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Abstract

In this paper we present a new method of choosing primitive elements for Brezing-

Weng families of pairing friendly elliptic curves with small rho-value, and we improve

on previously-known best rho-values of families [10] for the cases k = 16, 22, 28 and

46. Our construction uses �xed discriminants.

1 Introduction

1.1 Pairing friendly elliptic curves

Let E be an elliptic curve de�ned over a �nite �eld Fq and let r be a prime number.

Let k ≥ 1 be the smallest positive integer such that the group E[r] of r-torsion points

of E is contained in E(Fqk). Then the group µr of rth roots of unity lies in Fqk and

there exist non-degenerate bilinear pairings e : G1 × G2 → µr, where G1 and G2 are

suitable subgroups of E[r] of order r. The existence of such pairings makes it possible to

reduce the Elliptic Curve Discrete Logarithm Problem (ECDLP) [16], [11] on E to the

Discrete Logarithm Problem (DLP) on µr ⊂ F×
qk

for which there exist sub-exponential

time algorithms [1].
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On the other hand, on the constructive side, cryptographic protocols based on pair-

ings were �rst proposed in [13], [21], [5] and many other protocols have been proposed

and implementations need high speed algorithms and elliptic curves having prescribed

properties. Generally, the Tate pairing is preferred to the Weil pairing for the reason of

e�ciency. Other pairings are introduced more recently, many of which are special cases

of optimal pairings introduced by Vercauteren [22] and Hess [12].

To avoid the known attacks mentioned above, the integer k must be su�ciently large

in order that the DLP in F×
qk

is infeasible, but not so large that the computations in Fqk
become too slow.

We de�ne the embedding degree of an elliptic curve E the least positive integer k ≥ 1

such that r divides qk−1. From [2], we know that E[r] ⊂ E(Fqk) for k ≥ 2 and that elliptic

curves having of low embedding degree are very rare. There exists the heuristic asymptotic

formula for the number of pairing friendly elliptic curves, which explain concretely about

the rareness of such curves along the rho-values [6].

An elliptic curve is called pairing-friendly if r is suitable for cryptography and if k is

small. The following more precise de�nition suggested by Freeman, Scott et Teske [10].

De�nition 1.1. An elliptic curve E over Fq is said to be pairing friendly if following two

conditions are satis�ed:

(1) There exists a prime number r such that r ≥ √q and r divides ]E(Fq), and
(2) The embedding degree of E is bounded by log2(r)/8.

Because the embedding degree of a supersingular curve belongs to {1, 2, 3, 4, 6} [17],
[20], any supersingular curve having a subgroup of su�ciently large prime order is pairing

friendly. It is easy to construct examples of super-singular elliptic curves (See � 3 of [10]

for details). But for higher security levels higher embedding degrees are more appropriate

so ordinary elliptic curves must be used. The existence of an ordinary elliptic curve E

of embedding degree k over a �nite �eld Fq with q elements such that E(Fq) contains a

subgroup of order r implies existence of integers t, D and y such that

(1) q is a prime or a power of prime.

(2) r is a prime.

(3) t is relatively prime to q.

(4) (t− 1)2 +Dy2 ≡ 0 (mod r).
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(5) Φk(t− 1) ≡ 0 (mod r) where Φk(x) is the k-th cyclotomic polynomial.

(6) 4q − t2 = Dy2 where D ≥ 1 is a square-free integer, and y is an integer.

The integer t is the trace of the Frobenius endomorphism of E over Fq so that

#E(Fq) = q + 1 − t. Deuring [8] showed that, if t is an integer satisfying the condi-

tion (3), then there exists an ordinary elliptic curve over Fq the number of points of which
equals to q+ 1− t. The condition (6) means that the endomorphism ring of E is an order

in the imaginary quadratic �eld Q(
√
−D). Because the di�culty of explicit construction

of E increases rapidly with the size |D|, in practice |D| has to be small enough. So, it

is desirable to consider D as constant. Therefore we can formulate the problem of the

construction of pairing friendly ordinary elliptic curves as follows.

Given k and D, �nd the integers q, t, r and y that satisfy the conditions from (1) to (6).

For e�ciency, it is preferable that the �eld size q is as small as possible with respect to

r. So, as a measure of estimating elliptic curves, we de�ne rho-value of an elliptic curve

as follows

ρ =
log q

log r
. (1)

Since |t| ≤ 2
√
q, a rho-value is at least one. Naturally, the nearer to one is the rho-value,

the better is an elliptic curve estimated.

Fix an integer k ≥ 2 and a positive square-free integer D. A parametrized family of

pairing friendly elliptic curve is a system of polynomials having rational coe�cients r(x),

t(x), q(x) that represent simultaneously integers r, t, q that satisfy the conditions from

(1) to (6). If there exist in�nitely many solutions of the equation t(x)2 − 4q(x) = Dy2,

we call the family a sparse family, and furthermore if y can be parametrized as y(x) a

polynomial of x, we call the family a complete family. With the polynomials r(x) and

q(x) of a family, we de�ne the rho-value of the family by

ρx =
deg q(x)

deg r(x)
. (2)

A number of di�erent constructions of sparse families and complete families can be found

in the literature. A very detailed survey of results obtained up to about 2010 is in [10].
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1.2 The Brezing-Weng method

In [7], Brezing and Weng proposed a general method of constructing complete families

by means of algebraic extension of Q. We recall a mild generalization of the algorithm.

Fix an embedding degree k and a square-free positive integer D. A primitive k-th root of

unity is denoted by ζk. The following is a brief description of the Brezing-Weng algorithm.

Note that the output contains y(x) because it produces complete families.

Algorithm 1.2. Brezing-Weng method.

INPUT: k: positive integer, D: a square-free positive integer

OUTPUT: A complete family of elliptic curves (r(x), t(x), y(x), q(x))

1. Choose an irreducible polynomial r(x) such that
√
−D, ζk ∈ Q[x]/(r(x)).

Let α be the image of x in Q[x]/(r(x)) under the canonical isomorphism.

2. Calculate polynomials t(x) and y(x) ∈ Q[x] such that t(α) = ζk + 1 and y(α) =
(t(α)−2)

√
−D

−D .

3. Let q(x) = 1
4
(t(x)2 +Dy(x)2) ∈ Q[x].

4. If t(x) and y(x) represent integers, q(x) represents prime numbers, and r(x) repre-

sents almost prime numbers, then OUTPUT((r(x), t(x), y(x), q(x))).

Otherwise go to 1.

The element α in the algorithm is a primitive element of the �eld K = Q[x]/(r(x)).

We say that the polynomials r(x), t(x), y(x) and q(x) are associated to α.

The polynomial r(x) is often taken to be a cyclotomic polynomial, i. e. a root of unity

is taken as the primitive element of the �eld extension K/Q where K = Q(ζk,
√
−D).

Kachisa, Schaefer and Scott [14] have used primitive elements other than roots of unity to

construct some Brezing-Weng families having smaller rho-values. The article of Freeman,

Scott and Teske [10] propose various constructions of complete families based on the

method of Brezing-Weng. The table 5 of [10] presents the best rho-values of existing

families for k ≤ 50 known before about 2010. Improvements in rho-values arising from

so-called variable discriminant families have recently been obtained in [9].
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2 Primitive elements of the proposed form

2.1 Introduction

Fix an embedding degree k and let D be a square-free positive integer. Let ζk be a

primitive k-th root of unity. Let
√
−D a square root of −D. From now on K always

denotes the extension �eld Q(ζk,
√
−D). Note that K = Q(ζk) when

√
−D ∈ Q(ζk). The

conditions that
√
−D ∈ Q(ζk) are discussed in [18]. We consider an element of the form

α = α(a, b,D, k) = (a+ b
√
−D)ζk ∈ K (3)

where a and b are rational numbers. We �rst study the conditions α to be a primitive

element of the extension K/Q.

Remark 2.1. In some cases, α is a primitive element of K for some chances of ζk and
√
−D, but not for others. This can only happen when

√
−D ∈ Q(ζk). See the proof of

the Theorem 2.6 for details of the cases when this happens.

Proposition 2.2. Let α be as in (3). We can write the k-th power of the equality as

αk = A+B
√
−D, (4)

where A, B ∈ Q. If B 6= 0, then α is a primitive element of the extension K/Q.

Proof. Let r(x) be the minimal polynomial of α such that Q(α) ∼= Q[x]/(r(x)). From

(4), we know that α is a root of the polynomial r0(x) = x2k− 2Ax+A2 +DB2. If B 6= 0,

then from (4) we obtain
√
−D = xk−A

B
in Q[x]/(r(x)). From (3) and using the fact that

r(x) divides r0(x), we obtain a representation ζk = −bxk+1+(aB+Ab)x
B(a2+b2D)

in Q[x]/(r(x)). As a

consequence, because both
√
−D and ζk are in Q(α), we have K = Q(ζk,

√
−D) ⊆ Q(α).

By the de�nition of α, clearly Q(α) ⊆ K. Therefore K = Q(α). �

Remark 2.3. In the proof of the Proposition 2.2, we obtain the representations of ζk and√
−D in Q[x]/(r(x)) under the condition that B 6= 0, from which we obtain immediately

the polynomial representations t(x) = ζk + 1, y(x) =
√
−D(ζk−1)
−D and can compute q(x) =

1
4

(t(x)2 +Dy(x)2). This procedure gives an outline of our construction, which is detailed

in �2.2. In the cases where B = 0, there are triplets (a, b,D) such that α(a, b,D) is not a

primitive element. We shall discuss this in Theorem 2.6.
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Lemma 2.4. Let ξ = a + b
√
−D where a, b ∈ Q, b 6= 0 and D is a square-free positive

integer. Let k be a positive integer. Then ξk is a rational number if and only if one of

followings holds.

(i) 2|k and ξ = r
√
−D, or

(ii) 4|k and ξ = r(1±
√
−1), or

(iii) 3|k and ξ = r(1±
√
−3), or

(iv) 6|k and ξ = r(3±
√
−3),

for a nonzero rational number r.

Proof. Note that we have b 6= 0 and k > 0 in the assumption. De�ne T (a, b,D) =

{k ∈ Z|ξk ∈ Q}. We have |ξ| = |ξ̄| where ξ̄ is the complex conjugation of ξ, so
∣∣∣ ξ̄ξ ∣∣∣ = 1.

If k ∈ T (a, b,D), then k ∈ T (a,−b,D) also, and
(
ξ̄
ξ

)k
∈ {−1, 1}, because the quotient is

a rational number of absolute value 1. Therefore ξ̄
ξ
is a 2k-th root of unity contained in

the quadratic �eld Q(
√
−D).

(a) Suppose that D 6= 1, 3, then the only roots of unity contained in Q(
√
−D) are

1 and −1. We have then a − b
√
−D = a + b

√
−D or a − b

√
−D = −(a + b

√
−D). In

the �rst case, b = 0 which contradicts the assumption. In the second case, a = 0 and

T (a, b,D) = 2Z with ξ = b
√
−D.

(b) Suppose that D = 1. Let us write i for
√
−1. The roots of unities in Q(i) are ±1

and ±i. If a− bi = a+ bi, then we have b = 0, a contradiction. If a− bi = −(a+ bi), then

we have T (a, b,D) = 2Z with ξ = bi. If a− bi = ±i(a+ bi), then we have T (a, b,D) = 4Z
with ξ = a(1∓ i).

(c) Suppose that D = 3. Let us write j for 1+
√
−3

2
. The roots of unities in Q(

√
−3)

are j, j2, j3 = −1, j4 = −j, j5 = −j2, j6 = 1. In the cases of ±1, we obtain again

T (a, b,D) = 2Z with ξ = b
√
−3. If a − b

√
−3 = j±2(a + b

√
−3), then T (a, b,D) = 3Z

with ξ = a(1∓
√
−3). If a−bi = j±1(a+b

√
−3), then T (a, b,D) = 6Z with ξ = a

3
(3∓
√
−3).

�

Before discussing the main theorem, we recall some facts that will be used in the proof.

Let K = Q(ζk,
√
−D). Note that the extension K/Q is Galois because the extensions

Q(ζk)/Q and Q(
√
−D)/Q are both Galois [15]. Recall that an element α ∈ K is a

primitive element if and only if the only group element of Gal(K/Q) which �xes α is the

identity. Consider the action of Gal(K/Q) on α = (a+b
√
−D)ζk. There exists an injective
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homomorphism ψ : Gal(K/Q) → Gal(Q(
√
−D)/Q) × Gal(Q(ζk)/Q) ∼= { ±1} × (Z/

kZ)× via. σ 7→ (ε(σ), u(σ)) which acts as σ((a + b
√
−D)ζk) = (a + bε(σ)

√
−D)ζ

u(σ)
k .

If
√
−D /∈ Q(ζk) then ψ is surjective and is therefore an isomorphism, in which case

for all σ ∈ Gal(K/Q) there exists σ̃ such that ε(σ̃) = −ε(σ) and u(σ̃) = u(σ). But if
√
−D ∈ Q(ζk), the sign ε(σ) is no longer independent from u(σ).

To study the values of ε(σ) where
√
−D ∈ Q(ζk), we can use representation of

√
−D

in ζk. For an odd prime p who divides k, ζ
k
p

k as a primitive p-th root of unity satis�es the

equality of the p-th cyclotomic polynomial Φp(x) = xp−1+xp−2+· · ·+x+1 =
∏p−1

i=1 (x−ζ
ik
p

k ),

from which we obtain p = Φp(1) =
∏p−1

i=1 (1−ζ
ik
p

k ) = (−1)
p−1
2

∏ p−1
2

i=1 (ζ
ik
p

k −ζ
− ik

p

k )2. Therefore

(
∏ p−1

2
i=1 (ζ

ik
p

k − ζ
−ik
p

k ))2 = (−1)
p−1
2 p in Q(ζk). If 4|k then (ζ

k
4
k )2 = −1, and if 8|k then,

(ζ
k
8
k ζ

k
4
k (1 + ζ

k
4
k ))2 = 2. Like this we can represent the square roots of ±p, −1 and 2 in

terms of a primitive root of unity ζk. For more detailed description about this procedure,

refer to [18].

Lemma 2.5. Suppose that 4|k and
√
−D ∈ Q(ζk). Then the map σ : ζk 7→ ζ

k
2

+1

k belongs

to Gal(K/Q) and σ(
√
−D) = (−1)

k(D+1)
8

√
−D.

Proof. Since 4|k, we have gcd(k
2

+ 1, k) = 1, so the map σ : ζk 7→ ζ
k
2

+1

k belongs to

Gal(Q(ζk)/ζk). If D ≡ 3 (mod 4), then by above procedure we can choose ζk such that
√
−D =

∏
p|D
∏ p−1

2
j=0 (ζ

k
p
j

k − ζ
− k

p
j

k ) and, because k
p
are all even because k ≡ 0 (mod 4),

so
√
−D is invariant under σ, therefore ε(σ) = 1. If D ≡ 1 (mod 4), then we choose

ζk such that
√
−D = ζ

k
4
k

∏
p|D
∏ p−1

2
j=0 (ζ

k
p
j

k − ζ
− k

p
j

k ) and see that the exponent k
4
is even,

if k ≡ 0 (mod 8), and is odd if k ≡ 4 (mod 8) while the exponent k
p
is always even,

therefore ε(σ) = (−1)
k
4 . If D ≡ 2 (mod 4), then we must have 8|k and we choose ζk such

that
√
−D = ζ

k
8
k ζ

k
4
k (1 + ζ

k
4
k )(ζ

k
4
k )r

∏
p|D
∏ p−1

2
j=0 (ζ

k
p
j

k − ζ
− k

p
j

k ) and, because the exponent k
8
is

even, if k ≡ 0 (mod 16) and is odd, if k ≡ 8 (mod 16) while the exponent k
p
and k

4
are

always even, therefore ε(σ) = (−1)
k
8 . We can summarize all the results in one formula as

ε(σ) = (−1)
k(D+1)

8 . Note that ε(σ) takes always on integers even if D is even because in

such a case 8|k. �

Theorem 2.6. Let a, b ∈ Q and D is a square-free positive integer and suppose b 6= 0.

There always exists a choice of ζk and
√
−d that α = (a+b

√
−D)ζk is a primitive element

of the �eld extension Q(ζk,
√
−D)/Q, except in the following cases:

(i) D = 1, |a| = |b| and k ≡ 8 (mod 16).
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(ii)
√
−D /∈ Q(ζk), a = 0 and k ≡ 0 (mod 4).

(iii)
√
−D ∈ Q(ζk), a = 0, 4|k and k(D + 1) ≡ 8 (mod 16).

Proof. If we take k-th power of the equality α = (a + b
√
−D)ζk, we obtain αk =

A+B
√
−D where A,B ∈ Q. If B 6= 0, by the proposition 2.2, α is a primitive element.

Now suppose B = 0. By the lemma 2.4 this occurs if and only if one of the followings

holds : (a) |a| = |b| and D = 1 with 4|k, or (b) |a| = |b| and D = 3 with 3|k, or (c)

|a| = 3|b| and D = 3 with 6|k, or (d) a = 0 and 2|k. We now study the conditions in

order for α to be a primitive element in each of these cases.

(a) In this case we can write α = b(1+ε0
√
−1)ζk with ε0 �xed as 1 or −1. If we choose

ζk such that ζ
k
4
k =

√
−1, then α = b(ζk + ζ

k
4

+1

k ), and the only non-trivial automorphism

which �xes α is ζk 7→ ζ
k
4

+1

k with (k
4

+ 1)2 ≡ 1 (mod k), which is possible only when k ≡ 8

(mod 16). If we choose ζk such that ζ
3k
4
k =

√
−1, then α = b(ζk + ζ

3k
4

+1

k ) can be �xed by

the automorphism ζk 7→ ζ
3k
4

+1

k with (3k
4

+ 1)2 ≡ 1 (mod k), and is possible when k ≡ 8

(mod 16) again. Therefore α = b(1±
√
−1)ζk cannot be a primitive element when k ≡ 8

(mod 16).

(b) We can write, up to the sign of b, α = b(−1 + ε0
√
−3)ζk with ε0 �xed as 1 or −1.

When k 6≡ 6 (mod 9), we choose ζk such that ζ
k
3
k = −1+ε0

√
−3

2
, then α = b(−1+ε0

√
−3)ζk =

2bζ
k
3

+1

k is primitive because gcd(k
3

+ 1, k) = 1. When k 6≡ 3 (mod 9), we choose ζk

such that ζ
2k
3
k = −1+ε0

√
−3

2
, then α = b(−1 + ε0

√
−3)ζk = 2bζ

2k
3

+1

k is primitive because

gcd(2k
3

+ 1, k) = 1.

(c) We can write, up to the sign of b, α = b(3 + ε0
√
−3)ζk with ε0 �xed as 1 or −1.

When k 6≡ 24 (mod 36), we choose ζk such that ζ
k
6
k = 1+ε0

√
−3

2
, then α = b(3 +

√
−3)ζk =

2b(ζ
k
6

+1

k +ζk) is primitive. Indeed the only non-trivial automorphism which �xes α is ζk 7→
ζ

k
6

+1

k with (k
6

+ 1)2 = 1 (mod k), which exists only when k ≡ 24 (mod 36). When k 6≡ 12

(mod 36), we choose ζk such that ζ
5k
6
k = 1+ε0

√
−3

2
, then α = b(3 +

√
−3)ζk = 2b(ζ

5k
6

+1

k + ζk)

is primitive by the similar reason.

(d) Suppose at �rst that 4 - k. Then we can take k
2
-th power of α = b

√
−Dζk to

obtain α
k
2 = B

√
−Dζk with B 6= 0 ∈ Q because k

2
is odd, so that we have

√
−D = α

k
2

B

and ζk = −α
k
2 +1

bBD
, which shows that α is a primitive element.

Next we suppose that 4|k. Then we know that Gal(Q(ζk,
√
−D)/Q) contains an

element σ such that σ(ζk) = ζ
k
2

+1

k = −ζk because gcd(k
2
+1, k) = 1. Moreover, if σ satis�es

the condition σ(
√
−D) = −

√
−D, then σ will be a non-trivial automorphism satisfying
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σ(
√
−Dζk) = (−

√
−D)(−ζk) =

√
−Dζk. When

√
−D /∈ Q(ζk), we have Gal(Q(

√
−D)/

Q) ∼= {±1} × (Z/kZ)∗, so such an element σ always exists and therefore α cannot be

primitive. When
√
−D ∈ Q(ζk), we know by Lemma 2.5 that α is not primitive if and

only if σ(
√
−D) = (−1)

k(D+1)
8

√
−D = −

√
−D, from which we obtain k(D + 1) ≡ 8

(mod 16). �

2.2 The main strategy

In the remark 2.3, we mentioned the idea to �nd the polynomial representations of
√
−D and ζk in Q[x]/(r(x)). We now discuss the method of construction more precisely.

For an embedding degree k and a square-free positive integer D, we de�ne

n = n(k,D) := the least positive divisor of k such that ζnk ∈ Q(
√
−D).

Then, taking the n-th power of the equality α = (a + b
√
−D)ζk, we obtain αn =

(a + b
√
−D)nζnk = A + B

√
−D ∈ Q(

√
−D) for A,B ∈ Q. Then α is a root of the

polynomial r0(x) = x2n − 2Axn + A2 + DB2. The minimal polynomial r(x) of α is a

factor of r0(x). Assume that we have chosen a, b,D and k such that B does not vanish.

Then we obtain the representations
√
−D = αn−A

B
and ζk = −bαn+1+(aB+Ab)α

B(a2+b2D)
in Q(α) as

in Proposition 2.2. It follows the polynomial representations in Q[x]/(r(x)),

t(x) = ζk + 1 =
−bxn+1 + (aB + Ab)x

B(a2 + b2D)
+ 1. (5)

y(x) = −
√
−D(t(x)− 2)

D
= −ax

n+1 + (bDB − aA)x

DB(a2 +Db2)
+
xn − A
DB

(6)

These polynomials give a candidate for a Brezing-Weng family together with the minimal

polynomial r(x) and the prime representing polynomial q(x) = 1
4

(t(x)2 +Dy(x)2). If t(x)

and y(x) represent integers, q(x) represents prime numbers and r(x) represent almost

prime numbers, then the polynomials give a Brezing-Weng family of rho-value

ρx =
deg q(x)

deg r(x)
=

2 max {deg t(x), deg y(x)}
deg r(x)

=
2(n+ 1)

e(k,D)ϕ(k)
, (7)

where ϕ is the Euler totient function and e(k,D) is 1 or 2 according to whether
√
−D

belongs to Q(ζk) or not.

Note that above representations are the results of reduction modulo r0(x) in the place

of reduction modulo r(x), so that the degrees of the polynomials t(x) and y(x) are both
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equal to n + 1, greater by one than the degree of the second most signi�cant term of

r0(x). Because the rho-value is given by (7), the formula is interesting only when n+ 1 <

deg r(x) = e(k,D)φ(k). Otherwise we can reduce (5) and (6) modulo r(x) which results in

a smaller rho-value, although the resulting t(x) and y(x) may no longer represent integers.

We present rho-values obtained by this construction in some interesting cases in �3,

and treat the problem of the representability of integers of the polynomials in �4.

2.3 Some alternatives

On the other hand the analysis of the case (a) in the proof of the Theorem 2.6 suggests

an alternative construction where 4|k and D = 1. Suppose k 6≡ 8 (mod 16), then by the

theorem α is a primitive element. Since k ≡ 4 (mod 8), we have gcd(k
4

+ 2, k) = 1.

Let u be an integer such that u(k
4

+ 2) ≡ 1 (mod k). Because gcd(u, k) = 1, ζuk is

also a primitive root of unity, so we can let
√
−1 = ζ

u k
4

k . Let α = b(1 +
√
−1)ζuk .

Taking the square of this equality we obtain α2 = 2b2
√
−1ζ2u

k = 2b2ζ
u( k

4
+2)

k = 2b2ζk, and√
−1 = (−1)

k+4
8 ζ

k
4
k = (−1)

k+4
8

x
k
2

2
k
4 b

k
2
, from which we have

t(x) ≡ x2

2b2
+ 1, y(x) ≡ x

k
2

+2

2
k
4

+1b
k
2

+2
− x

k
2

2
k
4 b

k
2

(mod r(x)), (8)

where r(x) is the minimal polynomial of α. Note that y(x) is determined up to sign.

Because α is in Q(ζk), the minimal polynomial r(x) will be a polynomial factor of degree

ϕ(k) of Φk(
x2

2b2
) where Φk is the k-th cyclotomic polynomial. Because 4|k and deg(t(x)) =

2, to have a good rho-value, we need that y(x) is of degree near ϕ(k)
2
, which is generally

not likely to happen. The simplest case where k = 4 and a = b = 1 gives the polynomials

t(x) = y(x) = x, q(x) = x2

2
, r(x) = x2 − 2x + 2 that make a family having ρx = 1.

This is a supersingular family over a �eld of characteristic two. The case where k = 12

and a = b = 1 gives another example of ρx = 1, t(x) = x2

2
+ 1, y(x) = −1

2
x2 + x − 1,

q(x) = 1
8
x4 − 1

4
x3 + 3

4
x2 − 1

2
x + 1

2
, r(x) = x4 − 2x3 + 2x2 − 4x + 4. But in this case q(x)

does not take integer values, so it does not make a family.

On the other hand, because all the exponents of b in the polynomials in (8) are even,

if we take b =
√
C for some square-free C ∈ Z, the polynomials t(x) and y(x) still

remain in Q[x]. If we take C = D for another D 6= 1 such that
√
−D ∈ Q(ζk), then

α = (
√
D +

√
−D)ζk. By the similar reason as above, the families constructed are not

expected to have good rho-values generally. But if we apply this primitive element to the

case where k = 12 and D = 3 we obtain a family of ρx = 1, which is found in [3].

10



If we take C such that
√
−C /∈ Q(ζk), then Φk(

x2

2C
) will remain irreducible therefore as

the minimal polynomial of α of degree 2ϕ(k). This alternative can give acceptable families

of ρx = k+4
2ϕ(k)

. For example, if we choose k = 4p for a prime p, we have ρx = 1 + 2
p−1

.

3 Application of the main strategy to some interesting cases

3.1 The cases where k is odd and
√
−D /∈ Q(ζk)

We continue using the symbols de�ned in �2. Fix D such that
√
−D /∈ Q(ζk). Because

k is odd and
√
−D /∈ Q(ζk), we have n = k. By the process described in �2.2, we obtain

t(x) =
−bxk+1 + (aB + bA)x

B(a2 +Db2)
+ 1,

y(x) = −ax
k+1 + (bDB − aA)x

DB(a2 +Db2)
+
xk − A
DB

∈ Q[x].

(9)

Because
√
−D /∈ Q(ζk), we have deg r(x) = 2ϕ(k) and deg q(x) = 2k + 2. So we have

ρx =
deg q(x)

deg r(x)
=
k + 1

φ(k)
. (10)

From this formula we observe that the bigger the size of each prime factor and the

smaller the number of the prime factors, the nearer the approaches rho-value to 1. For

example, for k = p` a power of a prime, we have ρx ≈ 1 + 1
p−1

. In particular, when k = p

a prime, the rho-value is 1 + 2
p−1

, from which come the best results. We see that the

rho-value depends much on the least size prime factor of k. For example, if k is even,

then the prime factor p = 2 makes rho-value bigger than 2 without exception, so this

method is useless for even k. Table 1 shows the rho-values obtained by the construction

for odd embedding degrees ≤ 60. In the table, we see also that the cases where k contains

prime factors 3, 5 give relatively large rho-values.

k 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
ρx 2.000 2.000 1.500 1.333 1.667 1.200 1.167 2.000 1.125 1.111 1.833 1.090 1.300 1.556 1.071

k 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59
ρx 1.067 1.700 1.500 1.056 1.667 1.050 1.048 1.917 1.044 1.191 1.625 1.039 1.400 1.611 1.035

Table 1: ρx obtained for k odd < 60,
√
−D /∈ Q(ζk), n = k
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Remark 3.1. In the table 1, we can see that the ρx are the same as those given in [10]

when k = 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49. Our results are worse in

the cases where k contains 3 as we have predicted, for which cases we have to use another

powering exponent n. See �3.3 for the cases where 3 divides k.

3.2 The cases where k is even and
√
−D /∈ Q(ζk)

Note that these cases contain all of our improved results. Fix D such that
√
−D /∈

Q(ζk). Because k is even and
√
−D /∈ Q(ζk), we have n = k

2
. By the process described in

�2.2, we obtain

t(x) =
−bx k

2
+1 + (aB + bA)x

B(a2 +Db2)
+ 1,

y(x) = −ax
k
2

+1 + (bDB − aA)x

DB(a2 +Db2)
+
x

k
2 − A
DB

∈ Q[x].

(11)

Because deg r(x) = 2ϕ(k) and deg q(x) = k + 2, we have

ρx =
k + 2

2φ(k)
. (12)

In this case two cases are particularly interesting. For k = 2`p (` ≥ 1) where p is a

prime ≥ 3, we have ρx = 1 + 1
p−1

(
1 + 1

2`−1

)
. For k = 2`(` ≥ 1), we have ρx = 1 + 1

2`−1 .

Table 2 shows the rho-values that can be obtained by our construction �3.2 for even

embedding degrees ≤ 60.

k 2 4 6 8 10 12 14 16 † 18 20 22 † 24 26 28 † 30
ρx 2.000 1.500 2.000 1.250 1.500 1.750 1.333 1.125 1.667 1.375 1.200 1.625 1.167 1.250 2.000

k 32 34 36 38 40 † 42 44 46 † 48 50 52 54 56 58 60
ρx 1.063 1.125 1.583 1.111 1.313 1.833 1.150 1.091 1.563 1.300 1.125 1.556 1.208 1.071 1.938

Table 2: ρx obtained for k even,
√
−D /∈ Q(ζk), n = k

2

Remark 3.2. In the table 2, the † marked entries mean that they are the ρx smaller than

those of previously known families. We see that k = 16, 22, 28, 40 and 46 are such cases.

We o�er some examples for these cases in �5 except for k = 40.

Remark 3.3. For the other cases k = 4, 8, 10, 14, 20, 26, 32, 34, 38, 44, 50, the ρx are the

same as those given in [10]
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3.3 The cases where 3|k, 4|k or 6|k and
√
−D ∈ Q(ζk)

From the previous constructions �3.1 and �3.2, resulting rho-values are relatively large

where the k contains small prime factors like 2, 3 or 5. But we can still improve the

result by taking n less than k for certain cases. Indeed, the improvements of �3.3 were

for the cases where we can take n = k
2
, i.e where k is even. To lower n, we need that

Q(ζnk ) ⊂ Q(
√
−D). The only cases except n = k, k

2
are the cases, (a) 3|k, D = 3, n = k

3
,

(b) 4|k, D = 1, n = k
4
, (c) 6|k, D = 3, n = k

6
. These are possible because the cyclotomic

�elds Q(ζ3) = Q(ζ6) and Q(ζ4) are quadratic �elds Q(
√
−3) and Q(

√
−1) respectively.

Therefore, this kind of trial does not work for the case where 5|k.
We construct families along the method described in �2.2, and have

ρx =


2k+6
3φ(k)

if 3|k
k+4

2φ(k)
if 4|k

k+6
3φ(k)

if 6|k

(13)

Table 3, table 4 and table 5 shows the rho-values for k ≤ 60 when n = k
3
, k

4
and k

6

for the cases where 3|k, 4|k and 6|k, respectively. We put the rho-values less than 2 in

the tables. We can verify that the rho-values are relatively large when n = k
3
and 2|k,

and also when n = k
2
and 3|k by the small factor e�ects that we have mentioned in the

analysis in �3.1. This e�ect does not appear when n = k
6
.

k 9 15 21 27 33 39 45 51 57
ρx 1.333 1.500 1.333 1.111 1.200 1.167 1.333 1.125 1.111

Table 3: ρx obtained when 3|k,
√
−D =

√
−3 ∈ Q(ζk), n = k

3

Remark 3.4. In the table 3, we can see that the ρx are the same as those given in [10]

when k = 9, 15, 21, 27, 33, 39, 45.

k 8 16 20 24 28 32 36 40 44 48 52 56
ρx 1.500 1.250 1.500 1.750 1.333 1.125 1.666 1.375 1.200 1.625 1.167 1.250

Table 4: ρx obtained when 4|k,
√
−D =

√
−1 ∈ Q(ζk), n = k

4
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Remark 3.5. In the table 4, we can see that the ρx are the same as those given in [10]

when k = 16, 28, 40. Note that all these cases are contained in the cases of �3.2 and better

results are shown in the table 2.

k 6 12 18 24 30 36 42 48 54 60
ρx 2.000 1.500 1.333 1.250 1.500 1.167 1.333 1.125 1.111 1.375

Table 5: ρx obtained when 6|k,
√
−D =

√
−3 ∈ Q(ζk), n = k

6

Remark 3.6. In the table 5, we can see that the ρx are the same as those given in [10]

when k = 18, 24, 30, 36, 42, 48. Note that in these cases, these results are better than

those of �3.2.

Remark 3.7. In the case where 8|k, because
√
−2 ∈ Q(ζk), we can also take α = (a +

b
√
−2)ζk using n = k

8
.

4 Evaluation of the polynomials and the algorithm

In this section, we discuss the structure and calculation of the set of rational numbers

x0 for which f(x0) is an integer, f being a polynomial with rational coe�cients. Then

we apply this to the polynomials r(x), t(x), y(x) and q(x) appearing in the polynomial

families. We also recall the situation in which r and q represent primes, as predicted by

the Bateman-Horn heuristics [4] (see also [10], �2.1).

Numerical examples will be given in �5.

4.1 Study of polynomials representing integers

The problems of the representations of integers and prime numbers when the variable

x takes on integer values are well treated in [10] in practical points of view. In our

construction, all variables are de�ned as rational variables. So we discuss brie�y how to

reduce this case to that of integral variables. We begin with a de�nition.

De�nition 4.1. Let f(x) ∈ Q[x]. We say that f represents integers, if f(Q) ∩ Z 6= ∅.

De�ne

VZ(f) = f(Q) ∩ Z,

DQ(f) = f−1(VZ(f)) = {x ∈ Q|f(x) ∈ Z}.
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If f(x0) ∈ Z then f(x1) ∈ Z for every rational number x1 congruent to x0 modulo the

common denominator of the coe�cients of f(x). We deduce that if f represents integers,

then |f(Q) ∩ Z| =∞.

De�nition 4.2. Let m ≥ 1. Two m-tuples of polynomials (f1, · · · , fm) and (g1, · · · , gm)

are said to be a�nely equivalent if there exists λ, µ ∈ Q with λ 6= 0 such that gi(x) =

fi(λx + µ) for all i ∈ {1, . . . ,m}. When this is the case, we write (f1, . . . , fm) ∼
(g1, . . . , gm).

Note that if f(x) ∼ g(x), then we have VZ(f) = VZ(g) clearly.

Let f(x) a polynomial of degree ≥ 2 in Q[x] and write

f(x) =
g(x)

m
where g(x) = gnx

n + gn−1x
n−1 + · · ·+ g1x+ g0 ∈ Z[x],

gcd(m, gn, · · · , g0) = 1 and m ≥ 1 is an integer.

(14)

We want to �nd DQ(f).

For a rational number u
v
, where u, v ∈ Z and gcd(u, v) = 1, if f(u

v
) ∈ Z, then we need

that gnu
n+gn−1u

n−1v+ · · ·+g1uv
n−1 +g0v

n ≡ 0 (mod mvn). Since gcd(u, v) = 1, v must

divide gn.

Consequently, for every element x1 ∈ DQ(f), we can let x1 = w
gn

where w ∈ Z and

gcd(w, gn) ≥ 1. Substituting this x1 into (14), we obtain

wn + gn−1w
n−1 + · · ·+ g0g

n−1
n ≡ 0 (mod mgn−1

n ). (15)

If an integer w = w1 is a solution of the congruence (15), then the rational numbers

x1 = w1

gn
(mod mgn−2

n ) satis�es f(x1) ∈ Z. This process gives the set DQ(f).

Proposition 4.3. (i) If a polynomial f(x) ∈ Q[x] is of the form f(x) = g(x)
m

where

m ∈ Z and g(x) ∈ Z[x] has a leading coe�cient 1 or −1, then DQ(f) ⊂ Z.

(ii) For a given polynomial f(x) ∈ Q[x], we can determine explicitly a polynomial h(x) ∈
Q[x] such that VZ(f) = VZ(h) and DQ(h) ⊂ Z.

Proof. (i) By the above discussion, the denominator of an element of DQ(f) should

divides the leading coe�cient of g(x). So, if the leading coe�cient of g(x) is 1 or −1,

then we have DQ(f) ⊂ Z.
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(ii) Suppose that f(x) is of the form (14). By the change of variable x 7→ x
gn
, we obtain

a polynomial h(x) = xn+gn−1xn−1+gn−2gnxn−2+···+g1gn−2
n x+g0g

n−1
n

gn−1
n m

. We have VZ(h) = VZ(f)

because h(x) = f( x
gn

) ∼ f(x), and DQ(h) ⊂ Z because h(x) satis�es the conditions of (i).

�

De�nition 4.4. Let us we write a polynomial f(x) ∈ Q in the form (14). Then f(x) is

called normalized if the leading coe�cient of g(x) is 1 or −1. If a normalized polynomial

h(x) is a�nely equivalent to a polynomial f(x), we say that h(x) is a normalization of

f(x), and the polynomial f( x
gn

) is called the standard normalization of f(x).

In view of the Proposition 4.3, to �nd VZ(f) for a polynomial f(x) in Q[x], we can

work with its standard normalization.

4.2 Application to the polynomials t(x), y(x), r(x), q(x).

In our construction, we assumed that x, a, b take rational values, using � 4.1, we now

see that they can be assumed to be integers.

Proposition 4.5. Let rα(x), tα(x), yα(x), qα(x) be the polynomials associated to α = (a+

b
√
−D)ζk where a, b ∈ Q and b 6= 0 as in �2.2. Then there exists α∗ = (a∗ + b∗

√
−D)ζk,

where a∗, b∗ ∈ Z and b∗ > 0 such that the associated polynomials rα∗(x), tα∗(x), yα∗(x)

and qα∗(x) satisfy (rα(x), tα(x), yα(x), qα(x)) ∼ (rα∗(x), tα∗(x), yα∗(x), qα∗(x)).

Proof. Let α = (a + b
√
−D)ζk, where a, b ∈ Q, be a primitive element. Let c ∈ Z,

c > 0 be such that ac and bc are integers. It su�ces to take α∗ = cα choosing the sign of

c so that bc > 0. �

In view of Proposition 4.5, we assume from now on that a, b ∈ Z and that b > 0.

Then the problem of �nding DQ(t) ∩DQ(y) ∩DQ(q) ∩DQ(r) is related to the solvability

of a system of polynomial congruences modulo each denominator. The main problem is

to solve the system of two congruences corresponding (5) and (6) as follows.

− bxn+1 + (aB +Ab)x ≡ 0 (mod B(a2 + b2D)),

axn+1 − (a2 +Db2)xn + (bDB − aA)x+A(a2 +Db2) ≡ 0 (mod DB(a2 +Db2)).
(16)

In order to determine DQ(t) ∩ DQ(y) ∩ DQ(q) ∩ DQ(r) ⊂ Z, it su�ces that one of

t(x), y(x), r(x) and q(x) is normalized. So we can replace the congruences (16) by those

associated to a normalized tuples of polynomials. Note that the change of variable for the

normalization should be simultaneous for multiple congruences.
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Proposition 4.6. In the cases of �3.1 and �3.2, i.e. when n = k or k
2
, the polynomial

t(x) is normalized.

Proof. In these cases we have (a + b
√
−D)n = ±(A + B

√
−D) with A,B ∈ Z. From

the binomial expansion of the left hand side we obtain B = b
∑bn

2
c

r=0

(
n

2r+1

)
an−2r−1b2r(−D)r,

from which we �nd that b always divide B. Hence, (5) changes to t(x) = −xn+1+(aB′+A)x
B′(a2+Db2)

+1

where B′ = B
b
∈ Z, which is a normalized polynomial. �

So for the constructions of �3.1 and �3.2, we need not a normalization process sepa-

rately. Note that for other constructions �3.3, this proposition is not true.

We obtain the solutions of the congruences (16) in the form x = x0 + NX where

x0 and N are �xed integers and X is a integer variable. We substitute this into t(x),

y(x) and r(x) to obtain polynomials T (X) = t(x0 +NX), Y (X) = y(x0 +NX), R(X) =

r(x0 + NX) ∈ Z[X]. Then the divisibility conditions Φk(t(x) − 1) ≡ 0 (mod r(x)) and

(t(x)− 1)2 +Dy(x)2 ≡ 0 (mod r(x)) that hold in the ring Q[x] become

Φk(T (X)− 1) = G(X)R(X), and (T (X)− 1)2 +DY (X)2 = H(X)R(X), (17)

for some polynomials G(X), H(X) ∈ Q[X]. Note that R(X) ∈ Z[X] automatically

because r(x) ∈ Z[x]. Because Φk(T (X) − 1), (T (X) − 1)2 + DY (X)2, R(X) are all in

Z[X], we can write, by an application of the Gauss' lemma on polynomial [15], that

G(X)R(X) = c(G)c(R)G1(X)R1(X) and H(X)R(X) = c(H)c(R)H1(X)R1(X) where

G1(X), H1(X) and R1(X) are primitive polynomials ∈ Z[x], and c(G)c(R), c(H)c(R) ∈ Z.
Here c(F ) means the content of the polynomial F (X). Therefore we can write

Φk(T (X)− 1) = G2(X)R1(X), and (T (X)− 1)2 +DY (X)2 = H2(X)R1(X), (18)

for G2(X), H2(X), R1(x) ∈ Z[x]. So if we replace R(X) by R1(x), the divisibility condi-

tions hold in the ring Z[X], so that the divisibility conditions also hold among the integers

represented by the corresponding polynomials.

Lastly, if Q(X) = q(x0 +NX) = 1
4
{T (X)2 +DY (X)2} represents primes we obtain a

family. Note that for a pair of integers t and y randomly obtained, the probability that

t2 +Dy2 ≡ 0 (mod 4) is 1
2
when D ≡ 3 mod 4, and is 1

4
when D ≡ 1 mod 4.
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4.3 Algorithmic and computational aspects

The following algorithm describes the method of �nding families of pairing friendly

elliptic curves by the main strategy (�2.2). We assume that the inputs are chosen so that

one of the exceptional cases in the Theorem 2.6 does not occur.

Algorithm 4.7. Constructing families of pairing-friendly elliptic curves - The main strat-

egy.

INPUT: k, n: positive integers, D: a square-free positive integer, L,M : positive integers

OUTPUT: A list of complete families of elliptic curves (r(x), t(x), y(x), q(x))

or an empty list ∅
VARIABLES: a, b, n, X, LIST .

1. If 2 - k then

If 3 - k then let n = k, otherwise let n = k
3
.

Else if 2|k then

If 3 - k then let n = k
2
, otherwise let n = k

6
.

(Optional: If 4|k and 3 - k then we can let n = k
4
)

2. Set LIST = ∅.

3. For a from −L to L, b from 1 to M do

3.1. Let α = (a+ b
√
−D)ζk.

3.2. Find A and B such that A+B
√
−D = αn.

3.3. Let t(x) = −bxn+1+(aB+Ab)x
B(a2+b2D)

+ 1,

y(x) = −axn+1+(bDB−aA)x
DB(a2+Db2)

+ xn−A
DB

,

r0(x) = x2n − 2Axn + A2 +DB2.

3.4. Find the minimal polynomial r(x) of α from the factors of r0(x).

3.5. Replace the polynomials r(x), t(x), y(x) by their normalizations.

Let t(x) = g1(x)
m1

, y(x) = g2(x)
m2

for g1, g2 ∈ Z[x], m1,m2 ∈ Z.
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3.6. Find the integer solutions of the congruences.

g1(x) ≡ 0 (mod m1), g2(x) ≡ 0 (mod m2).

Let the solutions x = xi +NiX (i = 1, · · · , `).

3.7. For i from 1 to ` do

3.7.1 Let T (X) = t(xi +NiX), Y (X) = y(xi +NiX),

Q(X) = T (X)2+DY (X)2

4
, R(X) = r(xi +NiX).

3.7.2 If Q(X) represent prime numbers then let R1(X) = R(X)
c(R(X))

, and

add (R1(x), T (x), Y (x), Q(x)) to LIST .

4. OUTPUT(LIST ).

5 Examples

In this section, we give some example families constructed by the proposed method.

First four examples where n = k
2
break the records of ρx values when k = 16, 22, 28 and 46.

The other three examples for the cases where 3|k, 4|k and 6|k respectively, are o�ered to

show that our method is useful for another k. The computations are performed by codes

of GP/PARI calculator version 2.3.4 in a computer of 4 GHz CPU and 6 GB memory.

Example 5.1. k = 16, D = 19, n = k
2
, a = 1, b = −9,

r(x) = x16 + 11015986347776x8 + 31634849063620633600000000,

t(x) = 1
44704166510080 (−x

9 − 5478964494336x+ 44704166510080),

y(x) = 1
7644412473223680 (x

9 − 1540x8 + 50183131004416x− 8482309487787520),

q(x) = 1
7988659201746791536974888960 (x

18 − 2x17 + 1540x16 + 11015986347776x10 − 200732524017664x9

+ 16964618975575040x8 + 31634849063620633600000000x2 − 1042363673939361057535557632x

+ 48717667557975775744000000000).

We see that ρx = 1.125, and t(x), y(x) represent integers and q(x) represents primes

and r(x) represents almost primes where x = 535165001349530860+79886592017467915369748889

60X, etc. for X ∈ Z. For example, we obtain a numerical example when X = 88,

r0 = 218728147929748106011356890353 · · · 101277903139234516363115960577 (1447-bit),

t0 = −938125837401756790742311747438 · · · 417955118448094516057864297727,

q0 = 220162984677250004436664961339 · · · 994584081041965620905462655397 (1692-bit), with ρ = 1.170.

For k = 16, another parameters D = 83, n = k
2
, a = 1, b = 9 also gives an example.
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Example 5.2. k = 22, D = 3, n = k
2
, a = −3, b = 2

r(x) = x20 + 6x19 + 15x18 − 36x17 − 531x16 − 2430x15 − 3429x14 + 30456x13 + 254745x12

+ 888894x11 − 16281x10 + 18666774x9 + 112342545x8 + 282053016x7 − 666875349x6 − 9924365430x5

− 45541810251x4 − 64839187476x3 + 567342890415x2 + 4765680279486x+ 16679880978201,

t(x) = − 1
341901x

12 − 25740
469 x+ 1,

y(x) = 1
683802x

12 + 1
97686x

11 + 76751
2814 x+ 25673

134 ,

q(x) = 1
267191528688x

24 + 1
44531921448x

23 + 1
12723406128x

22 + 25673
183258936x

13 + 76751
91629468x

12 + 25673
8726616x

11

+ 282475249
215472 x2 + 1963530103

251384 x+ 1977326743
71824 .

We see that ρx = 1.200, and t(x), y(x) represent integers and q(x) represents primes

and r(x) represents almost primes when x = 17937045 + 267191528688X, etc. for X ∈ Z. For

example, we obtain a numerical example when X = 99,

r0 = 375682463649294937725331452708 · · · 672541116962515831894632593221 (835-bit),

t0 = −343239858738915685119553839795 · · · 765440417453761981253691221920,

q0 = 515434502743726638701574169825 · · · 673432678427415474854085670147 (1032-bit), with ρ = 1.235.

For k = 22, another parameters D = 1, n = k
2
, a = 1, b = 2 also gives an example.

Example 5.3. k = 28, D = 11, n = k
2
, a = −1, b = 1,

r(x) = x24+20x22+256x20+2240x18+7936x16−163840x14−4419584x12−23592960x10+164560896x8+

6688604160x6 + 110075314176x4 + 1238347284480x2 + 8916100448256

t(x) = 1
106070016 (x

15 + 11763712x+ 106070016)

y(x) = 1
1166770176 (−x

15 − 12x14 − 117833728x− 247234560)

q(x) = 1
41253110412214272 (x

30+2x29+12x28+41205760x16+471334912x15+494469120x14+1283918464548864x2+

7143019702648832x+ 15407021574586368)

We see that ρx = 1.250 and t(x), y(x) represent integers and q(x) represents primes

and r(x) represents almost primes where x = 40836966312 + 41253110412214272X, etc. for

X ∈ Z. For example, we obtain a numerical example when X = 0,

r0 = 445723448688461716904639853900...403683109586857259723050307457 (738-bit),

t0 = 138105013027001834189171103639...100758282632109300046580879033,

q0 = 520172580657885019307442495391...625440517816648629354812696407, (1003-bit), with ρ = 1.280.

Example 5.4. k = 46, D = 1, m = 2, a = −3, b = −2,

r(x) = x44 + 6x43 + 23x42 + 60x41 + 61x40 − 414x39 − 3277x38 − 14280x37 − 43079x36 − 72834x35 +

123023x34 + 1684980x33 + 8510581x32 + 29158746x31 + 64314923x30 + 6825840x29 − 795138959x28 −

4859569674x27 − 18820611577x26 − 49749263700x25 − 53827631699x24 + 323774637906x23 +

20



2642407039523x22+4209070292778x21−9096869757131x20−109299132348900x19−537535487250697x18−

1804324202968482x17 − 3837983883551831x16 + 428311337279280x15 + 52463658509849483x14

+ 309213903674466258x13 + 1173255861418754269x12 + 3019754420744464260x11 +

2866200326022980063x10 − 22059605513540155002x9 − 169618237319539670831x8 −

730934552241216009960x7 − 2180570228293280338957x6 − 3581272190623873904262x5

+ 6859779824069400980869x4 + 87715217422526766640620x3 + 437114166822258387092423x2 +

1482387174440702356226478x+ 3211838877954855105157369,

t(x) = 1
34351291513799 (x

24 − 11645371944360x+ 34351291513799),

y(x) = 1
68702583027598 (3x

24 + 13x23 − 584824319281x− 48335960735283),

q(x) = 1
1452321512204306699086046032 (x

48 + 6x47 + 13x46 − 7436301651582x25 − 2339297277124x24 −

96671921470566x23 + 41753905413413116367045797x2 − 241825572377769459828769698x+

542800770374370512771595361).

We see that ρx = 1.090 and t(x), y(x) represent integers and q(x) represents primes and
r(x) represents almost primes when x = 960188679654379+1452321512204306699086046032X, etc.

for X ∈ Z. For example, we obtain a numerical example when n = 26,
r0 = 351228515982078375300312584394 · · · 972546169771999566672910546453 (4094-bit),

t0 = 205552975863170468196803843344 · · · 365732061339454329157455437520,
y0 = 308329463794755702295205765051 · · · 577237019272546358774584706674,
q0 = 343297710325416771316072591262 · · · 923433497818429340465310973169 (4466-bit), with ρ = 1.090.

Example 5.5. For k = 27, D = 3, n = k
3
, a = −2, b = 1,

r(x) = x18 − 4751x9 + 40353607,

t(x) = 2
47621x

10 − 18357
47621x+ 1,

y(x) = − 4
142863x

10 − 2
20409x

9 − 10907
142863x+ 4751

20409 ,

q(x) = 1
971896989x

20 + 4
971896989x

19 + 1
138842427x

18 − 4751/971896989x11 + 21814
971896989x

10 − 4751
138842427x

9 +

5764801
138842427x

2 − 213233585
971896989x+ 40353607

138842427

This family has ρx = 1.111, and t(x), y(x) represent integers and q(x) represents

primes and r(x) represents almost primes where x = 51457 + 142863X, etc. for X ∈ Z.

Example 5.6. For k = 8, D = 7, n = k
4
, a = −1, b = 1,

r(x) = x8 − 16x4 + 4096,

t(x) = 1
192 (x

5 − 16x+ 192),

y(x) = 1
1344 (−x

5 − 8x4 − 176x− 64),

q(x) = 1
129024 (x

10 + 2x9 + 8x8 + 16x6 + 704x5 + 128x4 + 4096x2 − 2560x+ 32768)

This family has ρx = 1.250. t(x), y(x) represent integers and q(x) represents primes

and r(x) represents almost primes where x = 5396 + 129024X, etc. for X ∈ Z. Note that
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we take D = 7 which is di�erent from that of table 8.2 of [10].

Example 5.7. For k = 36, D = 3, n = k
6
, a = −2, b = 1,

r(x) = x12 + 683x6 + 117649,

t(x) = − 2
259x

7 − 757
259x+ 1,

y(x) = 4
777x

7 + 2
111x

6 + 1255
777 x+ 683

111 ,

q(x) = 1
28749x

14 + 4
28749x

13 + 1
4107x

12 + 683
28749x

8 + 2510
28749x

7 + 683
4107x

6 + 16807
4107 x

2 + 386569
28749 x+ 117649

4107

This family has ρx = 1.167, and t(x), y(x) represent integers and q(x) represents

primes and r(x) represents almost primes where x = 490 + 777X, etc. for X ∈ Z.

6 Conclusion and perspectives

We have proposed a new method of choosing primitive elements for Brezing-Weng

families of pairing friendly elliptic curves. The proposed method improves the rho-values

of the families for the case where embedding degrees k = 16, 22, 28 and 46. We have

summarized the improved results in table 6.

k ρx D deg r(x) Constr.
16 1.125 Some �xed (eg. 19, 83) 16 �3.2
22 1.200 Some �xed (eg. 1, 3) 20 �3.2
28 1.250 Some �xed (eg. 11) 24 �3.2
46 1.091 Some �xed (eg. 1) 44 �3.2

Table 6: Improved rho-values of families obtained by the proposed method

Indeed, the method can be considered a kind of generalization of the the methods

proposed in [10], [14] and [3]. This explains why our method arrives at the existing

records of rho-values for the remaining embedding degrees.

Note that the choice ofD in our method is relatively free compared to another methods

that use �xed discriminants. In fact, this provides a cause of the improvement in the rho-

values by increasing the degree of polynomials concerned. We can see in the table several

example D values for each k, and another many choices are possible.

The table 2 of �3.2 shows that the rho-value of a family obtained by our method can be

improved also for the case of k = 40. We give no example for this case at present, because

of some implementation problem. However, we conjecture that a little improvement of

strategy will give examples.
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