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Abstract

In the setting of secure two-party computation, two parties wish to securely compute a
joint function of their private inputs, while revealing only the output. One of the primary
techniques for achieving efficient secure two-party computation is that of Yao’s garbled circuits
(FOCS 1986). In the semi-honest model, where just one garbled circuit is constructed and
evaluated, Yao’s protocol has proven itself to be very efficient. However, a malicious adversary
who constructs the garbled circuit may construct a garbling of a different circuit computing
a different function, and this cannot be detected (due to the garbling). In order to solve this
problem, many circuits are sent and some of them are opened to check that they are correct
while the others are evaluated. This methodology, called cut-and-choose, introduces significant
overhead, both in computation and in communication, and is mainly due to the number of
circuits that must be used in order to prevent cheating.

In this paper, we present a cut-and-choose protocol for secure computation based on garbled
circuits, with security in the presence of malicious adversaries, that vastly improves on all
previous protocols of this type. Concretely, for a cheating probability of at most 2−40, the best
previous works send between 125 and 128 circuits. In contrast, in our protocol 40 circuits alone
suffice (with some additional overhead). Asymptotically, we achieve a cheating probability of
2−s where s is the number of garbled circuits, in contrast to the previous best of 2−0.32s. We
achieve this by introducing a new cut-and-choose methodology with the property that in order
to cheat, all of the evaluated circuits must be incorrect, and not just the majority as in previous
works. The security of our protocol relies on the Decisional Diffie-Hellman assumption.
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1 Introduction

Background. Protocols for secure two-party computation enable a pair of parties P1 and P2 with
private inputs x and y, respectively, to compute a function f of their inputs while preserving a
number of security properties. The most central of these properties are privacy (meaning that the
parties learn the output f(x, y) but nothing else), correctness (meaning that the output received is
indeed f(x, y) and not something else), and independence of inputs (meaning that neither party can
choose its input as a function of the other party’s input). The standard way of formalizing these
security properties is to compare the output of a real protocol execution to an “ideal execution”
in which the parties send their inputs to an incorruptible trusted party who computes the output
for the parties. Informally speaking, a protocol is then secure if no real adversary attacking the
real protocol can do more harm than an ideal adversary (or simulator) who interacts in the ideal
model [13, 11, 27, 2, 4, 12]. An important parameter when considering this problem relates to the
power of the adversary. Three important models are the semi-honest model (where the adversary
follows the protocol specification exactly but tries to learn more than it should by inspecting the
protocol transcript), the malicious model (where the adversary can follow any arbitrary polynomial-
time strategy), and the covert model (where the adversary may behave maliciously but is guaranteed
to be caught with probability ε if it does [1]).

Efficient secure computation and Yao’s garbled circuits. The problem of efficient secure
computation has recently gained much interest. There are now a wide variety of protocols, achieving
great efficiency in a variety of settings. These include protocols that require exponentiations for
every gate in the circuit [31, 19] (these can be reasonable for small circuits but not large ones
with tens or hundreds of thousands of gates), protocols that use the “cut and choose” technique
on garbled circuits [23, 25, 32, 28], and more [30, 17, 18, 6, 21, 3, 29, 7]. The recent protocols
of [29, 7] have very fast online running time. However, for the case of Boolean circuits and when
counting the entire running time (and not just the online time), the method of cut-and-choose on
garbled circuits is still the most efficient way of achieving security in the presence of covert and
malicious adversaries.

Protocols for cut-and-choose on garbled circuits [23, 25, 32, 28] all work in the following way.
Party P1 constructs a large number of garbled circuits and sends them to party P2. Party P2 then
chooses a subset of the circuits which are opened and checked. If all of these circuits are correct,
then the remaining circuits are evaluated as in Yao’s protocol [33], and P2 takes the majority
output value as the output. The cut-and-choose approach forces P1 to garble the correct circuit,
since otherwise it will be caught cheating. However, it is important to note that even if all of the
opened circuits are correct, it is not guaranteed that all of the unopened circuits are correct. This
is due to the fact that if there are only a small number of incorrect circuits, then with reasonable
probability these may not be chosen to be opened. For this reason, it is critical that P2 outputs the
majority output, since the probability that a majority of unopened circuits are incorrect when all
opened circuits are correct is exponentially small in the number of circuits. We stress that it is not
possible for P2 to abort in case it receives different outputs in different circuits, even though in such
a case it knows that P1 cheated, because this opens the door to the following attack. A malicious
P1 can construct a single incorrect circuit that computes the following function: if the first bit of
P2’s input equals 0 then output random garbage; else compute the correct function. Now, if this
circuit is not opened (which happens with probability 1/2) and if the first bit of P2’s input equals 0,
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then P2 will receive a different output in this circuit and in the others. In contrast, if the first bit
of P2’s input equals 1 then it always receives the same output in all circuits. Thus, if the protocol
instructs P2 to abort if it receives different outputs, then P1 will learn the first bit of P2’s input
(based on whether or not P2 aborts). By having P2 take the majority value as output, P1 can only
cheat if the majority of the unopened circuits are incorrect, while all the opened ones are correct.
In [25] it was shown that when s circuits are sent and half of them are opened, the probability that
P1 can cheat is at most 2−0.311s. Thus, concretely, in order to obtain an error probability of 2−40,
it is necessary to set s = 128 and so use 128 circuits, which means that the approximate cost of
achieving security in the presence of malicious adversaries is 128 times the cost of achieving security
in the presence of semi-honest adversaries. In [32], it was shown that by opening and checking 60%
of the circuits instead of 50%, then the error becomes 2−0.32s which means that it suffices to send
125 circuits in order to obtain a concrete error of 2−40. When the circuits are large, this means a
little less bandwidth. However, as we describe in Appendix C, this also results in more work and
so is not necessarily better and may depend on the exact system setup. In [32] it was shown that
checking 60% of the circuits is optimal for the cut-and-choose method as used until that time (i.e.,
checking a percentage of the circuits and taking the majority result from the rest). In this paper,
we present an alternative cut-and-choose method that achieves far better parameters.

Our results. In this paper, we present a novel twist on the cut-and-choose strategy used in [23,
25, 32, 28] that enables us to achieve an error of just 2−s with s circuits (and some small additional
overhead). Concretely, this means that just 40 circuits are needed for error 2−40. Our protocol is
therefore much more efficient than previous protocols (there is some small additional overhead but
this is greatly outweighed by the savings in the garbled circuits themselves unless the circuit being
computed is small). We stress that the bottleneck in protocols of this type is the computation
and communication of the s garbled circuits. This has been demonstrated in implementations.
In [10], the cost of the circuit communication and computation for secure AES computation is
approximately 80% of the work. Likewise in [20, Table 7] regarding secure AES computation, the
bandwidth due to the circuits was 83% of all bandwidth and the time was over 50% of the time.
On large circuits, as in the edit distance, this is even more significant with the circuit generation
and evaluation taking 99.999% of the time [20, Table 9]. Thus, the reduction of this portion of the
computation to a third of the cost is of great significance.

We present a high-level outline of our new technique in Section 2. For now, we remark that the
cut-and-choose technique on Yao’s garbled circuits introduces a number of challenges. For example,
since the parties evaluate numerous circuits, it is necessary to enforce that the parties use the same
input in all circuit computations. In addition, a selective input attack whereby P1 provides correct
garbled inputs only for a subset of the possible inputs of P2 must be prevented (since otherwise
P2 will abort if its input is not in the subset because it cannot compute any circuit in this case,
and thus P1 will learn something about P2’s input based on whether or not it aborts). There are
a number of different solutions to these problems that have been presented in [23, 25, 32, 28, 10].
The full protocol that we present here is based on the protocol of [25]. However, these solutions
are rather “modular” (although this is meant in an informal sense), and can also be applied to our
new technique; this is discussed at the end of Section 2. Understanding which technique is best
will require implementation since they introduce tradeoffs that are not easily comparable. We leave
this for future work, and focus on the main point of this work which is that it is possible to achieve
error 2−s with just s circuits. In Section 3.1 we present an exact efficiency count of our protocol,
and compare it to [25].
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Covert adversaries. Although not always explicitly proven, the known protocols for cut-and-
choose on garbled circuits achieve covert security where the deterrent probability ε that the adver-
sary is caught cheating equals 1 minus the statistical error of the protocol. That is, the protocol
of [25] yields covert security of ε = 1 − 2−0.311s (actually, a little better), and the protocol of [32]
yields covert security with ε = 1 − 2−0.32s. Our protocol achieves covert security with deterrent
ε = 1 − 2−s+1 (i.e., the error is 2−s+1) which is far more efficient than all previous work. Specif-
ically, in order to obtain ε = 0.99, the number of circuits needed in [25] is 24. In contrast, with
our protocol, it suffices to use 8 circuits. Furthermore, with just 11 circuits, we achieve ε = 0.999,
which is a very good deterrent. We note that s circuits do not suffice for obtaining ε = 1 − 2−s

deterrent, since the case that no circuits are computed (i.e., all are chosen to be checked) needs to
be taken into account for small s.

Concurrent work. In independent, concurrent work, Huang et al. [15] presented a different
method for reducing the number of garbled circuits. In their protocol, both parties generate s
circuits and send them to each other. Thus, the overall number of circuits sent in their protocol is
double that of ours. However, in a single-execution setting, the latency is likely to be similar.

2 The New Technique and Protocol Outline

The idea behind our new cut-and-choose strategy is to design a protocol with the property that
the party who constructs the circuits (P1) can cheat if and only if all of the opened circuits are
correct and all of the evaluated circuits are incorrect. Recall that in previous protocols, if the
circuit evaluator (P2) aborts if the evaluated circuits don’t all give the same output, then this can
reveal information about P2’s input to P1. This results in an absurd situation: P2 knows that P1

is cheating but cannot do anything about it. In our protocol, we run an additional small secure
computation after the cut-and-choose phase so that if P2 catches P1 cheating (namely, if P2 receives
inconsistent outputs) then in the second secure computation it learns P1’s full input x. This enables
P2 to locally compute the correct output f(x, y) once again. Thus, it is no longer necessary for P2

to take the majority output. Details follow.

Phase 1 – first cut-and-choose:

• Parties P1 (with input x) and P2 (with input y) essentially run a protocol based on cut-
and-choose of garbled circuits, that is secure for malicious adversaries (like [25] or [32]). P1

constructs just s circuits (for error 2−s) and the strategy for choosing check or evaluation
circuits is such that each circuit is independently chosen as a check or evaluation circuit with
probability 1/2 (unlike all previous protocols where a fixed number of circuits are checked).

• If all of the circuits successfully evaluated by P2 give the same output z, then P2 locally
stores z. Otherwise, P2 stores a “proof” that it received two inconsistent output values in
two different circuits. Such a proof could be having a garbled value associated with 0 on an
output wire in one circuit, and a garbled value associated with 1 on the same output wire in a
different circuit. (This is a proof since if P2 obtains a single consistent output then the garbled
values it receives on an output wire in different circuits are all associated with the same bit.)

Phase 2 – secure evaluation of cheating: P1 and P2 run a protocol that is secure for malicious
adversaries with error 2−s (e.g., they use the protocol of [25, 32] with approximately 3s circuits),
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in order to compute the following:

• P1 inputs the same input x as in the computation of phase 1 (and proves this).

• P2 inputs random values if it received a single output z in phase 1, and inputs the proof of
inconsistent output values otherwise.

• If P2’s input is a valid proof of inconsistent output values, then P2 receives P1’s input x;
otherwise, it receives nothing.

If this secure computation terminates with abort, then the parties abort.

Output determination: If P2 received a single output z in phase 1 then it outputs z and halts.
Otherwise, if it received inconsistent outputs then it received x in phase 2. P2 locally computes
z = f(x, y) and outputs it. We stress that P2 does not provide any indication as to whether z was
received from phase 1 or locally computed.

Security. The argument for the security of the protocol is as follows. Consider first the case that
P1 is corrupted and so may not construct the garbled circuits correctly. If all of the check circuits
are correct and all of the evaluation circuits are incorrect, then P2 may receive the same incorrect
output in phase 1 and will therefore output it. However, this can only happen if each incorrect
circuit is an evaluation circuit and each correct circuit is a check circuit. Since each circuit is an
evaluation or check circuit with probability exactly 1/2 this happens with probability exactly 2−s.
Next, if all of the evaluation circuits (that yield valid output) are correct, then the correct output
will be obtained by P2. This leaves the case that there are two different evaluation circuits that
give two different outputs. However, in such a case, P2 will obtain the required “proof of cheating”
and so will learn x in the 2nd phase, thereby enabling it to still output the correct value. Since P1

cannot determine which case yielded output for P2, this can be easily simulated.
Next consider the case that P2 is corrupted. In this case, the only way that P2 can cheat is if it

can provide output in the second phase that enables it to receive x. However, since P1 constructs
the circuits correctly, P2 will not obtain inconsistent outputs and so will not be able to provide such
a “proof”. (We remark that the number of circuits s sent is used for the case that P1 is corrupted;
for the case that P2 is corrupted a single circuit would actually suffice. Thus, there is no need to
justify the use of fewer circuits than in previous protocols for this corruption case.)

Implementing phase 2. The main challenge in designing the protocol is phase 2. As we have
hinted, we will use the knowledge of two different garbled values for a single output wire as a
“proof” that P2 received inconsistent outputs. However, it is also necessary to make sure that P1

uses the same input in phase 1 and in phase 2; otherwise it could use x or x′, respectively, and then
learn whether P2 received output via phase 1 or 2. The important observation is that all known
protocols already have a mechanism for ensuring that P1 uses the same input in all computed
circuits. This same mechanism can be used for the circuits in phase 1 and 2, since it does not
depend on the circuits being computed being the same.

Another issue that arises is the efficiency of the computation in phase 2. In order to make
the circuit for phase 2 small, it is necessary to construct all of the output wires in all the circuits
of phase 1 so that they have the same garbled values on the output wires. This in turn makes
it necessary to open and check the circuits only after phase 2 (since opening a circuit to check it
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reveals both garbled values on an output wire which means that this knowledge can no longer be a
proof that P1 cheated). Thus, the structure of the actual protocol is more complex than previous
protocols; however, this relates only to its description and not efficiency.

We remark that we use the method of [25] in order to prove the consistency of P1’s input in
the different circuits and between phase 1 and phase 2. However, we believe that the methods used
in [32, 28], for example, would also work, but have not proven this.

3 The Protocol

Preliminaries – modified batch single-choice cut-and-choose OT. The cut-and-choose
OT primitive was introduced in [25]. Intuitively, a cut-and-choose OT is a series of 1-out-of-2
oblivious transfers with the special property that in some of the transfers the receiver obtains a
single value (as in regular oblivious transfer), while in the others the receiver obtains both values.
In the context of cut-and-choose on Yao’s garbled circuits, the functionality is used for the receiver
to obtain all garbled input values in the circuits that it wishes to open and check, and to obtain
only the garbled input values associated with its input on the circuits to be evaluated.

In [25], the functionality defined is such that the receiver obtains both values in exactly half
of the transfers; this is because in [25] exactly half of the circuits are opened. In this work, we
modify the functionality so that the receiver can choose at its own will in which transfers it receives
just one value and in which it receives both. We do this since we want P2 to check each circuit
with probability exactly 1/2, independently of all other circuits. This yields an error of 2−s instead

of
(

s
s/2

)−1
, which is smaller (this is especially significant in the setting of covert adversaries; see

Section 5).
This modification introduces a problem since at a later stage in the protocol the receiver needs

to prove to the sender for which transfers it received both values and for which it received only
one. If it is known that the receiver obtains both values in exactly half of the transfers, or for any
other known number, then the receiver can just send both values in these transfers (assuming that
they are otherwise unknown, as is the case in the Yao circuit use of the functionality), and the
sender knows that the receiver did not obtain both values in all others; this is what is done in [25].
However, here the receiver can obtain both values in an unknown number of transfers, as it desires.
We therefore need to introduce a mechanism enabling the receiver to prove to the sender in which
transfers it did not receive both values, in a way that it cannot cheat. We solve this by having
the sender input s random “check” values, and having the receiver obtain such a value in every
transfer for which it receives a single value only. Thus, at a later time, the receiver can send the
appropriate check values, and this constitutes a proof that it did not receive both values in these
transfers. See Figure 3.1, and Section 6 for the construction and details.
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FIGURE 3.1 (Modified Batch Single-Choice Cut-and-Choose OT Functionality Fccot)

• Inputs:

– S inputs ` vectors of pairs ~xi of length s, for i = 1, . . . , `. (Every vector consists of s
pairs; i.e., ~xi = 〈(xi,10 , xi,11 ), (xi,20 , xi,21 ), . . . , (xi,s0 , xi,s1 )〉. There are ` such vectors.) In
addition, S inputs s “check values” χ1, . . . , χs. All values are in {0, 1}n.

– R inputs σ1, . . . , σ` ∈ {0, 1} and a set of indices J ⊆ [s].

• Output: The sender receives no output. The receiver obtains the following:

– For every i = 1, . . . , ` and for every j ∈ J , the receiver R obtains the jth pair in
vector ~xi. (I.e., for every i = 1, . . . , ` and every j ∈ J , R obtains (xi,j0 , xi,j1 ).)

– For every i = 1, . . . , `, the receiver R obtains the σi value in every pair of the vector
~xi. (I.e., for every i = 1, . . . , `, R obtains 〈xi,1σi , x

i,2
σi , . . . , x

i,s
σi 〉.)

– For every k /∈ J , the receiver R obtains χk.

Encoded translation tables. We modify the output translation tables typically used in Yao’s
garbled circuits as follows. Let k0

i , k
1
i be the garbled values on wire i, which is an output wire, and

let H be a collision-resistant hash function. Then, the encoded output translation table for this
wire is simply

[
H(k0

i ), H(k1
i )
]
. We require that k0

i 6= k1
i and if this doesn’t hold (which will be

evident since then H(k0
i ) = H(k1

i )), P2 will automatically abort.
Observe that given a garbled value k, it is possible to determine whether k is the 0 or 1 key

(or possibly neither) by just computing H(k) and seeing if it equals the first or second value in the
pair, or neither. However, given the encoded translation table, it is not feasible to find the actual
garbled values, since this is equivalent to inverting the one-way function. This is needed in our
protocol, as we will see below. We remark that both k0

i , k
1
i are revealed by the end of the protocol,

and only need to remain secret until Step 7 has concluded (see the protocol below). Thus, they
can be relatively short values (in practice, 80 bits should be well long enough).

We require that H be collision resistant, since otherwise P1 who constructs the circuit is not
bounded by the values there. This can cause an issue since there may now be multiple values that
are consistent with the encoded translation tables, and different values may be used in the actual
garbled circuits constructed in phase 1, and in the circuits used to prevent cheating in phase 2 (this
would cause a situation where P2 will not learn P1’s input x even if it obtained inconsistent output
values in phase 1).
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PROTOCOL 3.2 (Computing f(x, y))

Inputs: P1 has input x ∈ {0, 1}` and P2 has input y ∈ {0, 1}`.
Auxiliary input: a statistical security parameter s, the description of a circuit C such that C(x, y) =
f(x, y), and (G, q, g) where G is a cyclic group with generator g and prime order q, and q is of length n.
In addition, they hold a hash function H that is a suitable randomness extractor; see [8].

Specified output: Party P2 receives f(x, y) and party P1 receives no output (this suffices for the general
case where the parties receive different outputs). Denote the length of the output of f(x, y) by m.

The protocol:

1. Input key choice and circuit preparation:

(a) P1 chooses random values a0
1, a

1
1, . . . , a

0
` , a

1
` ; r1, . . . , rs ∈R Zq and b01, b

1
1, . . . , b

0
m, b

1
m ∈R {0, 1}n.

(b) Let w1, . . . , w` be the input wires corresponding to P1’s input in C, and denote by wi,j the
instance of wire wi in the jth garbled circuit, and by kbi,j the key associated with bit b on
wire wi,j . Then, P1 sets the keys for its input wires to:

k0
i,j = H(ga

0
i ·rj ) and k1

i,j = H(ga
1
i ·rj )

(c) Let w′1, . . . , w
′
m be the output wires in C. Then, the keys for wire w′i in all garbled circuits

are b0i and b1i (we stress that unlike all other wires in the circuit, the same values are used
for the output wires in all circuits).

(d) P1 constructs s independent copies of a garbled circuit of C, denoted GC1, . . . , GCs, using
random keys except for wires w1, . . . , w` (P1’s input wires) and w′1, . . . , w

′
m (the output wires)

for which the keys are as above.

2. Oblivious transfers: P1 and P2 run a modified batch single-choice cut-and-choose oblivious
transfer, with parameters ` (the number of parallel executions) and s (the number of pairs in each
execution):

(a) P1 defines vectors ~z1, . . . , ~z` so that ~zi contains the s pairs of random symmetric keys associ-
ated with P2’s ith input bit yi in all garbled circuits GC1, . . . , GCs. P1 also chooses random
values χ1, . . . , χs ∈R {0, 1}n. P1 inputs these vectors and the χ1, . . . , χs values.

(b) P2 chooses a random subset J ⊂ [s] where every j ∈ J with probability exactly 1/2, under
the constraint that J 6= [s]. P2 inputs the set J and bits σ1, . . . , σ` ∈ {0, 1}, where σi = yi
for every i.

(c) P2 receives all the keys associated with its input wires in all circuits GCj for j ∈ J , and
receives the keys associated with its input y on its input wires in all other circuits.

(d) P2 receives χj for every j /∈ J .

3. Send circuits and commitments: P1 sends P2 the garbled circuits (i.e., the garbled gates). In
addition, P1 sends P2 the “seed” for the randomness extractor H, and the following displayed
values (which constitute a “commitment” to the garbled values associated with P1’s input wires):{

(i, 0, ga
0
i ), (i, 1, ga

1
i )
}`

i=1
and

{
(j, grj )

}s

j=1

In addition, P1 sends P2 the encoded output translation tables, as follows:[(
H(b01), H(b11)

)
, . . . ,

(
H(b0m), H(b1m)

)]
.

If H(b0i ) = H(b1i ) for any 1 ≤ i ≤ m, then P2 aborts.

4. Send cut-and-choose challenge: P2 sends P1 the set J along with the values χj for every
j /∈ J . If the values received by P1 are incorrect, it outputs ⊥ and aborts. Circuits GCj for j ∈ J
are called check-circuits, and for j /∈ J are called evaluation-circuits.

5. P1 sends its garbled input values in the evaluation-circuits: P1 sends the keys associated
with its inputs in the evaluation circuits: For every j /∈ J and every wire i = 1, . . . , `, party P1

sends the value k′i,j = ga
xi
i ·rj ; P2 sets ki,j = H(k′i,j).
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PROTOCOL 3.2 – continued

6. Circuit evaluation: P2 uses the keys associated with P1’s input obtained in Step 5 and the keys
associated with its own input obtained in Step 2c to evaluate the circuits GCj for every j /∈ J .

If P2 receives only one valid output value per output wire (i.e., one of b0i , b
1
i , verified against the

encoded output translation tables) and it does not abort in the next step, then this will be its
output. If P2 receives two valid outputs on one output wire (i.e., both b0i and b1i for output wire
w′i) then it uses these in the next step. If there exists an output wire for which P2 did not receive
a valid value in any evaluation circuit (neither b0i nor b1i ), then P2 will abort in Step 8b below (and
in the next step will use garbage input).

7. Run secure computation to detect cheating:

(a) P1 defines a circuit with the values b01, b
1
1, . . . , b

0
m, b

1
m hardcoded. The circuit computes the

following function:

i. P1’s input is a string x ∈ {0, 1}`, and it has no output.

ii. P2’s input is a pair of values b0, b1.

iii. If there exists a value i (1 ≤ i ≤ m) such that b0 = b0i and b1 = b1i , then P2’s output is
x; otherwise it receives no output.

(b) P1 and P2 run the secure computation protocol (Protocol 4.1) of [25] on the circuit defined
in the previous step, with some differences, as follows:

i. P1 inputs its input x; if P2 received b0i , b
i
1 for some 1 ≤ i ≤ m, then it inputs the pair

b0i , b
1
i ; otherwise it inputs garbage.

ii. P1 and P2 use the statistical security parameter s′ = 3s (in order to obtain a maximum
cheating probability of 2−s).

iii. The values a0
1, a

1
1, . . . , a

0
` , a

1
` chosen by P1 in Step 1a of Protocol 4.1 in [25] (for defining

the garbled values on the wires associated with P1’s input) are the same a0
1, a

1
1, . . . , a

0
` , a

1
`

as chosen in Step 1a above in this protocol. (We stress that all other values are chosen
randomly and independently.)

iv. In Step 6 of Protocol 4.1 in [25], P2 checks that the opened circuits are correctly
constructed. Note that the values b01, b

1
1, . . . , b

0
m, b

1
m are hardcoded in the definition

of the circuit in Step 7a. P2 adds an additional check that the hardcoded values
b01, b

1
1, . . . , b

0
m, b

1
m are consistent with the values sent in Step 3 above. Specifically, P2

computes H(b0i ), H(bii) for every i and compares the result with the values in the encoded
translation tables.

v. P1 and P2 do not run the proof of consistency of P1’s input values (Step 7b of Protocol
4.1 in [25]); this is carried out in Step 9 below.

If this computation results in an abort, then both parties halt at this point and output ⊥.

8. Check circuits for computing f(x, y):

(a) Send all input garbled values in check-circuits: For every check-circuit GCj , party P1

sends the value rj to P2, and P2 checks that these are consistent with the pairs {(j, grj )}j∈J
received in Step 3. If not, P2 aborts outputting ⊥.

(b) Correctness of check circuits: For every j ∈ J , P2 uses the ga
0
i , ga

1
i values it received in

Step 3, and the rj values it received in Step 8a, to compute the values k0
i,j = H(ga

0
i ·rj ), k1

i,j =

H(ga
1
i ·rj ) associated with P1’s input in GCj . In addition it sets the garbled values associated

with its own input in GCj to be as obtained in the cut-and-choose OT. Given all the garbled
values for all input wires in GCj , party P2 decrypts the circuit and verifies that it is a garbled
version of C, using the encoded translation tables for the output values. If there exists a
circuit for which this does not hold, then P2 aborts and outputs ⊥. In addition, if there
exists an output wire for which P2 did not receive a valid value in any evaluation circuit in
Step 6, then P2 aborts and outputs ⊥.
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PROTOCOL 3.2 – continued

9. Verify consistency of P1’s input: Let Ĵ be the set of check circuits in the execution of
Protocol 4.1 of [25] run in Step 7, and let r̂1, . . . , r̂3s be the values chosen in Step 1a of Protocol 4.1
of [25] (analogous to the values r1, . . . , rs chosen in Step 1a in this protocol above).For 1 ≤ i ≤ `

and 1 ≤ ĵ ≤ 3s, let k̂i,ĵ = g
a
xi
i ·r̂ĵ be the value used for deriving the key associated with the ith bit

of P1’s input in the ĵth circuit in the protocol execution of Step 7 (analogous to the value k′i,j in
Step 5 above).

For every input wire i = 1, . . . , `, party P1 proves (using a zero-knowledge proof of knowledge)

that there exists a σi ∈ {0, 1} such that for every j /∈ J and every ĵ /∈ Ĵ , k′i,j = ga
σi
i ·rj AND

k̂i,ĵ = g
a
σi
i ·r̂ĵ . Concretely P1 proves that:(
∀j /∈ J : (g, ga

0
i , grj , k′i,j) ∈ DH and ∀ĵ /∈ Ĵ : (g, ga

0
i , g

r̂
ĵ , k̂i,ĵ) ∈ DH

)
OR

(
∀j /∈ J : (g, ga

1
i , grj , k′i,j) ∈ DH and ∀ĵ /∈ Ĵ : (g, ga

1
i , g

r̂
ĵ , k̂i,ĵ) ∈ DH

)
where DH is the language of all Diffie-Hellman tuples.1

If any of the proofs fail, then P2 aborts and outputs ⊥.

10. Output evaluation: If P2 received no inconsistent outputs from the evaluation circuits GCi

(i /∈ J ), then it decodes the outputs it received using the encoded translation tables, and outputs
the string received. If P2 received inconsistent output, then let x be the output that P2 received
from the second computation in Step 7. Then, P2 computes f(x, y) and outputs it.

The circuit for step 7. A naive circuit for computing the function in Step 7 can be quite large.
Specifically, to compare two n bit strings requires 2n XORs followed by 2n ORs; if the output is 0
then the strings are equal. This has to be repeated m times, once for every i, and then the results
have to be ORed. The result of all of the ORs is then ORed with x. Thus, there are 2mn+m+ 1
non-XOR gates. Assuming n is of size 80 (e.g., which suffices for the output values) and m is of
size 128, this requires 20, 481 non-XOR gates, which is very large. An alternative is therefore to
compute the following garbled circuit:

1. For every i = 1, . . . ,m,

(a) Compare b0‖b1 to b0i ‖b1i (where ‘‖’ denotes concatenation) by XORing bit-by-bit and
take the NOT of each bit. This is done as in a regular garbled circuit; by combining the
NOT together with the XOR this has the same cost as a single XOR gate.

(b) Compute the 2n-wise AND of the bits from above. Instead of using 2n − 1 Boolean
AND gates, this can be achieved by encrypting the 1-key on the output wire under all
n keys (together with redundancy so that the circuit evaluator can know if it received
the correct value).

2. Compute the OR of the m bits resulting from the above loop. Instead of using m−1 Boolean
OR gates, this can be achieved by simply setting the 1-key on all of the output wires from the
n-wise ANDs above to be the 1-key on the output wire of the OR. This ensures that as soon
as the 1-key is received from an n-wise AND, the 1-key is received from the OR, as required.
(This reveals for which i the result of the n-wise AND was 1. However, this is fine in this
specific case since P2 knows exactly where equality should be obtained.)

1This can be efficiently proven by combining all the ANDs into two tuples, and then proving that either the first
is a Diffie-Hellman tuple, or the second is a Diffie-Hellman tuple. A description of how such batching can be carried
out is described in [25].
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3. Compute the AND of the output from the previous step with all of the input bits of P1. This
requires ` Boolean AND gates.

4. The output wires include the output of the OR (so that P2 can know if it received x or
nothing), together with the output of all of the ANDs with the input bits of P1.

Observe that although the above circuit is very small, P2’s input size is 2n and this is quite large.
Since the input size has a significant effect on the cost of the protocol (especially when using cut-
and-choose oblivious transfer), it would be desirable to reduce this. This can be achieved by first
having P2 input b0 ⊕ b1 instead of b0‖b1, reducing the input length to n (this is sound since if P2

does not have both keys on any output wire then it cannot know their XOR). Furthermore, in order
to obtain a cheating probability of 2−40 it suffices for the circuit to check only the first 40 bits of
b0⊕ b1. (Note that bi0 and bi1 have to be longer since H(b0i ), H(b1i ) are published; nevertheless, only
40 bits need to be included in the circuit. When using this optimization, the length of bi0, b

i
1 can be

128 bits and not 80, which is preferable.) Finally, by choosing all of the b0i , b
1
i values so that they

have the same fixed XOR (i.e., for some ∆ it holds that for all i, b0i ⊕ b1i = ∆, as in the free XOR
technique), the size of the circuit is further reduced. In this case, an additional check has to be
introduced, which is to check that there exists a single ∆ such that b0i ⊕ b1i = ∆ for all i = 1, . . . ,m
(in the check phase, the output translation tables are already checked, so the additional step here
is to just check that the XOR is all fine). This optimization requires that we assume that the hash
function is correlation robust [16] with such correlated inputs (i.e., these look random); clearly this
holds in the random oracle model. This significantly reduces the bandwidth.

The final optimization. The actual secure computation of the above optimized circuit can be
carried out simply and efficiently, as follows. Let k0, k1 be random garbled values. Then, assuming
∆ is of length s, choose s random values k1

1, . . . , k
s
1 under the constraint that ⊕si=1k

i
1 = k1. Next,

in the cut-and-choose oblivious transfer for P2’s inputs, P1 defines the ith input pair to be (xi0, x
i
1)

where xi∆i
= ki1 and x1−∆i is random (we denote ∆ = ∆1, . . . ,∆s). In addition, to the above, k0

is sent in the clear. Observe that if P2 knows ∆ and inputs ∆1, . . . ,∆s to the oblivious transfer,
then it will receive for output k1

1, . . . , k
s
1 and can compute k1 = ⊕si=1k

i
1. However, if even one bit

input to P2 is not correct, then k1 will be completely hidden. (Observe that this is actually a secure
comparison to see if both P1 and P2 know ∆ [9].) This replaces steps (1) and (2) above, and the
AND with P1’s input bits is carried out with a single wire that has 0-value k0 and 1-value k1. Thus,
if P2 obtained k1 it will be able to learn P1’s input x; otherwise it will learn nothing.2

See Appendix A for graphic depictions of the above circuits and computations.

Cost. In the final optimized computation, the number of garbled gates is just ` binary AND
gates, and the number of oblivious transfers is just s. Assuming ` = 128 (e.g., as in the secure
AES example), we have that there are only 128 non-XOR gates. When using 128 circuits as in our
instantiation of Step 7 via [25], this comes to 16,384 garbled gates overall, which is significant but
not too large. We stress that the size of this circuit is independent of the size of the circuit for the

2Note that P2 must be able to check the correctness of the “garbled circuit”. However, here the first parts of the
circuit are implicit only. However, recall that in the check circuits P2 receives both inputs to each oblivious transfer.
Thus, given ∆ (which is sent in the clear after the cut-and-choose OT terminates), P2 can compute k1 = ⊕s

i=1x
i
∆i

.
It can then use k0 sent in the clear, together with this computed k1 as input to the procedure that checks if the
(standard) garbled circuit with the AND gates is correct.

10



function f to be computed. Thus, this becomes less significant as the circuit becomes larger. On
the other hand, for very small circuits or when the input size is large relative to the overall circuit
size, our approach will not be competitive. To be exact, assume a garbled circuit approach that
requires 3s circuits. If 3s|C| < s|C|+ 3s · ` then our protocol will be slower (since the cost of our
protocol is s|C| for the main computation plus 3s` for the circuit of Step 7, in contrast to 3s|C| for
the other protocol). This implies that our protocol will be faster as long as |C| > 3`

2 . Concretely,
if ` = 128 and s = 40, it follows that our protocol will be faster as long as |C| > 192. Thus, our
protocol is much faster, except for the case of very small circuits.

3.1 A Detailed Efficiency Count and Comparison

In this section we provide an exact efficiency count of our protocol. This will enable an exact
comparison of our protocol to previous and future works, as long as they also provide an exact
efficiency count. We stress that implementations and empirical comparisons are also necessary to
obtain a full picture, due to additional factors like memory, parallelism and so on.

We count exponentiations, symmetric encryptions and bandwidth. We let n denote the length
of a symmetric encryption, and an arbitrary string of length of the security parameter (e.g., χj).
The cost of Step 2 (cut-and-choose oblivious transfer) is taken from the exact count provided in
Section 6.4. The counts below are for the overall number of operations for both parties P1 and P2.

Step
Fixed-base
exponent.

Regular
exponent.

Symmetric
Encryptions

Group
elems sent

Symmetric
comm

1 2s` 0 8s|C|
2 9s` 1.5s` 5s`
3 `+ s 0 2`+ s 4ns|C|
4 s

2 · n
5 nm
6 s

2 · 2|C|
7 9s`+ 5040s 480s 39s` 21s` 12sn`
8 s/2 + s` s

2 · 8|C|
s
2 · n

9 2s`+ 18` 10 2s`n

TOTAL 21s`+ 5040s
3.5s`+ 18`

+480s
13s|C|+

39s` 26s` 4ns|C|+ 14s`n

The number of symmetric encryptions is counted as follows: each circuit requires 8|C| symmetric
encryptions to construct (counting |C| as the number of non-XOR gates when using free XOR), 48|
symmetric encryption to check, and 2|C| encryptions to evaluate (using standard double encryption,
each entry in a garbled gate requires 2 encryptions). Since approximately half of the circuits are
checked and half are evaluated, the garbling, checking and evaluation of the main garbled circuit
accounts for approximately s ·8|C|+ s

2 ·8|C|+
s
2 ·2|C| = 13s|C| symmetric encryptions. The garbled

circuit used in Step 7 has ` non-XOR gates and so the same analysis applies on this size. However,
the number of circuits sent in this step is 3s and thus we obtain an additional 3× 13 · s · ` = 39s`.

The bandwidth count for Step 7 is computed based on the counts provided in [25], using 3s
circuits. The cost of the exponentiations is based on the fact that in [25], if P1 has input of
length `1 and P2 has input of length `2, and s′ circuits are used, then there are 3.5s′`1 + 10.5s′`2
fixed-base exponentiations and s′`2 regular exponentiations. However, 0.5s′`1 of the fixed-base
exponentiations are for the proof of consistency and these are counted in Step 9 instead. Now,
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in Step 7, P1’s input length is ` (it is the same x as for the entire protocol) and P2’s input is
comprised of two garbled values for the output wires. Since these must remain secret for only a
short amount of time, it is possible to take 80-bit values only and so P2’s input length is 160 bits
(this is irrespective of P2’s input length to the function f). Taking s′ = 3s and plugging these
lengths this into the above, we obtain the count appearing in the table.

The proof of consistency of P1’s input is carried out ` times (once for each bit of P1’s input)
and over s + 3s = 4s circuits (since there are s circuits for the main computation of C, plus
another 3s circuits for the computation in Step 7). By the count in [25], this proof therefore costs
4s`
2 + 18` exponentiations, and bandwidth of 10 group elements and another 8s` short strings (this

can therefore be counted as 2s`n.

A comparison to [25]. In order to to get a concrete understanding of the efficiency improvement,
we will compare the cost to [25] for the AES circuit of size 6,800 gates [34], and input and output
sizes of 128. Now, as we have mentioned, the overall cost of the protocol of [25] is 3.5s′`1 + 10.5s`2
fixed-base exponentiations, s′`2 regular exponentiations and 13s′|C| symmetric encryptions. In
this case, `1 = `2 = 128, s′ = 125 (s′ = 125 was shown to suffice for 2−40 security in [20]), and so
we have that the cost is 224,000 fixed-base exponentiations, 32,000 regular exponentiations, and
1625|C| =11,050,000 symmetric encryptions. In contrast, taking ` = 128 and s = 40 we obtain
here 309,120 fixed-base exponentiations, 37, 120 regular exponentiations, and 3,749,600 symmetric
encryptions. In addition, the bandwidth of [25] is approximately 112, 000 group elements and
3,400,000 symmetric ciphertexts. At the minimal cost of 220 bits per group element (e.g., using
point compression) and 128 bits per ciphertext, we have that this would come to approximately
449,640,000 bits, or close to half a gigabyte (in practice, it would be significantly larger due to
communication overheads). In contrast, the bandwidth of our protocol for this circuit would be
133,120 group elements and 1,159,680 ciphertexts. With the same parameters as above, this would
be approximately 177,725,440 bits, which is under 40% of the cost of [25]. This is very significant
since bandwidth is turning out to be the bottleneck in many cases. We stress that in larger circuits
the difference would be even more striking.

Protocol Fixed-base exp. Regular exp. Symmetric encryptions Bandwidth

[25] 224,000 16,000 11,050,000 449,640,000
Here 309,120 37,120 3,749,600 177,725,440

Figure 1: Comparison of protocols for secure computation of AES

4 Proof of Security

We prove security via the standard definition of secure two-party computation following the real/ideal
paradigm, and using modular sequential composition; see [4, 12, 14] for details.

Theorem 4.1 Assume that the Decisional Diffie-Hellman assumption holds in (G, g, q), that H
is a collision-resistant function, and that the garbling of the circuit is secure as in [25]. Then,
Protocol 3.2 securely computes f in the presence of malicious adversaries (with error 2−s + µ(n)
where µ(·) is some negligible function).3

3The error is actually 1
2s−1

since J must be chosen to not equal all of [s]. Thus, there are “only” 2s − 1 possible
cuts. We ignore this minor detail.
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Proof: We prove Theorem 4.1 in a hybrid model where a trusted party is used to compute the
modified batch single-choice cut-and-choose oblivious transfer functionality and the zero-knowledge
proof of knowledge of Step 9 (the fact that any zero-knowledge proof of knowledge fulfills the zero-
knowledge proof of knowledge functionality was shown in [14]). We separately prove the case that
P1 is corrupted and the case that P2 is corrupted.

P1 is corrupted. Intuitively, P1 can only cheat by constructing some of the circuits in an incorrect
way. However, in order for this to work, all of the check circuits must be valid, and all of the
evaluation circuits that give output must give the same output. Otherwise, P2 will abort (if there
is an invalid check circuit) or will obtain x and output the correct value f(x, y) (if two different
outputs are obtained). Now, once P1 sends the circuits, and the cut-and-choose oblivious transfer
has been completed, the question of whether a circuit is valid or not, or can be computed or not,
is fully determined. (It is true that P1 can send incorrect values for its input wires but this will be
detected in the zero knowledge phase and so will cause an abort except with negligible probability.)
Now, if there exists even just one valid circuit that is an evaluation circuit then P2 will always
output the correct value; either because all evaluation circuits that can be computed are valid or
because it will obtain two different outputs and so will learn x in Step 7. Thus, in order to cheat,
every valid circuit must be a check circuit and every invalid circuit must be an evaluation circuit.
Since every circuit is chosen to be a check or evaluation circuit with probability exactly 1/2, it
follows that this probability of cheating is exactly 2−s. We now proceed to the formal proof.

Let A be an adversary controlling P1 in an execution of Protocol 3.2 where a trusted party is
used to compute the modified batch single-choice cut-and-choose OT functionality Fccot and the
zero-knowledge proof of knowledge of Step 9. We construct a simulator S who runs in the ideal
model with a trusted party computing f . S runs A internally and simulates the honest P2 for A as
well as the trusted party computing the oblivious transfer and zero-knowledge proof of knowledge
functionalities. In addition, S interacts externally with the trusted party computing f . S works as
follows:

1. S interacts with A and plays the honest P2 for the entire protocol execution with input y = 0`

(in the Fccot and zero-knowledge hybrid models).

2. Let x = σ1, . . . , σ` be the witness used by P1 in the zero-knowledge proof of knowledge of
Step 9 (i.e., x is the concatenation of the σ1, . . . , σ` values where σi is the appropriate part
of the witness used in the ith proof). S obtains this witness directly from A in the zero-
knowledge proof of knowledge hybrid model (since A hands it to the trusted party computing
the functionality). If the witness is not valid, then P2 would abort and this is dealt with in
the next step.

3. If P2 would abort in the execution, then S sends ⊥ to the ideal functionality computing f .
Otherwise, it sends x.

First, observe that P2 uses its input only in Fccot. Therefore, the view of A in the simulation is
identical to its view in a real execution, and so S’s output distribution in an ideal execution is
identical to A’s output distribution in a real execution of Protocol 3.2. However, in order to prove
security, we need to prove that the joint distribution consisting of A and P2’s output after a real
protocol execution is indistinguishable from the joint distribution of S and P2’s output after an
ideal execution. Now, if P2 were to abort in a real execution, then S sends ⊥ to the trusted party
and thus the joint distributions will be the same. However, the probability that S sends ⊥ to the
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trusted party may not be the same as the probability that P2 aborts in a real execution since this
may actually depend on P2’s input (recall that S uses input 0` and not the same y that P2 uses).
In addition to this difference, we must also show that when P2 does not abort in a real execution
then its output is f(x, y), relative to the same x as sent by S, except with probability that equals
2−s + µ(n), where µ(·) is some negligible function.

We begin by defining the notion of a bad and good circuit. For a garbled circuit GCj we define
the circuit input keys as follows:

1. Circuit input keys associated with P1’s input: Let (i, 0, ga
0
i ), (i, 1, ga

1
i ), (j, grj ) be the values

sent by P1 to P2 in Step 3 of the protocol. Then, the circuit input keys associated with P1’s
input in GCj are the keys H(ga

0
1·rj ), H(ga

1
1·rj ), . . . ,H(ga

0
` ·rj ), H(ga

1
` ·rj ).

2. Circuit input keys associated with P2’s input: Let (z1,j
0 , z1,j

1 ), . . . , (z`,j0 , z`,j1 ) be the set of
symmetric keys associated with the jth circuit that were input by P1 to the cut-and-choose
oblivious transfer of Step 2. (These keys are the jth pair in each vector ~z1, . . . , ~z`.) These
values are called the circuit input keys associated with P2’s input in GCj .

Then, a garbled circuit is bad if the circuit keys associated with both P1’s and P2’s input do not
open it to the correct circuit C. We stress that after Step 3 of the protocol, each circuit is either
“bad” or “not bad”, and this is fully determined. (The simulator cannot know at this point if a
circuit is bad or not, but it is nevertheless fully determined.) This holds because P1 has already
sent the {ga0

i , ga
1
i , grj} values, the garbled circuits and the seed to the randomness extractor in this

step; note that once the seed to the randomness extractor is fixed, the symmetric keys derived from
the Diffie-Hellman values are fully determined. In addition, the keys associated with P2’s input are
already fixed since these are fully determined in Step 2. A garbled circuit is good if it is not bad.

Clearly, if a check-circuit is bad, then P2 aborts. In addition, we claim that if a single evaluation
circuit is good and P2 does not abort, then the distribution over P2’s output is the same in a real
and simulated execution (except with probability 2−s + µ(n)). In order to see this, observe that if
there exists an evaluation circuit that is good, then P2 obtains f(x, y) when evaluating that circuit.
Any bad evaluation circuit that does not give correct output (with respect to the encoded output
tables) is ignored. In addition, if there exists another bad evaluation circuit that yields a different
output to f(x, y), then P2 receives x in the computation in Step 7. This holds because if P2 receives
two different outputs then there exists a wire for which it receives both outputs; equivalently, there
exists an encoded output pair for which P2 receives both preimages. Since the computation in
Step 7 is a secure protocol (as proven in [25]), it follows that P2 either aborts or receives the correct
output x (except with probability 2−s + µ(n)). Note that the change in the computation with
respect to the zero-knowledge proof of consistency of P1’s input is inconsequential with respect to
the proof of security of [25]. Thus the security obtained is except with probability 2−s + µ(n);
the fact that 2−s is achieved is by using 3s circuits (to be exact, one would need to the exact
computation based on the error given in [25] but this is a very close approximation). In this case
where P2 learns x in this step, it also outputs the correct f(x, y). Thus, we conclude that if there
exists a single evaluation circuit that is good and P2 does not abort, then P2 outputs f(x, y). The
last remaining case is the case where there exists an output wire for which P2 did not receive a
valid value in any evaluation circuit. In this case, P2 aborts. However, this case means that all
evaluation circuits are bad. Now, if an additional check circuit is also bad, then P2 aborts due to a
circuit check failing. In contrast, if all of the check circuits are good, then P2 will not abort due to
the check failing but rather only due to it not receiving a valid value on the output wire. This may
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be different from the simulation, since the question of P2 aborting or not in this case may depend
on the input.4

This implies that the simulation can deviate from the real output distribution if and only if
every check circuit is good and every evaluation circuit is bad. Since the association of a circuit
as being bad or good is fixed before J is revealed (and it is information theoretically hidden from
A in the Fccot-hybrid model), it follows that a bad circuit is an evaluation circuit with probability
exactly 1/2 and a good circuit is a check circuit with probability exactly 1/2 (and these probabilities
between circuits are independent). There are s circuits and so the probability that the above holds
is exactly 2−s, as required.

We observe that when P1 is corrupted, A has zero probability of cheating in the oblivious
transfers and zero probability of cheating in the proof of consistency (this holds in the hybrid
models; in the real model there is a negligible probability of cheating). Thus, it can only cheat
if the circuits are in the bad case described above, or in the secure computation of Step 7. This
completes the proof of this corruption case.

We remark that it is implicit in the above analysis that A cannot detect whether P2 outputs
f(x, y) due to all evaluation circuits giving the same output or due to it obtaining x in Step 7. This
is because the simulator does not need to be able to distinguish between these cases, and indeed
this can depend on the real input used by P2. Likewise, A cannot detect whether P2 aborts due
to all evaluation circuits not giving a valid output, or whether it aborts due to the fact that it
detected a bad circuit in the “correctness of check circuits” step.

P2 is corrupted. The intuition behind the security in this corruption case is simple, and is
identical to [25] and other cut-and-choose protocols based on garbled circuits. Specifically, every
circuit is either an evaluation circuit, in which case P2 can only learn the output, or a check circuit
in which case P2 learns nothing. The security here relies on the DDH assumption and the fact
that the garbled values sent by P1 and P2 for the input wires reveal nothing about P1’s input. In
addition, it relies on the fact that P2 cannot learn two different outputs by evaluating the evaluation
circuits, or in general cannot learn two different values on an output wire (which would be a “proof
that P1 cheated” even though it is honest). This is needed since otherwise it could input these
into the secure computation of Step 7 and learn P1’s input x. Nevertheless, this follows directly
from the security of [25] which in the case of a corrupted P2 holds for any number of circuits, from
the security of the computation in Step 7, and from the fact that it is hard to invert the one-way
function H used to compute the encoded output tables.

Formally, the simulator S works as follows:

1. S obtains P2’s input to the oblivious transfers (where A controls P2) and uses this to define
the set J and the input y.

2. S sends y to the trusted party computing f and receives back z = f(x, y).

3. For every j ∈ J , S constructs a proper garbled circuit. For every j /∈ J , S constructs a
garbled circuit with exactly the same structure as the correct one, but that outputs the fixed
string z received from the trusted party, irrespective of the input. As in the protocol, all the
circuits have the same garbled values on the output wires, and they have the same structure
for P1’s inputs.

4Specifically, P1 may construct all of the circuits correctly, but may use one incorrect key – say, the 1-key – for
one of the input wires associated with P2’s input in a subset of the circuits in the oblivious transfer. In this case,
if P2’s associated input is 1 and all of the evaluation circuits are in the subset, then P2 will abort. In contrast, the
simulator uses input y = 0` and so will not abort due to this error.
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4. S continues to run the protocol with A, playing the honest P1 but using the circuits con-
structed in the previous step.

5. At the conclusion of the protocol execution with A, simulator S outputs whatever A outputs
and halts.

This completes the simulation. The formal proof that the simulation is indistinguishable from a
real execution follows from the indistinguishability of “fake” garbled circuits from real ones. The
formal reduction is almost identical to [25] and so is omitted in this abstract. We remark only
that the output distributions between the simulated and real executions is negligible in n, and
independent of s; see [25] for details. This completes the proof.

5 Variants – Universal Composability and Covert Adversaries

Universal composability [5]. As in [25], by instantiating the cut-and-choose oblivious transfer
and the zero-knowledge proofs with variants that are universally composable, the result is that
Protocol 3.2 is universally composable.

Covert adversaries [1] (see Appendix B). Observe that in the case that P2 is corrupted, the
protocol is fully secure irrespective of the value of s used. In contrast, when P1 is corrupted, then
the cheating probability is 2−s + µ(n). However, this cheating probability is independent of the
input used by the P2 (as shown in the proof of Theorem 4.1). Thus, Protocol 3.2 is suitable for the
model of security in the presence of covert adversaries. Intuitively, since the adversary can cheat
with probability only 2−s and otherwise it is caught cheating, the protocol achieves covert security
with deterrent ε = 1 − 2−s. However, on closer inspection, this is incorrect. Specifically, as we
have discussed above, if P2 catches P1 cheating due to the fact that two different circuits yield two
different outputs, then it is not allowed to reveal this fact to P1. Thus, P2 cannot declare that P1

is a cheat in this case, as is required in the model of covert adversaries. However, if P2 detects even
a single bad circuit in the check phase, then it can declare that P1 is cheating, and this happens
with probability at least 1/2 (even if only a single circuit is bad). We can use this to show that for
every s, Protocol 3.2 securely computes f in the presence of covert adversaries with deterrent
ε = 1− 2−s+1. In actuality, we need to make a slight change to Protocol 3.2, as follows:

• In Step 3 of Protocol 3.2 (Send circuits and commitments), P1 also proves that
it knows the discrete log rj in every pair (j, grj ) sent, using a zero-knowledge proof of
knowledge.

• In Step 8b of Protocol 3.2 (Correctness of check circuits), if there exists a circuit
for which the checks do not hold, then P2 outputs corrupted1 and halts (instead of just
aborting and outputting ⊥).

The additional zero-knowledge proof of knowledge enables the simulator S to completely open
all circuits by the end of Step 3 of the protocol (by obtaining all of the values on P2’s input wires via
the oblivious transfers and all of the values on P1’s inputs wires using rj values). We remark also
this zero-knowledge proof of knowledge requires only a small constant number of exponentiations
for every j (note that only a small number of circuits are used here also since this is the setting of
covert adversaries).
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In addition, we stress that the honest P2 only declares the P1 is corrupted (and attempted
cheating) if one of the check circuits is found to be invalid. In particular, P2 does not declare that
P1 is corrupted if all checked circuits are correct, but two different evaluated circuits yield different
outputs. In this latter case, like in the setting of malicious adversaries, P2 obtains P1’s input x and
uses it to locally compute the correct output without revealing to P1 that anything happened.

We now proceed to security. We refer the reader to the definition of security for covert adver-
saries in Appendix B and [1]; we use the strong explicit definition here. The simulator S for the
case that P1 is corrupted works as follows:

1. S works like the simulator in the case of malicious adversaries and determines the set G of
good (or valid) circuits and the set B of bad (or invalid) circuits. It determines this by using
all of P1’s inputs to the oblivious transfers and rj values extracted from the zero-knowledge
proof of knowledge described above. If none of circuits are bad, then S simulates exactly as
in the case of the malicious setting when no circuits are invalid. Otherwise, there is at least
one bad circuit and S proceeds to the next step.

2. With probability 1
2 , the simulator S sends cheat1 to the trusted party.

• If S receives back undetected then it receives the input y of the honest party P2 and can
determine its output as it wishes. Thus, it proceeds in the simulation by choosing the
set of circuits to opened and checked to be exactly the set of good circuits G. Otherwise,
it runs the code of the honest P2 with input y with A, and then sets the output of the
honest P2 in the ideal execution to be whatever the simulated P2 receives (including the
possibility that P2 outputs corrupted1).

• If S receives back corrupted1 then S chooses the set of circuits to be opened and checked
in the simulation of the protocol at random under the constraint that at least one circuit
from B is opened and checked.

3. Else, (i.e., in the case that S does not send cheat1 to the trusted party):

• With probability 1 − 2−|B|+1 + 2−s+1, S chooses the set of circuits to be opened and
checked in the simulation of the protocol at random under the constraint that at least
one circuit from B is opened and checked. In addition, S sends corrupted1 as P1’s input
to the trusted party. (This “strange” probability is explained below.)

• Otherwise, S chooses the set of circuits to be opened and checked in the simulation of
the protocol at random under the constraint that no circuits from B are opened and
checked.

4. Apart from the above S behaves exactly as in the case of simulation of malicious adversaries.

We now analyze the above. In order to understand the probability distribution, observe that if B
circuits are invalid then in a real protocol execution the following occurs:

• With probability 2−s the adversary A succeeds in cheating (this is the case that the set of
evaluated circuits is exactly B).

• With probability 1 − 2−|B| party P2 catches A cheating and outputs corrupted1 (this holds
since P2 catches A cheating unless every circuit in B is not opened, which happens with
probability 2−|B|).
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• Otherwise, with probability 2−|B| − 2−s, party P2 outputs the correct result as if no cheating
took place.

Now, in the simulation, we have the following probabilities:

• With probability 1
2 , S sends cheat1 to the trusted party who returns undetected with proba-

bility 2−s+1. Thus, successful cheating occurs with probability 1
2 · 2

−s+1 = 2−s, exactly as in
a real execution.

• With probability 1− 2−s+1, the trusted party returns corrupted1 after S sends cheat1. Thus,
P2 outputs corrupted1 due to this case with probability 1

2 · (1−2−s+1) = 1
2 −2−s. However, in

addition, P2 outputs corrupted1 with probability 1− 2−|B|+1 + 2−s+1 in the case that S does
not send cheat1. Since this case occurs with probability 1

2 as well, this contributes probability
1
2 · (1− 2−|B|+1 + 2−s+1) = 1

2 − 2−|B|+ 2−s. Summing these together, we have that P2 outputs

corrupted1 in the simulation with probability 1
2 − 2−s + 1

2 − 2−|B| + 2−s = 1 − 2−|B|, exactly
as in a real execution.

• Finally, in all other cases (with probability 2−|B| − 2−s), P2 outputs the correct output as if
no cheating took place, exactly as in a real execution.

As discussed in the introduction, this yields a huge efficiency improvement over previous results,
especially for small values of s. For example, 100 circuits are needed to obtain ε = 0.99 in [1], 24
circuits are needed to obtain ε = 0.99 in [25], and here 8 circuits alone suffice to obtain ε = 0.99.
Observe that when covert security is desired, the number of circuits sent in Step 7 needs to match
the level of covert security. For example, in order to obtain ε = 0.99, 8 circuits are used in our
main protocol and 24 circuits are used in Step 7.

We remark that our protocol would be a little simpler if P2 always asked to open exactly half
the circuits (especially in the cut-and-choose oblivious transfer). In this case, the error would be(

s
s/2

)−1
instead of 2−s. In order to achieve an error of 2−40 this would require 44 circuits which

is a 10% increase in complexity, and reason enough to use our strategy of opening each circuit
independently with probability 1/2. However, when considering covert security, the difference is

huge. For example, with s = 8 we have that
(

8
4

)−1
= 1/70 whereas 2−8 = 1/256. This is a very

big difference.

6 Constructing Modified Cut-and-Choose Oblivious Transfer

6.1 Preliminaries – The RAND Function

Let (G, g, q) be such that G is a group of order q, with generator g. We define the function
RAND(w, x, y, z) = (u, v), where u = (w)t · (y)t

′
and v = (x)t · (z)t′ , and the values t, t′ ← Zq are

random. RAND has the following properties:

Claim 6.1 Let (G, g, q) be as above and let w, x, y, z ∈ G. Furthermore, let (w, x, y, z) be a Diffie-
Hellman tuple, and let a ∈ Zq be such that x = wa and z = ya. Then, for (u, v)← RAND(w, x, y, z)
it holds that ua = v.
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Proof: By the definition of RAND, u = wt · yt′ and v = xt · zt′ . Since x = wa and z = ya we
can write that

v = xt · zt′ = (wa)t · (ya)t′ = (wt · yt′)a = ua,

as required.

Claim 6.2 Let (G, g, q) be as above and let w, x, y, z ∈ G. If (w, x, y, z) is not a Diffie-Hellman
tuple, then the distributions (w, x, y, z, RAND(w, x, y, z)) and (w, x, y, z, gα, gβ), where α, β ← Zq
are random, are equivalent.

Proof: Let a, b ∈ Zq such that x = wa and z = yb and a 6= b (such a pair a, b exists since (w, x, y, z)
is not a Diffie-Hellman tuple). Let α, β ∈ Zq; we show that Pr[RAND(w, x, y, z) = (gα, gβ)] = 1

q2 ,

where the probability is taken over t, t′ used to compute RAND. Let γ ∈ Zq be such that y = wγ .
Then, we have that (w, x, y, z) = (w,wa, wγ , wγ·b), and so u = wt ·wγ·t′ and v = wa·t ·wγ·b·t′ . Thus,
(u, v) = (gα, gβ) if and only if t+ γ · t′ = α and a · t+ γ · b · t′ = β. These equations have a single
solution if and only if the matrix (

1 γ
a γ · b

)
is invertible, which holds here since the determinant is γ · β − γ · a = γ · (b − a) 6= 0, where the
inequality holds since a 6= b. Thus, there is a single pair t, t′ such that (u, v) = (gα, gβ) implying
that the probability is 1

q2 , as required.

6.2 The Protocol for Modified Cut-and-Choose OT

Our protocol is based on the batch single-choice cut-and-choose OT in [25], with appropriate
changes. The most significant difference here is that unlike [25] the number of transfers in which
the receiver obtains both strings is not fixed a priori, but is rather determined singlehandedly by
the receiver. Thus, there is no proof that half of the pairs (hi0, h

i
1) are such that (g0, g1, h

i
0, h

i
1) are

Diffie-Hellman tuples (i.e., a Diffie-Hellman tuple is of the form (g0, g1, h0, h1) where there exists a
value w such that h0 = (g0)w and h1 = (g1)w). In addition, there are additional steps used for R
to receive strings χj for every j /∈ J . This uses a similar mechanism to the transfer of the other

strings. Specifically, R is able to obtain χj for any j for which the tuple (g0, g1, h
j
0, h

j
1/g1) is a Diffie-

Hellman tuple, which is exactly for all j /∈ J . We remark that in Step 3, R first “rerandomizes”
the values hj0 and hj1/g1, obtaining h̃j0, h̃

j
1. This seems to be unnecessary, since the protocol works

when the sender computes RAND on the initial values hj0 and hj1/g1. However, in the proof of
security, the simulator needs to be able to cheat and obtain all values χj . This is a problem since the

simulator also needs to obtain all pairs from a cheating sender and so must choose hj0, h
j
1 such that

all (g0, g1, h
j
0, h

j
1) are Diffie-Hellman tuples. Since the simulator cannot make all of these tuples be

Diffie-Hellman tuples at the same time as making all (g0, g1, h
j
0, h

j
1/g1) Diffie-Hellman tuples, the

rerandomization is introduced in order to enable the simulator to cheat. Specifically, the simulator
will choose all hj0, h

j
1 such that (g0, g1, h

j
0, h

j
1) is a Diffie-Hellman tuple, and will then choose all

h̃j0, h̃
j
1 so that all (g0, g1, h̃

j
0, h̃

j
1) are also Diffie-Hellman tuples. This enables it to obtain all values.

(Of course, the simulator will have to cheat in the zero-knowledge proof that (hj0, h
j
1/g1, h̃

j
0, h̃

j
1)

since will this not be the case in the aforementioned way that the simulator chooses the values.
Nevertheless, this is indistinguishable by the Decisional Diffie-Hellman assumption.

The protocol appears below.

19



PROTOCOL 6.3 (Modified Batch Single-Choice Cut-and-Choose Oblivious Transfer)

Sender’s Input: The sender’s input is ` vectors of pairs ~x1, . . . , ~x`. We denote ~xi =
〈(xi,10 , xi,11 ), (xi,20 , xi,21 ), . . . , (xi,s0 , xi,s1 )〉. In addition, the sender inputs χ1, . . . , χs. All of the
sender’s input values are of length exactly n.

Receiver’s Input: The receiver’s input is comprised of ` bits σ1, . . . , σ` and a set J ⊂ [s].

Auxiliary input: Both parties hold a security parameter 1n and (G, q, g0), where G is an efficient
representation of a group of order q with a generator g0, and q is of length n. In addition, they
hold a hash function H that is a suitable randomness extractor from random elements of G to
uniform strings of length n; see [8].

THE PROTOCOL:

1. Setup phase:

(a) R chooses a random y ← Zq, sets g1 = (g0)y, and sends g1 to S.

(b) R proves to S in zero-knowledge that it knows the discrete log of g1, relative to g0
(i.e., formally, the relation for the zero-knowledge is {((g0, g1), a) | g1 = (g0)a}.

(c) For every j = 1, . . . , s, R chooses a random αj ← Zq and computes hj0 = (g0)αj . For

every j ∈ J , R computes hj1 = (g1)αj , and for every j /∈ J , R computes hj1 = (g1)αj+1.

(d) R sends (h10, h
1
1, . . . , h

s
0, h

s
1) to S

2. Transfer phase (repeated in parallel for every i = 1, . . . , `):

(a) The receiver chooses a random value ri ← Zq and computes g̃i = (gσi)
ri and

h̃i,1 = (h1σi)
ri , . . . , h̃i,s = (hsσi)

ri . It sends (g̃i, h̃i,1, . . . , h̃i,s) to the sender.

(b) The receiver proves in zero-knowledge that either all of {(g0, g̃i, hj0, h̃i,j)}sj=1 are Diffie-

Hellman tuples, or all of {(g1, g̃i, hj1, h̃i,j)}sj=1 are Diffie-Hellman tuples.

(c) The sender operates in the following way:

• For every j = 1, . . . , s, S sets (ui,j0 , vi,j0 ) = RAND(g0, g̃i, h
j
0, h̃i,j), and

(ui,j1 , vi,j1 ) = RAND(g1, g̃i, h
j
1, h̃i,j).

• For every j = 1, . . . , s, S sends the receiver the values (ui,j0 , wi,j0 ) where wi,j0 =

H(vi,j0 )⊕ xi,j0 , and (ui,j1 , wi,j1 ) where wi,j1 = H(vi,j1 )⊕ xi,j1 .

3. Transfer of χj values:

(a) For every j = 1, . . . , s, R chooses a random ρj ← Zq and computes h̃j0 = (hj0)ρj .

For every j /∈ J , R computes h̃j1 = (hj1/g1)ρj , and for every j ∈ J , R computes

h̃j1 = (hj1)ρj . R sends (h̃10, h̃
1
1, . . . , h̃

s
0, h̃

s
1) to S.

(b) R proves in zero-knowledge that all {(g0, g1, h̃j0, h̃
j
1)}sj=1 are Diffie-Hellman tuples.

(c) For every j = 1, . . . , s, S sets (uj , vj) = RAND(hj0, h̃
j
0, h

j
1/g1, h̃

j
1)).

(d) For every j = 1, . . . , s, S sends R the values (uj , wj) where wj = H(vj)⊕ χj .

4. Output: S outputs nothing. R’s output is as follows:

(a) For every i = 1, . . . , ` and for every j = 1, . . . , s, R computes xi,jσi = wi,jσi ⊕H((ui,jσi )ri).

(b) For every i = 1, . . . , ` and every j ∈ J , R computes xi,j1−σi = wi,j1−σi ⊕H((ui,j1−σi)
ri·z),

where z = y−1 mod q if σ = 0, and z = y if σ = 1.

(c) R outputs (x1σ1
, . . . , xsσ1

), . . . , (x1σ` , . . . , x
s
σ`

) and
{〈

(x1,j0 , x1,j1 ), . . . , (x`,j0 , x`,j1 )
〉}

j∈J
.

(d) For every j /∈ J , R outputs χj = wj ⊕H((uj)
ρj ).
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Correctness. Since it is not immediate from the protocol description, before proceeding to prove
security we show that the output of the protocol is correct. First, we show that R receives the
values χj for every j /∈ J . For every j the receiver obtains (uj , wj) where wj = H(vj) ⊕ χj and

(uj , vj) = RAND(hj0, h
j
1, h̃

j
0, h̃

j
1). For every j /∈ J we have that h̃j0 = (hj0)ρj and h̃j1 = (hj1/g1)ρj .

Thus (hj0, h
j
1/g1, h̃

j
0, h̃

j
1) is a Diffie-Hellman tuple. By Claim 6.1 this implies that vj = (uj)

ρj , for

every j /∈ J . Thus, wj ⊕ H((uj)
ρj ) = χj , as required. Observe also that all (g0, g1, h̃

j
0, h̃

j
1) are

Diffie-Hellman tuples, because if j ∈ J then h̃j0 = (hj0)ρj = (g0)αj ·ρj and h̃j1 = (hj1)ρj = (g1)αj ·ρj ,

and if j ∈ J then h̃j0 = (hj0)ρj = (g0)αj ·ρj and h̃j1 = (hj1/g1)ρj = (g1)αj ·ρj . Thus, the zero-knowledge
proof of Step 3b is accepted.

Likewise, for every i = 1, . . . , ` and every j = 1, . . . , s, by the way R chooses its values we have
that (gσ, g̃i, h

j
σ, h̃i,j) is a Diffie-Hellman tuple, where g̃i = (gσ)ri and thus by Claim 6.1 it holds that

(ui,jσi )ri = vσi .
Finally, for every j ∈ J , the values are chosen by P2 so that hj0 = (g0)αj and hj1 = (g1)αj .

Recall also that g1 = (g0)y, and thus hj1 = (g1)αj = (g0)y·αj = (hj0)y. We now show that for all

j ∈ J , both (g0, g̃i, h
j
0, h̃i,j) and (g1, g̃i, h

j
1, h̃i,j) are Diffie-Hellman tuples:

1. If σi = 0 then (g0, g̃i, h
j
0, h̃i,j) is a Diffie-Hellman tuple as shown above. Regarding (g1, g̃i, h

j
1, h̃i,j),

observe that g̃i = (g0)ri and h̃i,j = (hj0)ri . Since g1 = (g0)y and hj1 = (hj0)y, we have that

g̃i = (g1)ri/y and h̃i,j = (hj0)ri = (hj1)ri/y. By Claim 6.1, it follows that vi,j1 = (ui,j1 )ri/y.

2. If σi = 1 then (g1, g̃i, h
j
1, h̃i,j) is a Diffie-Hellman tuple as shown above. Regarding (g0, g̃i, h

j
0, h̃i,j),

observe that g̃i = (g1)ri and h̃i,j = (hj1)ri . Since g1 = (g0)y and hj1 = (hj0)y, we have that

g̃i = (g0)y·ri and h̃i,j = (hj1)ri = (hj0)y·ri . By Claim 6.1, it follows that vi,j1 = (ui,j1 )y·ri .

6.3 The Proof of Security of Protocol 6.3

Theorem 6.4 If the Decisional Diffie-Hellman problem is hard in (G, g, q), then Protocol 6.3 se-
curely computes the Fccot functionality. If the zero-knowledge proofs of Step 1b of the setup phase
and Step 2b of the transfer phase are universally composable, then Protocol 6.3 UC-computes the
Fccot functionality.

Proof: We prove security in a hybrid model where the zero-knowledge proofs and proofs of
knowledge (ZKPOK) are computed by ideal functionalities (where the prover sends (x,w) and the
functionality sends 1 to the verifier if and only if (x,w) is in the relation); the fact that any zero-
knowledge proof of knowledge securely computes this functionality has been formally proven in [14,
Section 6.5.3].

Case 1 – corrupted receiver: Let A be an adversary that controls the receiver R. We construct
a simulator S that invokes A on its input and works as follows:

1. S receives g1 and receives the input ((g0, g1), y) thatA sends to the ideal ZKPOK functionality.
If g1 6= (g0)y, then S simulates S aborting, and outputs whatever A outputs. Else, S proceeds
to the next step.

2. S receives (h1
0, h

1
1, . . . , h

s
0, h

s
1) from A. For every j = 1, . . . , s, S checks if hj1 = (hj0)y then it

sets j ∈ J and otherwise it sets j /∈ J .
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3. For every i = 1, . . . , `, S receives (g̃i, h̃i,1, . . . , h̃i,s) from A.

4. For every i = 1, . . . , `, S receives the witness ri that A sends to ZKPOK (g̃i, h̃i,1, . . . , h̃i,s). If it

does not hold that [g̃i = (g0)ri and every h̃i,j = (hj0)ri ] or [g̃i = (g1)ri and every h̃i,j = (hj1)ri ],
then S simulates S aborting, and outputs whatever A outputs. Otherwise, for every i, let σi
be the bit for which it holds.

5. S sends J and σ1, . . . , σs to the trusted party:

(a) For every i = 1, . . . , ` and every j ∈ J , S receives back a pair (xi,j0 , xi,j1 ).

(b) For every i = 1, . . . , `, S receives back the vector ~xi = 〈xi,1σi , . . . , x
i,s
σi 〉.

(c) For every k /∈ J , S receives back χk.

6. S simulates the transfer phase by handing the following messages to A:

(a) For every i = 1, . . . , ` and every j ∈ J , S computes (ui,j0 , wi,j0 ) and (ui,j1 , wi,j1 ) exactly

like the honest sender (it can do this because it knows both xi,j0 and xi,j1 ).

(b) For every i = 1, . . . , ` and every k /∈ J , S computes (ui,kσi , w
i,k
σi ) like the honest sender

using xi,kσi , and sets (ui,k1−σi , w
i,k
1−σi) to be a pair of a random element of G and a random

string of length n.

7. S simulates the transfer of χj values, as follows:

(a) S receives the h̃j0, h̃
j
1 values from A and the witness it sends to ZKPOK functionality.

If the witness is not correct, it simulates S aborting, and outputs whatever A outputs.
Otherwise it proceeds to the next step.

(b) For every j /∈ J , S computes (uj , wj) as the honest sender does (it can do this since it
knows χk.

(c) For every j ∈ J , S sets (uj , wj) to be a pair of a random element of G and a random
string of length n.

8. S outputs whatever A outputs.

We claim that the output of the ideal execution with S is identical to the output of a real execution
with A and an honest sender. This is due to the fact that the only difference is with respect to the
way the tuples (ui,k1−σi , w

i,k
1−σi) for k /∈ J are formed, and the way that the tuples (uj , wj) j ∈ J are

formed (namely, these are generated as random elements by the simulator).
Beginning first with the (uj , wj) tuples for j ∈ J , observe that by the way that S defines J it

holds that hj1 = (hj0)y for all j ∈ J . This implies that (g0, g1, h
j
0, h

j
1) is a Diffie-Hellman tuple, and

(g0, g1, h
j
0, (h

j
1/g1) is not a Diffie-Hellman tuple. Now, in the real protocol, S generates (uj , wj) by

first computing RAND(g0, g1, h
j
0, (h

j
1/g1)). Thus, by Claim 6.2, the values (uj , vj) are random in

G and so (uj , wj) are distributed identically to the way they are generated by S (i.e., uj is uniform
in G and wj is uniform in {0, 1}n).

Regarding the tuples (ui,k1−σi , w
i,k
1−σi) for k /∈ J , the same argument holds. Specifically, for k /∈ J

we know that hk1 6= (hk0)y. Thus, for a given tuple (g̃i, h̃i,1, . . . , h̃i,s) it cannot hold that both

[g̃i = (g0)ri and every h̃i,j = (hj0)ri ] and [g̃i = (g1)ri and every h̃i,j = (hj1)ri ]. Since the simulator
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set σi to be such that [g̃i = (gσi)
ri and every h̃i,j = (hjσi)

ri ] holds, we have that [g̃i = (g1−σi)
ri

and every h̃i,j = (hj1−σi)
ri ] does not hold. This in turn applies that (g1−σi , g̃i, h1−σi , h̃i,j) is not a

Diffie-Hellman tuple, and so the distribution generated by S by choosing the values (ui,k1−σi , w
i,k
1−σi)

uniformly is identical, as above.

Case 2 – corrupted sender: We now proceed to the case that A controls the sender S. We
construct a simulator S as follows:

1. S computes g1 = (g0)y for a random y ← Zq, and hands g1 internally to A.

2. S simulates the ideal zero-knowledge proof of knowledge from R to S by handing 1 (“success”)
to A as if it came from the ZKPOK ideal functionality.

3. S plays the same strategy as an honest R with J = [s] and σ1 = σ2 = · · · = σ` = 0. That is:

(a) For every j = 1, . . . , s, S chooses a random αj ← Zq and sets hj0 = (g0)αj and hj1 = (g1)αj

(i.e., setting J = [s]). S hands (h1
0, h

1
1, . . . , h

s
0, h

s
1) to A.

(b) For every i = 1, . . . , `, S computes g̃i = (g0)ri and h̃i,1 = (h1
0)ri , . . . , h̃i,s = (hs0)ri and

sends the vector (g̃i, h̃i,1, . . . , h̃i,s) to A.

4. Upon receiving back pairs (ui,j0 , wi,j0 ) and (ui,j1 , wi,j1 ) for every i = 1, . . . , ` and every j =

1, . . . , s, simulator S computes xi,j0 = wi,j0 ⊕H((ui,j0 )ri and xi,j1 = wi,j1 ⊕H((ui,j1 )ri/y, just like
an honest R (for when j ∈ J ).

5. In the simulation of the transfer of χj values, S behaves differently, as follows:

(a) For every j = 1, . . . , s it computes h̃j0 = (hj0)ρj and h̃j1 = (hj1/g1)ρj (as if j /∈ J , even
though in actuality j ∈ J for all j).

(b) S simulates the zero-knowledge proof that all the tuples {(g0, g1, h̃
j
0, h̃

j
1)}sj=1 are Diffie-

Hellman tuples (even though none of them are) by handing 1 (“success”) to A as if it
came from the ZKPOK ideal functionality.

(c) Upon receiving all the pairs {(uj , wj)}sj=1 from A, simulator S computes χj = wj ⊕
H((uj)

ρj .

6. S sends all of the vectors pairs ~xi = 〈(xi,10 , xi,11 ), . . . , (xi,s0 , xi,s1 )〉 for i = 1, . . . , ` to the trusted
party, as well as all of the values χ1, . . . , χs.

7. S outputs whatever A outputs, and halts.

There are two main observations regarding the simulation. First, by the way the simulator chooses
g0 and g1, all of the (g0, g̃i, h

j
0, h̃i,j) and (g1, g̃i, h

j
1, h̃i,j) tuples are Diffie-Hellman tuples. Thus, S

learns all of the pairs (xi,j0 , xi,j1 ) and these are consistent with the values that the honest receiver
would receive in a real execution. Likewise, S learns all of the values χ1, . . . , χs and these are
consistent with the χj values that R would receive in a real execution for values of j /∈ J . Second,
by the Decisional Diffie-Hellman assumption, the output of a simulated execution with S in the
ideal model is indistinguishable from the output of a real execution between A and an honest
receiver. This is due to the fact that the only differences between the real and ideal executions are:

23



1. The simulator chooses the values (h1
0, h

1
1, . . . , h

s
0, h

s
1) as if J = [s] (and the honest receiver

uses the subset J in its input)

2. The simulator generates the vectors (g̃i, h̃i,1, . . . , h̃i,s) as if all the receiver inputs are σ1 =
· · · = σ` = 0 (whereas the honest receiver uses its real input σ1, . . . , σ`, and

3. The simulator cheats when it generates the pair (h̃j0, h̃
j
1) making it so that all tuples (hj0, h

j
1/g1, h̃

j
0, h̃

j
1)

are Diffie-Hellman tuples even though none of the tuples (g0, g1, h̃
j
0, h̃

j
1) are.

Nevertheless, these differences are all indistinguishable by the DDH assumption. This is demon-
strated formally as in [25].

6.4 Concrete Efficiency – Cut-and-Choose OT

We count the number of exponentiations, and the bandwidth. We also distinguish between fixed-
base exponentiations and regular exponentiations (in most groups, the cost of a fixed-base expo-
nentiation is about a third of a full exponentiation [26, Sec. 14.6.3]). The cost of the zero-knowledge
proof of knowledge of discrete log is 9 exponentiations and the exchange of 4 group elements [14],
and the cost of the zero-knowledge proof in Step 2b of the transfer phase is s+ 16 exponentiations
overall, and the exchange of 10 group elements; see [25]. Finally, the cost of the s zero-knowledge
proofs of knowledge of Step 3b is 12s exponentiations and the exchange of 5s group elements.

In the setup phase, not counting the zero-knowledge proof of knowledge, R carries out 2s + 1
fixed-base exponentiations and sends 2s + 1 group elements. In the transfer phase (excluding the
zero-knowledge), R computes (s + 1) · ` fixed-base exponentiations in Step 2a (these bases are
used ` times and so for not very small values of ` the fixed-base optimization will be significant),
and S computes RAND 2s` times at the cost of 8s` fixed-base exponentiations. In addition, R
sends (s + 1)` group elements and S sends 4s` group elements. In the transfer of χj values phase
(excluding the zero-knowledge), R computes 2s regular exponentiations, and S computes RAND
s times at the cost of 4s regular exponentiations. In addition, R sends 2s group elements and S
sends 2s group elements. Finally, in the output phase, R computes (s+ |J |)`+ s− |J | ≈ 3s

2 · `−
s
2

regular exponentiations. Overall we have:

Operation Exact Cost Approximate Cost

Regular exponentiations 1.5s`+ 18.5s+ 25 1.5s`
Fixed-base exponentiations 9s`+ `+ 2s+ 1 9s`
Bandwidth (group elements) 5s`+ `+ 11s+ 15 5s`
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A The Circuit for Step 7 of Protocol 3.2

A.1 The Original Circuit
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A.2 The First Optimization
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A.3 The Final Optimization

Input ∆ 
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Oblivious transfers 
only

B Definition of Security for Covert Adversaries

For the sake of completeness, and since it is less well known, we provide the definition of security
for covert adversaries here.

The high-level idea behind the definition. The definition of security for covert adversaries
is based on the standard ideal/real simulation paradigm for malicious adversaries, and provides
the guarantee that if the adversary cheats, then it will be caught by the honest parties (with some
probability). In order to understand what we mean by this, we have to explain what we mean
by “cheating”. Loosely speaking, we say that an adversary successfully cheats if it manages to do
something that is impossible in the ideal model. Stated differently, successful cheating is behavior
that cannot be simulated in the ideal model. Thus, for example, an adversary who learns more
about the honest parties’ inputs than what is revealed by the output has cheated. In contrast, an
adversary who uses pseudorandom coins instead of random coins (where random coins are what
are specified in the protocol) has not cheated.

We begin by informally describing the guarantee provided by this notion. Let 0 < ε ≤ 1 be a
value (called the deterrence factor). Then, any attempt to cheat by a real adversary A is detected
by the honest parties with probability at least ε. Thus, provided that ε is sufficiently large, an
adversary that wishes not to be caught cheating will refrain from attempting to cheat, lest it be
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caught doing so. Clearly, the higher the value of ε, the greater the probability adversarial behavior
is caught and thus the greater the deterrent to cheat. This notion is therefore called security in the
presence of covert adversaries with ε-deterrent. Note that the security guarantee does not preclude
successful cheating. Indeed, if the adversary decides to cheat it may gain access to the other parties’
private information or bias the result of the computation. The only guarantee is that if it attempts
to cheat, then there is a fair chance that it will be caught doing so. This is in contrast to standard
definitions, where absolute privacy and security are guaranteed for the given type of adversary. We
remark that by setting ε = 1, the definition can be used to capture a requirement that cheating
parties are always caught.

The actual definition. We begin by presenting the modified ideal model. In this model, we
add new instructions that the adversary can send to the trusted party. Recall that in the standard
ideal model, the adversary can send a special aborti message to the trusted party, in which case
the honest party receives aborti as output. In the ideal model for covert adversaries, the adversary
can send the following additional special instructions:

• Special input corruptedi: If the ideal-model adversary sends corruptedi instead of an input,
the trusted party sends corruptedi to the honest party and halts. This enables the simulation
of behavior by a real adversary that always results in detected cheating. (It is not essential
to have this special input, but it sometimes makes proving security easier.)

• Special input cheati: If the ideal-model adversary sends cheati instead of an input, the trusted
party tosses coins and with probability ε determines that this “cheat strategy” by Pi was
detected, and with probability 1− ε determines that it was not detected. If it was detected,
the trusted party sends corruptedi to the honest party. If it was not detected, the trusted
party hands the adversary the honest party’s input and gives the ideal-model adversary the
ability to set the output of the honest party to whatever value it wishes. Thus, a cheati
input is used to model a protocol execution in which the real-model adversary decides to
cheat. However, as required, this cheating is guaranteed to be detected with probability at
least ε. Note that if the cheat attempt is not detected then the adversary is given “full cheat
capability”, including the ability to determine the honest party’s output.

The idea behind the new ideal model is that given the above instructions, the adversary in the
ideal model can choose to cheat, with the caveat that its cheating is guaranteed to be detected
with probability at least ε. We stress that since the capability to cheat is given through an “input”
that is provided to the trusted party, the adversary’s decision to cheat must be made before the
adversary learns anything (and thus independently of the honest party’s input and the output).

We are now ready to present the modified ideal model. Let ε : N→ [0, 1] be a function. Then,
the ideal execution for a function f : {0, 1}∗×{0, 1}∗ → {0, 1}∗×{0, 1}∗ with parameter ε proceeds
as follows:

Inputs: Let x denote the input of party P1, and let y denote the input of party P2. The adversary
A also has an auxiliary input z.

Send inputs to trusted party: The honest party Pj sends its received input to the trusted party.
The corrupted party Pi, controlled by A, may send a special input signalling abort or at-
tempted cheating (by replacing the input with a special aborti, corruptedi or cheati message),
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send its received input, or send some other input of the same length to the trusted party.
This decision is made by A and may depend on the input value of Pi and the auxiliary input
z. Denote the pair of inputs sent to the trusted party by (x′, y′).

Abort options: If a corrupted party sends aborti to the trusted party as its input, then the trusted
party sends aborti to the honest party and halts. If a corrupted party sends corruptedi to the
trusted party as its input, then the trusted party sends corruptedi to the honest party and
halts.

Attempted cheat option: If a corrupted party sends cheati to the trusted party as its input,
then the trusted party works as follows:

1. With probability ε, the trusted party sends corruptedi to the adversary and the honest
party.

2. With probability 1 − ε, the trusted party sends undetected to the adversary along with
the honest party’s input. Following this, the adversary sends the trusted party an output
value τ of its choice for the honest party. The trusted party then sends τ to Pj as its
output (where Pj is the honest party).

If the adversary sent cheati, then the ideal execution ends at this point. Otherwise, the ideal
execution continues below.

Trusted party sends output to adversary: At this point the trusted party computes f1(x′, y′)
and f2(x′, y′) and sends fi(x

′, y′) to Pi (i.e., it sends the corrupted party its output).

Adversary instructs trusted party to continue or halt: After receiving its output, the ad-
versary sends either continue or aborti to the trusted party. If the trusted party receives
continue then it sends fj(x

′, y′) to the honest party Pj . Otherwise, if it receives aborti, it
sends aborti to the honest party Pj .

Outputs: The honest party always outputs the output value it obtained from the trusted party.
The corrupted party outputs nothing. The adversary A outputs any arbitrary (probabilis-
tic polynomial-time computable) function of the initial inputs of the corrupted party, the
auxiliary input z, and the value fi(x

′, y′) obtained from the trusted party.

The output of the honest party and the adversary in an execution of the above ideal model is
denoted by idealεf,S(z),i(x, y, n).

Notice that there are two types of “cheating” here. The first is the classic abort and is used to
model “early aborting” due to the impossibility of achieving fairness in general when there is no
honest majority. The other type of cheating in this ideal model is more serious for two reasons: first,
the ramifications of the cheating are greater (the adversary may learn the honest party’s input and
may be able to determine its output), and second, the cheating is only guaranteed to be detected
with probability ε. Nevertheless, if ε is high enough, this may serve as a deterrent. We stress that
in the ideal model the adversary must decide whether to cheat obliviously of the honest party’s
input and before it receives any output (and so it cannot use the output to help it decide whether
or not it is “worthwhile” cheating). We have the following definition.

Definition B.1 (security – strong explicit cheat formulation [1]): Let f be a two-party function-
ality, let π be a protocol, and let ε : N → [0, 1] be a function. Protocol π is said to securely
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compute f in the presence of covert adversaries with ε-deterrent if for every non-uniform proba-
bilistic polynomial-time adversary A for the real model, there exists a non-uniform probabilistic
polynomial-time adversary S for the ideal model such that for every i ∈ {1, 2}:{

idealεf,S(z),i(x, y, n)
}
x,y,z,n

c≡
{
realπ,A(z),i(x, y, n)

}
x,y,z,n

where x, y, z ∈ {0, 1}∗ under the constraint that |x| = |y|, and n ∈ N.

C A Discussion on the Cut-and-Choose Parameters of [32]

In [32] it was shown that opening and checking 60% of the circuits is preferable to opening and
checking 50% of the circuits, since it provides a lower error of 2−0.32s instead of 2−0.311s. Although
this difference may be small, it can still be significant: already for an error rate of 2−40 this enables
the use of 125 circuits instead of 128, and so constitutes a saving. As we will show now, although
this results in a saving in bandwidth, it also increases the work.

In order to see this, note that in every circuit that is checked, P2 computes 4 symmetric
encryptions per gate, in contrast to a single symmetric encryption in circuits that are computed (P1

pays 4 symmetric encryptions for all circuits in any case). Thus, if half of the s circuits are checked,
the overall number of symmetric encryptions by the parties is 4|C| · s+ 4|C| · s2 + |C| · s2 = 6.5|C|s.
In contrast, if 60% of the circuits are checked then the overall number of symmetric encryptions is
4|C| · s+ 4|C| · 3

5 · s+ |C| · 2
5 · s = 6.8|C|s. To make this comparison concrete, for an error level of

2−40 one can either open half and use 128 circuits requiring 832 symmetric encryptions per gate,
or one can open 60% and use 125 circuits requiring 850 symmetric encryptions per gate.

Thus, although opening 60% means saving on bandwidth, it also involves about a 2% increase
in work in the form of symmetric encryptions. The preferred method may depend on the actual
network setup and machines being used for the computation. In most cases, the bandwidth seems
to be more significant; however, there may be settings where computation is the bottleneck.
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