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ABSTRACT
We describe different strategies a central authority, the boss,
can use to distribute computation to untrusted contractors.
Our problem is inspired by volunteer distributed computing
projects such as SETI@home, which outsource computation
to large numbers of participants. For many tasks, verifying a
task’s output requires as much work as computing it again;
additionally, some tasks may produce certain outputs with
greater probability than others. A selfish contractor may try
to exploit these factors, by submitting potentially incorrect
results and claiming a reward. Further, malicious contractors
may respond incorrectly, to cause direct harm or to create
additional overhead for result-checking.

We consider the scenario where there is a credit system
whereby users can be rewarded for good work and fined for
cheating. We show how to set rewards and fines that incen-
tivize proper behavior from rational contractors, and mit-
igate the damage caused by malicious contractors. We an-
alyze two strategies: random double-checking by the boss,
and hiring multiple contractors to perform the same job.

We also present a bounty mechanism when multiple con-
tractors are employed; the key insight is to give a reward to
a contractor who catches another worker cheating. Further-
more, if we can assume that at least a small fraction h of
the contractors are honest (1%− 10%), then we can provide
graceful degradation for the accuracy of the system and the
work the boss has to perform. This is much better than the
Byzantine approach, which typically assumes h > 60%.

Categories and Subject Descriptors: C.2.4 [Computer
Systems Organization]: Computer-Communication Net-
works—Distributed Systems; C.4 [Computer Systems Or-
ganization]: Performance of Systems
General Terms: Design, Economics, Performance, Security

1. INTRODUCTION
Many tasks exhibit an arbitrarily high appetite for compu-

tational resources. Distributed systems that coordinate com-
putational contributions from thousands or millions of par-
ticipants have become popular as a way to tackle these chal-
lenges. Examples include systems such as SETI@home [14]
and Rosetta@home [13], which seek to analyze huge amounts

∗This work was supported in part by NSF Cybertrust award
CNS #0627553.
†Work done while a graduate student at Brown University.

of data in the search for extra-terrestrial life and a better
understanding of protein folding, respectively. In these sys-
tems, every additional computational element added to the
system provides greater utility.

This study is motivated by our efforts to build peer-to-peer
systems that rely on cryptographic electronic cash (e-cash)
to provide incentives for participation [2]. Such a system
would prevent free-riding without sacrificing the privacy of
its participants. However, the verification of e-coins by the
bank is an expensive computational operation, and we wish
to offload this work from the bank to the participants.

The naive solution is to simply give each peer a program
to run (such as an e-coin verifier) and the input to this pro-
gram (an e-coin). The peer would run the program and re-
port the answer. There are several problems with this ap-
proach. First, without a reward, there is no incentive for
participants to do any work. Second, even if the partici-
pants were compensated for their contribution, there is no
incentive to perform the computation faithfully. Peers may
report an answer at random or, perhaps, report an answer
that they know a priori to be the most likely output of the
computation (e.g., that most e-coins are valid). Worse, if
participants are malicious, they may choose to behave irra-
tionally in order to force the bank to perform more work or
accept incorrect results.

There problems are not limited to our e-cash application.
SETI@home users have developed their own clients, for both
malicious and selfish reasons [8, 10] (see Section 2). Multi-
player games cannot assume that players will not modify
their clients to give themselves an in-game advantage.

Our solution assumes that there is some currency or credit
system with which we can reward or fine contractors de-
pending on their performance. This could be a reputation or
credit system in which good contractors are awarded higher
scores, or an actual currency which can be exchanged for
some other services. This allows us to set incentives such
that rational contractors will compute jobs correctly.

In this paper, we analyze how to the boss can set fines and
rewards, and how often it will have to double-check the con-
tractors’ results in order to enforce the incentive structure.
In Section 4, we define a game-theoretic framework to ana-
lyze different scenarios. Section 5 shows how to use collision
resistant hash functions to increase the probability of get-
ting a correct answer without increasing the fine-to-reward
ratio and the amount of double-checking. In Section 6 we ex-
amine means of performing checks on contractors’ answers,



and consider outsourcing the same computation to multi-
ple contractors, double-checking only if they disagree, as a
way to reduce the amount of centralized double-checking.
We also look at the effect of offering a bounty to a user who
catches another contractor returning a wrong answer. Fi-
nally, in Section 7, we examine how to limit the damage that
can be caused by malicious and colluding contractors, who
seek to maximize the amount of centralized double-checking,
or decrease the accuracy of submitted results.

2. RELATED WORK
Resource-sharing cluster systems such as Spawn [16], Pop-

corn [12], and Tycoon [6] focus on the efficient allocation
of grid resources by providing auction mechanisms which
award distributed resources to the highest bidder. Auctions
provide a way to stem demand as computation becomes
more expensive. However, these systems typically assume a
federated—and friendly—environment where many parties
wish to share a pool of trusted resources. Once awarded, re-
sources are assumed to be available for use by the winner,
without concern for malicious entities.

Our work has more in common with public-resource com-
puting systems such as Distributed.net [4] and BOINC [3],
which parcel and distribute computation to vast armies of
volunteer users. BOINC provides scientific projects such as
SETI@Home [14] and Rosetta@Home [13] with computa-
tional resources drawn from the idle CPU cycles of its users’
home PCs, and its projects have attracted millions of partic-
ipants. Greater participation is incentivized through a point
system that rewards users who complete more work units
with higher status on “leaderboards” published on the web.

BOINC’s credits are not fungible—they are useful only for
social status—yet even this incentive has greatly motivated
participation, leading some to develop their own clients in an
effort to claim more credit [15, 8]. In one case, a SETI@Home
user developed an“optimized”client which returned outputs
irreproducible by the official client, yet were otherwise indis-
tinguishable. In another case, a patched client was released
that simply performed no computation, returning bogus re-
sults [8, 10]. These examples and others provide inspiration
for our model, which aims to address the problem of mali-
cious and “corner-cutting” contractors who seek greater re-
wards by deviating from officially-sanctioned methods.

Systems based on Byzantine fault tolerance (BFT) [1] pro-
vide safety and liveness guarantees given a certain tolerable
fraction of malicious users; typically at least two-third of
participants must act correctly. The BAR model [7] provides
incentive-compatible BFT primitives to extend these guar-
antees to both altruistic (i.e. correct) and rational nodes
that may deviate from suggested protocols in pursuit of
greater utility. Like these approaches, we also aim to incen-
tivize rational nodes, but do not assume a quorum of cor-
rect nodes; instead we focus on incentives and probabilistic
guarantees on accuracy that apply for varying fractions of
altruistic and malicious users.

Checking intermediate computations has also been dis-
cussed for the problem of inverting one-way functions, where
predefined intermediate steps are checked [5], and in gen-
eral by redoing the computation until a randomly chosen
intermediate step [9]. Molnar [8] suggests that contractors
be required to provide a hash of the results of intermediate
computations in order to force them to use the official al-
gorithm. This is very similar to the approach we discuss in

Section 5. However, the idea of using hashes was not for-
malized, and there was no discussion of how to combine this
approach with incentive strategies for rational contractors.

3. MODEL
A central authority, the boss, will reward contractors to

perform computational tasks, or jobs, on its behalf. The goal
is to reduce the demand on the boss’s own computational
resources. We assume that contractors continually request
new job assignments from the boss, but that they may freely
choose when to stop requesting new jobs.

The boss will reward a contractor r for correctly complet-
ing a job. If the boss finds out that the contractor returned
an incorrect result, the boss will fine the contractor f , which
is subtracted from the contractor’s accumulated earnings.
The boss will not assign a job to a contractor unless the
contractor has enough credit to pay the potential fine. As a
result, we are concerned with reducing the fine-to-reward ra-
tio (f/r): too high a ratio makes it harder for contractors to
participate. As we will later see, there is a trade-off between
the work the boss has to do and the f/r ratio.

Our definition of a job captures any efficiently computable
task and its inputs. For the e-coin verification scenario, the
only way the boss can make sure that a contractor properly
verified an e-coin is to reverify it herself. Similarly, for the
Folding@home project, the boss must refold the protein. For
jobs in NP, the verification is much easier. However, the boss
can only check an answer if the output of the computation
is deterministic. If the job uses a randomized algorithm, the
boss must provide the contractor with a random tape (i.e.
a seed to a pseudo-random number generator).

The results of some jobs may be easier to predict than
others. Consider a näıve decision problem formulation of
the SETI@home project, “Is alien life detectable in this ra-
dio telescope data?” Or, for the e-coin verification task, “Do
these values represent a valid e-coin?” A rational contrac-
tor may decide to conserve its computational resources and
simply guess the most likely answer (“no” and “yes”, respec-
tively). We describe a hashing technique to detect incorrect
answers, even for such highly skewed answer distributions.

Our payment- and penalty-based incentives assume the
presence of an underlying economic framework in which the
boss can enforce fines and rewards. In [2], peers use e-cash to
exchange files; if the bank wishes to outsource tasks, it can
easily increase and deduct account balances directly. BOINC
similarly directly rewards users with credit that raises a
user’s ranking on the leadership board. A service provider
boss (e.g., a storage server) might reward contractors by
providing them better service (e.g., more storage), and fine
them by reducing the service provided (e.g., limiting their
storage space). Real currencies might also be used if con-
tractors offer the fine amount as deposit with the boss. Our
model assumes only that a boss is able to withdraw f from
and pay r to contractors.

4. BASIC CONSTRUCTION
Consider a contractor who has just been assigned a job

by the boss. He faces two options: first, he may perform the
job honestly, and receive a reward r. If we define the cost
of computing a single job using the algorithm provided by
the boss as cost(1), the expected utility u(1) of an honest
contractor is u(1) = r−cost(1). In this case, we assume that



the boss sets r large enough to provide positive utility for
the contractor, or he will refuse the job.

The contractor’s second option is to return an output us-
ing an algorithm different from that specified by the boss.
This might be possible, for example, if the contractor pos-
sesses a priori knowledge of the output distribution: it can
simply guess the most likely output. Or, more generally, sup-
pose the contractor has access to an alternative algorithm
which provides a correct output with probability q (e.g.,
SETI@home “optimized” client). Here, the contractor may
still receive r, but risks being fined f if the boss discovers
he has submitted an incorrect result.

We denote the probability that this lazy contractor will
be caught submitting an incorrect result as p. However, we
do not assume that the boss will be able to detect each
incorrect result submitted and fine the guilty contractor:
since checking the correctness of a submitted result may
unduly waste computational resources. (We defer discussion
of methods for checking results to Section 6.) Thus we can
decompose p into two different values: the probability that
the contractor’s result is incorrect, and the probability that
the result will be checked, when it is incorrect.

p = Pr[check | incorrect] Pr[incorrect]

We can analyze these two probabilities separately. First,
let c be the probability that a contractor’s result will be
checked, conditioned on that contractor returning an in-
correct result: c = Pr[check | incorrect]. The check can be
performed by the boss or by other contractors. This also
describes the case when the probability of a check is inde-
pendent of the contractor’s answer (e.g., if the boss simply
checks a fraction c of submitted outputs itself).

Next, we return to our definition of q, the probability of
the contractor returning the correct answer using an alter-
nate method. Clearly the probability that the contractor’s
answer is incorrect is 1 − q. Thus

p = c(1 − q)

We also define the cost of the alternate method for obtaining
a correct result with probability q as cost(q). We assume
this cost is at most cost(1)—otherwise, the contractor would
simply run the suggested algorithm—and at least 0.

We can now define the expected utility u(q) of a contrac-
tor, taking into account the probability p of being caught
and his cost, as

u(q) = r(1 − p) − fp − cost(q)

The contractor will receive a reward unless he is caught
cheating, in which case he will be fined. Note that when
q = 1, the contractor is performing the job correctly, and
thus p = 0 and u(q) = u(1) from our previous definition.

For a rational contractor, selecting a value of q < 1 and
earning the expected utility u(q) may present a lucrative
choice, resulting in a potentially incorrect output. However,
the boss can provide incentives to perform jobs correctly by
setting f , r, and c.

Theorem 1. If the boss sets the fine-to-reward ratio to
f/r ≥ (1−p)/p where p = c(1−ε) then a rational contractor
will return correct outputs at least ε of the time.

Proof. To prove this, we need to show that for any q′ <
ε, the resulting utility u(q′) < u(ε). Since we cannot argue

about the cost functions of contractors realistically (con-
tractors may value their resources differently, and it might
also depend on the state of the contractor like his current
load), we want to show ∀q′ < ε, u(q′) ≤ 0. Remember,
u(q′) = r(1 − p′) − fp′ − cost(q′), where p′ = c(1 − q′).
If we set f/r ≥ 1/p − 1 ≥ 1/p′ − 1, then we guarantee that
r(1−p′)−fp′ ≤ 0. Thus, given such an f, r, c, any contractor
who is not correct with probability at least ε will have neg-
ative utility. This means any rational contractor will either
perform the job with accuracy at least ε, or will refuse to do
the job.

Corollary 1. Any rational contractor will use the least
costly algorithm that provides correct answers with at least
ε probability.

5. ACCURACY AND HASH FUNCTIONS
By setting the fine-to-reward ratio as above, the boss can

require rational contractors to compute jobs correctly above
a certain minimum accuracy requirement. Yet, obtaining
high accuracy might require an infeasibly high fine-to-reward
ratio, and for some applications even a small fraction of in-
accurate results might be unacceptable.

Our concern is that there might be some alternate algo-
rithm that costs the contractor very little (in terms of com-
putation), and that produces the correct answer with some
fairly high probability ǫ (e.g., guessing a coin to be valid
in the e-cash verification scenario). To prevent the contrac-
tor from using such an algorithm, we might have to set the
fine-to-reward ratio unreasonably high.

Ideally we would like to ensure that the contractor ac-
tually runs the algorithm that we choose. Thus, instead of
simply returning an answer, we could ask the contractor
to send us the results of every intermediate computation.
If we assume that the intermediate computations are small
enough steps that the only way to get the correct interme-
diate result is by actually running the appropriate compu-
tation, then this will be sufficient to convince the boss that
the contractor has run the computation correctly. Finally,
to prevent the contractor from having to send a very large
amount of information, we have him use a cryptographic
hash function to hash all of this information into one short
string. More formally:

Definition 1. An algorithm is assumed to be composed
of a finite number of atomic operations. Each atomic op-
eration is assumed to take a state information and output
another state information. The inner state of an algorithm
is defined as the concatenation of all the input/output states
of the atomic operations of the algorithm, along with the def-
inition of the algorithm in terms of atomic operations. The
original algorithm for a given job is the one prescribed by
the boss to the contractor. A hash function deterministically
maps the inner state of an algorithm to a random l-bit string.
Define negligible probability neg = O(2−l).

We would like to assume that all algorithms which produce
the correct result either have cost cost(1) or negligible suc-
cess probability. However, there is always a potential mixed
strategy which with some probability runs the original algo-
rithm and with some probability makes a random guess of
the inner state. Thus, we make the following assumption:

Assumption 1 (Unique Inner State Assumption).
(for input distribution D and negligible neg

′)



Let cost(1) be the cost of the original algorithm. We assume
that any algorithm which has expected cost γcost(1) (given
a random input from D) will produce the correct inner state
with probability at most γ+(1−γ)neg

′ (provided 0 ≤ γ ≤ 1).

Then we can say that a similar statement holds even after
the application of the hash function:

Theorem 2. Let cost(1) be the cost of the original al-
gorithm. Let D, neg

′ < neg be such that the unique in-
ner state assumption holds. Then under unique inner state
assumption and the random oracle model1, any algorithm
which when given a random input from D has expected cost
δcost(1) < cost(1) will produce the correct hash of the in-
ner state with probability at most δ + (1 − δ)neg (provided
0 ≤ δ ≤ 1).

Proof of Theorem 2. Consider the operation of the al-
gorithm on a particular input. There are two ways that an
algorithm can output the correct hash value. First, the algo-
rithm might have queried the random oracle (to obtain the
hash output) at the same inner state value as the original al-
gorithm. That means by the unique inner state assumption
that this operation must have cost γcost(1) and succeed with
probability γ+(1−γ)neg

′. Second, the algorithm might have
produced the same hash without querying the random ora-
cle at using the correct inner state. This has only negligible
probability under the random oracle model. We have said
that the algorithm has expected cost δcost(1). That means
that it can be taking the first approach (following the cor-
rect probability) on at most δ

γ
fraction of the inputs. Thus,

on all other inputs, it has at best neg probability of success.
That means that it’s total success probability can be at most
δ
γ
(γ + (1 − γ)neg

′) + (1 − δ
γ
)neg ≤ δ + (1 − δ)neg.

Finally, we conclude that if we set the parameters appro-
priately, a rational contractor will always use the original
algorithm.

Theorem 3. Suppose that definition 1 holds for our input
distribution. If f

r
≥ 1

c
, and r > cost(1) and c > neg/(1 −

neg), then a rational contractor will use the original algo-
rithm for the job.

Proof. Running the original algorithm results in utility
r − cost(1). By theorem 2, any other algorithm will either
have cost greater than cost(1) (and thus obviously lower util-
ity), or will have cost δcost(1) < cost(1) and success prob-
ability δ + (1 − δ)neg. That means the total utility will be
(δ+(1−δ)neg)r−(1−δ−(1−δ)neg)cf+(1−δ−(1−δ)neg)(1−
c)r−δcost(1). If f, r, c satisfy the conditions described in the
theorem, then this utility will always be strictly less than
r − cost(1), so the rational contractor will always run the
original algorithm.

Using a hash function with output length 160 bits (e.g.,
SHA-1), the boss can easily set f, r, c appropriately so that
every rational contractor will use the original algorithm. For
the rest of the paper, we can then assume p ∼= c.

1The random oracle model is commonly used in cryptogra-
phy. It assumes that the hash function behaves like a truly
random function.

6. WHEN TO CHECK AN ANSWER
In Section 4, we analyzed how to set the fine-to-reward ra-

tio f/r in terms of p, the probability that a contractor will be
caught; e.g., by setting f/r = (1−p)/p the boss can provide
incentives to rational contractors. In this section, we will ex-
amine different strategies the boss can use to actually catch
the contractors. We will analyze c = Pr[check |incorrect ], the
probability that the boss or other contractors will check the
answer of a contractor, conditioned on that contractor re-
turning an incorrect answer.

6.1 Double Checking
A simple strategy is for the boss to randomly double-check

an answers it gets with probability t. Here, the boss cannot
know whether a job is incorrect until it has checked it, so
c = t. Setting a low value of t allows the boss to reduce the
amount of work needed for double-checking—but since c is
inversely proportional to f/r, a high f/r may present an
impractical barrier for contractors seeking jobs.

6.2 Hiring Multiple Contractors
The boss can try to minimize the amount of checking he

has to do by farming out the same job to multiple contrac-
tors. The boss then double-checks a submitted result only if
the contractors disagree.

The problem is that if all contractors output the same false
answer, the boss will never catch them. In fact, the contrac-
tors find themselves in a situation similar to the the iterated
prisoner’s dilemma. The best strategy for all the contractors
is to employ a tit-for-tat mechanism: they should cheat until
another contractor performs the computation honestly [11].

We begin our analysis by assuming that a fraction h of the
contractors will always perform the computation honestly:
we call these contractors diligent. Later, we will show how to
do away with this assumption. Suppose the boss chooses m
contractors at random and assigns them the same job. We
can describe c as the probability a contractor will be caught
by other contractors if he submits an incorrect answer.

Theorem 4. Suppose the boss farms out a job to m con-
tractors, each of which are honest with probability h, then
the probability that a cheating contractor will be caught is
c = 1 − (1 − h)m−1.

Proof. A contractor who submits an incorrect result will
be caught only if there exists a diligent contractor in the
group working on the same job. The probability that all of
the other m − 1 contractors are non-diligent is L = (1 −
h)m−1. Thus the probability that at least one of the other
m − 1 contractors is diligent is c = 1 − L.

Corollary 2. Suppose the boss farms out a job to m
contractors, which are honest with probability h, then by
computing f/r using p ∼= c = 1 − (1 − h)m−1 in section
4, the boss can guarantee that all rational contractors will
act honestly all the time.

This strategy still requires the boss to perform work when
the results submitted by contractors are in disagreement.
In a system where all the contractors are rational, there
should be no disagreement at all. But if malicious or collud-
ing contractors are present, they may try to force the boss to
double-check by returning an incorrect answer. We analyze
this behavior in Section 7.



6.3 Hybrid Strategy
The boss can also pursue a hybrid strategy: he can farm

out a job to multiple contractors and randomly double-check
some of the answers. Thus even if all contractors collude to
give the same wrong answer, the boss can still catch them.

Theorem 5. Suppose the boss farms out a job to m con-
tractors, which are honest with probability h. The boss also
randomly double-checks the jobs with probability t when all
the results agree. Then, c = 1 − (1 − t)(hm + (1 − h)m).

Proof. The boss definitely checks the answer if there
is at least one diligent and one cheating contractor in the
group. This has probability 1− hm − (1− h)m. In any other
case (probability hm + (1− h)m), all answers will agree and
the boss will check with probability t. Therefore, we get
c = (1 − hm − (1 − h)m) + (hm + (1 − h)m)t = 1 − (1 −
t)(hm + (1 − h)m).

6.4 Hiring Two Rational Contractors
Now let us discuss how to shed the assumption that there

are diligent contractors. In the iterated prisoner’s dilemma
it is assumed that in each round, a contractor plays against
the same group of other contractors. In our scenario, the
boss will randomly choose a new group of contractors for
each job. The contractors are really playing a single round
of the prisoner’s dilemma many times with a different group
of contractors. Thus, if we set f/r properly, the dominant
strategy will be for the contractors to act honestly.

The table below computes the expected utilities u(1) and
u(q) for a contractor depending on whether the other play-
ers all chose to be diligent or lazy. As before, q refers to the
probability that a lazy contractor returns the correct an-
swer. Please see Section 5 for how to use hashing to set q
arbitrarily close to 0.

All Diligent u(1) = r − cost(1)
u(q) = rq − f(1 − q) − cost(q)

All Lazy u(1) = r − cost(1)
u(q) = r − cost(q)

There are two Nash equilibria: If all other players cheat, a
rational player will also cheat. If at least one player is honest,
a rational player must also be honest.

We can break the cheating equilibria by introducing a
bounty. If the contractors disagree on the output, the boss
will check the computation and award b to all contractors
who output the correct answer. Now the expected utility
for being diligent when everyone else chooses to be lazy is
u(1) = r − cost(1) + b(1 − q).

Theorem 6. Suppose the boss asks two contractors to
perform a job. Then the boss must set f/r > 0 and give
a bounty of b ≥ r/(1 − q) to honest contractors whenever
they catch a cheating contractor.

Proof. We have that r ≥ cost(1) ≥ cost(q). First, if all
other players are diligent then a contractor is better off also
acting honestly as long as

0 ≥ rq − f(1 − q) − cost(q) > rq − f(1 − q) − r.

As a result, we get f/r > −1. Since it makes no sense to
have a negative fine (paying contractors for wrong answers)
and since a negative reward (taking away money for right
answers) discourages participation, we set f/r > 0. Second,

if even one player is lazy, then the contractor has an incentive
to be diligent as long as r − cost(1) + b(1− q) ≥ r − cost(q).
The boss needs to set

b ≥
r

1 − q
≥

cost(1) − cost(q)

1 − q
.

7. MALICIOUS CONTRACTORS
Malicious (or Byzantine) contractors attack the system:

they want to reduce the accuracy of job results or increase
the amount of double-checking the boss must do. They are ir-
rational, or may pursue a utility function outside our model.
Yet, to be able to stay in the system, they must keep at least
a zero balance of utility (if they cannot afford the fine, they
will not be hired by the boss). Malicious contractors may also
collude, through centralized control (as in the Sybil attack),
via external communication, and even by sharing resources
(the reward r).

7.1 Independent Malicious Contractors
Even a malicious contractor must maintain a certain min-

imum balance in his bank account. Otherwise, the boss will
not ask him to perform jobs. Thus, a malicious contractor
intent on submitting as many incorrect results as possible
must also compute jobs correctly some fraction of the time.

Definition 2. A malicious contractor will return the cor-
rect answer x fraction of the time, and an incorrect answer
y fraction of the time; thus x + y = 1.

We compute the utility of a single malicious contractor as

u(m) = xr + y(1 − p)r − ypf,

where x and y are defined above and p is the probability
that the contractor will be caught. We want to know how
large a value y can the malicious contractor get away with
while still maintaining a non-negative utility.

Definition 3. Let d be the deterrent factor, where the
boss sets f/r = d/p. Observe that if d = 1 − p, this corre-
sponds to our basic construction. Larger values of d indicate
that the boss has decided to deter maliciousness by increasing
the f/r ratio without decreasing the checks.

Theorem 7. The fraction of incorrect results y that a
malicious contractor can return to the boss is less than or
equal to 1/(p + d).

Proof. The malicious contractor needs to have a non-
negative balance: 0 ≤ u(m) = xr + y(1 − p)r − ypf . We
substitute f = rd/p and x = 1 − y in the inequality to get
0 ≤ (1− y)r + y(1− p)r − yrd. We get rid of r, and solve to
get y ≤ 1/(p + d).

Corollary 3. Suppose the boss hires only one contrac-
tor for each job and sets f/r = d/p. Then the probability that
the boss accepts an incorrect result is g(1−p)/(p+d), where
g is the fraction of malicious contractors in the system.

Note that if the boss only randomly double-checks with
some fixed probability, no malicious contractor can cause
the boss to perform more work. However, in the setting
where the same job is outsourced to multiple contractors
and checked if there is disagreement, a malicious contractor
can force the boss to perform a check by submitting an in-
correct result, hence causing disagreement among the group.



7.2 Colluding Malicious Contractors
In our multiple-contractors scenario, the boss assigns each

job to a randomly-selected group of size m, double-checking
only when the contractors output different results, and fining
those who submit an incorrect answer. We will examine two
types of attacks by colluding contractors. In the first, the
colluding contractors will try to trick the boss into accepting
an incorrect answer. In the second, they will force the boss
to perform extra checking by causing disagreements.

Theorem 8. If the fraction of colluding contractors in
the system is g, the probability that the boss accepts an in-
correct result is at most gm.

Proof. The only way to trick the boss is if all the con-
tractors in the group are colluders. For a group of size m, the
probability that all group members are colluders is gm.

Colluding contractors may wish to force the boss to devote
more resources to performing checks. The colluders can take
advantage of the fact that if there is at least one colluder
in the group, then one colluder can submit a wrong answer
while the rest can submit the right answer and collect the
reward. As a result, the overall utility of the colluding group
can be high enough to allow the group to continue partici-
pating in the system.

Theorem 9. The amount of work the boss needs to per-
form due to a group of maliciously colluding contractors
which make up a g fraction of all the contractors is at most
pgm/(p + d).

The proof of Theorem 9 requires the following Lemma. We
omit the proof, which follows from the Binomial Theorem
and basic algebra.

Lemma 1. Let P (k, m) =
`

m

k

´

gk(1 − g)m−k be the prob-
ability that there are exactly k colluders in a group of size
m. Furthermore, let A =

Pm

k=1
P (k, m), be the probabil-

ity that there is at least one colluder in the group. Then,
A = 1 − (1 − g)m. Finally, let B =

Pm

k=1
P (k, m)k. Then,

B = gm.

Proof of Theorem 9. We will first define the total util-
ity of the colluding contractors. The contractors’ strategy is
simple. If there is at least one colluder in the group chosen
by the bank, then one of the colluders will output a wrong
answer with probability y = 1− x while the rest output the
correct answer. Then the total utility of the colluders for
one job will be xkr + y((k − 1)r − f) for k colluders (with
probability x = 1 − y, all colluders will get the reward by
outputting the correct answer, and with probability y only
one of them will get fined while the rest will be rewarded).
If we sum over the probability that the there are k colluding
contractors in a group of size m, we get the total expected
utility of the colluders.

u(c) =
m

X

k=1

P (k, m)[xkr + y((k − 1)r − f)]

= xrB + yrB − yrA − yArd/p

if we do the substitutions for A,B and f . The colluders
want to maximize y while keeping their total utility positive:
u(c) ≥ 0. Then, rearranging the equation above gives us

y ≤
B

A(1 + d/p)
=

pgm

(p + d)A
.

Next, we note that, a job will provide this group of colluders
the ability to cheat in order to make the boss work more only
if there is at least one colluder in that group. So, A fraction
of the jobs will enable the colluders to force the boss for a
check. Therefore, by multiplying y with A, we obtain the
fraction of the time colluders can cause the boss to work,
which is at most pgm/(p + d).

8. EVALUATION
Throughout the paper we have presented various methods

by which the bank can tune the fine-to-reward ratio through
setting other parameters. In this section, we show how the
boss can select system parameters that balance performance
trade-offs with protection against malicious contractors. We
begin with the selection of the ratio f/r and group size
m, depending on the percentage of honest contractors h in
the system. The trade-off between high fine-to-reward ratio
(which may present a barrier to entry for contractors) and
large group size (which may unnecessarily waste effort due
to redundant computation) is depicted in Figure 1. It can be
seen from the figure that even a group size of 2 is enough to
allow a reasonable fine-to-reward ratio, even in the presence
of a very low percentage of honest contractors. Obviously,
the higher the percentage of honest contractors, the smaller
the group size required.

In the figure, we assumed that all the other contractors
are rational. Assuming that the boss’s view of the percent-
age of honest contractors is not higher than that of the con-
tractors’, the fine-to-reward ratios shown on the figure will
provide incentives for rational contractors to always behave
honestly. Next, we analyze the effect of irrational malicious
and colluding contractors on the system when we set the
fine-to-reward ratio so as to incentivize rational contractors.
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Figure 1: Example parameter settings for f/r and m
that provide valid incentives assuming a fraction h
of honest users. (Theorem 4)

Figure 2 shows the percentage of bogus results the irra-
tional malicious and colluding contractors, who are not in-
centivized by our scheme, can cause the boss to accept. The
boss can adjust the deterrent factor to deter malicious con-
tractors by increasing the fine-to-reward ratio without de-
creasing the probability of catching them. The figure shows
the case when the boss employs 2 contractors per job, and
thus represents a worst-case multiple-contractor scenario.
When more contractors are employed, the fraction of bogus
results accepted by the boss will be lower, since the colluders
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Figure 2: The maximum fraction of incorrect results
that the boss will accept due to a fraction g of mali-
cious contractors, for different settings of the deter-
rent factor d. (Corollary 3)
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Figure 3: The maximum amount of extra double-
checking work that a group of malicious colluders
controlling a fraction g of all contractors can force
the boss to perform, for different settings of the de-
terrent factor d. (Theorem 9)

need to control the entire group in order to cheat the boss.
Next, in Figure 3, we see the fraction of extra double-

checking work the colluding contractors can force the boss
to perform. The figure again uses a group size of 2. Increasing
the group size makes things worse in this case: the reason is
that the colluders can make the boss work only if there is at
least one of them in the group the boss selects. When the
group size increases, the chance of that happening increases.
An interesting point to make is that if the boss’s probability
of catching the colluders increases, then he obviously needs
to perform more work. Luckily, the fraction of bogus results
that will be accepted is bounded as in Figure 2.

Note that the number of honest contractors do not affect
the performance of the system, in terms of both the percent-
age of bogus results and extra work for the boss, once the
fine-to-reward ratio is set. This is the case because once the
ratio is set according to the fraction of honest contractors,
then every rational contractor will have incentive to perform
the job correctly. If the system is dynamic and the percent-
age of honest contractors decrease, the fine-to-reward ratio
needs to be readjusted.

Our system can deter maliciousness without very high

fine-to-reward ratios or large group sizes even if there are
very few honest contractors in the system. In most cases
(except when there is an extremely low number of honest
users, i.e. h = 0.05, or an extremely high number of mali-
cious users, i.e. g = 0.75), a deterrent factor of d = 5 and a
group size of m = 2 is enough to result in a practical fine-
to-reward ratio (f/r ≤ 25), while guaranteeing at most 10%
of bogus results and about 15% more work in very unreal-
istic highly adversarial scenarios (75% malicious), or almost
no bogus results and about 5% more work in more realistic
scenarios (5% malicious).

9. CONCLUSION AND FUTURE WORK
We have presented different techniques that can be ap-

plied for incentivizing outsourced computation, through re-
dundant computation by the boss or other contractors. The
hashing technique prevents the use of other algorithms than
prescribed by the boss. Then, we showed how to set the fine-
to-reward ratio in presence of irrational honest users (Sec-
tion 6.2), or when the contractors cannot collude in large
scale in the long run (Section 6.4). Finally, we have shown
that using our techniques, a reasonable fine-to-reward ra-
tio can incentivize all rational users to behave honestly, and
limit the damage by irrational malicious contractors.

All of these techniques aim to decrease the amount of work
our centralized boss needs to perform. We assumed that this
boss can afford to pay all rewards and is capable of fining
the contractors: another possibility is that multiple bosses
might be in agreement with an entity of such power. Then,
before a job is outsourced, each contractor might provide an
escrow of the fine, so that the boss can claim it if cheating is
detected. Additionally, bosses might provide different incen-
tive structures f/r to different peers, offering higher prices
to those willing to accept larger fines. In such a decentral-
ized environment, designing a distributed, budget-balanced
mechanism provides a direction for our future work.

Finally, the currency used by our system could also serve
other purposes, e.g., to buy data as in the currency-based
P2P system of Belenkiy et al. [2]. In future work, we will
study the effects of outsourcing e-coin verification on this
system’s virtual economy.
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