
On r-th Root Extraction Algorithm in Fq

For q ≡ lrs + 1 (mod rs+1) with 0 < l < r and Small s

Namhun Koo, Gook Hwa Cho, and Soonhak Kwon
Dept. of Mathematics, Sungkyunkwan University, Suwon, S. Korea

komaton@skku.edu, achimheasal@nate.com, shkwon@skku.edu

Abstract

We present an r-th root extraction algorithm over a finite field Fq. Our algorithm
precomputes a primitive rs-th root of unity ξ where s is the largest positive integer satisfying
rs|q − 1, and is applicable for the cases when s is small. The proposed algorithm requires
one exponentiation for the r-th root computation and is favorably compared to the existing
algorithms.

Keywords : r-th root algorithm, finite field, Tonelli-Shanks algorithm, Adleman-Manders-
Miller algorithm, Cipolla-Lehmer algorithm

1 Introduction

Let r > 1 be an integer. There are two well-known algorithms for r-th root computation in

finite field Fq; the Adleman-Manders-Miller algorithm [1, 2, 3, 6] (a natural extension of the

Tonelli-Shanks square root algorithm) and the Cipolla-Lehmer [4, 5] algorithms. Assuming

r << log q, the Adleman-Manders-Miller algorithm depends on the exponent s of r satisfying

rs|q−1 and rs+1 ̸ |q−1, which makes the worst case complexity of the Adleman-Manders-Miller

O(log r log4 q) [3, 6] while the Cipolla-Lehmer can be executed in O(r log3 q) [4, 5].

However, due to the cumbersome extension field arithmetic needed for the Cipolla-Lehmer

algorithm, the Adleman-Manders-Miller performs better than the Cipolla-Lehmer for small

exponents s, and related research can be found in [10, 11].

On the other hand, when the exponent s is small, there are other approaches for finding

a square root using one or two exponentiations, which are faster than the Tonelli-Shanks for

some cases. One such example is a square root of c in Fq with q ≡ 3 (mod 4). That is, when c

is a quadratic residue in Fq, then a square root of c is given as c
q+1
4 since one can directly verify

(c
q+1
4)2 = c. When s = 2, 3, there are similar approaches due to Atkin [7], Müller [8] and Kong

et al. [9], and their methods have better performance when compared with the Tonelli-Shanks

and the Cipolla-Lehmer.

1

However it seems that, these ’exponentiation only’ approach is not well studied for general

r-th root extraction problem in Fq. Our aim is to generalize this ’exponentiation only’ approach

for r-th root extraction and give concrete examples. We present a new r-th root extraction

algorithm using a precomputed primitive element in Fq and show that our algorithm requires

only one exponentiation in Fq and efficient when s is small.

2 Existing root extraction algorithms for small exponent

2.1 Square root algorithms

There are some efficient square root extraction formulas for q ≡ 5 (mod 8) and q ≡ 9 (mod 16)

respectively. If q ≡ 5 (mod 8), a special case of q ≡ 1 (mod 4), there is an efficient square root

algorithm [7] due to Atkin which uses only one exponentiation.

Algorithm 1 Atkin’s algorithm when q ≡ 5 (mod 8)

Input : A square a in Fq

Output : x satisfying x2 = a in Fq

1: b← (2a)
q−5
8

2: i← 2ab2

3: x← ab(i− 1)
4: return x.

Algorithm 1 needs 1 exponentiation and 4 multiplications, and is more efficient than the

Tonelli-Shank’s or the Cipolla-Lehmer. Müller [8] extended Atkin’s idea to the case q ≡ 9

(mod 16). Müller’s algorithm is probabilistic and requires 2 exponentiations. Details of the

algorithm is given in Algorithm 2. Note that the probabilistic step finds d ∈ Fq satisfying

η(d) = −b, where the quadratic character η satisfies η(d) = 1 if d is a square in Fq, and

η(d) = −1 if not. A further speed-up for the case q ≡ 9 (mod 16) is given by Kong et al. [9]

where the average number of exponentiation is reduced to 1.5.

2.2 r-th root extraction algorithms for r > 2

For r > 2 there are no available simple algorithms similar to the algorithms of Atkin, Müller,

and Kong et al. applicable to special types of q. Of course, we wish that such simple algorithms

have better performance compared with general algorithms such as the Adleman-Manders-

Miller and the Cipolla-Lehmer. In the following sections, we will show that there are natural

2

Algorithm 2 Müller’s algorithm when q ≡ 9 (mod 16)

Input : A square a in Fq

Output : x satisfying x2 = a in Fq

1: b← (2a)
q−1
4

2: Find randomly d satisfying −b = η(d)

3: u← (2ad2)
q−9
16

4: i← 2u2d2a
5: x← uda(i− 1)
6: return x.

generalization of the previously proposed ideas on the square root algorithms to the case of

general r-th root extractions.

3 New r-th root extraction formula over Fq for q ≡ lrs + 1
(mod rs+1)

Let q be a power of a prime and let r be a prime dividing q − 1. The reason why we only

consider the case r|q − 1 is as follows. If r ̸ |q − 1, then one has the greatest common divisor

gcd(r, q − 1) = 1 and there are a, b satisfying ra+ (q − 1)b = 1. Thus for any c ∈ Fq, we have

c = cra+(q−1)b = (ca)r. That is, any element c is an r-th powers of ca.

Let s be the largest positive integer satisfying rs|q − 1 with s ≥ 1. Since q−1
rs ≡ l (mod r)

for some l with 0 < l < r, one has q ≡ lrs + 1 (mod rs+1). In other words, for any prime

or prime power q and integer r > 1 with r|q − 1, there exist unique positive integer s and

0 < l < r satisfying q ≡ lrs +1 (mod rs+1), where such unique s is the largest positive integer

satisfying rs|q − 1.

Theorem 1. For given r-th power c in Fq, there exists b ∈ Fq such that cr−1br has an order

rt with t < s.

Proof. We will use two elements α, β satisfying rβ + r − 1 = lα. Such α, β can be found as

follows. Since gcd(l, r) = 1, there exists 0 ≤ β < l satisfying rβ+r−1 ≡ 0 (mod l) and letting

α = rβ+r−1
l we have rβ + r − 1 = lα. Therefore letting ζ = (cα)

q−1
rs ,

ζ = (cα)
q−1
rs

= (cα)
q−1
rs crβ+r−1−lα = cr−1crβ(cα)

q−1
rs c−lα

= cr−1{cβ(cα)
q−1−lrs

rs+1 }r = cr−1br, (1)

3

where we put b = cβ(cα)
q−1−lrs

rs+1 . Since c is an r-th power in Fq, the order of ζ is rt for some

0 ≤ t < s.

Let ξ be a primitive rs-th root of unity in Fq, which will be computed once and will be fixed

throughout this paper. Such ξ can be found by letting ξ = d
q−1
rs where d is not an r-th power

in Fq. Therefore our method is probabilistic (i.e., randomized). The heuristic probability that

a randomly chosen d ∈ Fq is not an r-th power in Fq is r−1
r .

Since ξr
s−t

is a primitive rt-th root of unity, there exist unique i and j determined (mod rt)

such that

ξr
s−t

= ζi, ζ = (ξr
s−t

)j (2)

From ζ = (ξr
s−t

)j = ζij , we have

ij ≡ 1 (mod rt) (3)

Now we present our new theorem which states that an r-th root of an r-th power residue c can

be found using one exponentiation under suitable conditions.

Theorem 2. Define u as u ≡ j(rt − 1)rs−t−1 ≡ −jrs−t−1 (mod rs−1). Then an r-th root of

c in Fq is given as cbξu where b is given in Theorem 1.

Proof. Letting x = cbξu,

xr = c · cr−1br · ξru = c · ζ · ξru

Since u = j(rt − 1)rs−t−1 + rs−1k for some integer k and using ξr
s
= 1,

ζξru = (ξr
s−t

)j · ξru = ξj·r
s−t+ru (4)

= ξj·r
s−t+j(rt−1)rs−t+rsk (5)

= ξj·r
s−t+j(rt−1)rs−t

= ξj·r
s−t(1+rt−1) (6)

= ξj·r
s
= 1 (7)

Therefore one has xr = c · ζξru = c.

Remark 1. rβ + r − 1 = lα implies r(β + l) + r − 1 = l(α + r). That is, α is determined

(mod r) and β is determined (mod l). Thus for any α satisfying α q−1
rs ≡ αl ≡ −1 (mod r),

4

there is uniquely determined β satisfying rβ + r − 1 = lα (i.e., β = lα+1−r
r). Thus we may fix

α first and determine the corresponding β. In fact, the condition rβ + r − 1 − lα = 0 can be

weakened to rβ + r − 1− lα ≡ 0 (mod q−1
r) because c

q−1
r = 1.

Remark 2. The value cb can be simplified as follows.

cb = c · cβ(cα)
q−1−lrs

rs+1 (8)

= c
rs+1+βrs+1+α(q−1)−αlrs

rs+1 (9)

= c
rs(r+βr−lα)+α(q−1)

rs+1 (10)

= c
rs+α(q−1)

rs+1 = c
1+α

q−1
rs

r , (11)

where α is an integer with 0 < α < r satisfying 1 + α q−1
rs ≡ 0 (mod r). Therefore one has an

alternate expression of b (without using β) as b = cb/c = c
1+α

q−1
rs

−r

r .

Remark 3. Finding i (or j) in the equation (2) is in general difficult if rt is large (i.e., if

t > 1 and the discrete logarithm in the cyclic group of order rt is intractable). So our method

is useful only when r and t are small, and can be viewed as a parallelized version of the

Adleman-Manders-Miller algorithm.

4 Examples and Algorithms

In this section, using the result of previous section, we will give some examples and algorithms

for efficient r-th root computation.

Example 1. r-th root for q ≡ lr + 1 (mod r2) with 0 < l < r:

This is the case s = 1. Therefore we get t = 0 and u = 0, and an r-th root of c is given as

cb = c
1+α

q−1
r

r , where α ∈ Fq satisfies 1 + α q−1
r ≡ 0 (mod r).

When r = 2, the condition s = 1 implies that q ≡ 3 (mod 4) and a square root of c is given

as c
1+1· q−1

2
2 = c

q+3
4 which is well known.

When r = 3, the condition q ≡ lr + 1 (mod r2) (i.e., s = 1) implies that either q ≡ 4

(mod 9) or q ≡ 7 (mod 9) depending on the value l = 1, 2. Thus a cube root of c is given by

c
1+2

q−1
3

3 = c
2q+1

9 when q ≡ 4 (mod 9), and c
1+1

q−1
3

3 = c
q+2
9 when q ≡ 7 (mod 9). Note that the

cases q ≡ 4, 7 (mod 9) cover 2
3 ≈ 66.7% of all primes of the form q ≡ 1 (mod 3).

5

Table 1. r-th roots of c over Fq for r = 3, 5, 7

r = 3 r = 5 r = 7

q ≡ 4 (mod 9): c
2q+1

9 q ≡ 6 (mod 25): c
4q+1
25 q ≡ 8 (mod 49): c

6q+1
49

q ≡ 7 (mod 9): c
q+2
9 q ≡ 11 (mod 25): c

2q+3
25 q ≡ 15 (mod 49): c

3q+4
49

q ≡ 16 (mod 25): c
3q+2
25 q ≡ 22 (mod 49): c

2q+5
9

q ≡ 21 (mod 25): c
q+4
25 q ≡ 29 (mod 49): c

5q+2
9

q ≡ 36 (mod 49): c
4q+3
49

q ≡ 43 (mod 49): c
q+6
49

Exceptional cases :

q ≡ 1 (mod 9) q ≡ 1 (mod 25) q ≡ 1 (mod 49)

In general, for any prime r, the case s = 1 covers r−1
r of all primes q with q ≡ 1 (mod r)

because the prime q ≡ lr+1 (mod r2) with l = 1, 2, · · · , r−1 covers all possible primes except

the case q ≡ 1 (mod r2) (i.e., l = 0). Therefore the method of single exponentiation covers

most of the cases as r becomes larger. Table 1 shows r-th root of r-th power residue of c ∈ Fq

for the cases r = 3, 5, 7. Tables of the other cases r > 7 can also be constructed similarly.

Example 2. r-th root for q ≡ lr2 + 1 (mod r3) with 0 < l < r:

This is the case s = 2. Therefore ζ = (cα)
q−1

r2 = 1 or a primitive r-th root of unity, i.e., ζ

is of order rt with t = 0 or 1. Also ξ is a primitive r2-th root of unity satisfying ξr
2−t

= ζi

and (ξr
2−t

)j = ζ with ij ≡ 1 (mod rt). Thus an r-th root of c is given as cbξu where u ≡

j(rt − 1)r1−t ≡ −jr1−t (mod r) and cb is given in Remark 2. When t = 0, one has u = 0 and

x = cb is a square root, and when t = 1, one has u ≡ −j (mod r) and a square root is given

x = cbξ−j .

Algorithm 3 Our cube root algorithm when q ≡ 1 (mod 9) and q ̸≡ 1 (mod 27)

Input : A cube c in Fq (q = 9l + 1 (mod 27) with l = 1, 2, i.e., q ≡ 10, 19 (mod 27))

Output : x satisfying x3 = c in Fq

1: b← c(3−l)
q−(9l+1)

27

2: X ← cb, ζ ← X2b, A← ξ,B ← A3 (X = c
2q+7
27 if q ≡ 10 (mod 27) and X = c

q+8
27 if q ≡ 19 (mod 27))

3: if ζ = 1 then x← X
4: else if ζ = B then x← XA2

5: else then x← XA
6: return x.

6

When r = 3, from the Remark 2, one has b = c
1+α

q−1
9 −3

3 . Thus one has b = c
2q−20

27 when

q−1
9 ≡ 1 (mod 3), and b = c

q−19
27 when q−1

9 ≡ 2 (mod 3). Algorithm 3 shows the proposed cube

root algorithm for the case s = 2. Algorithm 3 requires only 1 exponentiation (in step 1) plus

at most 6 multiplications in Fq. Table 1 and Algorithm 3 (i.e., combining the cases s = 1 and

s = 2) show that a cube root can be found using just 1 exponentiation for 2
3 +

1
3 ·

2
3 = 8

9 ≈ 89%

of all primes of the form q ≡ 1 (mod 3). When q ≡ 2 (mod 3), we already mentioned that

the cost of cube root computation is 1 exponentiation in the beginning of Section 3. Thus we

conclude that the cost of cube root computation is 1 exponentiation for 1
2 +

1
2 ·

8
9 = 17

18 ≈ 94%

of all primes q.

Algorithm 4 Our 5-th root algorithm when q ≡ 1 (mod 25) and q ̸≡ 1 (mod 125)

Input : A fifth power c in Fq (q = 25l+ 1 (mod 125) with l = 1, 2, 3, 4, i.e., q ≡ 26, 51, 76, 101 (mod 125))

Output : x satisfying x5 = c in Fq

1: Compute 0 < α < 5 satisfying 1 + αl ≡ 0 (mod 5) (i.e., (l, α) = (1, 4), (2, 2), (3, 3), (4, 1))

2: b← c
α(q−1)−100

125

3: X ← cb, ζ ← X4b, A← ξ,B ← A2, C ← AB2, D ← C2

4: if ζ = 1 then x← X
5: if ζ = C then x← XB2

6: if ζ = D then x← XAB
7: if ζ = CD then x← XB
8: if ζ = D2 then x← XA
9: return x.

When r = 5, similarly one has b = c
1+α

q−1
25 −5

5 = c
α(q−1)−100

125 , where α · q−1
25 ≡ −1 (mod 5).

Algorithm 4 shows the proposed 5-th root algorithm for the case s = 2. Algorithm 4 also

requires only 1 exponentiation (in step 2) plus at most 10 multiplications in Fq. In a similar

manner, combining Table 1 and Algorithm 4 show that the cost of 5-th root computation over

Fq is 1 exponentiation for 4
5 + 1

5 ·
4
5 = 24

25 = 96% of all primes of the form q ≡ 1 (mod 5), and

also for 3
4 + 1

4 ·
24
25 = 99

100 = 99% of all primes q.

Example 3. r-th root for q ≡ lr3 + 1 (mod r4) with 0 < l < r:

This is the case s = 3. Therefore ζ = (cα)
q−1

r3 = 1 has order rt with t = 0, 1, 2 and ξ is a

primitive r3-th root of unity satisfying ξr
3−t

= ζi and (ξr
3−t

)j = ζ with ij ≡ 1 (mod rt). Thus

an r-th root of c is given as cbξu where u ≡ j(rt− 1)r2−t ≡ −jr2−t (mod r2) where cb is given

7

in Remark 1. When t = 0, one has u = 0 and x = cb is an r-th root. When t = 1, one has

u ≡ −jr (mod r2), and when t = 2, one has u ≡ −j (mod r2), and an r-th root is given as

x = cbξu. Similarly as in Example 2, one can construct algorithms for r-th root (like the cases

of Algorithm 3 and 4), and the number of cases (of u) we need to consider is r2. That is, when

r = 3, we have to consider 9 cases, and when r = 5, we have to consider 25 cases.

Table 2. Comparison of timing using MAPLE (in seconds)

Our Algorithm AMM [3, 6] Cipolla-Lehmer [4, 5]

cubic quintic cubic quintic cubic quintic

q ≈ 21024 with s = 1 0.140 0.141 0.452 0.546 2.356 8.081

q ≈ 21024 with s = 2 0.156 0.156 0.468 0.561 2.351 8.077

q ≈ 22048 with s = 1 0.655 0.671 2.364 2.637 10.795 40.763

q ≈ 22048 with s = 2 0.681 0.690 2.387 2.698 10.764 41.153

Table 3. Comparison of Timing using SAGE (in seconds)

Our Algorithm AMM [3, 6] Cipolla-Lehmer [4, 5]

cubic quintic cubic quintic cubic quintic

p ≈ 21024 with s = 1 0.014 0.014 0.026 0.027 0.350 0.891

p ≈ 21024 with s = 2 0.014 0.015 0.026 0.032 0.351 0.867

p ≈ 22048 with s = 1 0.044 0.048 0.080 0.094 1.165 3.360

p ≈ 22048 with s = 2 0.046 0.048 0.093 0.095 1.162 3.362

Tables 2 and 3 show the comparison of the implementation results of our algorithm, the

AMM (Adleman-Manders-Miller) algorithm [3, 6] and the Cipolla-Lehmer algorithm [4, 5]. For

the implementation, we used two available softwares for symbolic computation, MAPLE and

SAGE, where SAGE is a newly appeared (since 2005) open source software based on Python

language [12]. The computations were performed on 2.80Ghz CPU with 8GB RAM, where

primes p of sizes 1024-bit and 2048-bit were chosen. Our method uses the formulas in Table

1 for the case s = 1, and uses Algorithm 3 (cubic) and Algorithm 4 (quintic) for the case

s = 2. For a fair comparison, we did not take the timing of primitive root finding in AMM into

account (because the precomputation can also be used in AMM). Also we used trinomials for

Cipolla-Lehmer and the timing of the irreducibility testing is not taken into account either.

The comparison shows that our algorithms (of Table 1, Algorithms 3 and 4) have significant

advantage over the AMM and the Cipolla-Lehmer. It should be mentioned that the complexity

of the Cipolla-Lehmer does not depend on s but on the finite field extension Fqr/Fq, as one

sees the timing of Cipolla-Lehmer for r = 5 is quite slower than the timing for r = 3.

8

We expect that our algorithms are only efficient when s is small because the number of

cases of ζ increases exponentially with respect to s. However, as is mentioned already, the

cases s = 1, 2 already cover 94% (for cubic) and 99% (for quintic) of all primes q, and our

algorithms can be used in most of the situations.

5 Conclusion

We proposed a new r-th root extraction method in Fq for q ≡ lrs+1 (mod rs+1) with 0 < l < r

which can be successfully implemented for small s. We presented our algorithms for the cubic

and quintic cases with s = 1, 2, and the given algorithms need only one exponentiation. For

the case s = 1, we did not need any precomputation but, when s ≥ 1, a precomputation of ξ

was needed. The implementation results imply that the proposed algorithms have significant

advantage over the existing algorithms. Our algorithm is useful for relatively small values of

s since the number of cases we need to consider is rs−1, which will increase exponentially as s

gets larger.

References

[1] D. Shanks ”Five Number-Theoretic Algorithms,” Proceeding of Second Manitoba Confer-

ence of Numerical Mathematics, pp.51-70, 1972.

[2] A. Tonelli, ”Bemerkung über die Auflösung Quadratischer Congruenzen”, Göttinger

Nachrichten, pp.344-346, 1891.

[3] L. Adleman, K. Manders and G. Miller, On taking roots in finite fields, Proc. 18th IEEE

Symposium on Foundations on Computer Science (FOCS), pp. 175-177, 1977

[4] M. Cipolla, “Un metodo per la risolutione della congruenza di secondo grado”, Rendiconto

dell‘Accademia Scienze Fisiche e Matematiche, Napoli, Ser. 3, vol. IX, pp. 154-163, 1903.

[5] D. H. Lehmer, “Computer technology applied to the theory of numbers”, In Studies in

Number Theory, Prentice-Hall Enblewood Cliffs, NJ pp.117-151, 1969.

[6] Z. Cao, Q. Sha, and X. Fan, Adlemen-Manders-Miller root extraction method revisited,

preprint, available from http://arxiv.org/abs/1111.4877, 2011

9

[7] A. O. L. Atkin, “Probabilistic primality testing”, summary by F. Morain, Inria Research

Report 1779, pp.159-163, 1992.

[8] S. Müller, “On the Computation of Square Roots in Finite Fields”, Designs, Codes and

Cryptography, vol. 31, pp. 301-312, 2004.

[9] F. Kong, Z. Cai, J. Yu, and D. Li, “Improved Generalized Atkin Algorithm for Computing

Square Roots in Finite Fields”, Information Processing Letters, vol. 98, no. 1, pp. 1-5,

2006.

[10] D. Han, D. Choi, and H. Kim, ”Improved Computation of Square roots in Specific Finite

Fields”, IEEE Transactions on Computers, vol. 58, no. 2, pp.188-196, 2009.

[11] N. Nishihara, R. Harasawa, Y. Sueyoshi, and A. Kudo, ”A remark on the computation of

cube roots in finite fields”, preprint, available at http://eprint.iacr.org/2009/457.pdf.

[12] SAGE, available at http://www.sagemath.org/index.html.

10

