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Abstract. In this paper, we introduce a general paradigm called identity-based extractable hash
proof system (IB-EHPS), which is an extension of extractable hash proof system (EHPS) proposed
by Wee (CRYPTO ’10). We show how to construct identity-based key encapsulation mechanism
(IB-KEM) from IB-EHPS in a simple and modular fashion. Our construction provides a generic
method of building and interpreting CCA-secure IB-KEMs based on computational assumptions.
As instantiations, we realize IB-EHPS from the bilinear Diffie-Hellman assumption and the modi-
fied bilinear Diffie-Hellman assumption, respectively. Besides, we carefully investigate the relation
between EHPS and IB-EHPS, and indicate possible refinement and generalization of EHPS.
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1 Introduction

Security against adaptive chosen-ciphertext attack (CCA-security) [RS91] is now accepted as
the standard security notion for public-key encryption (PKE) schemes as well as identity-based
encryption (IBE) schemes. In contrast to security against adaptive chosen-plaintext attack (CPA-
security) [MRS88], CCA-security captures the immunity against an active adversary who is given
access to a decryption oracle that allows it to obtain the decryptions of ciphertexts of its choice.
Instead of providing the full functionality of PKE/IBE, in many applications it is sufficient to
allow sender and receiver to agree on a common random session key. This can be accomplished
by (identity-based) key encapsulation mechanism (KEM) as formalized in [BFMLS08]. It is also
well-known that a CCA-secure KEM/IB-KEM combined with a CCA-secure data encapsulation
mechanism (DEM) yields a full-fledged CCA-secure PKE/IBE scheme. Considering the above
reasons, the research community pay more attention to the construction of CCA-secure KEM/IB-
KEM.

On the other hand, in most cases related to cryptography, decisional assumptions form a much
stronger class of assumptions than the corresponding search (computational) assumptions1. For
instance, deciding if a given integer has a modular square root or not may be much easier than
actually computing a square root (or, equivalently, factoring the modulus); in groups equipped
with efficient pairings, the decisional Diffie-Hellman (DDH) problem is easy, but the computa-
tional Diffie-Hellman (CDH) problem still appears to be hard. As such, cryptosystems based
on computational assumptions are generally preferred to those based on decisional assumptions.
From now on, we will use the term computational and search interchangeably.

Up to now, only a handful of IB-KEMs [HJKS10, Gal10, CCZ11] were known to be CCA-
secure based on computational assumptions in the standard model. Besides, there seems no
1 Unless the decisional assumption can be proved equivalent to its computational counterpart, as it is the case
with cryptosystems based on the problem of “leaning with error" (LWE) [PW08].



overarching concept explaining these constructions. Inspired by the notion of extractable hash
proof system [Wee10] in the public key setting, we introduce a new notion named identity-based
extractable hash proof system and show how to use it to construct CCA-secure IB-KEMs based
on computational assumptions.

1.1 Background

The concept of IBE was first introduced by Shamir [Sha84] in 1984, which can be viewed as
a special type of PKE in that the public key of a user can be publicly derived from arbitrary
strings such as an email address or any other user identifier. This appealing property minimizes
the need to distribute public key certificates — which is one of the main technical difficulties
when implementing public-key infrastructure.

Boneh and Franklin [BF01] defined formal security notions for IBE and designed the first
practical IBE scheme based on the computational bilinear Diffie-Hellman (CBDH) assumption.
Cocks [Coc01] proposed an IBE scheme based on the quadratic residues (QR) assumption. Sakai
and Kasahara [SK03] presented another IBE scheme based on the q bilinear Diffie-Hellman in-
version (q-BDHI) assumption. All of them are proven secure in the random oracle model [BR95].
However, a proof in the random oracle model can only serve as a heuristic argument [CGH98].
This posed an interesting problem of constructing IB in the standard model.

First, Canetti, Halevi, and Katz [CHK04] made the breakthrough by giving a solution
in the standard model, but under a weaker notion named “selective-identity" where the at-
tacker must declare the target identity id∗ before seeing the public parameters. Boneh and
Boyen [BB04a] then provided two efficient selective-identity CPA-secure IBE schemes known as
BB1-IBE and BB2-IBE. The former is based on the decisional bilinear Diffie-Hellman (DBDH)
assumption while the latter is based the decisional q-BDHI assumption. Subsequently, Boneh
and Boyen [BB04b] put forwarded a coding-theoretic extension to BB1-IBE, which is adaptive-
identity CPA-secure in the standard model. However, their scheme serves mainly as a proof of
theoretical feasibility rather than practical utility due to its low efficiency. Waters [Wat05] then
created an efficient and adaptive-identity CPA-secure IBE scheme (Waters-IBE) also based on
the DBDH assumption in the standard model by employing Waters hash in place of Boneh-
Boyen hash in BB1-IBE. One drawback is that it suffers from large public parameter size. Gen-
try [Gen06] proposed an IBE scheme (Gentry-IBE) which enjoys short public parameters and
tight reduction of fully security without random oracles, despite at the cost of relying on a non-
standard and non-static assumption called the decisional q-ABHDE assumption. Waters [Wat09]
then introduced dual system encryption methodology and proposed an adaptive-identity CPA-
secure IBE scheme based on the DBDH assumption and the decisional Linear (DLIN) assumption
in the standard model. It is worth to note that, except Cocks’ IBE [Coc01], all the aforemen-
tioned IBE schemes use pairing as a primitive. We refer to them as pairing-based IBE. Recently,
Gentry et al. [GPV08] proposed an IBE scheme based on the LWE assumption in the random
oracle model. Cash et al. [CHKP10] and Agrawal et al. [ABB10] showed how to construct IBE
schemes based on the LWE assumption in the standard model.

As stated before, CCA-security is the de facto level of security required for IBE used in
practice. In the random oracle model, achieving CCA-security is relatively easy. One can apply
generic CPA-to-CCA transformation (e.g. Fujisaki-Okamoto transformation [FO99]) to a CPA-
secure IBE scheme. The CCA-secure version of Boneh-Franklin IBE [BF03] and Sakai-Kasahara
IBE [CC05] are exactly obtained in this way. However, constructing CCA-secure IBE in the
standard model turns out to be difficult. Boneh, Canetti, Halevi, and Katz [BCHK07] proposed
a generic method (known as the BCHK transformation) from any CPA-secure 2-level HIBE to a
CCA-secure IBE, which is the only generic approach known for constructing efficient CCA-secure
IBE in the standard model.
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1.2 Motivation

As we have already stated, a decisional assumption is generally stronger than its computational
counterpart. From both theoretical and practical perspective, it is more desirable to reduce the
security of cryptographic schemes to computational assumptions. Considering an IBE scheme
obtained from the BCHK transformation, its CCA-security relies on the CPA-security of the
underlying 2-level HIBE and the security of one-time signature or MAC. Hence its assumption
cannot be directly counted as computational or decisional assumption. However, the indistin-
guishability against CPA-attack is of decisional flavor, thus it is arguably closer to decisional
assumptions.

Haralambiev et al. [HJKS10] proposed several efficient CCA-secure KEMs in the stan-
dard model. They also sketched that one of their KEMs can be extended to an IB-KEM.
Galindo [Gal10] gave an IB-KEM from the KEM due to Hanaoka and Kurosawa [HK08a]. Chen
et al. [CCZ11] proposed another IB-KEM. Based on their basic 1-bit IB-KEM, they constructed
two generalized n-bit IB-KEMs, which compare favorably to [HJKS10] and [Gal10]. The afore-
mentioned IB-KEMs are proven to be selective-identity CCA-secure based on the CBDH as-
sumption in the standard model. All of them fall outside of the BCHK [BCHK07] methodology.
While the IB-KEMs in [HJKS10] and [CCZ11] are similar, it seems that the IB-KEM [Gal10]
relies on different techniques to achieve CCA-security. So far, there is no overarching framework
explaining these constructions.

Recently, several CCA-secure KEMs from various computational assumptions emerged, such
as [CKS08, HK08a, HK09, HJKS10]. Inspired in part by hash proof system (HPS) [CS02],
Wee [Wee10] introduced the notion of extractable hash proof system (EHPS). Roughly speak-
ing, EHPS resembles HPS in that both of them can be viewed a special kind of non-interactive
zero-knowledge proof (designated-verifier NIZK), except that EHPS replaces the soundness re-
quirement with a proof of knowledge property [RS91]. The framework of EHPS does not only
encompass a series of CCA-secure KEMs [BMW05, CHK04, Kil06, Kil07] based on decisional
assumptions, but also can explain a series of CCA-secure KEMs [HK09, HJKS10] based on
computational assumptions in a unified way, which is the most appealing advantage of EHPS.

Although the realm of IBE and PKE are inherently different, the techniques are sometimes
interchangeable. Motivated by the above discussion, we find the following intriguing question:

Does there exist a general framework for the construction of identity-based encryption
from computational assumptions in the standard model?

1.3 Our Contributions

EHPS and its benefits are confined to the realm of public-key setting. In this paper we bring
them to the identity-based setting, defining identity-based extractable hash proof system (IB-
EHPS). Using IB-EHPS, we obtain new insights into the construction of CCA-secure IB-KEMs.
In particular, we show that this notion unifies many seemingly unrelated IB-KEMs based on
computational assumptions under a single framework. We summarize our main contributions as
follows.

Identity-Based Extractable Hash Proof System. We introduce the notion of IB-EHPS by
tailoring EHPS to the identity-based setting. We show that IB-EHPS instantly yields adaptive-
identity CPA-secure IB-KEM. However, the basic IB-EHPS is too generic to encompass more
applications. To resolve this problem, we further propose the notion of all-but-one (ABO) IB-
EHPS, which can in turn be used to construct adaptive-identity CCA-secure IB-KEM. We also
put forward the notion of selective (ABO) IB-EHPS, which turns out to be a useful paradigm for
the constructions of selective-identity CPA/CCA-secure IB-KEM. Besides, we carefully examine
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the relation between EHPS and IB-EHPS, and indicate possible refinement and generalization
on EHPS.
Practical CCA-secure IB-KEM from IB-EHPS. We present two instantiations of ABO
IB-EHPS from the CBDH assumption and the modified CBDH assumption, respectively. As
a result, we obtain two efficient adaptive-identity CCA-secure IB-KEMs based on computa-
tional assumptions in the standard model. One is a variant of [KG06], while the other is a
variant of [KV08]. We also carefully review all the known selective-identity CCA-secure IB-
KEMs [HJKS10, Gal10, CCZ11] based on computational assumptions and figure out their re-
lations, which are not clear prior to this work. We find that the instantiation of selective ABO
IB-EHPS from the BDH relation serves as a clarification and unification of all these construc-
tions. It is also worth to note that ABO IB-EHPS also encompasses a series of CCA-secure IBE
schemes in [KG06, KV08] whose security are based on decisional assumptions.
Selective Tag-Based Extractable Hash Proof System. Inspired part by selective IB-EHPS,
we propose the notion of selective tag-based extractable hash proof system (TB-EHPS). Starting
from a selective TB-EHPS, we show how to construct a selective-tag weakly CCA-secure tag-
based KEM. We also investigate the relation between EHPS, selective TB-EHPS, selective IB-
EHPS, and IB-EHPS.

As of independent of interest, we show the KEM [HK08a] due to Hanaoka and Kurosawa can
be greatly simplified by resorting to a slightly stronger assumption. This observation not only
clarifies the relations between the KEM [HK08a] and other CCA-secure KEMs [HJKS10, Wee10],
but also leads to a significant simplification of the IB-KEM [Gal10].

1.4 Organization

In the following section, we provide the definitions and all related cryptographic notions. In
Section 3 we propose the notion of (all-but-one) IB-EHPS. In Section 4 we show a generic
construction of CCA-secure IB-KEM from IB-EHPS. In Section 5 we give two instantiations
of IB-EHPS from the CBDH assumption and the modified CBDH assumption, then derive
two adaptive-identity CCA-secure IB-KEMs from them. In Section 6 we propose the notion of
selective IB-EHPS and show its application. Appendix A recalls all the known CCA-secure IB-
KEMs from computational assumptions in the standard model, then investigates their relations
carefully. Appendix B gives an intensive observation on the relations between the KEM [HK08a]
and other KEMs [HJKS10, Wee10].

2 Preliminaries

2.1 Definitions

For a finite set X, we use x R←− X to denote that x is sampled from X uniformly at random.
The main security parameter through this paper is κ, and all algorithms are implicitly given κ
as input. We use standard asymptotic notation O and o to denote the growth of functions. Let
poly(κ) denote an unspecified function f(κ) = O(κc) for some constant c. Let negl(κ) denote an
unspecified function f(κ) such that f = o(κ−c) for every constant c. A probability parametrized
by κ is said to be overwhelming if it is 1 − negl(κ), and said to be noticeable if it is 1/poly(κ).
A probabilistic polynomial-time (PPT) algorithm is a randomized algorithm that runs in time
poly(κ). If A is a randomized algorithm, we write z ← A(x1, . . . , xn; r) to indicate that A outputs
z on inputs (x1, . . . , xn) and random coins r. We will omit r and write z ← A(x1, . . . , xn) when
it is not necessary to make explicit the randomness A uses. We use ⊥ to denote a special reject
symbol, and assume that an algorithm returns ⊥ if any of its inputs is ⊥.
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2.2 Identity-Based Key Encapsulation Mechanism

An IB-KEM consists of four PPT algorithms as follows:

– Setup(κ): take as input a security parameter κ, output the master public key mpk and the
master secret key msk. mpk may be used as an implicit input for algorithms KeyGen, Encap,
Decap. Let I be the identity space, C be the ciphertext space, and K be the DEM key space.

– KeyGen(msk, id): take as input msk and an identity id ∈ I, output a private key skid of id.
– Encap(mpk, id): take as input mpk and an identity id ∈ I, output a ciphertext c and a DEM

key k ∈ K.
– Decap(skid, c): take as input a private key skid for identity id and a ciphertext c ∈ C, output

a DEM key k ∈ K or a special reject symbol ⊥ (which is not in K) indicating that c is not
consistent under id.

Definition 2.1 (Correctness) For correctness, we require that for any κ ∈ N, any identities
id ∈ I, and any (c, k)← Encap(mpk, id), Decap(KeyGen(msk, id), c) = k holds overwhelmingly,
where the probability is taken over the choice of (mpk,msk)← Setup(κ), and the random coins
of all the algorithms in the expression above.

Definition 2.2 (Consistency) A ciphertext c is said to be consistent (or well-formed or valid)
under identity id if c ∈ Cid, where Cid the set of all possible first output of Encap(mpk, id).

Definition 2.3 (Verifiability) There are two flavors of verifiability for IB-KEM. The public
verifiability means that anyone can do the “consistency check", i.e., for any identity id ∈ I and
any ciphertext c ∈ C, there exists a PPT algorithm PubVerify which can judge if c ∈ Cid. The
private verifiability means that only the private key owner can do the corresponding “consistency
check", i.e., for any identity id ∈ I and any ciphertext c ∈ C, there exists a PPT algorithm
PrivVerify which can judge if c ∈ Cid by taking skid as an additional input.

Chosen-Ciphertext Security. The adaptive-identity chosen-ciphertext security (CCA-security)
for IB-KEM is defined by the following game between an adversary A and a challenger CH.
Setup: CH runs Setup(κ) to generate (mpk,msk). It gives mpk to A and keeps msk to itself.
Phase 1: A can adaptively make the following two types queries:

– Private key queries 〈id〉: CH responds with skid ← KeyGen(msk, id).
– Decapsulation queries 〈id, c〉: CH first extracts skid ← KeyGen(msk, id) and then responds

with Decap(skid, c).

Challenge: Once A decides that Phase 1 is over it submits the target identity id∗ on which it
wishes to be challenged. The only constraint is that id∗ did not appear in any private key query
in Phase 1. CH computes (c∗, k∗0) ← Encap(mpk, id∗), and samples k∗1

R←− K. Finally, CH picks
β

R←− {0, 1}, and sends (c∗, k∗β) as the challenge to A.
Phase 2: A issues more private key queries and decapsulation queries:

– Private key queries 〈id〉: CH responds as in Phase 1. The query 〈id∗〉 is not allowed.
– Decapsulation queries 〈id, c〉: CH responds as in Phase 1. The query 〈id∗, c∗〉 is not allowed.

Guess: Finally, A outputs a guess β′ ∈ {0, 1} and wins if β = β′.

We refer to such an adversary A as an IND-ID-CCA adversary, and define its advantage as
AdvCCA

A (κ) =
∣∣Pr[β = β′]− 1

2

∣∣. The probability is over the random coins used by A and CH.

Definition 2.4 An IB-KEM is said to be IND-ID-CCA secure if for any PPT IND-ID-CCA
adversary A its advantage AdvCCA

A (κ) is negligible in κ.
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The above CCA-security definition is given with respect to “adaptive-identity" attack. The CCA-
security with respect to “selective-identity (sid)" [CHK04] can be defined similarly, except that
A has to declare the target identity id∗ in advance, even before seeing mpk.

Chosen-Plaintext Security. The adaptive-identity chosen-plaintext security (CPA-security)
for IB-KEM is defined as in the CCA-security game, except that the adversary is not allowed
to issue decapsulation queries.

2.3 Target Collision Resistant Hash Function

Let X and Y be finite, non-empty sets, and ` be a non-negative integer. TCR = (TCRk)k∈{0,1}`
is a family of keyed hash functions. For each `-bits key k, TCRk is a hash function from X into
Y . The target collision resistant (TCR) security is captured by defining the tcr-advantage of an
adversary A as:

AdvTCR
A (`) = Pr[TCRk(x) = TCRk(x

∗) ∧ x 6= x∗ : k
R←− {0, 1}`;x∗ R←− X;x← A(k, x∗)]

The above notion of TCR [CS03, KG06] is slightly different from the conventional TCR hash
function (also known as the universal one-way hashing [NY89, BR97]), where in the security
experiment of the latter the target value x∗ is chosen by the adversary (but before seeing the
hash key k). Please refer to [KG06, Section 2.3] for more details about the implementations of
this type of TCR hash functions. To simplify notation we will drop the superscript k and simply
use TCR hereafter.

2.4 Diffie-Hellman Assumption

Let GroupGen(κ) be a PPT algorithm that takes as input a security parameter κ and outputs
(p,G), where p is a κ-bit prime, and G is a group of order p. Let g be a generator of G. Define
the Diffie-Hellman predicate as:

dh(g, g1, g2) := z, where g1 = ga, g2 = gb, a, b ∈ Zp and z = gab

The computational Diffie-Hellman (CDH) assumption with respect to (p,G)← GroupGen(κ) is
that Pr[A(g, g1, g2) = dh(g, g1, g2)] ≤ negl(κ) for any PPT algorithm A, where the probability
is taken over the random choices of g, g1 and g2. Define the DH predicate as:

dhp(g, g1, g2, z) := dh(g, g1, g2)
?
= z

The strong DH assumption with respect to (p,G)← GroupGen(κ) is that the CDH assumption
still holds even A can access to a decision oracle for the predicate dhp(g, g1, ·, ·), which on input
(ĝ2, ẑ), returns dhp(g, g1, ĝ2, ẑ).

2.5 Linear Assumption

Define the linear predicate as:

lin(g, g1, g2, h1, h2) := z, where h1 = ga1 , h2 = gb2, a, b ∈ Zp and z = ga+b

The linear assumption with respect to (p,G) ← GroupGen(κ) is that Pr[A(g, g1, g2, h1, h2) =
lin(g, g1, g2, h1, h2)] ≤ negl(κ) for any PPT algorithm A, where the probability is taken over the
random choices of g, g1, g2, h1 and h2. The gap linear assumption is that the linear assump-
tion still holds even A can access to a decision oracle for the predicate dhp(·, ·, ·, ·), which on
input (ĝ, ĝ1, ĝ2, ẑ), returns dhp(ĝ, ĝ1, ĝ2, ẑ). Particularly, in gap groups [OP01], the gap linear
assumption is equivalent to the standard linear assumption.
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2.6 Bilinear Diffie-Hellman Assumption

Let BLGroupGen(κ) be a PPT algorithm that takes as input a security parameter κ and outputs
(p,G,GT , e), where p is a κ-bit prime, G and GT are two groups of order p, and e is a bilinear
map from G×G to GT . Let g be a generator of G. Define the bilinear Diffie-Hellman predicate:

bdh(g, g1, g2, g3) := z, where g1 = ga, g2 = gb, g3 = gc, a, b, c ∈ Zp, and z = e(g, g)abc

The computational bilinear Diffie-Hellman (CBDH) assumption with respect to (p,G,GT , e)←
BLGroupGen(κ) is that Pr[A(g, g1, g2, g3) = bdh(g, g1, g2, g3)] ≤ negl(κ) for any PPT algorithm
A, where the probability is taken over the random choices of g, g1, g2 and g3.

In the bilinear setting, the Goldreich-Levin theorem [GL89] gives us the following lemma
for Goldreich-Levin hardcore predicate GL : GT × {0, 1}u → {0, 1}, where u is an appropriate
integer that specifies the size of seed space.

Lemma 2.5 If the CBDH assumption holds with respect to (p,G,GT , e) ← BLGroupGen(κ),
then the distributions ∆bdh = (g, g1, g2, g3, s, k) and ∆rand = (g, g1, g2, g3, s, r) are computational
indistinguishable, where g R←− G∗, g1, g2, g3

R←− G, s R←− {0, 1}u, k ← GL(bdh(g, g1, g2, g3), s), and
r

R←− {0, 1}.

The modified computational bilinear Diffie-Hellman (mCBDH) assumption [KV08] is similar
to the CBDH assumption except that an additional point B′ = gb

2 is given to the adversary.
We can prove a similar lemma regarding mCBDH assumption as Lemma 2.5.

3 Identity-Based Extractable Hash Proof System

3.1 Binary Relations for Search Problems

A search problem S = (Sκ)κ≥0 is a collection of distributions. For each κ ∈ N, Sκ is a probability
distribution over problem instance descriptions. Each instance description Γ specifies:

– Finite non-empty sets X, W .
– A family of binary relations R (indexed by pp) defined over X ×W .

We write Γ = (X,W,R) to indicate that the instance Γ specifies X, W , and R as above. S also
provides the following two efficient sampling algorithms:

– SampInst(κ): take as input a security parameter κ, output an instance description Γ according
to the distribution Sκ, public parameter pp, and secret parameter sp. sp is usually the random
coins that used to generate pp.

– SampR(pp; r): take as input pp, output a tuple (x,w) ∈ Rpp.

Different to the requirement in EHPS [Wee10], we do not require that R can be efficiently
verifiable. For binary relations R, we require that with overwhelming probability over pp, for any
x ∈ X, there exists at most one w ∈ W such that (x,w) ∈ Rpp (we say that w is a witness for
x). We say R is one-way if:

– there is an efficiently computable function F from W to {0, 1}l for some positive integer l
such that given pp and x, F(w) is pseudo-random over {0, 1}l where (x,w)← SampR(pp; r).
The probability is taken over the random coins used by SampInst and SampR.

For relations where computing w from x is hard on average, we can instantiate F via the corre-
sponding Goldreich-Levin hardcore predicate GL.

Next, we consider two search problems from the BDH assumption and the linear assumption,
respectively.
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Search Problem from the BDH Assumption. SampInst(κ) runs BLGroupGen(κ) to generate
common public parameter (p,G,GT , e), picks g R←− G, a, b R←− Zp, outputs pp = (g, ga, gb),
sp = (a, b), and an instance Γ = (X,W,R), where X = G, W = GT , and R is defined as:

Rbdh
pp =

{
(x,w) ∈ G×GT : w = e(g, x)ab

}
The associated SampR picks r R←− Zp and outputs (gr, e(ga, gb)r). Lemma 2.5 shows that we can
extract a single hardcore bit from w using Goldreich-Levin hardcore predicate GL(w) for relation
Rbdh
pp .

The modified BDH relation Rmbdh
pp can be defined in an analogous way as the BDH relation.

Search Problem from the Linear Assumption. SampInst(κ) runs GroupGen(κ) to generate
common public parameter (p,G), picks g1

R←− G, a1, a2
R←− Z∗p, outputs pp = (g = ga11 =

ga22 , g1, g2 = g
a1/a2
1 ), sp = (a1, a2), and an instance Γ = (X,W,R), where X = G2, W = G, and

R is defined as:
Rlinear
pp =

{
(x,w) ∈ G2 ×G : w = glogg1 x1+logg2 x2

}
The associated SampR picks r1, r2

R←− Zp and outputs ((gr11 , g
r2
2 ), gr1+r2). We can extract a single

hardcore bit from w using Goldreich-Levin hardcore predicate GL(w) for relation Rlinear
pp .

3.2 Hash Family

To interact with a search problem S, we consider a hash family H = (H,MPK, I,X, Y ),
where MPK, I, X (is defined as in search problem), and Y are finite, non-empty sets, H =
(Hmpk)mpk∈MPK is a collection of functions indexed by MPK, so that for every mpk ∈MPK,
Hmpk is a function from I ×X into Y .

3.3 The Paradigm of Identity-Based Extractable Hash Proof System

An IB-EHPS P for a search problem S contains a tuple of algorithms (Setup, KeyGen, Pub, Ext,
Setup′, KeyGen′, Priv). P can behave in one of two modes, namely the extraction mode and the
hashing mode. Loosely speaking,

– In the extraction mode, there is an algorithm Pub that can evaluate Hmpk(id, x) with the
knowledge of randomness r that used to sample (x,w). Moreover, for a correctly computed
hash value y = Hmpk(id, x), there is an algorithm Ext that can extract the witness w of x by
taking a private key skid for id, x, y as input.

– In the hashing mode, there is an algorithm Priv that can compute Hmpk(id, x) without
knowing the randomness used to sample (x,w).

Looking ahead, we rely on the extraction mode for the normal functionality of the resulting
IB-KEM, and on the hashing mode for the argument of security.

Extraction Mode

– Setup(κ): run SampInst(κ) to generate an instance Γ = (X,W,R), pp, sp, pick a corre-
sponding hash family H = (H,MPK, I,X, Y ); output master public/secret key (mpk,msk).
Generally, we have pp ⊆ mpk.

– KeyGen(msk, id): take as input msk and id ∈ I, output a private key skid for id.
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– Pub(mpk, id, r): take as input mpk, id ∈ I, and randomness r that used to sample (x,w),
output y ∈ Y such that y = Hmpk(id, x). This is the public evaluation algorithm.

– Ext(skid, x, y): take as input a private key skid for id ∈ I, x ∈ X and y ∈ Y , output w ∈ W
such that (x,w) ∈ Rpp if y = Hmpk(id, x).

Hashing Mode

– Setup′(κ): run SampInst(κ) to generate an instance Γ = (X,W,R), pp, sp, pick a correspond-
ing hash family H = (H,MPK, I,X, Y ); output master public/secret key (mpk,msk′) (the
generation of the master key pair can be done without the knowledge of sp). msk′ implicitly
partitions the set I into two disjoint subsets I0 and I1 such that I = I0 ∪ I1 and I0 ∩ I1 = .

– KeyGen′(msk′, id): take as input msk′ and id ∈ I0, output a private key skid for id.
– Priv(msk′, id, x): take as input msk′ and id ∈ I1, output y ∈ Y such that y = Hmpk(id, x).

This is the private evaluation algorithm.

For the hashing mode, we require the following two properties hold:

Indistinguishability. The first outputs (namely mpk) of Setup′(κ) and Setup(κ) are statisti-
cally indistinguishable, and for any mpk ∈MPK and any id ∈ I0, the outputs (namely skid) of
KeyGen′(msk′, id) and KeyGen(msk, id) are statistically indistinguishable. We remark that the
two indistinguishable requirement can be relaxed to computationally indistinguishable assuming
the one-wayness of R.

Well-Partition. For all possiblempk (the first output of Setup′(κ)), for all id1, . . . , idq, id∗ ∈ I
such that idi 6= id∗ for any i, we have:

Pr[id1, . . . , idq ∈ I0 ∧ id∗ ∈ I1] ≥ δ

where I0 and I1 are determined by msk′, and the probability is over msk′ that was generated
along with mpk. We say the hashing mode is well-partition if the above condition holds for
every polynomial q = q(κ) and a (possibly related) noticeable probability δ, i.e., (poly, 1, δ)-well-
partition. We note that this property is somewhat reminiscent to the concept of “programmable
hash functions" [HK08b].

Remark 1. In the case of IB-EHPS, the output of Ext is unspecified when y 6= Hmpk(id, x). In
the hashing mode, msk′ usually contains the trapdoor information for mpk\pp. Since msk′ only
allows one to extract private keys for a subset of I, we may regard it as semi-functional master
secret key.

3.4 All-But-One Identity-Based Extractable Hash Proof System

For our application, it is convenient to work with a richer abstraction, named all-but-one (ABO)
IB-EHPS. ABO IB-EHPS can behave in one of two modes, namely the extraction mode and the
ABO hashing mode. More precisely, it contains a tuple of algorithms (Setup, KeyGen, Pub, Ext,
Setup′, KeyGen′, Priv, Ext′). The meaning of the term “all-but-one" is twofold: 1) Priv(msk′, id, x)
works when x = x∗ and id ∈ I1; 2) Ext′(msk′, id, x, y) works when x 6= x∗.

Extraction Mode

– The algorithms Setup, Pub, and KeyGen related to the extraction mode are identical to that
in IB-EHPS.

– Ext(skid, x, y): take as input a private key skid for id ∈ I, x ∈ X (suppose (x,w) ∈ Rpp)
and y ∈ Y , if y = Hmpk(id, x) output w ∈ W , else output a value from W ∪ ⊥ which is
independent of w.
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ABO Hashing Mode

– Setup′(κ, x∗): similar to Setup′ in IB-EHPS except taking an extra input x∗ ∈ X.
– KeyGen′(msk′, id): same as KeyGen′ in IB-EHPS.
– Priv(msk′, id, x∗): take as input msk′, id ∈ I1, and x∗ ∈ X, output y ∈ Y such that y =

Hmpk(id, x
∗).

– Ext′(msk′, id, x, y): take as inputmsk′, id ∈ I1, x ∈ X\x∗ (suppose (x,w) ∈ Rpp), and y ∈ Y ,
if y = Hmpk(id, x) output w, else output a value from W ∪ ⊥ which is independent of w.

Analogous to the case of EHPS, we require the similar indistinguishable property and the same
well-partition property hold for the ABO hashing mode.

3.5 Relation between IB-EHPS and EHPS

IB-EHPS is the corresponding notion of EHPS in the identity-based setting. Next, we examine
the relation between IB-EHPS and EHPS, and indicate possible refinement and generalization
of EHPS.

– In EHPS the hash function H is indexed by the public key set PK with a single element
x ∈ X as input, while in IB-EHPS the hash function H is indexed by the master public key
set MPK with an element id ∈ I and an element x ∈ X as input. Such definition is in line
with the observation that (mpk,msk) plays the role of (pk, sk) in the transformation from
IBE to PKE.

– IB-EHPS is introduced as a general framework to encompass IB-KEMs. In line of this,
two additional algorithms KeyGen and KeyGen′ are included in IB-EHPS. In particular, the
hashing mode of IB-EHPS is defined in partitioning flavor, that is, the algorithm Setup′

generates (mpk,msk′) and implicitly splits the set I into two disjoint subsets, — 1) I0:
identities for which KeyGen′ can generate private keys; and 2) I1: identities for which Priv
can evaluate the hash value. We note that IB-EHPS inherently relies on the partitioning
strategy. To see this, suppose that there is an identity id that belongs to the intersection of
I0 and I1, then given (pp, x) one can compute the corresponding w such that (x,w) ∈ Rpp by
itself as follows: first computes y = Hmpk(id, x) via Priv(msk′, id, x), then extracts skid ←
KeyGen(msk′, id) and uses it to recover w via Ext(skid, x, y). Obviously, this contradicts the
one-wayness of Rpp.

– In [Wee10], EHPS is defined with respect to relation which can be efficiently verifiable. We
think this requirement is not necessary for the security of the resulting encryption schemes.
In this work, we only require the underlying relation can be efficiently samplable.

– In ABO EHPS, the ABO hashing mode is defined with respect to a tag t∗, which in turn
is the hash value of a value x∗ for some target collision resistant (TCR) hash function. In
our case, we define the ABO hashing mode directly with respect to x∗. We do so out of
two reasons. One is that towards utmost generality for an abstract paradigm, it is more
preferable to minimize the dependence on other primitives, while the other is that the proof
of CCA-secure IB-KEM based on the one-wayness of Rpp would be more clean and simple.
Nevertheless, TCR hash function turns out to be a useful tool when instantiating EHPS/IB-
EHPS from concrete number-theoretic assumptions.

– In IB-EHPS, for algorithm Ext we require that:

y = Hmpk(id, x) =⇒ (x,Ext(skid, x, y)) ∈ Rpp (1)

Combining with the one-wayness of R, such requirement is sufficient to yield CPA-secure IB-
KEM (this requirement ensures the correctness, while the one-wayness implies CPA-security).
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However, in ABO IB-EHPS the same correctness requirement (1) for algorithm Ext is not
sufficient to yield CCA-secure IB-KEM. This is because, to achieve CCA-security we have
to make sure that the decryption oracle does not help the adversary to distinguish w∗ from
random. Particularly, the decryption algorithm must reveal no knowledge of w∗ corresponding
to x∗ when the input ciphertext (x∗, y) is not consistent. In line of this intuition, for the
purpose of CCA-secure IB-KEM, algorithm Ext of ABO IB-EHPS must also satisfy the
following requirement:

y 6= Hmpk(id, x) =⇒ Ext(skid, x, y) is independent of w (2)

Generally, there are two approaches to achieve the above requirement. One is explicit check,
that is equipping algorithm Ext with algorithm Verify, which can explicitly determine if
y = Hmpk(id, x) or not. If not, Ext(skid, x, y) then outputs a value from W ∪ ⊥ which is
independent of w. The other is implicit check, that is designing algorithm Ext smartly using
the “implicit rejection" idea [Kil06, KV08], such that when y 6= Hmpk(id, x), Ext(skid, x, y)
spontaneously outputs a random value from W independent of w without explicit check.
We also note that the requirement for Ext in ABO EHPS [Wee10] is:

y = Hpk(x)⇐⇒ (x,Ext(sk, x, y)) ∈ Rpp (3)

However, this requirement is not sufficient to lead to CCA-security. An counterexample is
that Ext returns f(w) when y 6= Hpk(x), where f is an invertible function and f(w) 6= w holds
overwhelmingly. Clearly, such Ext satisfies the above requirement but can not ensure CCA-
security, since the adversary can easily recover w by issuing an ill-formed decryption query.
In fact, all the ABO EHPS constructions presented in [Wee10] ensure that Ext(sk, x, y) = ⊥
when y 6= Hpk(x), which satisfies the requirement similar to (2) and strictly stronger than (3).

4 Generic Constructions of IB-KEM from IB-EHPS

In this section, we present generic constructions of IB-KEM from (ABO) IB-EHPS. As a warm
up, we start with the transformation from IB-EHPS to adaptive-identity CPA-secure IB-KEM.
Before going into details, we first give an intuitive explanation of the constructions from IB-
EHPS to IB-KEM with respect to the underlying relation. Suppose that the binary relation
of an IB-EHPS is Rpp and (x,w) is a tuple that belongs to Rpp. The overall construction is:
derive a DEM key k from w, then encrypt (or commit to) k (the encryption or commitment is
x, and the witness is w), and generate an identity-based extractable hash proof y = Hmpk(id, x)
(which is also zero-knowledge). The overall ciphertext is of the form (x, y). In decapsulation, the
extractable property allows one can extract w from (x, y) using skid, then recover the DEM key
k. In fact, such an approach was used implicitly in the PKE constructions based on computa-
tional assumptions. Its connection to the Rackoff-Simon paradigm [RS91] was made explicitly
in [Wee10]. Here we make its link to the underlying relation Rpp clear.

On a high level, in the construction of (IB)-KEM from (IB)-EHPS, the hash proof serves
as a part of ciphertext. This approach is dual to that in the construction of (IB)-KEM from
(IB)-HPS, where the hash proof serves as the DEM key. When establishing the security (the in-
distinguishability between the DEM key and a random one), in (IB)-EHPS paradigm we directly
reduce the indistinguishability to the one-wayness of relation R associated with the underlying
search problem (relying on the indistinguishable property or the well-identical property), while
in (IB)-HPS paradigm we first prove that the valid encapsulation is indistinguishable from an
invalid encapsulation (relying on the underlying subset membership problem), then prove the
DEM key corresponding to the invalid encapsulation is indistinguishable from a random one
(relying on the smoothness property).
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It is also worthwhile to note the distinguished feature in the construction from IB-EHPS to
IB-KEM that the witness w (used to derive the DEM key) is uniquely determined by pp and
the random coins used by SampR. This explains why IB-EHPS cannot encompass the IB-KEMs
whose DEM keys are related to identity, such as the variants of Boneh-Franklin IBE [BF03] and
Sakai-Kasahara IBE [SK03].

4.1 Generic Construction of CPA-secure IB-KEM

Starting from an IB-EHPS (Setup, Setup′, Pub, Priv, Ext, KeyGen, KeyGen′) for a search problem
S, we construct an IB-KEM as follows:

– Setup(κ): same as Setup(κ) in IB-EHPS. The identity space is I, the ciphertext space is
X ×W , and the DEM key space is {0, 1}l.

– KeyGen(msk, id): same as KeyGen(msk, id) in IB-EHPS.
– Encap(mpk, id): sample (x,w) ← SampR(r), compute y ← Pub(mpk, id, r), and output a

ciphertext c = (x, y) and a DEM key k ← F(w),
– Decap(skid, c): parse c as (x, y), and output F(Ext(skid, x, y)).

The functionality of the above IB-KEM follows readily from the correctness of the extraction
mode. For the security, we have the following theorem.

Theorem 4.1 If R is one-way, then the above IB-KEM is IND-ID-CPA secure.

Proof. To establish the IND-ID-CPA security based on the one-wayness of R, we proceed via a
sequence of games. Let S be the event that A wins in Game CPA, and Si be the event that A
wins in Game i.

Game CPA. CH plays with A in the following game.
Setup: CH runs Setup(κ) to generate (mpk,msk), and gives mpk to A.
Phase 1 - Private key queries: When A submits a private key query 〈id〉, CH responds with
KeyGen(msk, id).
Challenge: A submits a target identity id∗ on the condition that id∗ has not been asked for
private key in Phase 1. CH computes (c∗, k∗0) ← Encap(mpk, id∗), picks k∗1

R←− {0, 1}l. CH then
picks a random bit β ∈ {0, 1} and returns (c∗, k∗β) to A.
Phase 2 - Private key queries: Same as in Phase 1 except that the query 〈id∗〉 is not allowed.
Guess: A outputs its guess β′ for β and wins if β = β′.

It is easy to see that A’s view in Game CPA is identical to the standard IND-ID-CPA game,
thus we have:

Pr[S] =
1

2
+ AdvCPA

A (κ) (4)

Game 0. CH plays with A in the following game by operating IB-EHPS in the extraction mode.
Setup: CH runs Setup(κ) to generate (mpk,msk) and gives mpk to A.
Phase 1 - Private key queries: When A submits a private key query 〈id〉, CH responds with
KeyGen(msk, id).
Challenge: A submits a target identity id∗ on the condition that id∗ has not been asked for
private key in Phase 1. CH samples (x∗, w∗)← SampR(r∗) and computes y∗ = Hmpk(id

∗, x∗) by
evaluating Pub(mpk, id∗, r∗), sets c∗ = (x∗, y∗), k∗0 ← F(w∗) and k∗1

R←− {0, 1}l. CH then picks a
random bit β ∈ {0, 1} and returns (x∗, y∗, k∗β) to A.
Phase 2 - Private key queries: Same as in Phase 1 except that the private key query 〈id∗〉
is not allowed.
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Guess: A outputs its guess β′ for β and wins if β = β′.

The only difference between Game 0 and Game CPA is that in Game 0 CH samples (x∗, w∗)
at the setup phase while in Game CPA CH implicitly samples (x∗, w∗) at the challenge phase.
Note that the sampling operation is independent of phase 1, A’s view in Game 0 is identical to
Game CPA. Thus we have:

Pr[S0] = Pr[S] (5)

We claim that AdvCPA
A is negligible in κ based on the one-wayness of R. Suppose there exists

an algorithm A who has non-negligible advantage against the CPA-security of the IB-KEM,
then we can construct an adversary B breaking the pseudo-randomness of F with non-negligible
advantage, which is sufficient to prove CPA-security based on the one-wayness of R.

Game 1. B receives a challenge instance (pp, x∗, k∗) of R, where x∗ is picked from the tuple
(x∗, w∗) ∈ Rpp generated by SampR(pp, r∗) and k∗ is either F(w∗) or randomly picked from
{0, 1}l. B is asked to determine k∗ ← F(w∗) or k∗ R←− {0, 1}l. B plays with A in the following
game by operating the underlying IB-EHPS in the hashing mode.
Setup: B generates (mpk,msk′) from pp according to algorithm Setup′(κ). B sends mpk to A.
Phase 1 - Private key queries: When A submits a private key query 〈id〉, if id ∈ I0, B
responds with KeyGen′(msk′, id), else B aborts and outputs a random guess β′ ∈ {0, 1}.
Challenge: A submits a target identity id∗ on the condition that id∗ did not appear in any
private key query in Phase 1, if id∗ /∈ I1, B aborts and outputs a random guess β′ ∈ {0, 1}, else B
computes y∗ = Hmpk(id

∗, x∗) via Priv(msk′, id∗, x∗), sets c∗ = (x∗, y∗), then instead of creating
the challenge by explicitly flipping a random bit β, it sends (c∗, k∗) to A as the challenge.
Phase 2 - Private key queries: Same as in Phase 1 except that the private key query 〈id∗〉
is not allowed.
Guess: A outputs its guess β′ for β and B forwards β′ to its own challenger.

The indistinguishable property and the (poly, 1, δ)-well-partition property of the underlying IB-
EHPS ensures that A’s view in Game 1 is identical to that in Game 0 with probability at least
δ. Therefore, we conclude that B can break the pseudo-randomness of F with advantage:

AdvB =

∣∣∣∣(1− δ) · 1

2
+ δ · Pr[S0]−

1

2

∣∣∣∣ = δ · AdvCPA
A (κ) (6)

Since δ is noticeable, B’s advantage is non-negligible in κ, which contradicts to the one-wayness
of R. This proves the theorem. ut

4.2 Generic Construction of CCA-secure IB-KEM

Starting from an ABO IB-EHPS (Setup, KeyGen, Pub, Ext, Setup′, KeyGen′ Priv, Ext′) for a
search problem S, we can construct an IB-KEM (Setup, KeyGen, Encap, Decap) exactly the
same way as we did in Section 4.1. The functionality of the above IB-KEM follows readily from
the correctness of the extraction mode. For the security, we have the following theorem.

Theorem 4.2 If R is one-way, then the above IB-KEM is IND-ID-CCA secure.

Proof. To establish the IND-ID-CCA security based on the one-wayness of relation R, we proceed
via a sequence of games. Let S be the event that A wins in Game CCA, and Si be the event
that A wins in Game i.

Game CCA. CH plays with A in the following game.
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Setup: CH runs Setup(κ) to generate (mpk,msk) and gives mpk to A.
Phase 1 - Private key queries: When A submits a private key query 〈id〉, CH responds with
skid ← KeyGen(msk, id).
Phase 1 - Decapsulation queries: When A submits a decapsulation query 〈id, c = (x, y)〉,
CH responds with Decap(id, c).
Challenge: When A submits a target identity id∗ that did not appear in any private key query
in Phase 1, CH computes (c∗, k∗0) ← Encap(mpk, id∗) and picks k∗1

R←− {0, 1}l. CH then picks
β

R←− {0, 1} and returns (c∗, k∗β) to A as the challenge.
Phase 2 - Private key queries: Same as in Phase 1 except that the private key query 〈id∗〉
is not allowed.
Phase 2 - Decapsulation queries: Same as in Phase 1 except that the decapsulation query
〈id∗, c∗〉 is not allowed.
Guess: A outputs its guess β′ for β and wins if β′ = β.

It is easy to see that A’s view in Game CCA is identical to the standard IND-ID-CCA game for
IB-KEM. According to the definition, we have:

Pr[S] =
1

2
+ AdvCCA

A (κ) (7)

Game 0. CH plays with A in the following game by operating the underlying ABO IB-EHPS
in the extraction mode.
Setup: CH runs Setup(κ) to generate (mpk,msk) and sends mpk to A.
Phase 1 - Private key queries: When A submits a private key query 〈id〉, CH responds with
skid ← KeyGen(msk, id).
Phase 1 - Decapsulation queries: When A submits a decapsulation query 〈id, c = (x, y)〉,
CH first extracts skid ← KeyGen(msk, id) then responds with Ext(skid, x, y).
Challenge. When A submits a target identity id∗ that did not appear in any private key
query in Phase 1, CH samples (x∗, w∗) ← SampR(r∗), then computes y∗ = Hmpk(id

∗, x∗) via
Pub(mpk, id∗, r∗), sets c∗ = (x∗, y∗), k∗0 ← F(w∗), k∗1

R←− {0, 1}l. CH then picks β R←− {0, 1} and
returns (c∗, k∗β) to A as the challenge.
Phase 2 - Private key queries: Same as in Phase 1 except that the private key query 〈id∗〉
is not allowed.
Phase 2 - Decapsulation queries: Same as in Phase 1 except that the decapsulation query
〈id∗, c∗, 〉 is not allowed.
Guess: A outputs its guess β′ for β and wins if β = β′.

The only difference between Game 0 and Game CCA is that in Game 0 CH samples (x∗, w∗) at
the setup phase while in Game CCA CH implicitly samples (x∗, w∗) at the challenge phase. It
is easy to see that this difference is invisible in A’s view. Thus we have:

Pr[S0] = Pr[S] (8)

We claim that AdvCCA
A is negligible in κ assuming the one-wayness of R. Suppose there exists an

algorithm A whose advantage against the CCA-security of IB-KEM is not negligible in κ, then
we can construct an adversary B breaking the pseudo-randomness of F also with non-negligible
advantage, which is sufficient to prove CCA-security under the one-wayness of R.

Game 1. B receives a challenge instance (pp, x∗, k∗), where x∗ is picked from the tuple (x∗, w∗) ∈
Rpp generated by SampR(r∗) and k∗ is either F(w∗) or randomly picked from {0, 1}l. B is asked
to determine k∗ = F(w∗) or k∗ R←− {0, 1}l. B plays with A in the following game by operating
the underlying ABO IB-EHPS in the ABO hashing mode.
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Setup: B generates (mpk,msk′) from (pp, x∗) according to algorithm Setup′(κ, x∗). B sends
mpk to A.
Phase 1 - Private key queries: When A submits a private key query 〈id〉, if id ∈ I0, B
responds with skid ← KeyGen′(msk′, id), else B aborts and outputs a random guess β′ ∈ {0, 1}.
Phase 1 - Decapsulation queries: When A submits a decapsulation query 〈id, c = (x, y)〉,
B responds as follows: for the query that id ∈ I0, B extracts skid ← KeyGen′(msk′, id) and
responds with Ext′(skid, x, y); for the query that id ∈ I1, if x 6= x∗ then B responds with
Ext′(msk′, id, x, y), else if y 6= Priv(msk′, id, x∗) then B returns a random value from W ∪ ⊥,
otherwise B aborts and outputs a random guess β′ ∈ {0, 1}.
Challenge: When A submits a target identity id∗ that did not appear in any private key
query in Phase 1, if id∗ /∈ I1 then B aborts and outputs a random guess β′ ∈ {0, 1}, else B
computes y∗ = Hmpk(id

∗, x∗) via Priv(msk′, id∗, x∗), sets c∗ = (x∗, y∗), then instead of creating
the challenge by explicitly flipping a random bit β, it sends (c∗, k∗) to A as the challenge.
Phase 2 - Private key queries: Same as in Phase 1 except that the private key query 〈id∗〉
is not allowed.
Phase 2 - Decapsulation queries: Same as in Phase 1 except that the decapsulation query
〈id∗, c∗〉 is not allowed.
Guess: A outputs its guess β′ for β and B forwards β′ to its own challenger.

We note that the response to decapsulation queries in Phase 1 Game 1 is statistically close to
that in Phase 1 Game 0, since x∗ is statistically hidden from the adversary in Phase 1. The
response to decapsulation queries related to id∗ in Phase 2 Game 1 is identical to that in Phase
2 Game 0 according to the definition of algorithm Ext′. Combining these two facts with the
indistinguishable property and the (poly, 1, δ)-well-partition property of the underlying ABO
IB-EHPS, we conclude that A’s view in Game 1 is identical to that in Game 0 with probability
at least δ. Therefore, B can break the pseudo-randomness of F with advantage:

AdvB =

∣∣∣∣(1− δ) · 1

2
+ δ · Pr[S0]−

1

2

∣∣∣∣ = δ ·
∣∣∣∣Pr[S]− 1

2

∣∣∣∣ = δ · AdvCCA
A

Since δ is noticeable, B’s advantage is also non-negligible, which contradicts the one-wayness of
R. This proves the theorem. ut

5 Instantiations of ABO IB-EHPS

We present an ABO IB-EHPS for the bilinear Diffie-Hellman relation from Section 3.1, namely
Rbdh
pp =

{
(x, y) ∈ G×GT : y = e(g, x)ab

}
. Applying the transformation in Section 4.2 to this

ABO IB-EHPS, we obtain an adaptive-identity CCA-secure IB-KEM based on the CBDH as-
sumption (see Fig 1), which can be viewed as a variant of the IB-KEM in [KG06].

5.1 ABO IB-EHPS for the BDH Relation

We first run SampInst(κ) to generate pp = (g, ga, gb), sp = (a, b), and an instance Γ = (X,W,R)
of the BDH relation with respect to (p,G,GT , e)← BLGroupGen(κ), where X = G, W = GT , R
is defined as in Section 3.1. For the choice ofH = (H,MPK, I,X, Y ), letMPK = G5+n for some
integer n, I = {0, 1}n, Y = G2. We write u for a n-length vector (u1, . . . , un) hereafter. We also
need a target collision resistant hash function TCR from G to Zp. Formpk = (g, g′1, g1, g2, u0, u) ∈
MPK, we define:

Hmpk(id, x) = (y1, y2) := ((gt1g
′
1)
r, IHF(id)r)

Here x = gr, t← TCR(x), and IHF(id) = u0
∏n
i=1 u

idi
i (idi denotes the i-th bit of identity id) is

known as Waters-hash.
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Extraction Mode

– Setup(κ): run SampInst(κ) to generate Γ = (X,W,R), pp, sp, choose H = (H,MPK, I,X, Y )

as above; pick g′1, u0
R←− G, u R←− Gn, output mpk = (g, g′1, g1 = ga, g2 = gb, u0, u), msk = a.

– KeyGen(msk, id): pick s R←− Zp, output skid ← (ga2 IHF(id)s, gs).
– Pub(mpk, id, r): compute t← TCR(gr), set y1 = (gt1g

′
1)
r, y2 = IHF(id)r, output y = (y1, y2).

– Ext(skid, x, y): parse skid as (sk1, sk2) and y as (y1, y2), compute t← TCR(x); if e(x, gt1g′1) =
e(g, y1) and e(x, IHF(id)) = e(g, y2) then output e(x, sk1)/e(y2, sk2), else output ⊥.

The correctness of the extraction mode follows from the following facts:

1. y = ((gt1g
′
1)
r, IHF(id)r) = Hmpk(id, x) =⇒ e(x, ga2 IHF(id)s)/e(y2, g

s) = e(g1, g2)
r.

2. y ?
= Hmpk(id, x) is publicly verifiable, Ext(skid, x, y) outputs ⊥ when y 6= Hmpk(id, x).

ABO Hashing Mode

– Setup′(κ, x∗): run SampInst(κ) to generate Γ = (X,W,R), pp, sp, pickH = (H,MPK, I,X, Y )

as above; pick d
R←− Zp, compute t∗ ← TCR(x∗), set g′1 = g−t

∗

1 gd; set m = 2(Qe + Qd),
and choose k

R←− [n + 1]; pick α′
R←− Zm, α

R←− Znm, β′
R←− Zp, β

R←− Znp , set u0 =

gp−km+α′

2 gβ
′ and ui = gαi

2 g
βi for 1 ≤ i ≤ n; output mpk = (g, g′1, g1 = ga, g2 = gb, u0, u),

msk∗ = (t∗, d, α′, α, β′, β). For ease of narration we define two functions, namely K(id) =
(p −mk) + α′ +

∑
idiαi and L(id) = β′ +

∑
idiβi. Hence IHF(id) is essentially of the form

g
K(id)
2 gL(id). The structure ofmpk implicitly splits set I into I0 and I1. For id ∈ I, if K(id) 6= p
it belongs to I0, otherwise it belongs to I1.

– KeyGen′(msk′, id): pick s R←− Zp and output

skid = (sk1, sk2) =

(
g
−L(id)
K(id)

1 IHF(id)s, g
−1

K(id)

1 gs
)

– Priv(msk′, id, x∗): output y = (y1, y2) = ((x∗)d, (x∗)L(id)).
– Ext′(msk′, id, x, y): parse y as (y1, y2), compute t ← TCR(x). If e(x, gt1g′1) = e(g, y1) and
e(x, IHF(id)) = e(g, y2), if t = t∗ output ⊥, otherwise output e((y1/xd)1/(t−t

∗), g2). Else
output ⊥.

The correctness of the ABO hashing mode follows from the following facts:

1. If id ∈ I1 and x = x∗, Priv(msk′, id, x∗) = ((x∗)d, (x∗)K(id)) = ((gd)r
∗
, (gK(id))r

∗
) =

((gt
∗
1 g
′
1)
r∗ , F (id)r

∗
) = Hmpk(id, x

∗).
2. If y = ((gt1g

′
1)
r, IHF(id)r) = Hmpk(id, x) where t ← TCR(x), then ensured by the property

of TCR, Ext′ outputs ⊥ if x = x∗ and outputs the correct w otherwise with overwhelming
probability.

3. Same to the case of the extraction mode, y ?
= Hmpk(id, x) is publicly verifiable, Ext(skid, x, y)

outputs ⊥ when y 6= Hmpk(id, x).

The indistinguishable property is related to the following facts:

1. The distribution of mpk in both modes are statistically indistinguishable.
2. For any mpk and any id ∈ I0, the output of KeyGen(msk, id) and KeyGen′(msk′, id) are

statistically indistinguishable. To see this, let s̃ = s− a/K(id), we have:

sk1 = g
−L(id)
K(id)

1 IHF(id)s = g
−L(id)
K(id)

1 (g
K(id)
2 gL(id))s

= ga2(g
K(id)
2 gL(id))

− a
K(id) (g

K(id)
2 gL(id))s = ga2 IHF(id)

s− a
K(id) = ga2 IHF(id)s̃

sk2 = g
−1

K(id)

1 gs = g
s− a

K(id) = gs̃
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Since s is uniform in Zp, then s̃ is also uniform in Zp. Thus the distribution of KeyGen(msk, id)
and KeyGen′(msk′, id) are statistically indistinguishable.

The well-partition property follows from the result that the Waters-hash is (q, 1, 1/8(n + 1)q)-
programmable [Wat05, KG06, HK08b].

Applying the transformation in Section 4.2 to this ABO IB-EHPS, we obtain an IB-KEM
(see Figure 1), which can be viewed as a variant of the IB-KEM [KG06] based on the DBDH
assumption. Combining Theorem 4.2, we conclude that this IB-KEM is IND-ID-CCA secure
based on the CBDH assumption.

Setup(κ): Extract(msk, id)

g, g′1, g2, u0
R←− G, u R←− Gn; a R←− Zp s

R←− Zp

IHF(id) = u0

∏n
i=1 u

idi
i sk = (ga2 IHF(id)

s, gs)
mpk = (g, g1 = ga, g′1, g2, u0, u); msk = a output sk
output (mpk,msk)

Encap(mpk, id) Decap(skid, c)

r
R←− Zp, x← gr parse skid as (sk1, sk2), c as (x, y1, y2)

t← TCR(x) t← TCR(x)
y1 = (gt1g

′
1)

r If e(x, gt1g′1) 6= e(g, y1) or
y2 = IHF(id)r e(x, IHF(id)) 6= e(g, y2), then output ⊥
output c = (x, y1, y2) and k ← GL(e(g1, g2)

r) else output GL(e(x, sk1)/e(y2, sk2))

Fig. 1. An IND-ID-CCA secure IB-KEM based on BDH (variant of [KG06])

5.2 ABO IB-EHPS for the mBDH Relation

Based on the modified bilinear Diffie-Hellman relation Rmbdh
pp , we can create an ABO IB-EHPS

whose Ext and Ext′ algorithms implement the “implicit rejection" idea. We omit the concrete
construction here due to its similarity to the above ABO-EHPS based on the CBDH assumption.
Applying the transformation from Section 4.2 to this ABO IB-EHPS, we obtain a CCA-secure IB-
KEM based on the mBDH assumption (see Figure 2), which is a variant of the IB-KEM [KV08]
based on the decisional mBDH assumption.

Setup(κ): Extract(msk, id)

g, g2, u0
R←− G, u R←− Gn; a R←− Zp s

R←− Zp

IHF(id) = u0

∏n
i=1 u

idi
i sk = (ga2 IHF(id)

s, g−s, gs2)
mpk = (g, g1 = ga, g2, u0, u); msk = a output sk
output (mpk,msk)

Encap(mpk, id) Decap(skid, c)

r
R←− Zp, x← gr, t← TCR(x) parse skid as (sk1, sk2, sk3), c as (x, y)

y = (IHF(id)gt2)
r t← TCR(x)

output c = (x, y) and k ← GL(e(g1, g2)
r) output GL(e(x, sk1 · skt3) · e(y, sk2))

Fig. 2. An IND-ID-CCA secure IB-KEM based on mBDH (variant of [KV08])
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6 Selective Identity-Based Extractable Hash Proof System

In this section, we introduce the notion of selective IB-EHPS, which is a direct but useful
extension of IB-EHPS. On a high level, selective IB-EHPS departs from IB-EHPS in that in the
hashing mode the set I is partitioned in an explicit way (specially, I1 shrink to a single point
id∗), and correspondingly the well-identical property is defined with respect to selective-identity
security games for IB-KEM.

6.1 Selective IB-EHPS

Same as IB-EHPS, a selective IB-EHPS consists of a tuple of algorithms (Setup, KeyGen, Pub,
Ext, Setup′, KeyGen′, Priv). It can also behave in one of two modes, namely the extraction mode
and the selective hashing mode. The extraction mode of selective IB-EHPS is identical to that
of IB-EHPS. The selective hashing mode is defined as below:

– Setup′(κ, id∗): similar to Setup′(κ) in IB-EHPS except taking an extra input id∗ ∈ I. Here,
the set I is partitioned explicitly, that I0 = I\id∗ and I1 = id∗.

– KeyGen′(msk′, id): take as input msk′ and id ∈ I\id∗, output a private key skid for id.
– Priv(msk′, id∗, x): take msk′, id∗, and x ∈ X as input, output y ∈ Y such that y =

Hmpk(id
∗, x).

For the hashing mode, we require the following property holds:

Indistinguishability. For any id∗ ∈ I, the first outputs (namely mpk) of Setup′(κ, id∗) and
Setup(κ) are statistically indistinguishable, and for any mpk ∈MPK, any id 6= id∗, the output
(namely skid) of KeyGen′(msk′, id) and KeyGen(msk, id) are statistically indistinguishable.

Starting from a selective IB-EHPS for a one-way relation R, we can derive an IND-sID-CPA
secure IB-KEM exactly the same way as we did in Section 4.1. The security proof is similar to
that for theorem 4.1. We omit it here to avoid repetition.

6.2 Selective ABO IB-EHPS

Same as ABO IB-EHPS, a selective ABO IB-EHPS consists of a tuple of algorithms (Setup,
KeyGen, Pub, Ext, Setup′, KeyGen′, Priv, Ext′). It can behave in one of two modes, namely the
extraction mode and the hashing mode. The extraction mode of selective ABO IB-EHPS is
identical to that of ABO IB-EHPS. The selective ABO hashing mode is defined as below:

– Setup′(κ, id∗, x∗): similar to Setup′(κ, x∗) in ABO IB-EHPS except taking an extra input
id∗ ∈ I.

– KeyGen′(msk′, id): take as input msk′ and id ∈ I\id∗, output a private key skid for id.
– Priv(msk′, id∗, x∗): takemsk′, id∗, and x∗ as input, output y ∈ Y such that y = Hmpk(id

∗, x∗).
– Ext′(msk′, id, x, y): take msk′, id∗, x ∈ X\x∗ (suppose (x,w) ∈ Rpp), and y ∈ Y as input, if
y = Hmpk(id, x) output w, else output a value from W ∪ ⊥ which is independent of w.

For the hashing mode, we require the similar indistinguishable property holds.
Starting from a selective ABO IB-EHPS (Setup, KeyGen, Pub, Ext, Setup′, KeyGen′, Priv,

Ext′) for a one-way relation R, we can derive an IND-sID-CCA secure IB-KEM (Setup, KeyGen,
Encap, Decap) exactly the same way as we did in Section 4.1. The security proof is similar to
that of theorem 4.2. We omit it here to avoid repetition.
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6.3 Selective ABO IB-EHPS for the BDH Relation

The BDH relation is defined as in Section 3.1. For the choice of H = (H,MPK, I,X, Y ), let
MPK = G5, I = Zp, Y = G2. For mpk = (g, g1, g

′
1, g2, h) ∈MPK, we define Hmpk as

Hmpk(id, x) = (y1, y2) = ((gt1g
′
1)
r, IHF(id)r)

Here x = gr, t← TCR(x), IHF(id) = gid1 h is known as Boneh-Boyen hash [BB04a].

Extraction Mode

– Setup(κ): run SampInst(κ) to generate Γ = (X,W,R), pp, sp, choose H = (H,MPK, I,X, Y )

as above; pick g′1, h
R←− G, output mpk = (g, g1 = ga, g′1, g2 = gb, h), msk = a.

– Pub(mpk, id, r): compute t← TCR(gr), output ((gt1g
′
1)
r, IHF(id)r).

– KeyGen(msk, id): pick s R←− Zp, output skid = (ga2F (id)s, gs).
– Ext(sk, x, y): parse sk as (sk1, sk2) and y as (y1, y2), compute t ← TCR(x), if e(x, gt1g′1) =
e(g, y1) and e(x, IHF(id)) = e(g, y2), return e(x, sk1)/e(y2, sk2), else return ⊥.

The correctness of the extraction mode follows from the following facts:

1. y = ((gt1g
′
1)
r, IHF(id)r) = Hmpk(id, x) =⇒ e(x, ga2 IHF(id)s)/e(y2, g

s) = e(g1, g2)
r.

2. y ?
= Hmpk(id, x) is publicly verifiable, Ext(skid, x, y) outputs ⊥ when y 6= Hmpk(id, x).

Selective ABO Hashing Mode

– Setup′(κ, id∗, x∗): run SampInst(κ) to generate Γ = (X,W,R), pp, sp, and choose H =

(H,MPK, I,X, Y ) as above; pick d, z R←− Zp, compute t∗ ← TCR(x∗) and set g′1 = g−t
∗

1 gd,
h = g−id

∗

1 gz; outputmpk = (g, g′1, g1 = ga, g2 = gb, h),msk′ = (t∗, d, z). The identity hashing
function IHF(id) is essentially of the form gid−id

∗

1 gz. Particularly, IHF(id∗) = gz.

– KeyGen′(msk′, id): pick s R←− Zp, output skid =

(
g
−z

id−id∗
2 (gid−id

∗

1 gz)s, gsg
−1

id−id∗
2

)
.

– Priv(msk∗, id∗, x∗): output ((x∗)d, (x∗)z).
– Ext′(msk′, id∗, x, y): compute t ← TCR(x). If e(x, gt1g′1) = e(g, y1) and e(x, IHF(id)) =
e(g, y2), if t = t∗ output ⊥, otherwise output e((y1/xd)1/(t−t

∗), g2). Else output ⊥.

The correctness of the selective ABO hashing mode follows from the following facts:

1. Hmpk(id
∗, x∗) = ((gt1g

′
1)
r∗ , IHF(id∗)r

∗
) = ((gd)r

∗
, (gz)r

∗
) = ((x∗)d, (x∗)z) = Priv(msk∗, id∗, x∗).

2. If y = ((gt1g
′
1)
r, IHF(id)r) = Hmpk(id, x) where t ← TCR(x), then ensured by the property

of TCR, Ext′ outputs ⊥ if x = x∗ and outputs the correct w otherwise with overwhelming
probability.

3. Same to the case of the extraction mode, y ?
= Hmpk(id, x) is publicly verifiable, Ext(skid, x, y)

outputs ⊥ when y 6= Hmpk(id, x).

The indistinguishable property is established from the following two facts:

– For any id∗ ∈ I and any x∗ ∈ X, the distribution of mpk in both modes are statistical
indistinguishable.

– For any mpk and any id 6= id∗, the output of KeyGen(msk, id) and KeyGen∗(msk∗, id) are
statistically indistinguishable. To see this, let s̃ = s− b/(id− id∗), we have:

sk1 = g
−z

id−id∗
2 (gid−id

∗

1 gz)s = ga2(gid−id
∗

1 gz)s−
b

id−id∗ = ga2 IHF(id)s̃

sk2 = gsg
−1

id−id∗
2 = gs̃

Since s is uniform in Zp, then s̃ is also uniform in Zp. Thus the output of KeyGen(msk, id)
and KeyGen′(msk′, id) are statistically indistinguishable.
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Applying the transformation from Section 4.1 to the above selective ABO IB-EHPS, we
obtain an IND-sID-CCA secure IB-KEM based on the CBDH assumption, the IB-KEM due to
Haralambiev et al.[HJKS10] and Galindo [Gal10] can be simplified to the IB-KEM in [CCZ11,
Section 3] (as we will show in Section A.4), thus our selective ABO IB-EHPS based on the BDH
relation can explain the IB-KEMs in [HJKS10, Gal10] as well.

7 Selective Tag-Based Extractable Hash Proof System

Tag-based PKE (TBE) is similar to PKE except its encryption and decryption performs with
respect to a tag. Kiltz [Kil06] shows the close relationship among TBE, PKE, and IBE. In
this section, we introduce the paradigm of selective tag-based extractable hash proof system
(TB-EHPS).

A selective TB-EHPS for a search problem S associating a hash family H = (H, PK, T,X, Y )
via of a tuple of algorithms (Setup, Pub, Ext, Setup′, Priv, Ext′). Compared to EHPS, the hash
function associated with TB-EHPS takes an additional t ∈ T as input. Selective TB-EHPS can
behave in one of two modes, namely the extraction mode and the selective hashing mode.

Extraction Mode

– Setup(κ): run SampInst(κ) to generate an instance Γ = (X,W,R), pp, sp, pick a correspond-
ing hash family H = (H, PK, T,X, Y ); output public/secret key (pk, sk). Generally, we have
pp ⊆ pk.

– Pub(pk, t, r): take as input pk, t ∈ T , and randomness r that used to sample (x,w), output
y ∈ Y such that y = Hpk(t, x). This is the public evaluation algorithm.

– Ext(sk, t, x, y): take as input private key sk, t ∈ T , x ∈ X (suppose (x,w) ∈ Rpp), and y ∈ Y ,
if y = Hpk(t, x) output w such that (x,w) ∈ Rpp, else output a value from W ∪ ⊥ which is
independent of w.

Selective Hashing Mode

– Setup′(κ, t∗): run SampInst(κ) to generate an instance Γ = (X,W,R), pp, sp, pick a corre-
sponding hash family H = (H, PK, T,X, Y ); output public/secret key (pk, sk′) (the genera-
tion of the key pair can be done without the knowledge of sp).

– Priv(sk′, t∗, x): take as input sk′, t∗ and x ∈ X, output y ∈ Y such that y = Hpk(t
∗, x). This

is the private evaluation algorithm.
– Ext′(sk′, t, x, y): take as input sk′, t ∈ T\t∗, x ∈ X (suppose (x,w) ∈ Rpp), and y ∈ Y , if
y = Hpk(t, x) output w, else output a value from W ∪ ⊥ which is independent of w.

For the hashing mode, we require the following property holds:

Indistinguishability. For any t∗ ∈ T , the first outputs (namely pk) of Setup′(κ, t∗) and
Setup(κ) are statistically indistinguishable.

The construction of tag-based KEM from selective TB-EHPS is straightforward. For the
security, we conclude that the resulting tag-based KEM is selective weakly CCA-secure based
on the one-wayness of Rpp, or equivalently, the hardness of the corresponding search problem.
We omit the proof here due to its simplicity.

In line with the generic construction of TBE from IBE [Kil06], selective TB-EHPS is implied
by selective IB-EHPS (viewing I as T and constructing Ext′ with the help of KeyGen′). On the
other hand, EHPS can be viewed as a special case of selective-tag TB-EHPS by setting T = .
We investigate the relation between selective TB-EHPS and other related notions in Figure 3.
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EPHS selective TB-EHPS selective IB-EHPS IB-EHPS

CPA-secure PKE stag wCCA-secure TBE sid CPA-secure IBE CPA-secure IBE

Fig. 3. Relation between EHPS, selective TB-EHPS, selective IB-EHPS, IB-EHPS, and the
encryption schemes yielded from them. In the above picture, stag wCCA-secure denotes selective-
tag weakly CCA-secure, and sid CPA-secure denotes selective-identity CPA-secure. Solid arrows
indicate direct implications. The bold lines denote our results (either been formally presented
or obviously hold), while the thick lines denote those from previous work [Kil06, Wee10].

7.1 Selective TB-EHPS for the Linear Assumption

The linear relation is defined as in Section 3.1. For the choice of H = (H, PK, T,X, Y ), let
PK = G5, T = Zp, X = G2, Y = G2. For pk = (g, g1, g2, u1, u2), we define:

Hpk(t, x) = (y1, y2) := (gtr1ur11 , g
tr2ur22 )

where x = (x1, x2) = (gr11 , g
r2
2 ).

Extraction Mode

– Setup(κ): run SampInst(κ) to generate Γ = (X,W,R), pp = (g = ga11 = ga22 , g1, g2 =

g
a1/a2
1 ), sp = (a1, a2), choose H = (H, PK, T,X, Y ) as above; pick b1, b2

R←− Zp, output
pk = (g, g1, g2, u1 = gb11 , u2 = gb22 ), sk = (a1, a2, b1, b2).

– Pub(pk, t, r): parse r as (r1, r2), output y = (gtr1ur11 , g
tr2ur22 ).

– Ext(sk, t, x, y): parse sk as (a1, a2, b1, b2), x as (x1, x2), y as (y1, y2), pick s1, s2
R←− Zp, output

(x
a1+s1(ta1+b1)
1 x

a2+s2(ta2+b2)
2 )/(ys11 y

s2
2 ).

Selective Hashing Mode

– Setup′(κ, t∗): run SampInst(κ) to generate Γ = (X,W,R), pp, sp, chooseH = (H, PK, T,X, Y )

as above; pick c1, c2, t∗
R←− Zp, set u1 = g−t

∗
gc11 , u2 = g−t

∗
gc22 , output pk = (g, g1, g2, u1, u2),

sk′ = (c1, c2, t
∗).

– Priv(sk′, t∗, x): output y = (xc11 , x
c2
2 ).

– Ext′(sk′, t, x, y): parse sk′ as (c1, c2), x as (x1, x2), y as (y1, y2); if dhp(g1, g
tu1, x1, y1) = 1 and

dhp(g2, g
tu2, x2, y2) = 1, output ((y1y2)/(x

c1
1 x

c2
2 ))1/(t−t

∗) otherwise; else output a random
value from G.

The correctness of the above selective TB-EHPS is easy to be verified. The well-partition property
follows readily from the correctness as well as the fact that the first outputs of Setup and Setup′

are indistinguishable.
From the above selective TB-EHPS, we can obtain a selective-tag weakly CCA-secure tag-

based KEM based on the linear assumption in gap groups, which is a variant of the TBE [Kil06]
based on the decisional linear assumption in gap groups.
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8 Discussions

8.1 Relation between IB-EHPS and IB-HPS

Boneh et al. [BGH07], Alwen et al. [ADN+10], and Chen et al. [CZLC12] generalized the notion
of HPS due to Cramer and Shoup [CS02] into the identity-based setting by defining identity-
based hash proof system (IB-HPS). IB-HPS turns out to be a useful primitive to construct
leakage-resilient IBE schemes.

Very recently, Hazay et al. [HLAWW12] shows an elegant construction of smooth HPS from
any CPA-secure PKE. This result essentially indicates the relation between HPS and EHPS,
that is, EHPS implies HPS. In the identity-based setting, the same relation also exists, i.e.,
IB-EHPS implies IB-HPS.

8.2 Extensions and More Instantiations of IB-EHPS

Inspired by [Wee11], IB-EHPS can be further generalized to threshold setting easily. Its appli-
cations may include threshold identity-based encryption, identity-based broadcast encryption,
and identity-based encryption with non-interactive opening, etc.

Although EHPS can be constructed from various assumptions and provide us a unifying
framework to explain many CCA-secure KEMs from search problems, IB-EHPS is currently only
known to be based on BDH-style assumptions. However, we think this contrast is understandable
from the following discussion.

– Why not factoring or RSA?
In general, constructing an IBE scheme is harder than constructing a PKE scheme. Although
CCA-secure PKE schemes from factoring have been proposed recently, constructing IBE
schemes based on factoring assumption or RSA-type assumption in the standard model is
still a longstanding problem. As soon as we obtain an IB-EHPS based on such kind of
assumptions, the open problem will be immediately solved.

– Why not lattice?
Lattices have recently emerged as a powerful mathematical platform on which to build a rich
variety of cryptographic primitives. It is compelling to know if we can instantiate IB-EHPS
from relations related to lattices. As we already mentioned in Section 4, IB-EHPS inherently
relies on the Rackoff-Simon paradigm. However, all the known encryption schemes based on
lattice [GPV08, ABB10, CHKP10] are falling out of the this paradigm. Instead, they fall
into the paradigm of HPS or IB-HPS [CZLC13]. This explains why it turns out to be hard
to instantiate IB-EHPS based on lattice. As soon as we are able to construct an IB-EHPS
from assumptions related to lattice, we will find a new approach to use lattice to construct
encryption schemes. We left this as an open problem.
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A The Known Selective-Identity CCA-secure IB-KEM Constructions

In this section, we recall all the three existing IB-KEMs [HJKS10, Gal10, CCZ11] that were
proven to be CCA-secure based on computational assumptions without random oracles. To get
a clear understanding of their essence, we describe the one-bit version of these IB-KEMs. [CCZ11]
has already shows that all the one-bit IB-KEMs [HJKS10, Gal10, CCZ11] can extend to n-bit
IB-KEM via several different approaches.
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A.1 Haralambiev et al.’s IB-KEM

Haralambiev et al [HJKS10] mentioned that one of their PKE schemes can extends to a BB1-
style IB-KEM which is selective-identity CCA-secure based on the CBDH assumption. However,
the concrete construction is not given. For completeness, we provide the construction according
to our understanding.

Setup(κ): run BLGroupGen(κ) to generate (p,G,GT , e), pick a, b
R←− Zp, h, g′1

R←− G, set mpk =
(g, g1 = ga, g′1, g2 = gb, h) while msk = (a, b). Choose a TCR hash function TCR : G → Z∗p, set
the identity space I = Zp, define the identity hashing function IHF : Zp → G as IHF(id) = gid1 h.

KeyGen(msk, id): pick s R←− Zp and output skid = (gabIHF(id)s, gs).

Encap(mpk, id): pick r R←− Zp, compute t← TCR(x), set x = gr, y1 = (gt1g
′
1)
r, and y2 = IHF(id)r;

output a ciphertext c = (x, y1, y2) and a DEM key k ← GL(e(g1, g2)
r).

Decap(skid, c): parse skid as (sk1, sk2) and c as (x, y1, y2), compute t← TCR(x); if e(x, gt1g′1) =
e(g, y1) ∧ e(x, IHF(id)) = e(g, y2) output k ← GL(e(x, sk1)/e(y2, sk2)), else output ⊥.

A.2 Galindo’s IB-KEM

Galindo [Gal10] proposed a selective-identity CCA-secure IB-KEM by extending the PKE scheme [HK08a].
For a clear comparison to other schemes, we use symmetric pairing in place of asymmetric pairing
in the original scheme.

Setup(κ): run BLGroupGen(κ) to generate (p,G,GT , e), pick a0, a1, a2, a3
R←− Z∗p and define the

polynomial f(t) = a0 + a1t + a2t
2 + a3t

3, pick b R←− Zp, pick h
R←− G, mpk = (g, g0 = ga0 , g1 =

ga1 , g2 = ga2 , g3 = ga3 , ḡ0 = gb, h), msk = (a0, a1, a2, a3, b). Choose a TCR hash function
TCR : G × {0, 1} → Z∗p, set the identity space I = Zp, define the identity hashing function
IHF : Zp → G as IHF(id) = gid0 h.

KeyGen(msk, id): pick s R←− Zp, output skid = (ga0bIHF(id)s, gs).

Encap(mpk, id): pick r
R←− Zp, compute t0 ← TCR(x, 0), and t1 ← TCR(x, 1), set x = gr,

y0 = grf(t0), y1 = grf(t1), and y2 = IHF(id)r, output a ciphertext c = (x, y0, y1, y2) and a DEM
key k ← GL(e(g0, ḡ0)

r).
Decap(skid, c): parse skid as (sk1, sk2) and c as (x, y0, y1, y2), compute t0 ← TCR(x, 0) and
t1 ← TCR(x, 1). If e(x, gf(t0)) 6= e(g, y0) or e(x, gf(t1)) 6= e(g, y1) or e(x, IHF(id)) 6= e(g, y2) then
output ⊥. Otherwise parse skid as (sk1, sk2) and output k ← GL(e(x, sk1)/e(y2, sk2)).

A.3 Chen et al.’s IB-KEM

Chen et al. [CCZ11] proposed a one-bit IB-KEM which is similar to that of [HJKS10]. We
re-write is as follows.

Setup(κ): run BLGroupGen(κ) to generate (p,G,GT , e), pick a
R←− Zp, h, g′1, g2

R←− G, set mpk =
(g, g1 = ga, g′1, g2, h), msk = a. Choose a TCR hash function TCR : G → Z∗p, set the identity
space I = Zp, define the identity hashing function IHF : Zp → G as IHF(id) = gid1 h.

KeyGen(msk, id): pick s R←− Zp, output sk = (ga2 IHF(id)s, gs).
Encap(mpk, id): same as the IB-KEM presented in Section A.1.
Decap(sk, c): same as the IB-KEM presented in Section A.1.
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A.4 A Unified Interpretation

As we claimed in Section 6.3, the selective ABO IB-EHPS from the CBDH assumption can
encompass all the known selective-identity CCA-secure IBE schemes [HJKS10, Gal10, CCZ11]
based on the CBDH assumption. Next we explain the reason by identifying the connections
among these schemes. Galindo’s IB-KEM scheme may be viewed as a natural extension of the
PKE scheme [HK08a] combining with the Boneh-Boyen hash [BB04a]. Judging from the appear-
ance, it differs much from the constructions of [HJKS10] and [CCZ11]. However, in Section B we
show that the KEM scheme [HK08a] can be greatly simplified by relying on a slightly stronger
assumption or applying the twinning framework. The intuition of simplification is providing the
simulator a strategy to check the consistency of the ciphertext. Particularly, the KEM [HK08a]
will become publicly verifiable when it builds upon groups with pairing. In line of this obser-
vation, Galindo’s IB-KEM scheme [Gal10] can be significantly simplified without changing the
underlying assumption. The resulting scheme is exactly the IB-KEM scheme implicitly men-
tioned in [HJKS10] and detailed in Section A.1. Moreover, Haralambiev et al.’s scheme does not
have to include element b in msk. Hence the IB-KEM constructions of [HJKS10] and [Gal10]
can be finally simplified to the IB-KEM proposed by Chen et al. [CCZ11].

B Observations on HK2008

Hanaoka and Kurosawa [HK08a] proposed a novel CCA-secure KEM based on the CDH assump-
tion. We will refer to it as HK-KEM. Compared to related works [CKS08, CHK10, HJKS10,
Wee10], HK-KEM adopts a different approach to resist chosen-ciphertext attack, that is, achiev-
ing CCA-security from Broadcast Encryption (BE) with verifiability. Based on the CDH as-
sumption, HK-PKE is not publicly verifiable. In the security reduction, the simulator checks the
consistency of the ciphertext by comparing the “session key" computed from different combi-
nations of ciphertext components. Note that if the simulator can check the consistency of the
ciphertext without doing redundant computation, then HK-KEM can be significantly simpli-
fied. Generally there are two approaches can achieve this goal. One approach is resorting to
a slightly stronger assumption such as strong Diffie-Hellman (SDH) assumption [ABR01]. The
other approach is applying the twin Diffie-Hellman framework [CKS08].

Next we show a simplification of HK-KEM [HK08a] via the first approach.
Gen(κ): pick a0, a1

R←− Z∗p and define a degree one polynomial f(t) = a0 + a1t, set pk = (g, g0 =
ga0 , g1 = ga1) and sk = (a0, a1). Choose a TCR function TCR : G→ Zp.
Encap(id): pick r R←− Zp, compute t ← TCR(gr), set c0 = gr and c1 = grf(t) (note that gf(t) =
ga0+a1t = g0g

t
1, thus one can easily compute c1 from g0, g1), output a ciphertext c = (c0, c1) and

a corresponding DEM key k ← GL(gr0) .
Decap(sk, c): parse sk as (sk1, sk2) and c as (c0, c1), check if c1 = c

f(t)
0 for t ← TCR(c0) (note

that f(t) is computable with sk = (a0, a1)). If so output k ← GL(ca00 ), else output ⊥.

Theorem 2.1 The above scheme is IND-CCA secure if the SDH assumption holds in G and
TCR is a target collision resistant hash function.

Proof. In the following, let c∗ = (c∗0, c
∗
1) denote the challenge ciphertext, k∗ denote the corre-

sponding DEM key encapsulated in c∗, and let t∗ = TCR(c∗0). To establish IND-CCA security,
we proceed via a sequence of games. We start with Game 0 where the challenger proceeds like
the standard IND-CCA game and end up with a game where k∗ R←− {0, 1}. Let S be the event
that A wins Game CCA, and Si be the event that A wins Game i.
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Game CCA. This is the standard IND-CCA game for KEM. By definition we have:

Pr[S] =
1

2
+ AdvCCA

A (κ) (9)

Game 0. Let E0 be the event that the adversary issues a decapsulation query 〈c0, c1〉 with
c0 = c∗0 in Phase 1. Note that the probability that the adversary submits such a decapsulation
query before seeing the challenge ciphertext is bounded by Qd/p, where Qd is the number of
decapsulation queries issued by A. Since Qd = poly(κ), we have Pr[E01] ≤ Qd/p ≤ negl(κ). We
define Game 0 exactly the same as Game CCA except assuming that E0 never occurs in Game
0. It follows that:

|Pr[S0]− Pr[S]| ≤ negl(κ) (10)

Game 1. Let E1 be the event that the adversary issues a decapsulation query 〈c0, c1〉 with c0 6= c∗0
but TCR(c0) = TCR(c∗0). By the target collision resistance of TCR, we have Pr[E12] ≤ negl(κ).
We define Game 1 exactly the same as Game 0 except assuming that E1 never occurs in Game
1. It follows that:

|Pr[S1]− Pr[S0]| ≤ negl(κ) (11)

We claim that:
|Pr[S1]− 1/2| ≤ negl(κ) (12)

assuming the SDH assumption holds. We prove this statement as follows. Suppose there exists
an algorithm A such that |Pr[S1] − 1/2| = poly(κ), then we can construct an algorithm B
distinguishing GL(dh(ga, gb)) from a random bit with access to sdh(ga, ·, ·) with non-negligible
advantage, which is sufficient to prove the security based on the SDH assumption. B receives a
challenge instance (g, ga, gb, L) of SDH assumption, where L is either GL(dh(ga, gb)) or a random
bit. B plays Game 1 with A as follows:
Setup: B picks a TCR function TCR and computes t∗ ← TCR(gb); sets g0 = ga, and picks
z∗

R←− Zp. Let f(t) = a0 + a1t be a polynomial over Zp such that f(0) = a and f(t∗) = z∗. Here
it is straightforward that a0 = a, a1 = (z∗− a)/t∗. Note that both a0 and a1 are unknown to B.
B computes g1 = ga1 = (gz

∗
/g0)

1/t∗ . Finally, B sends to A the public key pk = (g, g0, g1). It is
easy to see that pk has the identical distribution as the real one.
Phase 1 - Decapsulation Queries: When A issues a decapsulation query 〈c0, c1〉, B first
computes t ← TCR(c0). Suppose that c1 = cz0 for some integer z and f ′(t) = a′0 + a′1t is a one-
degree polynomial such that f ′(t) = z and f ′(t∗) = z∗. From two distinct points (t, f ′(t) = z)
and (t∗, f ′(t∗) = z∗) we can write a′0 as

a′0 =
tf ′(t∗)− t∗f ′(t)

t− t∗

Thus B can compute cf
′(0)

0 as (c
tf ′(t∗)−t∗f ′(t)
0 )

1
t−t∗ = (ctz

∗
0 /ct

∗
1 )

1
t−t∗ . B tests the consistency of

ciphertexts by querying dhp(g0, c0, c
f ′(0)
0 ), which returns 1 if and only if cf

′(0)
0 = dh(g0, c0). (The

equation holds implies f ′(0) = f(0) and thus f ′ is identical to f , thereby the ciphertext is valid.)
If this test is passed, B returns GL(c

f(0)
0 ). Otherwise, B returns ⊥.

Challenge: B creates c∗ = (c∗0, c
∗
1), where c∗0 = gb, c∗1 = (c∗0)

z∗ . It is easy to see that c∗ is a valid
ciphertext. B returns c∗ combined with L as the challenge.
Phase 2 - Decapsulation Queries: When A issues a decapsulation query c = 〈c0, c1〉, B
responds as follows:

– If c0 = c∗0, then B responds with ⊥. In this case, c is either illegal (equal to c∗) or invalid
because c0 uniquely determines c1 (i.e., c1 6= c∗1).
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– If c0 6= c∗0, B responds as it did in Phase 1.

Guess: A outputs its guess β′ for β, B forwards β′ to its own challenger.
According to the definition of Game 1, B’s simulation is perfect. Therefore if A’s advantage is
non-negligible, B has non-negligible advantage against the SDH assumption. This proves the
statement. The desired security immediately follows. ut

Surprisingly, the above simplification bears a close resemblance to the KEM [Kil07, Remark
4.2] and the “toy" KEM [HJKS10] from the SDH assumption. All the three KEMs use the same
trick in security reduction, that is, hiding a degree one polynomial f(t) = a0 + a1t in the second
element c1 of the ciphertext (equal to gf(t)). The only difference is that in our simplification the
exponent a is embedded in the first coefficient a0 while in [Kil07] and [HJKS10] the exponent
a is embedded in the second coefficient a1. As mentioned before, we can also avoid the need of
resorting to a stronger assumption by adapting the twin Diffie-Hellman framework. The resulting
scheme is exactly the one-bit version KEM presented in [HJKS10, Section 3] and [Wee10, Section
5.2].
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