significantly increased in order to enable decryption correctness. However, this modi-
fication may hint that taking f and g a little less small than in the original design may increase
security. This would for example thwart the so-called hybrid attack on NTRU [30] and allow using a
smaller n. A drawback of taking non-sparse polynomials f and g is that multiplications by f and g
would become more costly. An alternative, suggested by Modification 2, is to take a modulus ¢ so
that 2™ £ 1 has n distinct linear factors modulo ¢: In that setup, the ring R/q admits a natural and
efficient Fast Fourier Transform. Finally, Modification 1 suggests replacing ™ — 1 by «™ 4+ 1. The
former has been shown insecure in the context of hash functions [56, Se. 4.1], although we actually
do not know of any such attack in the context of NTRU.

Related works. Like NTRUEncrypt, Gentry’s somewhat homomorphic scheme [18] also has ci-
phertexts consisting of a single ring element. It also admits a security proof under the assumed
quantum hardness of standard worst-case problems over ideal lattices [19]. Our security analysis for
the modified NTRUEncrypt scheme allows encrypting and decrypting £2(n) plaintext bits for O(n)
bit operations, while achieving security against 29("-time attacks, for any g(n) < o(n), assuming
the worst-case hardness of Poly(n)-Ideal-SVP against 20(9(n))_time quantum algorithms. The latter
assumption is believed to be valid for any g(n) = o(n). Gentry’s analysis from [19, 17| can be gener-
alized to handle 29(")-time attacks while encrypting and decrypting O(g(n)) plaintext bits for 6(n)
bit operations, under the assumed hardness of 22((")_Ideal-SVP against 209(M)_time quantum
algorithms. The latter assumption is known to be invalid when g(n) = 2(y/n) (using [62]), thus
limiting the attacker’s strength the analysis can handle. On the other hand, Gentry’s scheme al-
lows homomorphic additions and multiplications, whereas ours seems restricted to homomorphic
additions.

The modified NTRUSign can be shown hard to break for classical computers, in the random oracle
model (assuming the worst-case hardness of standard lattice problems for ideal lattices). Because of
the use of the random oracle, it does not follow immediately whether this proof remains meaningful
in the case of quantum attackers. As pointed out in [7], one should be extremely cautious with
the random oracle in a quantum setup. Fortunately, the security proof for our NTRUSign scheme
falls in the class of ‘history-free’ reductions as defined in [7] and shown to imply security in the
quantum-accessible random oracle model.

Similarly, the security of NAEP (the CCA-secure variant of NTRUEncrypt) relies on the ran-
dom oracle (see [32]). Since the reduction from standard problems over ideal lattices to R-LWE is
quantum, the security of NAEP remains open, both quantumly and classically.

We also mention a couple of works building upon some of the results of this paper, since its
publication in a preliminary form in [64]. In [66], it is shown how to adapt the NTRUSign trapdoor
key generation algorithm from the present paper to construct an NTRU-based lossy trapdoor func-
tion and use it to upgrade the IND-CPA security of the NTRUEncrypt scheme to chosen-ciphertext
security (IND-CCAZ2) in the standard model, while preserving the same asymptotic efficiency, up
to constant factors. An extension in another direction is given in [37], which shows how to modify



our NTRUEncrypt variant to achieve a fully-homomorphic multi-key encryption scheme. For this,
the scheme in [37] requires the secret key coefficients to be much smaller than the O(Poly(n) - ¢'/?)
value needed for our statistical uniformity bounds in this paper. The security of the scheme in [37]
relies also, besides the hardness of R-LWE, on the assumed computational indistinguishability of
the resulting public key from uniformity.

Open problems. Our study is restricted to the sequence of rings Z[z|/®,, where @, = 2" + 1
with n a power of 2. An obvious drawback is that this does not allow for much flexibility on the
choice of n (in the case of NTRU, the degree was assumed prime, which provides more freedom).
The R-LWE problem is known to be hard when @, is cyclotomic [41] (for an appropriate choice of
modulus ¢). The R-SIS problem is known to be hard under even milder conditions on &,, (see [39,
56]). We chose to restrict ourselves to cyclotomic polynomials of order a power of 2 because it makes
the description of the schemes simpler to follow. Our results are likely to hold for more general rings
than those we considered. An interesting choice could be the cyclotomic rings of prime order (i.e.,
&, = (" —1)/(x — 1) with n prime) as these are large subrings of the original NTRU rings and
one might then be able to show that the hardness carries over to the NTRU rings.

Reducing the constant factor overheads of our provably secure schemes with respect to the
original NTRU schemes, while preserving a proof with respect to standard problems, is a remaining
interesting challenge. A related open question with additional applications (see [37]) is to prove the
computational indistinguishability of the NTRU public key with secret key coefficients significantly
smaller than ¢'/2, assuming the hardness of a standard problem, such as R-LWE.

Road-map. In Section 2, we provide the necessary background material in elementary algebraic
number theory and on the R-LWE and R-SIS problems. Section 3 is devoted to the description and
security proof of the modified encryption scheme. Finally, we consider NTRUSign in Section 4.

Notation. If ¢ is a non-zero integer, we let Z, denote the ring of integers modulo ¢, i.e., the
set {0,...,q— 1} with addition and multiplication modulo ¢. For a ring (R, +, X), we let R* denote
the set of invertible elements of R. If ¢ is a prime power, we let I, denote the finite field with ¢
elements. If z € C, its real and imaginary parts will be denoted by R(z) and J(z) respectively.
Vectors will be denoted in bold. If € R”, then ||z|| denotes the Euclidean norm of . The inner
product of two vectors  and y will be denoted by (z,y). We use In to denote the natural logarithm.

The standard n-dimensional Gaussian function (resp. distribution) with center 0 and variance o,
will be denoted by pg () (resp. vy), i.e., po(x) = exp(—7||z||?/o?) (resp. vy (x) = p,(x)/c"). If E
is a finite set, we let U(E) denote the uniform distribution over E. If a function f over a countable
domain E takes non-negative real values, its sum over an arbitrary F' C E will be denoted by f(F).
If Dy and D4 are two probability distributions over a discrete domain FE, their statistical distance
is A(D1;D2) = 33, |D1(x) — Da(z)|. We write z < D when the random variable z is sampled
from the distribution D.

We make use of the Landau notations O(-),0(-),0(-),w(:), 2(-), 2(-), O(:). A function f(n) is
said negligible if f(n) = n~“(), We say that a sequence of events E, holds with overwhelming
probability if Pr[=E,] < f(n) for a negligible function f.

2 Reminders on Euclidean lattices and in algebraic number theory

We refer to [45] and [4, 50, 51] for introductions to the computational aspects of lattices and to alge-
braic number theory respectively, and to [47,61] for detailed surveys on lattice-based cryptography.



2.1 Euclidean lattices

A (full-rank) lattice is a set of the form L = )", 7Zb;, where the b;’s are linearly independent
vectors in R™. The integer n is called the lattice dimension, and the b;’s are called a basis of L.
The minimum A\ (L) (resp. A}°(L)) is the Euclidean (resp. infinity) norm of any shortest non-
zero vector of L. If B = (b;); is a basis matrix of L, the fundamental parallelepiped of B is the set
P(B) ={>_,<, ¢cibi : ¢; € [0,1)}. The volume | det B| of P(B) is an invariant of the lattice L, denoted
by det L. Minkowski’s theorem states that Ay (L) < /n(det L)'/, More generally, we define the k-th
successive minimum \,(L) for any k < n as the smallest r such that L contains at least k linearly
independent vectors of norm < r. The dual lattice of L is defined as L = {c € R : Vi, (¢, b;) € Z}.

For a lattice L C R™, areal o > 0 and a point ¢ € R", we define the lattice Gaussian distribution

of support L, deviation o and center ¢ by Dr ,(b) = Z: C(( )) for any b € L. We will omit the

subscript ¢ when it is 0. For § > 0, we define the smoothing parameter ns(L) as the smallest o > 0
such that py/,(L\ 0) < J. We will use the following results.

Lemma 2.1 (|53, Le. 3.5],[46, Le. 3.3]). For any full-rank lattice L C R™ and ¢ € (0,1), we
have ns(L) < w mln( n(L), 1/ (L ))
Lemma 2.2 (|46, Proof of Le. 4.4]). For any full-rank lattice L CR"™, c € R", 6 € (0,1) and o >

ns(L), we have py (L) = #&)(1 +¢), with |e| < §. As a consequence, we have p;;c((Lli) € [hg, 1]

Lemma 2.3 ([46, Le. 4.4]). For any full-rank lattice L CR™, ¢ € R™, § € (0,1) and o > ns(L),
we have Pry.p, , [|Ib]] > o/n] < 1+‘5 2277,

Lemma 2.4 (|21, Cor. 2.8]). Let L' C L C R" be two full-rank lattices. For any ¢ € R™, § €
(0,1/2) and o > ns(L'), we have A(Dy, 5 mod L';U(L/L")) < 26.

Lemma 2.5 (|56, Le. 2.11]). For any full-rank lattice L C R", ¢ € R", § € (0,1), o > 2ns(L)
and b € L, we have Dy 4(b) < 28 .27

Lemma 2.6 ([21, Th. 4.1]). There exists a polynomial-time algorithm that takes as input any
basis (b;); of any lattice L C Z"™ and 0 = w(vInn) max ||b;||, and returns samples from a distribution
whose statistical distance to Dy o is negligible with respect to n.

We will need the following result on one-dimensional projections of discrete Gaussians. Other
results on these projections are known (see [46, Le. 4.2] and [53, Cor. 5.3]), but do not seem to
suffice for our needs. The second half of Lemma 2.7 below is akin to [53, Cor. 5.3], but, to the extent
of our knowledge, the first half is new.

Lemma 2 7. For any full-rank lattice L C R™, ¢ € R™, § € (0,1), t > /27, unit vector u € R"
and o > \/_ ns(L), we have:

Pr[[b-cul<Z] <1

b<_’DL,o,c

Similarly, if o > ns(L), we have:

Pr [|(b—oc, u>|>t0]<1—+5t\/—

bHDL,o‘,c



Proof. Let U be an orthonormal matrix whose first row is u?. We are interested in the random
variable X that corresponds to the first component of the vector b’ — ¢’ with &' <= Dy/ , o, ¢ =Uc
and L' = UL. We have:

(pa c 10/t,c’)(L/)

poc (L)
where 1,/ »(x) with € R" is defined as 1 if |z; — ¢j| < 0/t and 0 otherwise. We first estimate
the denominator. We have ns(L') = ns(L) and det(L’) = det(L). Therefore, thanks to Lemma 2.2,
we have p, o (L) = det( )(1 +¢) with [g| < 6.

We now provide an upper bound for the numerator. For any z € R", we have 1,/ ~(x) <

el exp( K‘%Q/cté‘ ) where K := 5 — % € [0,1/2]. As a consequence:

Pr [yX\ < }

(pa,c/ ’ 10/t,c’)(L,) <ol pU,DC'(DL,)’

where D is the diagonal matrix whose first coefficient is /1 + Kt?/m and whose other diago-
nal coefficients are 1. It can be checked that ns(DL') < \/1+ Kt?/7 - ns(L') and det(DL') =
1+ Kt2/m - det(L'). Lemma 2.2 provides the result.

The proof of the second statement is similar. We are interested in:
(Poc - Loter) (L)
Po.e (L) 7

where X, L' and ¢’ are defined as above, and 1, () with @ € R™ is defined as 1 if |x1 — ¢}| > ot

and 0 otherwise. The denominator is handled as above For the numerator, note that for any z > ot,
z2 2

we have exp(—72%;) < /e - exp(—7t”) - exp(— 202152) This gives:

Pr(|X| > ot] =

(pa ¢ ot c’)(L/) < \/é : exp(—ﬂt2) ’ pa,Dc’(DL/)a

where D is the diagonal matrix whose first coefficient is ﬁ and whose other diagonal coefficients

are 1. It can be checked that ns(DL’) < ns(L') and det(DL') = ﬁ - det(L'). Using Lemma 2.2
once more provides the result. O

2.2 Algebraic number theory and lattices

Ideal lattices. Let @ € Z[z] be a monic degree n irreducible polynomial. Let R denote the polyno-
mial ring Z[z|/®. Let I be an (integral) ideal of R, i.e., a subset of R that is closed under addition,
and multiplication by arbitrary elements of R. For elements r; ..., r; of R, we let (r1,...,r) denote
the minimal ideal of R containing these elements, and we say that 71, ..., 7, generate this ideal. By
mapping polynomials to the vectors of their coefficients, we see that a non-zero ideal I corresponds
to a full-rank sublattice of Z™: we can thus view I as both a lattice and an ideal. An ideal lattice
for @ is a sublattice of Z™ that corresponds to a non-zero ideal I C Z[x]/®. The algebraic norm of
a non-zero ideal [ is the cardinality of the additive group R/I, and is equal to det(/), where I is
regarded as an ideal lattice. In the following, an ideal lattice will implicitly refer to a @-ideal lattice.
For v € R we let ||v|| denote its Euclidean norm (as a vector).

In this work, we will restrict ourselves to @ = 2™ 41 for n a power of 2. In this setup, any ideal I
of R satisfies A,,(I) = A1(I). Since this @ corresponds to the 2n-th cyclotomic polynomial, the ring R



is exactly the maximal order (i.e., the ring of integers) of the corresponding cyclotomic number
field Q[¢] = Q[z]/® =: K, where ¢ € C is a primitive 2n-th root of unity. We let (0;);<;,, denote the
canonical complex embeddings: We can choose o; : P +— P(¢%*1) for i < n. For any « in Q[(], we
define its To-norm by Ty(a)? =Y, |oi(a)|* and its algebraic norm by N(a) = [],-,, |oi(@)|. The
arithmetic-geometric inequality gives N (a)Q/ "< %Tg(a)2. Also, for the specific cyclotomic fields
we are considering, the polynomial norm (the norm of the coefficient vector of o when expressed
as an element of K) satisfies ||a| = ﬁTg(a). We also use the fact for any element o € R, we

i<n

have [N ()| = det («), where («) is the ideal of R generated by «. For the sake of simplicity, we
will try to use the polynomial terminology wherever possible (and we refer to [41,43] for a more
mathematical exposition).

The following result is a consequence of Lemma 2.7.

Lemma 2.8. For any non-zero ideal lattice I C R, c € K, 6 € (0,1), t > V2m, u € K and 0 >
ns(I), we have
1+96 2
P b—c)xu| >t < ——tnV2me-e ™.
bt (b =) x ull > tollullvn] < T—tnV2me e
Proof. A coefficient of (b — ¢) X u € R can be viewed as an inner product between the coefficient
vectors of b — ¢ and of some u’ obtained by permuting the coefficients of « and multiplying them

by £1. Therefore, by Lemma 2.7, the magnitude of each coefficient of (b — ¢) x u is > to||u/|| with
probability < 1£0¢\/27e - e~™ . The equality ||v/|| = ||u] and the union bound imply that all the

magnitudes of the coefficients are < to||u|| with probability > 1 — %gnt\/ 27me - e~ If that is the
case, then ||(b — ¢) x u|| < to||u||y/n, which completes the proof. O

On the reduction of the ring modulo g. Let ¢ be a prime integer and R, := R/qR = Z,[x]/®.
Because of the choice of & = 2™ + 1 with n a power of 2, the factorisation of & modulo ¢ is
always of the form @ = Hz‘gkq @;, where all the @;’s are irreducible modulo ¢ and share the same
degree d; = n/kq. The number of factors k, is a power of 2 that can range from 2 (if ¢ = 3 mod 8)
to n (if ¢ = 1 mod 2n). The Chinese Remainder Theorem provides a ring isomorphism between R,
and (F qdq)kq:

a +— (amod@l,...,a mod @kq).

Both extreme situations can prove interesting. Choosing ¢ such that @ has exactly n distinct linear
factors modulo ¢ allows for faster implementations, as the ring R, then admits a natural FFT:
Multiplication of elements of R, can be performed within O(nlnn) additions and multiplications
in [, (see [16, Ch. 8], [40, Se. 2.1]). Oppositely, choosing ¢ such that @ has only two irreducible
factors modulo ¢ makes the ring R, behave very similarly to a field (it has very few zero divisors).
For example, this choice allows for proving statistical uniformity of the revised NTRU public key
for smaller values of ¢, and to have the security of the schemes rely on weaker assumptions. For
both choices of g, Dirichlet’s theorem on arithmetic progressions implies that infinitely such primes
exist. Furthermore, Linnik’s theorem asserts that the smallest such prime is < Poly(n). For our
particular choice of n (a power of 2), the smallest such primes are known to be O(n?%), and, after
some Poly(n) threshold, these primes are quite frequent (see [34, 15]).

Module g-ary lattices. We call an m-dimensional lattice that contains ¢Z™ a g-ary lattice.
An R-module is a set of the form M = )., Rb; C K™. If the b;’s are K-linearly independent,
we call them an R-basis of M. Note that contrarily to lattices, some R-modules may not admit



an R-basis (we refer the reader to [10, Ch. 1] and [14] for alternative compact representations).
Let a € R;". We define the following families of R-modules:

at :={(t1,...,ty) € R™: Ztiai = 0 mod q¢},

(2

L(a) :={(t1,...,tm) € R™ :3s € Ry, Vi, t; = a; - s mod ¢}.

These modules correspond to mn-dimensional integer lattices, via the mapping of an element of R™
to the concatenation of the coefficient vectors. Since these lattices are g-ary, we call them module
g-ary lattices.

In [55], Peikert described a significantly faster algorithm than the discrete Gaussian sampler
from [21], in the case of g-ary lattices, and even further for module g-ary lattices. In the following
adaptation, we bound Peikert’s s1(B) by y/nmax ||b;|| (using the Cauchy-Schwarz inequality).

Lemma 2.9 (Adapted from [55]). There exists a O(nm)-time off-line/on-line algorithm that
takes as input an R-basis by, ..., by, of a module q-ary lattice L C R™, with ¢ = Poly(n), ¢ € Q™"
and o0 = w(vmnlnn)max||b;||, and returns samples from a distribution whose statistical distance
to Dy, ¢ 15 negligible with respect to n. The complexity bound holds assuming pre-computations
(off-line) are performed using q, o and by, ..., by, but not c.

Recently, Ducas and Nguyen [13] showed how to perform the pre-computations of Lemma 2.9
in expected time O(mn).

2.3 Computational problems

The Shortest Vector Problem. The most famous algorithmic problem on lattices is SVP. Given
a basis of a lattice L, it aims at finding a shortest vector in L \ 0. It can be relaxed to v-SVP by
asking for a non-zero vector that is no longer than v(n) times a solution to SVP, for a prescribed
function v(-). If we restrict the set of input lattices to ideal lattices, we obtain the problem Ideal-SVP
(resp. y-Ideal-SVP), which is implicitly parameterized by a sequence of polynomials @ of growing
degrees. No algorithm is known to perform non-negligibly better for (y-)Ideal-SVP than for (y-)SVP.
It is believed that no subexponential quantum algorithm solves the computational variants of v-SVP
or 7-Ideal-SVP in the worst case, for any ~ that is polynomial in the dimension. The smallest
which is known to be achievable in polynomial time is exponential, up to poly-logarithmic factors
in the exponent [36,62,48].

The Small Integer Solution problem over Rings. R-SIS was introduced in [39,56], as an

average-case variant of 7v-SVP in module g-ary lattices.

Definition 2.1. The Ring Small Integer Solution problem with parameters q,m, 3 and @ (R—SISimﬁ)
is as follows: Given m polynomials a1, ..., an chosen uniformly and independently in Ry, find t €
at \ 0 such that ||| < 3.

The average-case hardness of R-SIS is related to the worst-case hardness of Ideal-SVP, as follows.
The result is adapted from [39], using tools from [41].

Theorem 2.1 (Adapted from [39]). Letn = 2¥, & = 2" +1 and e > 0. Let m,q > 0 such that g >
By/n - w(lnn) and m,Inqg < Poly(n). A polynomial-time algorithm solving R—SIS”;mﬁ with non-
negligible probability can be used to solve y-Ideal-SVP in polynomial-time with v > Bv/n-w(VInn).
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The Learning With Errors problem over Rings. For s € R, and v a distribution in R, we
define A,y as the distribution obtained by sampling the pair (a,as + e) with a uniformly chosen
in R, and e sampled independently from . The Ring Learning With Errors problem (R-LWE) was
introduced by Lyubashevsky et al. in [41] and shown hard for specific error distributions v closely
related to Gaussians.

Definition 2.2. Let I' be a distribution over a family of distributions on R. The Ring Learning
With Errors Problem with parameters q,I" and @ (R—LWE?F) 15 as follows. Let ¢ be sampled from I’
and s be chosen uniformly in R,. Given access to an oracle O that produces samples in Rq X Ry,
distinguish whether O outputs samples from the distribution A, or U(Ry % Rq). The distinguishing
advantage should be non-negligible over the randomness of the input, the randomness of the samples
and the internal randomness of the algorithm.

Note that this definition differs from the one of [41] in the following respects: We use the
polynomial representation (which is handled by applying the complex FFT to the error term); we
use R, rather than R (for our choice of @, we have R; = 1R,); and the noise distributions are
discrete.

R-LWE can be interpreted as a problem over module g-ary lattices. Let m be the number of
samples asked to the oracle, and let (a;,b;)i<m be the samples. Then solving R-LWE consists in
assessing whether the vector b is generated uniformly modulo the (module) lattice L(a) or around
the origin according to some Gaussian-like distribution and then reduced modulo the lattice.

Theorem 2.2 (Adapted from [41]). Assume that ag = w(nvinn) with o € (0,1) and g =
Poly(n) prime with ¢ = 1 mod 2n. Consider the distribution I'y, defined below in this section. There
exists a randomized polynomial-time quantum reduction from ~vy-Ideal-SVP to R—LWEq T, denoted

by R-LWE, ,, in the sequel, with v = w(n>lnn)/a.

Variants of R-LWE. For s € R, and % a distribution in R,, we define A;w as the distribution
obtained by sampling the pair (a, as+e) with a uniformly chosen in R and e sampled independently
from 1. When ¢ = (2(n), the probability for a uniform element of R, of being invertible is non-
negligible, and thus R-LWE remains hard even when A, ,, and U(R, x R;) are respectively replaced
by A7, and U(R; x Ry). We call R-LWE™ the latter variant.

Furthermore, as explained in [5, Le. 2|, the nonce s can also be chosen from the error dis-
tribution without incurring any security reduction. We call R-LWEj\p the corresponding modi-
fication of R-LWE. We recall the argument, for completeness. Assume an algorithm A can solve
R-LWE{j\p. We use A to solve R-LWE*. The principle is to transform samples ((a;,b;)); into sam-
ples ((a; *a;,b; — a7 'bya;));, where inversion is performed in Ry This transformation maps A7,
to A*_ 4, and U(Ry x Ry) to itself.

We remark that a simpler variant of R-LWE with fixed number of samples and fixed spherical
noise distribution is proven hard in [42]. However, we chose not to use this simpler variant in this
work since its proven hardness involves a larger Ideal-SVP approximation factor « than the variant
of R-LWE considered in the theorem above. The simplified variant offers a different trade-off between

the underlying hardness assumption and the cost of sampling noise vectors.

Noise definition and noise generation. We now describe the distribution I',. It is somewhat
tedious to define, but for the present work, the important facts to be remembered are that the
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samples are small (with probability exponentially close to 1), and can be obtained in quasi-linear
time. Alternative R-LWE noise generation algorithms are described in [43,12].

For o € R™ with positive coordinates, we define the elliptical Gaussian p, as the row vector
of independent Gaussians (pg,, .-, s, ), Where o; = 0,4,/5 for 1 <7 <n/2. As we want to define
R-LWE in the polynomial expression of R rather than with the so-called “space H” of [41], we apply
a matrix transformation to the latter Gaussians. We define a sample from p/. as a sample from py,
1l > ® Id,, o € C™*", and second by V € C"*" with

1 —1

multiplied first (from the right) by % <

upper half equal to % (C*(2j+1)k)0<j<n/2 o<i<n and bottom half equal to the complex conjugate
of the upper half. These matrix mﬁltipli(}azions can be performed using complex discrete Fourier
transforms, i.e., with O(nlnn) complex-valued arithmetic operations with the Cooley-Tukey FFT.
Moreover, they are numerically extremely stable: If all operations are performed with a numerical
precision of p = 2(Inn) bits, then the computed output vector fl(y) satisfies ||fli(y) — y|| <
C-(Inn)-27P-||y||, where C is some absolute constant and y is the vector that would be obtained with
exact computations. We refer to [23, Ch. 24] for details. We now define a sample from o/, as follows:
Compute a sample from pl with absolute error < 1/n?; if it is within distance 1/n? of the middle
of two consecutive integers, then restart; otherwise, round it to a closest integer and then reduce it
modulo ¢. Finally, a distribution sampled from T, for a > 0 is defined as p/,,, where o; = Titn/2 =
agy/1 + /nx; with the z;’s sampled independently from the distribution I'(2,1) for i < n/2. The
distribution I'(2,1) has density x exp(—=z) for z > 0 and zero for = < 0.

Apart from a scaling factor and the choice of the polynomial representation, our R-LWE variant
differs from that of [41] in that we round to R using a rejection. The R-LWE problem remains hard
because a sample passes the rejection step with non-negligible probability, and because rounding
can be performed on the oracle samples obliviously to the actual error.

Sampling from pl. can be performed in time 5(n) Sampling from T, can also be performed
in expected time 6(n), and the run-time is bounded by a quantity that follows a geometric law of
parameter < 1. Furthermore, in our cryptographic applications, one could pre-compute such samples
off-line (i.e., before the message M to be processed is known).

Finally, by taking » = 1 in the result below, we obtain that with probability > 1 — n~“W  any
sample from T, in R has Buclidean norm < agn'/*w(v/Inn). The following statement improves on
a bound given in Lemma 6 of the Eurocrypt proceedings paper presenting an earlier version of our
results, that exploits the narrower I'(2, 1) distribution of the z;’s. It also fixes a couple of mistakes
in |64, Le. 6].

Lemma 2.10. Let y,r € R, with r fized and y sampled from T, with oq > nt/4. Then

Pr |||lyr| > aqn1/4w(vlnn) ] < n~“M and Pr lyr|loo > aqn_1/4w(lnn) . HrH] < @,

Proof. We define 7, exactly as T, but without the rejection step from pl to p/,. Because of the
bound on the rejection probability, it suffices to prove the result with 7, instead of 7.

Let y be sampled from 7,,. The involved o satisfies o = 031,20 = agy/1 + /nzx, with the xp’s
sampled independently from the distribution I'(2,1). Let (r*)); be the embedding vector of r.
Multiplying y by r is the same as sampling from p, with o} = J;C+n/2 = op|r®)]| (see [42], and
also [35, Le. 9] for a proof). We have o}, < agn'/*w(v/Inn) - [r(®)]| for all k < n, with probability at
least 1 — n~w(1),

12



In order to obtain the coefficients of yr, it suffices to apply the matrices % <1 _11> ®1d,/, €
C™ ™ and V to the row vector of the Gaussian samples. The magnitude of each entry of the
matrix product being < O(1/n), the coefficients of the polynomial yr are distributed as sta-
tistically independent (one-dimensional) Gaussians of standard deviations < agn=%/*w(v/Inn) -
Ty(r) = agn~*w(vInn) - ||r||. The Euclidean norm of the resulting n-dimensional vector is
< agn**w(v/Inn) - ||r|| with probability > 1 — n=*(). To complete the proof, observe that all
the coordinates are < agn~/*w(Inn) - ||r|| with probability > 1 — n~“(1), The additional rounding
error O(y/n) only changes the hidden constant factor in the w(Inn) factor, thanks to the condi-
tion aq > nl/4, |

3 A provably secure variant of NTRUEncrypt

In NTRUEncrypt, the public key h is the ratio of the randomly generated secret key polynomials f
and g, whose coefficients have small magnitudes. In order to derive the IND-CPA security of the
revised scheme from the hardness of R-LWE, we ensure that the distribution of A is statistically
very close to uniform over R;. (Computational indistinguishability fromuniformity would actually
suffice, but we do not know how to achieve it based on standard lattice assumptions.) For this
purpose, we sample f and g from the distribution D, obtained by sampling from Dz» , and
rejecting if the sample (interpreted as an element of R) is not invertible modulo ¢. We will eventually
choose o ~ nq'/? for some small constant c.

The proof that the ratio g/f is close to uniform when f,g <= D} proceeds in several steps.
We aim at bounding the quantity Zaequ |Prsglg/f = a] — |RX|™!| by some small amount e. To
do that, we show that with overwhelming probability over the choice of a, each term |Prs [g/f =
al — |RX|7'| is < |RY|™! - &. This is equivalent to showing that for the overwhelming majority of
the pairs (a1, a2) € (Ry)?, the quantity |Pryg[fa; + gag = 0] — [RX| 71| is < |R¥|™! .

The latter statement can be seen as a consequence of a regularity bound for (a1, ..., am, >, tia;)
with m = 2. More precisely, we prove a small bound < \qu\*l - € on the statistical distance A to
uniformity over (R;)™ x R, of the distribution of (a1, ..., am,Y_;tia;) where the a;’s are sampled
uniformly and independently in RqX and the ¢;’s are independently sampled from D). We need an
unusually small bound on the statistical distance A, because we eventually sum this bound over | R |
to obtain the uniformity of the public key h. A similar strong regularity was independently used by
Agrawal et al. in [2, Th. 3] in the context of (non-structured) SIS/LWE for proving the security of
an identity-based encryption scheme.

Another unusual facet of our regularity bound is the fact that the support of the ¢;’s is not a
lattice. We circumvent this difficulty by writing the support as the lattice Z™ minus the union of the
lattices Ly, = {x € R : @;|(x mod ¢)} corresponding to the ideals (g, ®;) of R. (Recall that the &;’s
are the irreducible factors of @ modulo ¢). This observation leads us to obtain the desired regularity
bound by combining regularity bounds for the ¢;’s sampled in lattices, with an inclusion-exclusion
technique (Theorem 3.1).

The remainder of the proof is more classical. The uniformity of )", t;a; for the ¢;’s sampled from
a lattice Gaussian is obtained by proving uniformity of the vector ¢ made of the ¢;’s taken modulo
the kernel of the map t — ) ¢;a; mod g. Note that this kernel is a lattice. As ¢ follows a lattice
Gaussian distribution, uniformity modulo the kernel follows by studying the smoothing parameter
of the kernel lattice and using Lemma 2.4. The latter is the purpose of Subsection 3.1.
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The bounds in this section improve and generalize the results presented in [64]. In particular,
they show that, for a given desired closeness to uniformity of h = g/ f, using a modulus ¢ such that
™ + 1 splits into k; = O(1) irreducible factors allows to reduce the required standard deviation o
for f,g by a factor ~ \/n, versus the case k; = n studied in [64].

3.1 New results on random module g-ary lattices

In the present subsection, we exploit the duality between variants of the a* and L(a) lattices, that
we will use to obtain improved regularity bounds over the ring R, and its ideals.

We generalize the definitions of the a® and L(a) lattices to incorporate the ideals of R,. Let @ =
Hié kq @, be the factorisation as a product of irreducible factors modulo ¢. Recall that the @;’s share
the same degree d, = n/kq. The ideals of R, are of the form

Ig = (H@Z> Ry = {aGRq:WGS,a:Omod@}, with S C {1,...,kq}.
€S

We also define Lg as the lattice corresponding to the ideal <q, [Lics @Z-> of R. More explicitly, we
have Lg = {x € R: (x mod q) € Ig}.
For a € Ry* and S C {1,...,k;}, we define the following families of R-modules:

at(Ig) := {(tl, cooytm) € R™ Vi, (t; mod q) € Is and Ztiai = 0 mod q},

(2

L(a,ls) = {(tl,...,tm) € R™ :3ds € Ry, Vi, (t; mod ¢) = a; - s mod IS},

where S is an arbitrary subset of {1,...,k,}. Note that a'(Is) is the intersection of at with the
Cartesian product of m copies of Lg. Also, if S = ) (resp. S = {1,...,n}), then we have a*(Is) = a*
(resp. L(a,Is) = L(a)).

We now describe an automorphism of R that will help us exhibit the duality between the modules
above. In the ring R, we have x=! = —2"~ 1. Therefore, mapping a(z) € R to a*(z) = a(z™!) € R
provides ring automorphism. This map induces a bijection from the set of factors @; to itself. It has
the following useful matrix interpretation: If we let A denote the n x n matrix having as its i-th
row the coefficient vector of z* - a(x) for i = 0,...,n — 1, then a*(z) has coefficient vector the first
column of A. For an ideal Is = ([[;cg ®:) - Ry of R, we let I denote the ideal (J],cq ?}) - Ry

Lemma 3.1. Let S C {1,...,k;} and a € RJ". Let S be the complement of S and a* € Ry be
defined by a; = ai(afl), for alli < m. Then (considering both sets are considered as mn-dimensional
lattices):

— 1
al(Ilg) = EL(a*, 7).

Proof. We first prove that %L(a*,lg) C al(Is). Let (t1,...,tm) € at(Is) and (ug,...,un) €
L(a*,l%). Write ¢, = >, t;ijxl and u; = 2j<nu,~,jxj for any ¢ < m. Our goal is to show
that >, ., i<, t; jui; = 0 mod ¢. This is equivalent to showing that the constant coefficient of the
polynomial ), t,ur is 0 modulo ¢. It thus suffices to show that (¢,u*) = 0 mod ¢. By definition
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of the u;’s, there exists s € Ry such that (u; mod ¢) = a} - s + b; for some b; € Ig. We have the
following, modulo g:
(t,u*) = s* - (t,a) + (t,b*) =0,

where we used that (t,a) = 0 mod ¢ by definition of ¢ and (¢, b*) = 0 mod ¢ because (t; mod q) € Ig
and b} € Ig for each ¢ < m. This provides the desired inclusion.

The reverse inclusion %L(a*, IZ) 2 at(Ig) is equivalent, by duality, to L(a*, IZ) %al(IS). To
show the latter, it suffices to consider the elements of L(a*, Ig) corresponding to s = 1. O

We now show that for a uniformly chosen a € (R;)™, the lattice L(a, Is) is extremely unlikely
to contain unusually short vectors for the infinity norm, i.e., much shorter than the Minkowski upper

bound det(L(a,IS))ﬁ = q(l_%)% on A\°(L(a, Is)). (We have det(L(a, Is)) = ™ ISIda because
there are glS1datm(n=15ld0) points of L(a, Is) in the cube [0, g — 1]™".) We provide two lower bounds.
The first lower bound is useful for all parameter settings and matches the Minkowski upper bound
up to a factor ﬁq_a for an arbitrarily small constant € > 0. The second bound is specific to the

case |S| = k, and matches the Minkowski bound up to a factor ¢~*¢¢, thus improving on the first
bound by a factor ~ y/n in the case k; = O(1) (which was not treated in [64]). Even in the case
kq = n, the first bound improves on the bound given in [64], by using a point counting bound based
on the minima of the ideals of R,.

Lemma 3.2. Let n > 8 be a power of 2 and ¢ > 5. Assume that & = x™ + 1 splits into k, distinct
irreducible factors modulo q, each of degree dy = n/ky. Then, for m > 2 and € > 0, we have

_1ylsl
(=) = for any 0 < |S| < kq

1
X° (L(a, 1)) > { val
q'=m e for |S| = k,

except with probability < 24™ g~ oyer the uniformly random choice of a in (qu ).

Proof. By the Chinese Remainder Theorem, we know that Ry (resp. R;) is isomomorphic to (F 4, Yk
(resp. (F:dq)kq) via the isomorphism t + (t mod ®;);<k,. Let @5 = [[,cqPi: it is a degree [S|d,
generator of Ig.

Let p denote the probability (over the randomness of a) that L(a,lg) contains a non-zero
vector t of infinity norm < B. We bound p from above by using the union bound, summing the
probabilities p(t,s) = Prq[Vi,t; = a;s mod Ig| over all possible values for t of infinity norm < B
and s € Ry/Ig. Since the a;’s are independent, we have p(t,s) = [[,-,,pi(ti,s), where p;(t;,s) =
Pr,, [ti = a;s mod Ig]. -

Wlog we can assume that ged(s,Pg) = ged(t;, g) (up to multiplication by an element of F;dq):
If this is not the case, there exists j < n such that either ¢; mod ¢; = 0 and s mod &; # 0, or
t; mod @; # 0 and s mod ¢; = 0; In both cases, we have p;(t;,s) = 0 because a; € Ry . We now
assume that ged(s,@g) = ged(t;, @s) = Pg for some S’ C S of cardinality 0 < k < |S|. For
any j € S', we have t; = a;5s = 0 mod ®; regardless of the value of a; mod @;, whereas for j € S\,
we have s # 0 mod @; and there exists a unique value of a; mod @; such that ¢; = a;s mod &;.
Moreover for any j ¢ S, the value of a; mod @; can be arbitrary in qudq. So, overall, there are

(g% —1)katk=IS] distinct a;’s in Ry such that t; = a;s mod Ig. This leads to p;(t;,s) = (¢% — 1)k,
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So far, we have shown that the probability p can be bounded from above by:

< Z Z Z Z (qdq_l)m(k—\sl) .

0<k<Z|S| S'CS s€ Rq/lIs te (Ry)™
IS/ =k Dgrls  Vi,0< ||tilloo < B
Vi, Dgr|t;
For |S'| = k, let N(B, k) denote the number of ¢t € R, such that [|t|« < B and t = ®gt’ for
some t' € Ry of degree < n — kdy = n(1 — k/k,). We consider two upper bounds for N(B, k), from
which we get the claimed bounds on A{°(L(a, Is)).

As our first bound for N(B, k), with B = ﬁ - ¢%, we claim that N(B, k) < 227¢B=k/kan for
k < B-kqand N(B,k) =0 for k > - k,. For this, we observe that N (B, k) is the number of points
of the lattice Isr + qZ"™ = (Pg,q) in the hypercube C(2B) of sidelength 2B, where a hypercube of
sidelength ¢ is defined by C'(¢) = {v € R" : ||v|loc < £/2}. Let A := A°(Igr + qZ"). If we center a
hypercube C(\) of sidelength A on each of the N(B, k) points of I + ¢Z"™ in C(2B), the resulting
N(B, k) hypercubes do not intersect, and yet are all contained within the enlarged hypercube
C(2B + \). It follows that N (B, k) < %ﬁg)’\)) = (2 +1)". To derive a lower bound on A, note
that for any ¢ € I/, we have N'(t) = N({(t)) > N((®g,q)) = ¢"%, where the inequality is because
the ideal (t) is a sub-ideal of (®g/,¢), and the last equality is because deg®g = kd,. It follows
from the arithmetic-geometric inequality that ||| = ﬁTg(t) > N(t)1/™ > ¢¥/ka. By equivalence of

norms, we conclude that ||t[|cc > A > %qk/kq. Hence, using B = #qﬁ, for k > B-ky, we have A > B

n
so N(B, k) = 0, while for k < 8-kq, we have N (B, k) < (BB +1)" < (2¢°F/Fa +1)n < 22ng(B=k/ka)n
as claimed.

As our second bound for N (B, k), we claim that N (B, k) < (2B)" % = (2B)*(1=F/ka) Indeed,
since the degree of @g is kd,, the vector ¢ formed by the n— kd, low-order coefficients of ¢t = Pgit’ is
related to the vector ¢/ formed by the n — kdy low-order coefficients of ¢’ by a lower triangular (n —
kdy) x (n — kd,;) matrix whose diagonal coefficients are equal to the non-zero constant coefficient
of $g. Hence this matrix is non-singular modulo ¢ and the mapping from ¢ to 7 is one-to-one. This
provides the claim.

Using the fact that the number of subsets of S is 2!, and the fact that the number of s € R,/Is
divisible by ®g is ¢%(SI=%) the above upper bound on p implies that

N(B, k)™
< o(m+1)IS] _ bR
p =2 ogk?\(a q(m=1)(I5|=k)dg

Using our first bound on N (B, k) with B = %qﬁ, we get

p< o(mH1)(IS|+2n) | oo qn(m( —%)—(m—l)‘si—;’“).
- 0<k<fB-kq

Viewed as a function of k, the exponent in the right hand side is maximized for k = 0. It then has
the value —mne, when g = (1 — %)‘k—il — ¢. This gives the first claimed bound on A°(L(a, Ig)).

In the case |S| = k,, using our second bound on N(B,k) with B = ¢% and noting that
N(B,ky) =0, we get

p < 2mEDSH2) | o n(1=Aym=1)(#-1) _ om+1)(S-+2n) g (=Hm=1)

0<k<kq

)
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where the last equality holds for any § < 1 — % Using 8 =1— % — k4e gives the second claimed
bound on A°(L(a, Is)). 0

In our analysis of the distribution of the NTRU key ¢/ f with k;, = O(1), we will also use a lower
bound on A\ (at(Is)). As in Lemma 3.2, we give two bounds, although in this case our application
only needs the first bound.

Lemma 3.3. Let n > 8 be a power of 2 and ¢ > 5. Assume that & = x™ + 1 splits into k, distinct
irreducible factors modulo q, each of degree dy = n/ky. Then, for m > 2 and € > 0, we have

_1 u
A=) ° forany 0 <|S| <k,

At (1) > 4 Vil
gm koe for |S| =0

mn

except with probability < 247q~¢

X)m'

over the uniformly random choice of a in (R}

Proof. We proceed analogously to the proof of Lemma 3.2.

Let p denote the probability (over a) that L(a'(Is)) contains a non-zero vector ¢ of infinity
norm < B. We bound p from above by using the union bound, summing the probabilities p(t) =
Pro[d> <, aiti = 0mod g] over all possible values for t of infinity norm < B and t; € Ig for
i=1,...,m. By the Chinese Remainder Theorem, we have p(t) = [];<; p;(t), where p;(t) =
Pra[ZKm = 0mod &;]. Let &5 = [[;c5Pi, Pg = [[;c5Pi and P = ged(ty,. .., tm, Pg) =
[Lics @i for some S’ C S of cardinality 0 < k < |S|. For any j € SUS’, we have >, t;a; = Omod®;
regardless of the value of a; mod ®;. For any j € S\5’, there exists ¢ < m such that ¢; # 0 mod ®; so
that for any choice of {a; }Hgl, there is a unique value of a; mod @, such that ) .. t;a; = 0 mod @;;
It follows that p;(t) =

As a consequence, we have p(t) = and:

%
(g% —1)IS1-k>

1
p= Z Z Z (g — 1)ISI=k"
0<k<|S| 8/ C S t e (Ry)™
|S'| =k Vi,0 < ||ti]loc < B
Vi, bs - Dot

For S" with |S’| = k, let N(B, k) denote the number of ¢ € R, such that [|t|c < B and ¢t =
PsPgit’ for some t' € R, of degree < n(1 — (k + |S|)/kq)- Exactly as in the proof of Lemma 3.2,
we derive two upper bounds for N (B, k), from which we get the claimed bounds on A°(L(a, Ig)).
The first upper bound, with B = ﬁqﬁ, shows that N(B,k) = 0 for k > (- k; — |S|, while
N(B, k) < 22nqB=(SI+k)/ka)n for k < 8-k, —|S|. The second bound is N'(B, k) < (2B)"(1=(SI+k)/kq),

The first bound on N (B, k) with B = ﬁqﬁ, leads to

= —qdq T

5 \S\-Hc |S|—k
p < 22|S\+2n . max g ( (B— )— T),
0<k<B-kq

Viewed as a function of k, the exponent in the right hand side is maximized for k = 0. It then has

the value —mne, when 3 = - Li- m)@ — e. This gives the first claimed bound.
In the case |S| = 0, using our second bound on N (B, k) with B = ¢, and noting that N (B, k,) =

0, we get
p < 2250 ey qn(l—mm(%—l) _ 928 n-m)(1-77)
- 0<k<kq

where the last equality holds for any 8 < --. Using 8 = - — k; - € gives the second claimed bound.
O
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3.2 Regularity bounds for ring R,

We now study the closeness to uniformity of the distribution of (m + 1)-tuples from (R;)™ x R, of
the form (ay, ..., am, Zigm t;a;), where the a;’s are independent and uniformly random in qu, and
the ¢;’s are chosen from some distribution on R, concentrated on elements of small height. Similarly
to [44], we call the distance of the latter distribution to the uniform distribution on (R;)™ x R, the
regularity of the generalized knapsack function (¢;)i<m — Y _;<,, tiai. For our NTRU application we
are particularly interested in the case where m is very small, namely m = 2.

The regularity result in [44, Se. 4.1]| applies when the a;’s are uniformly random in the whole
ring R,, and the ¢;’s are uniformly random on the subset of elements of R, of height < d for
some d < ¢. In this case, the regularity bound from [44] is 2(y/ng/d™). Unfortunately, this bound
is non-negligible for small m and ¢, e.g., for m = O(1) and ¢ = Poly(n). To make it exponentially
small in n, one needs to set mInd = (2(n), which inevitably leads to inefficient cryptographic
functions. When the a;’s are chosen uniformly from the whole ring R, with ¢ = 1 mod 2n, the
actual regularity is not much better than this undesirable regularity bound. This is because R,
contains n proper ideals of size ¢"~! = |R,|/q, and the probability ~ n/¢™ that all of the a;’s fall
into one such ideal (which causes ) ¢;a; to also be trapped in the proper ideal) is non-negligible
for small m. To circumvent this problem, we restrict the a;’s to be uniform in RqX, and we choose
the t;’s from a discrete Gaussian distribution. We show a regularity bound exponentially small in n
even for m = O(1), by using an argument similar to that used in [21, Se. 5.1] for unstructured
generalized knapsacks, based on the smoothing parameter of the underlying lattices. Note that the
new regularity result can be used within the R-SIS trapdoor generation of [65, Se. 3], thus extending
the latter to a fully splitting q.

Theorem 3.1. Let n > 8 be a power of 2 such that & = a™ + 1 splits into k, irreducible factors
modulo prime ¢ > 5. Let m > 2, ¢ > 0, § € (0,1/2) and t <= Dzmn ,, with ¢ > In(2mn(1 +

1/6))/m - min(y/n - q%JrE,q%ij‘?E). Then for all except a fraction < 24M"g=¢™n of a € (R)™, we

have ns(at) < /In(2mn(1+ 1/6))/7 - min(y/n - q%+5,q%+kq'5), and the distance to uniformity
of Zigm t;a; is < 26. As a consequence:

A[(al,...,am, Ztiai); U((qu)m X Rq)

i<m

< 25 + 24mnq—5mn.

Proof. For each a € (R;)™, let Do denote the distribution of )
from Dgzmn . Note that the above statistical distance is exactly L Zae(R;)m Aq, where Ag

Ry ™
is the distance to uniformity of D,. To prove the theorem, it there|f(;]r|e suffices to show a uniform
bound A, < 26, for all except a fraction < 24"¢=™" of g € (RS)™.

Now, the mapping ¢ — >, t;a; induces an isomorphism from the quotient group Z™"/ a’ to its
range. The latter is R, thanks to the invertibility of the a;’s. Therefore, the statistical distance A is
equal to the distance to uniformity of ¢ mod a*. In the following, since it is needed for our analysis
of the NTRU key generation algorithm (see Theorem 3.2 in Section 3.3) we actually study the
distance to uniformity of ¢ mod a*(Is) for any S C {1,...,k,}. By Lemma 2.4, we have A, < 2§
if o is greater than the smoothing parameter ns(a*(Is)) of a*(Is) C Z™". To bound ns(a*(Is))
from above, we apply Lemma 2.1, which reduces the task to bounding the minimum of the dual

lattice from below. By Lemma 3.1, the latter lattice is al(Ig) = % -L(a*, Ig) (where a* € (R;)™ is

i<m litti where t is sampled
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in one-to-one correspondence with a), and the latter task has been addressed by Lemma 3.2. Hence,
we obtain the following result as a direct consequence of Lemmata 2.1, 2.4, 3.1 and 3.2.

Lemma 3.4. Let n > 8 be a power of 2 such that & = z™ + 1 splits into ky irreducible factors

modulo prime ¢ > 5. Let S C {1,...,kq}, m>2,e>0,6 € (0,1/2), c € R™ and t <> Dzmn o,
with ) .

o> { VnIn(2mn(1 + 1/6)) /7 - ql_(l_m)(l_ﬁ)ﬁ for any 0 < |S| < kq

- VIn@mn (1 + 1/8))/x - gm thae for |S| = 0.

Then for all except a fraction < 2¥"Mg=™" of q € (R;)™, we have:

A[t mod a'(Is); U(R/a‘(Is))] < 2.

Theorem 3.1 follows by taking S = () and ¢ = 0. 0

3.3 Revised key generation algorithm for the NTRUEncrypt

We now use the results of the previous section on modular g-ary lattices to derive key generation
algorithms for the NTRU schemes, where the generated public keys follow distributions for which
Ideal-SVP is known to reduce to R-LWE and R-SIS.

The new key generation algorithm for NTRUEncrypt is given in Fig. 1. The secret key polynomi-
als f and g are generated by using the Gentry et al. sampler of discrete Gaussians (see Lemma 2.6),
and by rejecting so that the output polynomials are invertible modulo gq. The Gentry et al. sampler
may not exactly sample from discrete Gaussians, but since the statistical distance can be made
negligible, the impact on our results is also negligible. Furthermore, it can be checked that our
conditions on standard deviations are much stronger than the one in Lemma 2.6. From now on, we
will assume we have a perfect discrete Gaussian sampler.

By choosing a large enough standard deviation o, we can apply the results of the previous section
and obtain the (quasi-)uniformity of the public key. We sample f of the form p- f’+ 1 so that it has
inverse 1 modulo p, making the decryption process of NTRUEncrypt more efficient (as in the original
NTRUEncrypt scheme). We remark that the rejection condition on f at Step 1 is equivalent to the
condition (f’ mod q) ¢ Ry — p~ L, where p~! is the inverse of p in Ry

Inputs: n,q€Z,p€e R}, o >0.

Output: A key pair (sk,pk) € R x R.

1. Sample f’ from Dzn o; let f =p- f'+1; if (f mod ¢) & R,S, resample.
2. Sample g from Dz ,; if (g mod ¢) ¢ R, resample.

3. Return secret key sk = f and public key pk = h =pg/f € R;.

Fig. 1. Revised key generation algorithm for NTRUEncrypt.

The following result ensures that for some appropriate choice of parameters, the key generation
algorithm terminates in expected polynomial time.

Lemma 3.5. Let n > 8 be a power of 2 such that & = z™ + 1 splits into ky irreducible factors
modulo prime q > 5. Let o > /nIn(2n(1 + 1/8))/m - ¢*/*4, for an arbitrary § € (0,1/2). Let a € R
and p € Ry. Then Pryo.p,, [(p-f' +amodq) & Ry] < kq(q ™ *a 4 26) < n(g~" + 26).

o
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Proof. We are to bound the probability that p- f' 4+ a belongs to I := {(q,®;) by g "k 1 26, for
any k < k4. The result then follows from the Chinese Remainder Theorem and the union bound.
We have N'(I) = ¢™*a, so that Ay (I) < \/ng'/*a, by Minkowski’s theorem. Since I is an ideal of R,
we have A\, (I) = A\ (), and Lemma 2.1 gives that o > ns(I). Lemma 2.4 then shows that f mod I
is within distance < 2§ to uniformity on R/I, so we have p - f' + a = 0 mod I (or, equivalently,
f' = —a/p mod I) with probability < ¢~™/*¢ + 26, as required. O

As a consequence of the above bound on the rejection probability, we have the following result,
which ensures that the generated secret key is small.

Lemma 3.6. Letn > 8 be a power of 2 such that & = 2" +1 splits into k, irreducible factors modulo
prime ¢ > 8n. Let o > v/nlnn - ¢*/Fa. The secret key polynomials f, g returned by the algorithm of
Fig. 1 satisfy, with probability > 1 — 27 "F3;

11 < 2nllplle and |lg]| < v/no.
If degp < 1, then | f|| < 4v/nl|p|lc with probability > 1 — 27"+3,

Proof. The probability under scope is lower than the probability of the same event without rejection,
divided by the acceptance probability. The result follows by combining Lemmata 2.3 and 3.5. O

In the algorithm of Fig. 1, the polynomials f’ and g are independently sampled from the discrete
Gaussian distribution Dzn , restricted (by rejection) to Ry — p~! and Ry, respectively. We denote
by D, , the discrete Gaussian Dzn , restricted to Ry + 2.

Here we apply the result of Section 3.2 to show that the statistical closeness to uniformity of
a quotient of two distributions (z + p - Daxyy) for z € Ry and y = —2zp~! mod ¢. This includes
the case of g/f mod ¢ computed by the algorithm of Fig. 1. Since p € R;, multiplication by p
induces a bijection of R,, and thus the statistical closeness to uniformity carries over to the public
key h = pg/f. The following theorem gives two bounds, whose usefulness depends on the number
of irreducible factors k, in the factorization of 2™ 4 1 modulo ¢. The first bound is most useful for
large k; = {2(n), while the second bound is better for small k£, = O(1), allowing a smaller o by a
factor ~ \/n versus the first bound.

Theorem 3.2. Let n > 8 be a power of 2 such that & = x™ + 1 splits into ky irreducible factors
modulo prime ¢ > 5. Let 0 < & < 1/3, y; € Ry and z; = —y;p~! mod q for i € {1,2}. Then

_Le'kq) 1, 7
+p- DX 10n k no . > . L oide
\ Y1 +p %4 mod g U(qu) < 2°g  kq if 0 > n-+/In(8nq) ?jk ) .
Y2+ D0 Doz 210nq75/n if o > nln(8nq) . q—gq and g > n'-2ka

Proof. For a € Ry, we define Pr, = Pry, 1,[(y1 +pf1)/(y2 + pf2) = a], where f; <= Dy, fori €
{1,2}. We are to show that |Pr, — [Ry|7] < 925 g—nle'kal/kq . |Ry|™t =: " (resp. < Qbnt+dg—en .
|Ry |~1). This directly gives the claimed bounds. The fraction of a € Ry such that |Pr, — R |4
e’ is equal to the fraction of @ = (a1,a2) € (R))? such that |Prq — |RX|7!| < &”, where Prq
Pry, gla1f1 + azfa = a121 + agzz]. This is because ay fi + aafo = a121 + az22 is equivalent to (y; +
pf1)/(y2 + pf2) = —az/ay (in RY), and —ay/a; is uniformly random in R when a <= U((R))?).

IIA
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We observe that (f1, fo) = (21, 22) =: z satisfies a1 f1 + aafo = a121 + azz9, and hence the set of
solutions (fi, f2) € R to the latter equation is z + a*, where a'* = a*+ N (R +qZ™)2. Therefore:

Dysn 5(z + at>)

Prg = :
* " Dgng(21 + Ry +qZ") - Dgn o (22 + RS + qZ7)

For any t € a' we have ty = —t1a1/as, so, since —ay/as € Ry, the ring elements ¢; and t2
must belong to the same ideal Ig of R, for some S C {1,...,k,}. It follows that at* = at \
Usci,...n}.520 a'(Is). Similarly, we have R + qZ" = Z™ \ Uscqi,...ny,s20(Is + ¢Z"). Using the
inclusion-exclusion principle, we obtain:

DZQ”,U('z+aJ—X) = Z (_1)|S‘ 'DZQ",U(Z+aJ_(IS))’ (1)
SC{1,..n}

Vi€ {1,2}: Dono(zi+ Ry +qZ") = > (=11 Dyn o(zi + Is + qZ"). (2)
SC{1,...,n}

><)2:

In the rest of the proof, we show that, except for a fraction < 29%¢~¢" of @ € (Rq

Dyan (2 + at)=(1+ 50)|qu|q_2”,
Vi € {1,2} : Dzn’g(zi + R; + an) = (1 + (52)’R;<’q_n

where |5;] < 222¢—nle%al/ka (resp. |6;] < 207+1g=="") for i € {0,1,2}. The bounds on |Pr, —
| Ry |~1| follow by a routine computation.

HANDLING (1). We first notice that, since z € Z?", we have (for any S C {1,...,k,}):

po(z+a(Is)) _ po(z+a*(Is))

Dyon (2 +at(Ig)) = =
YRR ( ( S)) pU(ZQn) pg(Z+Z2")

= DZQ”,U,fz(al(IS))'

To get our first our bound, we proceed as follows. For the terms of (1) with |S| < &'k,, we apply
the first bound of Lemma 3.4 with m = 2 and e = £/2. The assumption of Lemma 3.4 on ¢ holds,
with 6 := ¢ "(+l'kal/ka)  Further, we have det(at(Ig)) = ¢ t151/k0): Indeed, since a € (RS)%,
there are ¢"(!=ISI/k) elements of a'(Is) in [0,q — 1]**. We conclude that |Dg2n 5 (a*(Is)) —
q "SIk | < 25 for all except a fraction < 28ng—€'n of g € (qu)2 (possibly corresponding to a
distinct subset of (qu)2 for each possible S).

For a term of (1) with |S| > €k,, we choose S’ C S with |S’| = |€'ky]. Then we have a*(Is) C
a’(Ig) and hence Dyzn , _,(at(Is)) < Dyen, . (at(Ig)). By using with S the above result for
small |S|, we obtain Dzen ., (at(Ig)) <26 + q ML al [q),

Overall, we have, except possibly for a fraction < 297¢~¢"" of a € (RqX)Q:

kq L<'kq
<ortlgt2 M- (@q_”(”k—f)
k=lekq]

DZ%,U(Z + alx) - Zn:(_l)k (Z> gk

k=0

2n

- _lekql
We conclude that |dg| < mgnﬂ(é +q n(1+5 )) < 92n+207 kg ™ as required.
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For our second bound, we argue as follows. For the term of (1) with |S| = 0, we apply the second
bound in Lemma 3.4 with e = ¢’/2. By the choice of o, the Lemma 3.4 assumption on ¢ holds,
with & := ¢72". We have |R/a*(Ig)| = det(a*(Is)) = ¢" and hence |Dy2n , . (a*(Is))—q "| < 26,
for all except a fraction < 287¢—"" of a € (RX)?.

For the terms of (1) with [S| > 1, unlike the argument above, we cannot choose for |S| = 1 an I§
with S’ C S and det @' (Ig/) ~ ¢1t97: such an ideal I does not exist, as the only possible choice for
S’ is the empty set, which gives det al(IS/) = ¢", and the latter is too small. Instead, we proceed as
follows. Let L' = N -Z?", where N = [iql/”a/ﬂ]. Note that det L/ = N?" > 2-47¢(14<)n and since
Xon(L') = N < 1¢1/%¥'/2 we have by Lemma 2.1 with § = ¢~2" that n5(L) < \/nIn(8nq)q'/><'/2.
Hence, by Lemma 2.4 and the choice of o, we have Dzzn (L") < 24ng=(+en 4 95, To use the last
bound, we now show that, for [S| > 1, we have Dyen ,(z + a*(Is)) < Dgen ,(L'). For this, we use
a rounding process ¢ : Z*® — L' to map z + a*(Is) onto a subset of L’ such that the following two
properties hold:

1. The map ¢ is one-to-one on z + a*(Is),
2. For each v € Z*", we have ||¢(v)|| < |lv]|.

Since Dgzn ,(w) > Dzzn ,(v) for any v,w € Z*"* with ||w| < ||v||, property 2 of ¢ implies that
Dyon 5(z+a't(Ig)) < > weztal(lg)(#(v)), and by property 1 of ¢, the points {¢(v)}yezyat(1g) are
distinct points of L', so that D, o1 (1) (#(v)) < Dzen 5(L'), as required. It remains to define ¢ and
show that it has both properties. For v € Z?", let ¢(v) round each coordinate v; of v to the nearest
multiple of N which is less than or equal to |v;| in absolute value, i.e., ¢p(v) = (v],...,v5,) with
vl = L‘U—]\}U - N -sign(v;). Since |v}| < |v;], property 2 of ¢ is clearly satisfied. To show property 1, note
that ||¢(v) — || < N for all v in Z?". Suppose towards a contradiction that ¢ is not one-to-one on
z+4a*(Is). Then there exist two vectors v1 # vy in z +a*(Ig) with ¢(v1) = ¢(vy) = v. A triangle
inequality then gives that v; — v is a non-zero vector of a*(Ig) with |Jv; —vo| < 2N < ¢!/2+<'/2,
However, by the first bound of Lemma 3.3 with m = 2, |S| = 1, and £ = ¢/ /2, we have A\{*(a*(Is)) >

1y L _e ’ .. . .

ﬁqfk%q 2 except for a fraction < 24¢=¢" of a € (qu)2. By the condition on ¢, this gives a
contradiction, so ¢ has property 1, except for a fraction < 24"q*€/” of a € (RqX)Q. We conclude that
for the terms with |S| > 1, we have Dyan , _,(at(Is)) < 2%+1g=(1+)" Hence, similarly to the

first bound, we obtain our second bound |dg| < ﬁﬁnﬂqf(us’)n < 9bn+lg—e'n,
HANDLING (2). For the bounds on d; and d2, we use a similar argument. Let i € {1,2}. The z;
term can be handled like the z term of (1). Therefore, in this case we need a good bound on
Dyn o5, (Is+qZ"™). By Lemma 2.4 this reduces to finding a good bound on the smoothing parameter
of the ideal lattice Lg = Ig + ¢Z™. For this, we first observe that Lg = al(IS) in the special case
m =1 and a1(z) = [[;cg Pi(z), where S denotes the complement of S. Therefore, by Lemma 3.1,
the dual lattice Lg = %L(a’l‘,lg,) = %Lg, is also a (scaled) ideal lattice, for some S' C {1,...,k,}
1 ies @z(CC) to
a%(z) induces a bijection on the factors @;(x). Since det Lg, = ¢™°/*a we have by Minkowski’s
theorem that A°(Lg ) < ¢!%/ka. Moreover, since Ig + ¢Z" is an ideal lattice, Lemma 2.1 gives
that ns(ls + qZ™) < %\/ln(?n(l +1/8))/m - A°(Lg) < /nln(4ng)¢l®Vka < o, for 6§ := ¢/,
assuming |S| < k,/2. Hence, for a term of (2) with |S| < k,/2, by Lemma 2.4, we have |Dzn , _,(Is+
an) _ q7n|S\/kq‘ < 26.

with |S’| = |S|, where we have used the fact that the mapping sending a;(x) = []
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For a term of (2) with |S| > kq/2, we choose S" C S with |S'| = |ky/2]| > kq/3 for kg > 2. By
using with S’ the above result for small | S|, we obtain Dzn o ., (Is+¢Z") < Dgn o, (Ig +qZ") <
20 4 ¢~"/3,

Overall, we have:

kq kq
k k
k(Ra) —k +1 q\ —n/3 +1 —n/3
DZn,g(ziJrR;Jqu")—E (—1) <k>q <25 42 E <k>q /3 < g5 4 /3,
k=0 k=[kq/2]
which leads to the desired bound on §;. This completes the proof of the theorem. a

3.4 A revised NTRUEncrypt scheme

In this section we present the provably secure variant of the NTRUEncrypt scheme. We define the
scheme NTRUEncrypt with parameters n,q,p,a,oc as follows. The parameters n and ¢ define the
rings i and R,;. The parameter p € qu defines the plaintext message space as P = R/pR. It must
be a polynomial with ‘small’ coefficients with respect to ¢, but at the same time we require N/ (p) =
|P| = 29(") g0 that many bits can be encoded at once. Typical choices as used in the original
NTRUEncrypt scheme are p = 3 and p = x + 2, but in our case, since ¢ is prime, we may also
choose p = 2. By reducing modulo the pz’’s, we can write any element of P as Y o<i<n gix'p,
with g; € (—1/2,1/2]. Using the fact that R = Z[z]|/(z™ + 1), we can thus assume that any element
of P is an element of R with infinity norm < $./deg(p) + 1-||p||. The parameter « is the R-LWE noise
distribution parameter. Finally, the parameter ¢ is the standard deviation of the discrete Gaussian
distribution used in the key generation process (see Section 3.3).

¢ Key generation. Use the algorithm of Fig. 1 and return sk = f € R, with f =1 mod p, and pk = h =pg/f €
R.

e Encryption. Given message M € P, set s,e <> T and return ciphertext C' = hs + pe + M € R,.

e Decryption. Given ciphertext C' and secret key f, compute C' = f - C € R, and return C’ mod p.

Fig. 2. The encryption scheme NTRUEncrypt(n, q,p, o, o).

The correctness conditions for the scheme are summarized below.

Lemma 3.7. If degp < 1 w(n®? Inn)alp||?c < 1, and ag > n®™, then the decryption algorithm
of NTRUEncrypt recovers M with probability 1 — n~“W) gver the choice of s, e, f,g.

Proof. In the decryption algorithm, we have C" = p-(gs+ef)+fM mod q. Let C” = p-(gs+ef)+fM
computed in R (not modulo g). If ||C”||cc < q/2 then we have C' = C" in R and hence, since f =
1 mod p, C' mod p = C” mod p = M mod p, i.e., the decryption algorithm succeeds. It thus suffices
to give an upper bound on the probability that ||C”||« > ¢/2.

From Lemma 3.6, we know that with probability > 1 — 27"%3 both f and g have Euclidean
norms < 4./n||p||o if degp < 1. This implies that ||pf]|, |lpg|| < 8v/n|p||*c, with probability >
1 —27"3. From Lemma 2.10, both pfs and pge have infinity norms < 8agn®?w(Inn) - ||p||?c with
probability 1 — n—w®) Independently, we have:

1F Moo < IF M| < VallFIlIM] < 4nllp|*o.
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w(1)
O

Since ag > n%™ we conclude that ||C”]|sc < 20agn®?w(Inn) - ||p||?c, with probability 1 —n~

The security of the scheme follows by a elementary reduction from the decisional R-LWE{j\,

exploiting the uniformity of the public key in R (Theorem 3.2), and the invertibility of p in R,.

Lemma 3.8. Suppose that n is a power of 2 such that @ = "+ 1 splits into n linear factors modulo
prime ¢ > 5. Lete € (0,1/3),§ >0,p€ R ando > n ln(8nq)-q%+€. If there exists an IND-CPA
attack against NTRUEncrypt that runs in time T and has success probability 1/2+6, then there exists
an algorithm solving R-LWE[\p with parameters g and o that runs in time T' =T + O(n) and has
success probability §' = § — g~

Proof. Let A denote the given IND-CPA attack algorithm. We construct an algorithm B against
R-LWEfj\p that runs as follows, given oracle O that samples from either U(R; x R, ) or ASX’ ., for some

previously chosen s ¢ v and ¢ > T,. Algorithm B first calls oracle O to get a sample (h/,C")
from Ry x R,. Then, algorithm B runs algorithm A with public key h = p-h" € R;. When A
outputs challenge messages My, M; € P, algorithm B picks b <= U ({0, 1}), computes the challenge
ciphertext C' = p- C' + M}, € Ry, and returns C to A. Eventually, when algorithm A outputs its
guess V' for b, algorithm B outputs 1 if ¥’ = b and 0 otherwise.

The A’ used by B is uniformly random in Ry, and therefore so is the public key h given to A,
thanks to the invertibility of p modulo g. Thus, by Theorem 3.2, the public key given to A is
within statistical distance ¢~ of the public key distribution in the genuine attack. Moreover,
since C' = h - s+ e with s,e sampled from 1), the ciphertext C given to A has exactly the right

distribution as in the IND-CPA attack. Overall, if O outputs samples from A;w, then A succeeds
and B returns 1 with probability > 1/2 4+ § — ¢~ %),

On the other hand, if oracle O outputs samples from U(RqX X Ry;), then, since p € Ry, the value
of p-C”" and hence C, is uniformly random in R, and independent of b. It follows that in this case,
algorithm B outputs 1 with probability 1/2. The claimed advantage of B now follows. ad

By combining Lemmata 3.7 and 3.8 with Theorem 2.2 we obtain our main result.

Theorem 3.3. Suppose n is a power of 2 such that ® = 2™ 4+ 1 splits into n linear factors modulo
prime q¢ = Poly(n) such that gz ¢ = w(n®>21n?n)|p||?, with e = w(l/n) and ¢ < 1/3 and p €
Ry with deg(p) < 1. Let 0 = n+/In(8ng) - ¢zt and ol = w(n®2 Inn)||p||?c. If there exists
an IND-CPA attack against NTRUEncrypt which runs in time Poly(n) and has success probability
1/2 4+ 1/Poly(n), then there exists a Poly(n)-time quantum algorithm for v-Ideal-SVP with v =
w(n?™1n?? n)Hszq%+5. Moreover, the decryption algorithm succeeds with probability 1 —n=*1)

Overall, by choosing ¢ = 1/(Inn), the smallest ¢ for which the analysis holds is f)(n“), and the
smallest v that can be obtained is 5(715) Finally, we observe that our proof can be readily adapted
to offer security against sub-exponential attackers, under the assumption that Ideal-SVP cannot be
solved in quantum sub-exponential time for some polynomial approximation factor ~.

4 A provably secure variant of NTRUSign

In this section, we present our provably secure variant of the NTRUSign signature scheme. The
key generation algorithm for our scheme extends the NTRUEncrypt secret key (f,g) by computing
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another (linearly independent over the ring R) ‘short’ pair (F,G) satisfying F1h — G1 = 0 mod ¢,

such that a full short basis matrix M = [;; Cg}] is obtained for the NTRU R-module L generated by

the rows of the matrix [(1) Z] . The method we use for generating (F,G) is a variant of the original
NTRUSign key generation algorithm in [25, 26].

Since the determinant of the lattice corresponding to the module L is ¢", to make M a basis
of L, it suffices for the module vector (F,G) to satisfy the determinant condition fG — gF = q. The
main idea in [25,26] for generating (F,G) is the observation that if f, g are coprime over R, then
it is easy to compute (Fy,Gp) € R? such that fG; — gF; = 1, and this vector can be easily lifted
to a module vector (Fy,G,) = ¢q - (F1,G1) such that M is a basis for L. Although (Fy, G,) is not
short, thanks to the coprimality condition fG1 — gF} = 1, it can be easily made short by length
reduction, i.e., by subtracting from it a multiple ~ ¢F}/f of the given vector (f,g) to get a vector
(F,G) = (Fy, Go) — (aFy /) (f.9) = 0,0+ (G1 — gFi /1)) = (0,4/), where lq/f]| = /|| ] is short.
However, this procedure fails if f and g are not coprime over R, and this undesirable event is dealt
with in the key generation procedure by rejecting (f,g) and resampling new random candidates
for (f,g) until the coprimality condition holds. Since this rejection probability p contributes a
deterioration factor 1ip in the expected key generation time, and also to the security reduction
cost (with respect to the close-to-uniform distribution of the public key g/f when (f,g) is sampled
without rejection), it is important to bound 1 — p from below by a non-negligible function.

In [25, 26], the key generation algorithm, and in particular, the coprimality probability 1— p, are
not rigorously analyzed. Here, we rigourously bound the coprimality probability 1 —p when f and ¢
are independently sampled from a discrete Gaussian distribution Dzn , over R. Our argument
is based on a generalization of the classical analysis of the probability 1 — p that two “random”
integers are coprime, which gives the asymptotic value 1 — p = Hq(l —1/¢%) = ¢(2)7!, where

¢(2) = Hq 17;_2 = % is Riemann’s zeta function evaluated at 2, and the products run over all

prime integers q. Our generalization of this analysis to the ring R leads us to study the value of (x(2),
where (i (2) = [[; == is the Dedekind zeta function for K = Q[z]/(z" + 1), evaluated at 2,

1-N(J)—2
and the product now runs over all prime ideals J of R = Z[z]/(z™ 4 1). We show that (x(2) = O(1)
and, using some additional results on (g, that 1 —p > m —0(1), so the acceptance probability

1 — p is in fact lower bounded by a constant.

As a further improvement on the key generation algorithm in [25,26], we apply Babai’s nearest
plane algorithm [6] to reduce the length the extended vector (F,G), rather than applying Babai’s
roundoff method as described above. This allows us to save a & y/n factor in the norm of (F,G).

4.1 Additional results on ideal lattices

For the analysis of the key generation of the signature scheme (in Subsection 4.2), we need the
following result on the inverse (over K = Q[z]/(2™ 4+ 1)) of a discrete Gaussian sample. If b is
sampled from Dy, for some ideal I C R, we expect ||b|| to be proportional to o. Since b-b~1 =1

over K, it is reasonable to expect |[b~!|| to be proportional to o~ 1.
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Lemma 4.1. Let n a power of 2, & = 2™ + 1 and R = Z[x]/®. For any ideal I C R, 6 € (0,1),

t> 21 and o > r -ns(I), we have:
1 2
Pr {Hb_lH > t ] < +dnyv e
b—Dr ., ov\/n/2 1-6 ¢

Proof. Let (b®),<,, (resp. (b~);<,,) be the complex embeddings of b (resp. b~'). We have b~ =
(b))~ for all 5. We first show that it is unlikely that b has a small embedding. Wlog we con-
sider b(1) = > b;¢7 (where the b;’s are the coefficients of the polynomial b). We let Re? = > R(¢T)?

and Im? = Zj $(¢7)2. By applying Lemma 2.7 twice, we obtain:

max (Pr [Iﬂ% | < Ufe} ,Pr [I%b(l)l < dtm]) < ig ”2:6.

We have Re? + I'm? = n, which implies that max(Re, Im) > y/n/2. Therefore:

< 1+6+2me
—1-45 t

Pr [\b(l)]<0 n/2
=Ty

ﬁ
3
1)

Now, the union bound implies that Pr[3i : [p()] < T n/Q] < Wdn . The latter event is

i S 15 ¢
exactly the same as max; [b~()| > —L—_ Finally, the identity ||b~!| < max;|b~®| allows us to
o\/n/2

complete the proof. O

Dedekind Zeta function. We now review some facts about the Dedekind zeta function (see, e.g.,
[51, Ch. VII]). The M6bius function for ring R is a function from the ideals of R to {—1,0,1} and is
defined as follows: Let I = [];_,(.J;)® denote the unique prime ideal factorization of I # 0 strictly
contained in R, where the J;’s are distinct prime ideals in R and e; is a positive integer for i < r;
Then p(I) = 0 if there exists ¢ with e; > 2, u(I) = (—1)" if ; = 1 for all 7. We extend the definition
to I = R by setting p(R) = 1. The Dedekind zeta function of the ring R of integers of K is the
function (x : R — R defined by
=Y NI

ICR

where the sum is over all non-zero ideals of R. The series (x(s) converges for s > 1, and:

k(s)t= ]I Q=N =D ud) NI,

prime JCR ICR
where the product is over all prime ideals of R and the sum is over all non-zero integral ideals of R.

Lemma 4.2. Let K,, = Q[x]/®,,, for n > 4 a power of 2. Then we have (k,(2) = O(1), and for
€ (0,1), we have (k, (1 +¢) <2exp(2- (e(1 —¢))~t-nie).

Proof. Let R = Z[x]/®. For a prime integer p, we let mx(p) denote the number of prime ideals
contained in R having norm a power of p, i.e., dividing the principal ideal (p) C R. We recall that
by Dedekind’s theorem, 7w (p) is the number of distinct irreducible factors of @ = 2™ + 1 over Z,,
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so Tk (p) < min(n,p). Also, since K is a normal extension of Q with Ax a power of 2, all the prime
ideals above p > 2 have identical norm p™/ ™5 () (see, e.g., |50, Ch. 4]). Using this, we have, for s > 1:

=11 II a-~w™

prime p prime J|(p)

—Z [ (-l

25 —1
prime p>2
2° _ _ e
<yt I a-pen I oa-r
prime p, 2<p<n prime p>n

We used the fact that for fixed € (0,1), the function t — (1 — 2~ /*)~* is non-decreasing for t > 0.
We first deal with the case s = 2, where we have:

4 N DN oy
(k(2) < 3 I1 (1-—pH" I1 1-p7 J] a-p?"
prime p, 2<p<n/2 prime p, n/2<p<n prime p>n
4 -3, -7 -1 2 | 4
sqew( X 0t X aten X 07ar)
prime p, 2<p<n prime p, n/2<p<n prime p>n

where we used the inequality In(1 — x) > —z — 22, for 2 € [0,1/3]. We now show that each one of
these sums is O(1). We have:

Z p3</ 7 3dx < 1/2.

prime p<n

Similarly, we have Zp<np_7 < 1/6, Zp>np_2 < n~! and Zp>np_4 < n73/3. It remains to
bound >, /o<, p~ - It is proved in [68, Th. 9, p. 16] that 3~ =Inlnz+c¢+ O(1/Inx), for
some constant c. We thus obtain that:

£ eniti () -u(esb) o) o)

prime p, n/2<p<n

p<x

We now consider the case s = 1 + . We have:

eive) <2 [ a-p e [T a-p )

prime p, 2<p<n prime p>n
< 2exp ( Z (p*(1+e);+1 +p—2(1+s);+1) +n- Z (p~(1+e) +p2(1+€))>.
prime p, 2<p<n prime p>n

where we again used the inequality In(1 — x) > —z — 22, for € [0,1/3]. The first sum above is

bounded as:
1—¢

n
n
2- <2 “fdr <2 .

prime 2<p<n

Similarly, the second sum above is bounded as 2 - ZZD” p~ (48 < 2¢~1p=¢ This gives the claimed
bound on (i (1 + ¢). 0
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In our study of the Dedekind zeta function, we use the following bound.

Lemma 4.3. Let N > 1 and € € (0,1). The number H(N) of ideals I C R,, satisfying N(I) < N
is bounded as H(N) < 2exp(2- (e(1 —¢))~t-nl=%) . N1Te,

Proof. For k > 1,1et M (k) denote the number of ideals of R,, of norm exactly k. Note that for s > 1,

we have (x(s) =D ;cpr N(I) 72 =D sy M (k) k7% >3 o M (k) - k2. Using >y oy M(k) - k7% >
> ken M(k)-N72 = H(N)-N~% we obtain that H(NN) < (x(s)-N°. Setting s = 1+ and applying
Lemma 4.2 completes the proof. O

The value (p(2) = 72/6 is famous because its inverse is the probability that two “random”
integers are co-prime. The next lemma considers the generalization of that fact to K.

Lemma 4.4. Assume that o > Tn'>In'® n.Then, for n a sufficiently large power of 2:

_ 1 —n—+1
roib, W) # B < 1= ommoy 4277

Proof. By Lemma 2.3, we have:

Pr({f,g) # R < Pr[{f,9) # R A |If],llgll < vno] +Pr([[f]| > Vno or [|g]| > v/no]
Prl(f,g) # B A |1 llgll < Vo] + 27

We bound Pr[(f,g) # R A ||f,]lgll < v/no] by using an argument adapted from [63]. Since
any ideal I containing the principal ideal (f) has norm N (1) < N({f)), the condition | f|| < v/no
implies N'(I) < N((f)) < (y/no)™. Thus, we have Pr[(f,g) # R A || fll, |lg]l < +/no] <1—p, with:

pim Dl (20 U Ix1) = ¥ uln)DE 07,

prime I C R ICR
N(I) < (Vno)™ N(I) < (Vno)™

<
<

where in the second equality, we used the inclusion-exclusion principle (and p is the Mobius function
for ring R), and DT, denotes the truncation of Dy z» to the ball B, (y/no) of radius \/no, i.e.

D(;Zn(:c) = Dy gn(x) if ¢ € By(y/no) and DZ,Zn () = 0 otherwise.Recall that (x(2)™1 = > u(I) -
N(I)72, where the sum is over all ideals I C R.We now show that |p— (x(2)7!] < (2¢x(2))"".
This implies p > (2(x(2)) 7, as required. We have:

p—Ck@7' < D> DI -NDTP+ Y NI
ICR ICR
N(I) < (Vno)™ N(I) > (v/no)™

To bound the first sum, we recall that for any (even fractional) ideal I, we have \,(I) =
M(I) < /aN(I)Y™, so. for any § € (0,1/2), the smoothing parameter 15(I) is no greater than
Bs - N(I)Y/", where Bs = \/nIn(2n(1 + 1/5))/n (by Lemma 2.1). Tt follows from Lemma 2.2 that
|Dzn o (I)? = N(I)72| < 185/N(I)* if N(I) < (¢/Bs)™ and I € R. We have |Dzn o (I)—DJ, ,(I)| =
Dyn o(I\ Bp(v/no)) = Dy o(I\ Bu(v/no)) - Dzn o(I) < 272 Dyn (1), where in the last inequality
we applied Lemma 2.3. We conclude that ‘D%n70(1)2 —~N()72| < (186 + 27 ") /N(I)? for [ C R

of norm < (0/Bj)™. Assume now that (o/Bjs)" < N(I) < (v/no)", and let k = [/\C‘(/IE;”} Since
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I C 41, we have D%np-(]-) < D%”,U(% -I). Also, by the choice of k, we have ns(3 - I) = 115(1) < 0.

Now:
L n 1, n
pf (L0 <y, (Lor) 2w L02Y el D (2B5)" 1406
TR 7 \k po(Z7) PRV s ) 15

where in the last inequality we applied Lemma 2.2 twice, using o > ns(Z") and det 1 -I) =
g U

= N(I) > (QB )™. Therefore, we have D%n (I)? < (2]35)2"(“'5)2 Finally, assuming that o > 2B;s

and § =

W , We obtain:

Y DL P =NDP < Y (DL (1P =NID)E[+ Y Dl (1) = N(1)7?

ICR ICR ICR
N(I) < (Vno)™ N(I) < (o/Bs)" (0/Bs)" <N(I) < (Vno)"
2B 2n
< (185 + 275 . N2 + 2-H((vVno)") - (—5)
ICR g
N(I) < (o/Bs)"
1 285\ 2"
- 2.H Yy =2 1

where in the last inequality we used the choice of § and the fact that 3 ;c g n(1)<(oym)n N(I)2 <
Yrcr N(I)™ = ¢k (2). Recall that H(N) is the number of (integral) ideals of R of norm < N.
From Lemma 4.3 with ¢ = lnllﬂ we know that H(N) < 2exp(2-)-N1*¢. Taking o > 7Tn!5In'" n

2n
provides H ((y/no)™)- (@> g T (2) , for sufficiently large n, using (x(2) = O(1) from Lemma 4.2.

g

Overall, the first sum is < ; ( ) for n sufficiently large.

We now bound the second sum, as follows:

_ H(k)-H(k—-1 H(k H(k
Yooy HOSHED e G B

[Cr k> (Vo) k> (Vo) k> (Vo)
N(I) > [(Vno)"]
< Y HW (5
- k2 (k+4+1)2
k>[(v/no)" ]
4n 2k +1
< . I —
< Zexp <lnlnn> Z El=e(k +1)%’
k> (o)

where we used the bound on H (k) from Lemma 4.3 with € = lrﬁn" Now, notice that the summand

is < 2 -, which allows us to bound the second sum by O(exp(12-) - (v/no)~ (1=e)n) = o(1), so the
latter is < (4¢x(2))! for sufficiently large n, which completes the proof. 0

4.2 A revised NTRUSign key generation algorithm

The revised key generation for NTRUSign is given in Fig. 3. It is inspired from the algorithm of |26,
Se. 4] and described in more details in [25, Se. 5|. The vector (f,g) produced by the NTRUEncrypt
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Inputs: n,qe€Z,0 > 0.
Output: A key pair (sk,pk) € R*** x R).

1. Sample f from Dzn o; if (f mod q) € R, resample.

2. Sample g from Dzn ; if (g mod ¢) & R, resample.

3. If ||fl| > v/n-oor gl > +/n- o, restart.

4. If (f, g) # R, restart.

5. Compute F1,G1 € R such that fG1 — gF1 =1, e.g., using a Hermite Normal
Form algorithm (see [9, Ch. 2.4]); set F, := ¢F and G4 := ¢G1.

6. Use Babai’s nearest plane algorithm [6] to approximate (F,;, G,) by an integer
linear combination of (f,g), (zf,zg),...,(z" ' f,z"'g). Let (F,G) € R? be the
output, such that there exists k € R with (F,G) = (Fy,Gq) — k(f, 9).

7. If ||(F, G)|| > no, restart.

8. Return secret key sk = [;, g} and public key pk =h =g/f € R}.

Fig. 3. Revised key generation algorithm for NTRUSign.

key generation algorithm is a short vector in the R-module generated by the rows of the matrix

[(1) Z] with h = g/ f mod ¢q. The algorithm of Fig. 3 extends (f, g) into a short module basis [IJ; CQJ} :

Because of the rejection tests, the output public key h may not be uniformly distributed in R,
as it was the case for NTRUEncrypt. Uniformity is important for us to be able to eventually rely on
Theorem 2.1 to prove the security of the signature scheme. In fact, as we will show in Subsection 4.3,
it suffices that the combined rejection probabilities of Steps 3, 4 and 7 is non-negligibly away from 1.

By Lemma 4.4, when no rejection is performed in Steps 1-3, the rejection probability of Step 4
is (assuming that o > 7n'®In'® n and that n is a sufficiently large power of 2):

o —n+1
MHP};RJ[(f, 9) # R <1 2k (2) +2

We now consider the rejection probability of Step 7 (without rejection in Steps 1-2).
Lemma 4.5. Assume that o > Tn'®In'® n. Then, as n grows to infinity:

2 2 2
2 o q-w(n) _ _
LR JIE e s B T ) — R = o),

where F' and G are as defined in Steps 5 and 6 of the algorithm of Figure 3.

Proof. We decompose (F,G) as (F,G) = (Fy,Gq)* + (ef,eq), where (F,,G4)* is the projection
of (Fy,Gq) orthogonally to the K-span of (f,g) (which can also be viewed as the projection
of (F,, G4) orthogonally to the Q-span of (f,g), (zf,zg),..., (" 1 f,2" 1g)). We have:

ICE G = 1(Fq, Go)[I* + Il ey eg) 1%

As we use Babai’s nearest-plane algorithm, the vector (ey, e,) is the rounding error of Babai’s nearest
plane algorithm, in rounding (Fy, G,) — (Fy;, G4)* to a close point in the lattice L(f, g) defined as
the Z-span of (f,g), (xf,xg),..., (" Lf, 2" tg).

Since ||(Fy, Go)*|| = mingeg ||(Fy — kf, G4 — kg)||, to obtain an upper bound on ||(F,, G¢)*|,
it suffices to find a £k € R such that ||(F, — kf,Gq — kg)|| is small. From the equation fG, —
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gF, = q, we obtain G, = ¢f ' + g(f~F,) (where inversion takes place in K). Taking k := f~'F,
gives ||(F,G)*|| < 1(0,¢f 1) = ql|f . From Lemma 4.1 with ¢ = w(n) and I = R, we get:

w(v/n)

g

I

f<_)DR,U

} < o(1).

This remains the case when the event is conditioned on (f, g) = R, as, by Lemma 4.4, the probability

that (f,g) = R is bounded from below by a constant. Overall, we have that ||(F,, Gq)*|| < M
holds except with probability < o(1).

To bound (e, ey)||, note that [|(es, )|l < 5" max; [|(2'f,2'g)|| = *3*[|(f, 9)||- By Lemma 2.3,
we have ||(f,9)|| < v2no with probability > 1 — o(1), when f,g «> Dg,. For the same reason as

above, this remains the case when conditioning on (f,g) = R. Overall, we have ||(ef,e4)| < 22

V2’
except with probability < o(1). This completes the proof. O

We can now analyze the overall rejection probability of the revised NTRUSign key generation
algorithm.

Lemma 4.6. Assume that ¢ > 64nlk (2) and o = w(max(v/nlnn - /%, ¢g'/2n=1/4 p3/2 In?/2 n)),
where kq the number of irreducible factors of ™ 4+ 1 modulo q. Then if n is sufficiently large, the
combined rejection probability of Steps 8, 4 and 7 of the algorithm of Fig. 3 (when f and g are
independently sampled from D} ) is <1 — ¢, for some absolute constant ¢ > 0.

Proof. For i € {3,4,7}, we let p; denote the rejection probability of the test in Step ¢, i.e.:

e p3 is the probability that || f|| > \/no or ||g|| > /no, with f,g <= Dy .
e py is the probability that (f,g) # R and | f|],||g|| < v/no, with f,g <> D} .
e pr is the probability that (||[F,G||) > no, (f,g9) = R and | f]],]lgl| < v/no, with f,g <> Dp .

For i € {3,4,7}, we define p/ as p; except that f and g are independently sampled from D R rather

than D}, . Let p; be the probability of rejection of f at Step 1. By the union bound, the probability
of rejecting f or g at Steps 1 or 2 is < 2p;. Hence for i € {3,4, 7}, we have p; < p;/(1 — 2p;).

The rejection probability p; has already been studied in Subsection 3.3. Indeed, by Lemma 3.5

and the choice of ¢ and ¢, we have p; < W}((Q) Lemmata 2.1 and 2.3 and the choice of ¢ imply

that py < 27""2. Finally, from the choice of o and Lemmata 4.4 and 4.5, we have that p} <
i

1= 50® +o0(1) and p% = o(1). Recall from Lemma 4.2 that (x(2) = O(1) when n grows to infinity.
1

Therefore, for a large enough n, we have p5+p) +p, <1— TeAe] and the total rejection probability

/ / /
P3+PatP7 <1- , as required. O

satisfies p3 + psy + p7 < ==

1 __
8¢k (2)

We conclude this section with a correctness and efficiency statement for the revised NTRUSign
key generation algorithm.

Theorem 4.1. Letn be a power of 2 such that ® = 2" +1 splits into ky € {2,n} irreducible factors
modulo prime q > 64Cxk(2)n. Let ¢ € (0,1/3) and o > max(n\/In(8nq) - ¢*/2+¢, w(n32 %2 n)) if
ky = n, or 0 > max(y/nIn(8ngq) - ¢"/2*%, w(n?? W2 n)) if k, = 2. Then the algorithm of Fig. 3

terminates in expected polynomial time, and the output matriz [ﬁgg} 1s an R-basis of the R-

module spanned by the rows of [é Z} with h = g/ f mod q. Furthermore, we have ||(f,g)| < 2y/no,
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and ||(F,G)|| < no. Finally, if n is sufficiently large, the distribution of the returned h is rejected
with probability ¢ < 1 for some absolute constant ¢ from a distribution whose statistical distance
from U(RY) is < 210ng—len]

Proof. The first statement is provided by Lemma 4.6. For the second statement, we refer to |26,
Th. 1]. The norm inequalities are obvious from the description of the algorithm. Finally, the last
statement is provided by Theorem 3.2 and Lemma 4.6. O

4.3 A revised NTRUSign scheme

In this section we present a provably secure variant of NTRUSign (in the random oracle model). The
scheme is an efficient instanciation of the Gentry et al. signature [21], where efficiency is improved
both by using the ring structure (to reduce computation and storage from O(n?) to O(n)), and the
NTRU key to reduce the key length and signature to a single ring element.

Collision-Resistant Preimage Sampleable Functions. We recall that the Gentry et al. signa-
ture is built from a general cryptographic primitive introduced in [21] and called Collision-Resistant
Preimage Sampleable Functions (CRPSF), which we recall.

Definition 4.1 (CRPSF). A CRPSF is specified by three probabilistic polynomial-time algorithms
(TrapGen, SampleDom, SamplePre) such that:

1. Generating a Function with Trapdoor: Given a security parameter n, TrapGen(1™) returns (a,t),
where a is the description of an efficiently computable function fq, : Dn — Ry (for some effi-
ciently recognizable domain D,, and range R,,), and t is a trapdoor string for f,. In the following,
we fix some pair (a,t) returned by TrapGen(1™). Note that the following properties need only hold
for with probability negligibly close to 1 over the choice of (a,t) output by TrapGen(1™).

2. Domain Sampling with Uniform Output: Given a security parameter n, SampleDom(1") re-
turns x sampled from a distribution over D,, such that the statistical distance between fu(x) and
the uniform distribution over R, is negligible.

3. Preimage Sampling with Trapdoor: Given any y € R,, SamplePre(t,y) outputs x such that
fa(z) =y and the distribution of x is within a negligible distance to the conditional distribution
of &' <= SampleDom(1™) given f,(2') = y.

4. Preimage Min-Entropy: For each y € Ry, the conditional min-entropy of © <= SampleDom(1™)
given fqo(x) =y is w(lnn).

5. Collision-Resistance without Trapdoor: For any probabilistic polynomial-time algorithm F, the
probability that F(1™,a) outputs distinct x, 2" € D,, such that f,(x) = fa(a') is negligible, where
the probability is taken over the choice of a and the random coins of F.

Our CRPSF construction NTRUPSF(n, ¢, 0, s) is shown in Fig. 4. The parameters n and ¢ define
the rings R and R,. The parameter o is the width of the discrete Gaussian distribution used in
the NTRUSign key generation process, while s is the width of the Gaussian used in the preimage
sampling.

Theorem 4.2. Suppose n is a power of 2 such that & = x™ + 1 splits into k, € {2,n} irreducible
factors modulo prime q = Poly(n), with ¢ = n\/In(8nq) - ¢"/>*¢ and ¢"/>~= = ﬁ(n7/2) if kg =
n, or 0 = \/nn(8nq) - ¢/**¢ and ¢'/?~¢ = !NZ(ng) if kg = 2, for some fized € € (0,11?1—2). Let
s = f)(n3/20). Then the construction NTRUPSF(n, q,0,s) from Fig. 4 is a CRPSF secure against
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e Generating a Function with Trapdoor — TrapGen(1™,q,0): Run the NTRUSign key generation algorithm
f g}
FG
for the R-module h't = {(z1,22) € R?: 25 = hz1 mod q}. The key h defines function fr(z1,22) = hz1 — 22 € Ry
with domain D,, = {z € R?: ||z|| < sv/2n} and range R, = R4. The trapdoor string for f), is sk.
e Domain Sampling with Uniform Output — SampleDom(1",¢q,s): Sample z from Dj2n ,; if ||z| > v2ns,
resample.

from Fig. 3, using n, ¢, o as inputs. It returns an NTRU key h = g/f € R} and a trapdoor R-basis sk = {

e Preimage Sampling with Trapdoor — SamplePre(sk, t): To find a preimage in D,, for target ¢ € R, under f3
using the trapdoor sk, note that ¢ = (1,h — t) is a preimage of ¢ under f (not necessarily in D, ). Sample z
from D, . ,, using trapdoor basis sk for k" and the algorithm of Lemma 2.9. Return z.

Fig. 4. Construction of CRPSF primitive NTRUPSF(n, ¢, o, s).

Poly(n) time algorithms, assuming the hardness of v-Ideal-SVP against Poly(n) time algorithms,
with v = O(n - s).

Proof. The sets D,, and R,, are easily recognizable. Observe that s > max(y/n,n; /Q(ZQ”)), so by
Lemmata 2.3 and 2.6, the distribution of z = (21, 22) returned by SampleDom is within negligible
statistical distance of Dzzn ;. To show Property 2 of Definition 4.1, we apply Theorem 3.1 with
6 =n~“W to conclude that thanks to the choice of s, except for a fraction < 287¢—2" of (a1,a2) €
(RqX)Q, we have A(ayz1 —ag29; U(Ry)) < 26 with (21, 22) = Dyan 4. Since the mapping ¢ : z +— ayta
is a bijection of R,, we have A(aiz1 — agz2;U(Ry)) = A(alaglzl — 29;U(Ry)) for each ay,as.
Moreover, since h = a5 1a1 is uniformly random in R} when a; and as are independently so, we get
A(hzy — 20; U(Ry)) < 26 with (21, 29) <= Dyan  except for a fraction < 28ng=2n of h € R . Finally,
by Theorem 4.1, the distribution Dy, of h = g/f generated by TrapGen is obtained by rejection
with constant rejection probability ¢ < 1 from a distribution within statistical distance 2107¢—len]
of U(R;). It follows that A(hz1 — 20;U(Ry)) < 20 with (21, 22) <= Dzan  except with probability
< ﬁ (282 4 210ng—len]y — =2() gyer the choice of the public key h, as required.

To show Property 3 of Definition 4.1, we first observe that, for any fixed ¢ € R, the conditional
distribution of z <= Dgzn ¢ given fj,(z) = hzy — 20 = t is exactly F(z) = ps(plii(flc) = Dp1ics(2),
where ¢ = (1,h — t). Therefore, Property 3 follows from Lemma 2.9, the upper bound no on the
trapdoor basis norm from Theorem 4.1, and the choice of s = w(n?vInn - o).

To show Property 4 of Definition 4.1, note that the conditional preimage distribution is Dy1 ., =
Dyi s e+ ¢, where ¢ = (1,h —t), so it suffices to bound the min-entropy of Dj1 ;. from be-
low. By Lemma 2.5, the latter min-entropy is £2(n) if the condition s > 2n; 5(h™) is satisfied.

Theorem 3.1 shows that for all except a fraction < 287¢~" = ¢~ of @ € (qu)2, we have
nl/Q(al) = 5(\/ﬁq%+€). Since a* = h' with h = ay'ay, it follows that for all except a fraction

< g M ofh e R, we have nl/g(hl) < 5(\/ﬁq%+5). By the choice of s, the condition s > 2n1/2(hj-)

is satisfied. By Theorem 4.1, the condition is satisfied except with probability q;f(cn) = ¢~ 1(n)

the choice of the public key h, as required.

Finally, we show Property 5 of Definition 4.1. Let A be a collision-finding algorithm for NTRUPSF
with run-time T" = Poly(n) and success probability 6 = 1/Poly(n) over the choice of the public
key h and the randomness of A. By Theorem 4.1, the success probability of A over the choice
of h <= U(R;) and the randomness of A is at least ¢’ = (1 — ¢)d — 210ng=1en]  Note that we
have &' = 1/Poly(n). We construct an algorithm A’ for R-SIS, 2 5 with 3 = 2v/2ns that works as

33



follows on input (a1,as) <= U(R2). If (a1,a2) ¢ (R))?, it aborts. Else, A’ runs A on input h =
ayta;. If A succeeds, it outputs (z1,22) # (2, 25) with |(21,22)[],1/(2], 23)|| < v2ns such that
a1(z1 —2))+ag (2 —22) = 0, and then A’ returns w = (21 — 2}, 25 — 22). Note that 0 < ||w| < 2v/2ns,
as required. Conditioned on (a1,a2) € (RX)?, the distribution of h given to A is U(R) and thus
A succeeds with probability > ¢'. Since (a1,a2) € (R))? with probability > 1 — 2n/q = £2(1), it
follows that A’ succeeds probability > (1 —2n/q)d’ = 1/Poly(n). Applying Theorem 2.1 using the
choice of ¢ = 2(81/n), we obtain a Poly(n) time algorithm for y-Ideal-SVP with the claimed ~. O

The revised NTRUSign scheme. Given the NTRUPSF construction above, the revised NTRUSign
follows the Gentry et al. ‘Probabilistic Full Domain Hash’ construction and is shown in Fig. 5.
Besides the NTRUPSF parameters, it has an additional parameter k£ that indicates the randomizer
length. Note that applying the Gentry et al. construction directly on NTRUPSF results in signatures
on a message M consisting of two ring elements (o1, 02) and a randomizer r € {0,1}* satisfying
hoy — o9 = H(r, M), where H is the random oracle. To reduce the signature length, our NTRUSign
variant eliminates o9 from the signature, since it can be easily recovered during verification from
the remaining information.

e Key Generation — KeyGen(1",q,0,k): Run TrapGen(1",gq,0) of NTRUPSF(n,q,0,s) to get key h € Ry and
trapdoor sk for function f, : D, — R,, where D, = {(z1,22) € R? : ||(z1,22)]] < V2ns}, Rn = R,
and fp(z1,22) = hz1 — z2. Return the signer’s public key h and secret key sk.

e Signing Algorithm — Sign(sk, M): Choose r <> U({0,1}"), let (01,02) := SamplePre(sk, H(r, M)). Return
(7“, 0'1).

e Verification Algorithm — Ver(h, M, (r,01)): Compute ¢t = H(r, M) and o2 = hoy — t. Accept if (o1,02) € Dy
and r € {0,1}*, else reject.

Fig. 5. Construction of NTRUSign(n, g, 0, s, k) from the NTRUPSF primitive in Fig. 4.

Since oy is easily computed from oy,  and the public information, the security of NTRUSign is
equivalent to that of the Gentry et al. signature obtained from NTRUPSF, which in turn has been
shown in [21, Prop. 6.2] to follow from the security of the underlying CRPSF. Combining with
Theorem 4.2, we obtain our second main result.

Corollary 4.1. Let ,n,q,0,s satisfy the conditions in Theorem 4.2, and let k = w(lnn). Then,
assuming the random oracle model for H, the signature scheme NTRUSign(n,q,o,s,k) from Fig. 5
is strongly ezistentially unforgeable against a chosen message attack with Poly(n) run-time and
1/Poly(n) success probability, assuming the hardness of v-1deal-SVP against Poly(n) time algo-
rithms, with v = O(n - ).

Note that if H runs in quasi-linear time, then so does the verification algorithm. Also, if pre-
computations are performed, then so does the signing algorithm (see [55,13]). The amortized cost
per signed bit is then 6(1) Finally, we remark that the smallest ¢ and + that can be chosen in
Theorem 4.2 and Corollary 4.1 are 2(n%/(1-29)) if kq = 2 and Q(n7/0-20)y if kq = n. Finally, we
observe that our proof can be readily adapted to offer security against sub-exponential attackers (in
the random oracle model), under the assumption that Ideal-SVP cannot be solved in sub-exponential
time for some polynomial approximation factor ~.
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