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Abstract We propose efficient algorithms and for-

mulas that improve the performance of side chan-

nel protected elliptic curve computations with spe-

cial focus on scalar multiplication exploiting the

Gallant-Lambert-Vanstone (CRYPTO 2001) and

Galbraith-Lin-Scott (EUROCRYPT 2009) meth-

ods. Firstly, by adapting Feng et al.’s recoding to

the GLV setting, we derive new regular algorithms

for variable-base scalar multiplication that offer

protection against simple side-channel and timing

attacks. Secondly, we propose an efficient, side-

channel protected algorithm for fixed-base scalar

multiplication which combines Feng et al.’s recod-

ing with Lim-Lee’s comb method. Thirdly, we pro-

pose an efficient technique that interleaves ARM

and NEON-based multiprecision operations over

an extension field to improve performance of GLS

curves on modern ARM processors. Finally, we

showcase the efficiency of the proposed techniques

by implementing a state-of-the-art GLV-GLS curve

in twisted Edwards form defined over Fp2 , which

supports a four dimensional decomposition of the

scalar and is fully protected against timing at-

tacks. Analysis and performance results are re-

ported for modern x64 and ARM processors. For
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instance, we compute a variable-base scalar mul-

tiplication in 89,000 and 244,000 cycles on an In-

tel Ivy Bridge and an ARM Cortex-A15 proces-

sor (respect.); using a precomputed table of 6KB,

we compute a fixed-base scalar multiplication in

49,000 and 116,000 cycles (respect.); and using a

precomputed table of 3KB, we compute a dou-

ble scalar multiplication in 115,000 and 285,000

cycles (respect.). The proposed techniques repre-

sent an important improvement of the state-of-

the-art performance of elliptic curve computations,

and allow us to set new speed records in several

modern processors. The techniques also reduce the

cost of adding protection against timing attacks in

the computation of GLV-based variable-base scalar

multiplication to below 10%.

This work is the extended version of a publica-

tion that appeared at CT-RSA 2014 [12].

Keywords Elliptic curves · scalar multiplication ·
side-channel protection · GLV method · GLS

method · GLV-GLS curve · x64 processor · ARM

processor · NEON vector unit.

1 Introduction

Let P be a point of prime order r on an elliptic

curve over Fp containing a degree-2 endomorphism

φ. The Gallant-Lambert-Vanstone (GLV) method

computes the scalar multiplication kP as k1P +

k2φ(P ) [17]. If k1, k2 have approximately half the

bitlength of the original scalar k, one should expect

an elimination of half the number of doublings by

using the Straus-Shamir simultaneous multi-scalar

multiplication technique. Thus, the method is es-

pecially useful for speeding up the case in which
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the base point P is variable, known as variable-

base scalar multiplication. Later, in [16] Galbraith

et al. showed how to exploit the Frobenius en-

domorphism to enable the use of the GLV ap-

proach on a wider set of curves defined over the

quadratic extension field Fp2 . Since then, signifi-

cant research has been performed to improve the

performance [30,24] and to explore the applica-

bility to other settings [20,35] or to higher dimen-

sions on genus one curves [24,31,18] and genus two

curves [8,9,18]. Unfortunately, most of the work

and comparisons with other approaches have been

carried out with unprotected algorithms and im-

plementations. In fact, little effort has been done

to investigate methods for protecting GLV-based

implementations against side-channel attacks. Just

recently, Longa and Sica [31] used the regular win-

dowed recoding by Okeya and Takagi [34] in com-

bination with interleaving [17,33] to make a four-

dimensional implementation constant time. How-

ever, the use of this standard approach in the GLV

paradigm incurs a high cost in terms of storage and

computing performance because of the high num-

ber of required precomputations. This issue wors-

ens for higher dimensions [9].

In this work, we propose a new signed repre-

sentation, called GLV-based Sign-Aligned Column

(GLV-SAC), that gives rise to a new method for

scalar multiplication using the GLV method. We

depart from the traditional approach based on in-

terleaving or joint sparse form and adapt the re-

coding by Feng et al. [13], which was originally in-
tended for standard comb-based fixed-base scalar

multiplication, to the computation of GLV-based

variable-base scalar multiplication. The method su-

pports a regular execution as required to protect

implementations against some simple side-channel

attacks such as simple power analysis (SPA) [27].

Moreover, it does not require dummy operations,

making it resilient to safe-error attacks [42,43],

and can be used as basis for realizing constant-

time implementations that guard against timing

attacks [26,11,2,36]. In addition, we present dif-

ferent variants of the technique that are intended

for different scenarios exploiting simple or complex

GLV decompositions, and thus provide algorithms

that have broad applicability to many settings us-

ing GLV, GLS, or a combination of both [16,20,30,

24,31,35,8,9,18,39]. In comparison with the best

previous approaches, the method improves the com-

puting performance especially during the poten-

tially expensive precomputation stage, and allows

us to save at least half of the storage requirement

for precomputed values without impacting perfor-

mance. For instance, the method injects a 17%

speedup in the overall computation and a 78% re-

duction in the memory consumption for a GLV-

GLS curve using a 4-GLV decomposition (see §6).

The savings in memory without impacting perfor-

mance are especially relevant for the deployment

of GLV-based implementations in constrained de-

vices. Depending on the cost of endomorphisms,

the improvement provided by the method is ex-

pected to increase for higher-degree decomposi-

tions.

Besides variable-base scalar multiplication, the-

re are two other core computations that are the

basis of most curve-based protocols: kP with P

known in advance (fixed-base multiplication), and

kP + lQ with P known in advance and Q unknown

(fixed/variable-base double scalar multiplication),

where P and Q are points belonging to an elliptic

curve (sub)group of prime order r and k, l are inte-

gers in [1, r−1]. For example, fixed-base scalar mul-

tiplication is used during signature generation and

fixed/variable-base double scalar multiplication is

used during signature verification in ECDSA.

For the case of the fixed-base scenario, we intro-

duce an optimized variant of the side-channel pro-

tected fixed-base comb method by Feng et al. [13]

that exploits the original, multi-table Lim-Lee’s

comb technique [28]. Our approach is similar in

spirit to Hamburg’s comb technique [19] which uses

Hedabou et al.’s representation [22]. Our algorithm

is generic (i.e., it does not exploit endomorphisms)

and is as efficient as Hamburg’s algorithm during

the on-line computation but has a slightly cheaper

off-line precomputation phase. The algorithm has

already been exploited in the implementation of

the new elliptic curves recently proposed by Bos

et al. in [10] and integrated to the MSR Elliptic

Curve Cryptography Library (MSR ECCLib) [37].

Processors based on the ARM architecture are

widely used in modern smartphones and tablets

due to their low power consumption. The ARM

architecture comes equipped with 16 32-bit reg-

isters and an instruction set including 32-bit op-

erations, which in most cases can be executed in

one cycle. To boost performance in certain applica-

tions, some ARM processors include a powerful set

of vector instructions known as NEON. This con-

sists of a 128-bit Single Instruction Multiple Data

(SIMD) engine that includes 16 128-bit registers.

Recent research has exploited NEON to accelerate

cryptographic operations [7,19,38]. On one hand,

the interleaving of ARM and NEON instructions
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is a well-known technique (with increasing poten-

tial on modern processors) that can be exploited

in cryptography; e.g., see [7]. On the other hand,

vectorized implementations using NEON can per-

form efficiently the computation of independent

multiplications (as found in operations over Fp2);

e.g., see [38]. In this work, we take these opti-

mizations further and propose a technique that in-

terleaves ARM- and NEON-based multiprecision

operations, such as multiplication, squaring and

modular reduction, in extension field operations

in order to maximize the inherent parallelism and

hide the execution latency. The technique is espe-

cially relevant for implementing the quadratic ex-

tension field layer in GLS curves [16] and pairing

computations [1]. For instance, it injects a signifi-

cant speedup in the range 17%-34% in the scalar

multiplication execution on a GLV-GLS curve (see

§5 and §6).

To demonstrate the efficiency of our techniques,

we implement the state-of-the-art twisted Edwards

GLV-GLS curve over Fp2 with p = 2127 − 5997 re-

cently proposed by Longa and Sica [31]. This curve,

referred to as Ted127-glv4, supports a 4-GLV de-

composition. Moreover, we also present efficient al-

gorithms for implementing field and quadratic ex-

tension field operations targeting our 127-bit prime

on x64 and ARM platforms. We combine incom-

plete reduction [41] and lazy reduction [40], ex-

panding techniques by [30]. These optimized oper-

ations are then applied to state-of-the-art twisted

Edwards formulas [3,23] to speed up computations

in the setting of curves over Fp2 . Our implemen-

tations of the three core scalar multiplication sce-

narios, namely, variable-base, fixed-base and dou-

ble scalar, target modern x64 and ARM processors

and include full protection against timing attacks.

We show that the proposed algorithms and for-

mulas reduce significantly the cost of adding pro-

tection against timing attacks and the storage re-

quirement for precomputations, and allow us to

set a new speed record for protected software. For

instance, a protected variable-base elliptic curve

scalar multiplication on curve Ted127-glv4 runs

in 96,000 cycles on an Intel Sandy Bridge machine

(Windows OS), using only 1KB of memory for pre-

computed values. This is 30% faster, using almost

1/5 of the storage, than the state-of-the-art imple-

mentation reported by Longa and Sica [31] that

computes the same operation in 137,000 cycles us-

ing 4.5KB of memory for precomputations. More-

over, this result is only 5% slower, using 1/2 of the

storage, than the state-of-the-art unprotected com-

putation in [31], which runs in 91,000 cycles using

2KB of memory. The performance of the variable-

base computation is even faster on Linux: the op-

eration runs in 92,000 cycles on the same Sandy

Bridge machine. These results not only represent

a new speed record for protected software but also

mark the first time that a constant-time variable-

base scalar multiplication is performed under 100K

cycles on an Intel processor. Similar results are

obtained for fixed-base and double scalar multi-

plication, and for ARM processors exploiting the

technique that interleaves NEON and ARM-based

operations (see §6 for full benchmark results).

This paper is organized as follows. In §2, we

give some preliminaries about the GLV and GLS

methods, side-channel attacks and the protected

comb methods by Feng et al. [13,14] and Hedabou

et al. [22]. In §3, we present the new GLV-based

representation, its variants and the corresponding

scalar multiplication method. In §4, we describe

the new algorithm for fixed-base scalar multipli-

cation. We describe the implementation of curve

Ted127-glv4 as well as optimized algorithms for

field, extension field and point operations targeting

x64 and ARM platforms in §5. In this section, we

also discuss the interleaving technique for ARM.

Finally, in §6, we perform an analysis of the pro-

posed methods and present benchmark results of

the core scalar multiplication scenarios on several

x64 and ARM processors.

2 Preliminaries

2.1 The GLV and GLS Methods

In this section, we briefly describe the GLV and

GLS methods in a generic, m dimensional frame-

work. Let C be a curve defined over a finite field

Fp equipped with an efficiently computable endo-

morphism φ. The GLV method to compute scalar

multiplication [17] consists of first decomposing

the scalar k into sub-scalars ki for 0 ≤ i < m

and then computing
∑m−1
i=0 kiDi using the Straus-

Shamir trick for simultaneous multi-scalar multi-

plication, where D0 is the input divisor from the

divisor class group of the curve andDi = φi(D0). If

all of the sub-scalars have approximately the same

bitlength, the number of required doublings is re-

duced to approximately log2 r/m, where r is the

prime order of the curve subgroup. Special curves

equipped with endomorphisms which are different

to the Frobenius endomorphism are known as GLV

curves.
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The GLS method [16,15] lifts the restriction

to special curves and exploits an endomorphism ψ

arising from the p-power Frobenius endomorphism

on a wider set of curves C ′ defined over an ex-

tension field Fpk that are Fpn -isogenous to curves

C/Fp, where k|n. Equipped with ψ to perform the

scalar decomposition, one then proceeds to apply

the GLV method as above. More complex decom-

positions arise by applying the GLS paradigm to

GLV curves (a.k.a. GLV-GLS curves [16,31]).

These techniques have received lots of atten-

tion recently, given their significant impact in the

performance of curve-based systems. Longa and

Gebotys [30] report efficient implementations of

GLS curves over Fp2 using 2 dimensional decompo-

sitions. In [24], Hu, Longa and Xu explore a GLV-

GLS curve over Fp2 supporting a 4 dimensional de-

composition. In [8], Bos et al. study 2 and 4 dimen-

sional decompositions on genus 2 curves over Fp.
Bos et al. [9] explore the combined GLV-GLS ap-

proach over genus 2 curves defined over Fp2 , which

supports an 8-GLV decomposition. In the case of

binary GLS elliptic curves, Oliveira et al. [35] re-

port the implementation of a curve exploiting the

2-GLV method. More recently, Guillevic and Ion-

ica [18] show how to exploit the 4-GLV method

on certain genus one curves defined over Fp2 and

genus two curves defined over Fp; and Smith [39]

proposes a new family of elliptic curves that sup-

port 2-GLV decompositions.

From all the works above, only [31] and [35]

include side-channel protection in their GLV-based

implementations.

2.2 Side-Channel Attacks and Countermeasures

Side-channel attacks [26] exploit leakage informa-

tion obtained from the physical implementation of

a cryptosystem to get access to private key mate-

rial. Examples of physical information that can be

exploited are power, time, electromagnetic emana-

tions, among others. In particular, much attention

has been put on timing [26,11] and simple power

attacks (SPA) [27], given their broad applicabil-

ity and relatively low costs to be realized in prac-

tice. Traditionally, the different attacks can also be

distinguished by the number of traces that are ex-

ploited in the analysis: simple side-channel attacks

(SSCA) require only one trace (or very few traces)

to observe the leakage that directly reveals the se-

cret bits, whereas differential side-channel attacks

(DSCA) require many traces to perform a statis-

tical analysis on the data. The feasibility of these

attacks depends on the targeted application, but it

is clear that SSCA attacks are feasible in a wider

range of scenarios. In this work, we focus on meth-

ods that minimize the risk posed by timing attacks

and SSCA attacks such as SPA.

In curve-based cryptosystems, the first step to

achieve protection against these attacks is to use

regular algorithms for performing scalar multipli-

cation (other methods involve the use of unified

formulas, but these are generally expensive). One

efficient approach in this direction is to recode

the scalar to a representation exhibiting a regu-

lar pattern. In particular, for the case of variable-

base scalar multiplication, the regular windowed

recoding proposed by Okeya and Takagi [34] and

further analyzed by Joye and Tunstall [25] repre-

sents one of the most efficient alternatives. Nev-

ertheless, in comparison with the standard width-

w non-adjacent form (wNAF) [21] used in unpro-

tected implementations, the Okeya-Takagi recod-

ing increases the nonzero density from 1/(w + 1)

to 1/(w − 1). In contrast, side-channel protected

methods for scalar multiplication exploiting the

GLV method have not been fully studied. Further-

more, we note that methods typically efficient in

the standard case are not necessarily efficient in

the GLV paradigm. For example, in [31], Longa

and Sica apply the Okeya-Takagi recoding to pro-

tect scalar multiplication on a GLV-GLS curve us-

ing a 4 dimensional GLV decomposition against

timing attacks. The resulting protected implemen-

tation is about 30% more expensive than the un-

protected version. In this work, we aim at reducing

that gap, providing efficient methods that can be

exploited to improve and protect GLV and GLS-

based implementations.

The comb method [28] is an efficient approach

for the case of fixed-base scalar multiplication. How-

ever, in its original form, the method is unpro-

tected against SSCA and timing attacks. An ef-

ficient approach to achieve a regular execution is

to recode the scalar using signed nonzero repre-

sentations such as LSB-set [13], MSB-set [14] or

SAB-set [22]. A key observation in this work is

that the basic version of the fixed-base comb ex-

ecution (i.e., without exploiting multiple tables)

has several similarities with a GLV-based variable-

base execution. So it is therefore natural to adapt

these techniques to the GLV setting to achieve

side-channel protection. In particular, the LSB-set

representation is a good candidate, given that an

analogue of this method in the GLV setting mini-

mizes the cost of precomputation.
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2.3 The Least Significant Bit - Set (LSB-Set)

Representation and Variants

Feng, Zhu, Xu and Li [13] proposed a clever signed

representation, called LSB-set, that is based on the

equivalence 1 ≡ 11̄ . . . 1̄ (assuming the notation

−1 ≡ 1̄). They used this representation to protect

the comb method [28] in the computation of fixed-

base scalar multiplication (we refer to this method

as LSB-set comb scalar multiplication). Next, we

briefly describe the LSB-set recoding and its ap-

plication to fixed-base scalar multiplication. The

reader is referred to [28] and [13] for complete de-

tails about the original comb method and the LSB-

set comb method, respectively.

Let t be the bitlength of the prime order r of a

given curve subgroup, such that possible scalars k

in the computation of scalar multiplication are in

the range [0, r − 1]. Assume that a given scalar k

is partitioned in w consecutive parts of d = dt/we
bits each (padding k with (dw− t) zeros to the left

as necessary). Let the updated binary representa-

tion of k be (kl−1, kl−2, . . . , k0), where l = dw. One

can visualize the bits of k in matrix form by con-

sidering the w pieces as the rows with the least sig-

nificant part on top and the most significant part

at the bottom. The LSB-set recoding consists of

first replacing every sequence 00 . . . 01 in the top

row by 11̄ . . . 1̄1̄ (keeping the same number of dig-

its). Then, it involves converting every bit ki in the

remaining rows in such a way that output digits bi
for d ≤ i ≤ (l− 1) are in the digit set {0, bi mod d}.
That is, digits in the same column of the recoded

matrix are either 0 or share the same sign. Af-

ter precomputing all the possible multiples of the

base point corresponding to a “digit-column”, one

can proceed to compute a comb fixed-base scalar

multiplication by scanning the digit-columns of the

recoded matrix from left to right. Since every digit-

column is nonzero by definition, the computation

consists of a point doubling and an addition with a

precomputed value at every iteration, providing a

regular execution that is protected against simple

side-channel attacks.

There are other variants in the literature that

have also been exploited for implementing pro-

tected comb fixed-base scalar multiplication. Feng,

Zhu, Zhao and Li proposed in [14] the Most Sig-

nificant Bit - Set (MSB-set) representation, which

reduces slightly the cost in comparison with the

LSB-set comb method for the case in which w | t.
The main difference with LSB-set resides in that

MSB-set applies the transformation 1 7→ 11̄ . . . 1̄

to the most significant d bits of the scalar, in-

stead of the least significant portion. In [22], Hed-

abou, Pinel and Beneteau proposed a full signed

nonzero representation, referred to as Signed All-

Bit-Set (SAB-set), that uses the above transforma-

tion to recode the whole scalar. In this case, the

cost of precomputation is expected to be slightly

higher since no zeros are used in the representa-

tion. We comment that the algorithms presented

in this work can be modified to use the MSB-set

or SAB-set representations.

3 The GLV-Based Sign-Aligned Column

(GLV-SAC) Representation

In this section, we introduce a variant of the LSB-

set recoding that is amenable for the computation

of side-channel protected variable-base scalar mul-

tiplication in the GLV setting. The new recoding

is called GLV-Based Sign-Aligned Column (GLV-

SAC). Also, we present a new method for GLV-

based scalar multiplication exploiting the proposed

representation.

In the following, we first discuss the GLV-SAC

representation in a generic setting. In Section 3.2,

we discuss variants that are expected to be more

efficient when m = 2 and m ≥ 8. To simplify the

descriptions, we assume in the remainder that we

are working on an elliptic curve. The techniques

and algorithms can be easily extended to other set-

tings such as genus 2 curves.

Let ks = {k0, k1, . . . , kj , . . . , km−1} be a set of

positive sub-scalars in the setting of GLV with di-

mension m. The basic idea of the new recoding is

to have one of the sub-scalars of the m-GLV de-

composition, say kJ ⊂ ks, represented in signed

nonzero form and acting as a “sign-aligner”. The

latter means that kJ determines the sign of all the

digits of remaining sub-scalars according to their

relative position.

The GLV-SAC representation has the following

properties:

(i) The length of the digit representation of ev-

ery sub-scalar kj ∈ ks is fixed and given by

l = dlog2 r/me+ 1, where r is the prime sub-

group order.

(ii) Exactly one sub-scalar, which should be odd,

is expressed by a signed nonzero represen-

tation kJ = (bJl−1, . . . , b
J
0 ), where all digits

bJi ∈ {1,−1} for 0 ≤ i < l.

(iii) Sub-scalars kj ∈ ks \ {kJ} are expressed by

signed representations (bjl−1, . . . , b
j
0) such that

bji ∈ {0, bJi } for 0 ≤ i < l.
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In the targeted setting, (i) and (ii) guarantee a

constant-time execution regardless of the value of

the scalar k and without having to appeal to mask-

ing for dealing with the identity element. Item (iii)

allows us to reduce the size of the precomputed ta-

ble by a factor of 2, while minimizing the cost of

precomputation.

Note that we do not impose any restriction on

which sub-scalar should be designated as kJ . In

some settings, choosing any of the kj (with the ex-

ception of the one corresponding to the base point,

i.e., k0) could lead to the same performance in the

precomputation phase and be slightly faster than

kJ = k0, if one takes into consideration the use

of mixed point additions. The condition that kJ
should be odd enables the conversion of any inte-

ger to a full signed nonzero representation using

the equivalence 1 ≡ 11̄ . . . 1̄. To deal with this re-

striction during the scalar multiplication, we first

convert the selected sub-scalar kJ to odd (if even),

and then make the corresponding correction in the

end (refer to Section 3.1 for more details). Finally,

the reader should note that the GLV-SAC repre-

sentation, in the way we describe it above, assumes

that the sub-scalars are all positive. This restric-

tion is imposed in order to achieve the minimum

length l = dlog2 r/me + 1 in the representation.

We lift this restriction in Section 3.3.

An efficient algorithm to recode the sub-scalars

to GLV-SAC proceeds as follows. Assume that each

sub-scalar kj is padded with zeros to the left until

reaching the fixed length l = dlog2 r/me+ 1. After
choosing a suitable kJ to act as the “sign-aligner”,

the sub-scalar kJ is recoded to signed nonzero dig-

its bJi using the equivalence 1 ≡ 11̄ . . . 1̄, i.e., ev-

ery sequence 00 . . . 01 is replaced by a sequence

11̄ . . . 1̄1̄ with the same number of digits. Remain-

ing sub-scalars are then recoded in such a way that

output digits at position i are in the set {0, bJi },
i.e., nonzero digits at the same relative position

share the same sign. This is shown as Algorithm 1.

We highlight that, in contrast to [13, Alg. 4]

and [14, Alg. 2], our recoding algorithm is simpler

and exhibits a regular and constant-time execu-

tion, making it resilient to timing attacks. More-

over, Algorithm 1 can be implemented very effi-

ciently by exploiting the fact that the only pur-

pose of the recoded digits from the sub-scalar kJ
is, by definition, to determine the sign of their cor-

responding digit-columns (see details in Alg. 2).

Since kJi+1 = 0 and kJi+1 = 1 indicate that the cor-

responding output digit-column i will be negative

and positive, respectively, Step 3 of Algorithm 1

can be reduced to bJi = kJi+1 by assuming the con-

vention bJi = 0 to indicate negative and bJi = 1 to

indicate positive, for 0 ≤ i < l. Following this con-

vention, further efficient simplifications are possi-

ble for Steps 6 and 7.

Algorithm 1 Protected Recoding Algorithm for

the GLV-SAC Representation.

Input:m l-bit positive integers kj = (kjl−1, . . . , k
j
0)2 for

0 ≤ j < m, an odd “sign-aligner” kJ ∈ {kj}m, where
l = dlog2 r/me + 1, m is the GLV dimension and r is
the prime subgroup order.
Output: (bjl−1, . . . , b

j
0)GLV-SAC for 0 ≤ j < m, where

bJi ∈ {1,−1}, and bji ∈ {0, bJi } for 0 ≤ j < m with
j 6= J .

1: bJl−1 = 1
2: for i = 0 to (l − 2) do
3: bJi = 2kJi+1 − 1
4: for j = 0 to (m− 1), j 6= J do
5: for i = 0 to (l − 1) do

6: bji = bJi · k
j
0

7: kj = bkj/2c − bbji/2c
8: return (bjl−1, . . . , b

j
0)GLV-SAC for 0 ≤ j < m.

3.1 GLV-Based Scalar Multiplication using

GLV-SAC

We now present a new method for computing

GLV-based variable-base scalar multiplication us-

ing the GLV-SAC representation (see Algorithm 2).

To simplify the description, we assume that k0 is

fixed as the “sign-aligner” kJ (it is easy to mod-

ify the algorithm to set any other sub-scalar to

kJ). The basic idea is to arrange the sub-scalars,

after being converted to their GLV-SAC represen-

tation, in matrix form from top to bottom, with

sub-scalar kJ = k0 at the top, and then run a si-

multaneous multi-scalar multiplication execution

scanning digit-columns from left to right. When

using the GLV-SAC recoding, every digit-column

i is expected to be nonzero and has any of the pos-

sible combinations [bm−1
i , . . . , b2i , b

1
i , b

0
i ], where b0i ∈

{1,−1}, and bji ∈ {0, b0i } for 1 ≤ j < m and 0 ≤
i < l. Since nonzero digits in the same column have

the same sign, one only needs to precompute all the

positive combinations P0 +u1P1 + . . .+um−1Pm−1

with uj ∈ {0, 1}, where Pj are the base points of

the sub-scalars. Assuming that negation of group

elements is inexpensive in a given curve subgroup,

negative values can be computed on-the-fly during

the evaluation stage.
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Algorithm 2 Protected m-GLV Variable-Base

Scalar Multiplication using the GLV-SAC Repre-

sentation.
Input: Base point P0 of order r and (m − 1) points
Pj for 1 ≤ j < m corresponding to the endomorphisms,

m scalars kj = (kjtj−1, . . . , k
j
0)2 for 0 ≤ j < m, l =

d log2 r

m
e+ 1 and max(tj) = d log2 r

m
e.

Output: kP .

Precomputation stage:
1: Compute P [u] = P0 + u0P1 + . . . + um−2Pm−1

for all 0 ≤ u < 2m−1, where u = (um−2, . . . , u0)2.
Recoding stage:
2: even = k0 mod 2
3: if even = 0 then k0 = k0 − 1
4: Set kJ = k0. Pad each kj with (l − tj) ze-
ros to the left for 0 ≤ j < m and convert them to
the GLV-SAC representation using Algorithm 1 such
that kj = (bjl−1, . . . , b

j
0)GLV-SAC. Set digit-columns

Ki = [bm−1
i , . . . , b2i , b

1
i ] ≡ |bm−1

i 2m−2+. . .+b2i 2+b1i |
and digit-column signs si = b0i for 0 ≤ i ≤ l − 1.
Evaluation stage:
5: Q = sl−1P [Kl−1]
6: for i = l − 2 to 0 do
7: Q = 2Q
8: Q = Q+ siP [Ki]
9: if even = 0 then Q = Q+ P0

10: return Q

Since the GLV-SAC recoding requires that the

“sign-aligner” kJ (in this case, k0) be odd, k0 is

subtracted by one if it is even in Step 3 of Algo-

rithm 2. The correction is then performed at the

end of the evaluation stage at Step 10. These com-

putations, as well as the accesses to the precom-
puted table, should be performed in constant time

to guarantee protection against timing attacks. For

example, in the implementation discussed in Sec-

tion 6, the value P [Ki] required at Step 9 is re-

trieved from memory by performing a linear pass

over the whole precomputed table using conditional

move instructions. The final value siP [Ki] is then

obtained by performing a second linear pass over

the points P [Ki] and −P [Ki]. Similarly, to real-

ize Step 10, we always carry out the computation

Q′ = Q + P0 and then perform a linear pass over

the points Q and Q′ using conditional move in-

structions to transfer the correct value to the final

destination.

Note that Algorithm 2 assumes a decomposed

scalar as input. This is sufficient in some settings,

in which randomly generated sub-scalars could be

provided. However, in other settings, one requires

to calculate the sub-scalars in a decomposition pro-

cedure. We remark that this computation should

also be performed in constant time for protect-

ing against timing attacks (e.g., see the details for

Ted127-glv4 in §6).

Example 1. Let m = 4, log2 r = 16 and kP = 11P0

+6P1 + 14P2 + 3P3. Using Algorithm 1, the corre-

sponding GLV-SAC representation of fixed length

l = d16/4e+ 1 = 5 is given by (arranged in ma-

trix form from top to bottom as required in Algo-

rithm 2)
k0

k1

k2

k3

 ≡


0 1 0 1 1

0 0 1 1 0

0 1 1 1 0

0 0 0 1 1

 ≡


1 1̄ 1 1̄ 1

1 1̄ 0 1̄ 0

1 0 0 1̄ 0

0 0 1 1̄ 1


According to Algorithm 2, digit columns are

given by K0 = [100] = 4, K1 = [1̄1̄1̄] = 7, K2 = [100]

= 4, K3 = [001̄] = 1 and K4 = [011] = 3, and their

corresponding si are s0 = 1, s1 = −1, s2 = 1, s3 =

−1 and s4 = 1. Precomputed values P [u] are given

by P [0] = P0, P [1] = P0+P1, P [2] = P0+P2, P [3] =

P0 + P1 + P2, P [4] = P0 + P3, P [5] = P0 + P1 +

P3, P [6] = P0+P2+P3 and P [7] = P0+P1+P2+P3.

At Step 5 of Alg. 2, we set Q = s4P [K4] = P [3] =

P0+P1+P2. The main loop in the evaluation stage

is then executed as shown in Table 1.

Cost Analysis. In order to simplify comparisons,

let us consider here a setting in which precom-

puted points are left in some projective system.

When converting points to affine is convenient, one

should include the cost of this conversion. Also,

the analysis below does not consider optimizations

exploiting cheap endomorphism mappings during

precomputation, since this is dependent on a spe-

cific application. The reader is referred to Section 6

for a more precise comparison in a practical im-

plementation using a twisted Edwards GLV-GLS

curve.

The cost of the proposed m-GLV variable-base

scalar multiplication using the GLV-SAC represen-

tation (Alg. 2) is given by (l − 1) doublings and l

additions during the evaluation stage using 2m−1

points, where l = d log2 r
m e+ 1. Naively, precompu-

tation costs 2m−1 − 1 additions (in practice, sev-

eral of these additions might be performed using

cheaper mixed additions). So the total cost is given

by (l− 1) doublings and (l+ 2m−1 − 1) additions.

In contrast, the method based on the regular

windowed recoding [34] used in [31] requires (l−1)

doublings and m ·(l−1)/(w−1)+2m−1 additions

during the evaluation stage and m doublings with

m·(2w−2−1) additions during the precomputation

stage, using m · (2w−2 + 1) points (naive approach
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i 3 2 1 0

2Q 2P0 + 2P1 + 2P2 2P0 + 2P1 + 4P2 6P0 + 4P1 + 8P2 + 2P3 10P0 + 6P1 + 14P2 + 2P3

Q+ siP [Ki] P0 + P1 + 2P2 3P0 + 2P1 + 4P2 + P3 5P0 + 3P1 + 7P2 + P3 11P0 + 6P1 + 14P2 + 3P3

Table 1 Execution of the main loop of Algorithm 2 in Example 1.

without exploiting endomorphisms). If, for exam-

ple, r = 256,m = 4 and w = 5 (typical parameters

to achieve 128-bit security on a curve similar to

Ted127-glv4), the new method costs 64 doublings

and 72 additions using 8 points, whereas the reg-

ular windowed method costs 68 doublings and 99

additions using 36 points. Thus, the new method

improves performance while reduces dramatically

the number of precomputations (in this case, to

almost 1/5 of the storage). Assuming that one ad-

dition costs 1.3 doublings, the expected speedup is

20%.

Certainly, one can reduce the number of pre-

computations when using the regular windowed

recoding by only precomputing multiples corre-

sponding to one or some of the sub-scalars. How-

ever, these savings in memory come at the expense

of computing endomorphisms during the evalua-

tion stage, which can cost from several multiplica-

tions [8] to approximately one full point addition

each (see Appendix B). The proposed method al-

ways requires the minimum storage without im-

pacting performance.

The basic GLV-SAC representation and its cor-

responding scalar multiplication are particularly

efficient for 4-dimensional GLV. In the following

section, we discuss variants that are efficient for
m = 2 and m ≥ 8.

3.2 Windowed and Partitioned GLV-SAC: Case

of Dimension 2 and 8 (or Higher)

In some cases, the performance of the proposed

scalar multiplication can be improved further by

combining windowed techniques with the GLV-SAC

recoding. Given a window width w, assume that

every sub-scalar in a set ks = {kj}m has been

padded with enough zeros to the left to guaran-

tee that w|l, where l = (dlog2 r/we + 1) mod w +

(dlog2 r/we+ 1) is the expected length of every re-

coded sub-scalar using an extended GLV-SAC rep-

resentation that we refer to as wGLV-SAC. The

basic idea is to join every w consecutive digits

after applying the GLV-SAC recoding, and pre-

compute all possible values P [u] = u′P0 + u0P1 +

. . . + um−2Pm−1 for each u′ ∈ {1, 3, . . . , 2w − 1}
(i.e., 0 ≤ u < 2wm−1). Note that possible values for

u0, . . . , um−2 should be fixed according to the re-

striction that all the digits in the same “column”

share the same sign. For example, let us assume

that m = w = 2. Then, possible two-digit val-

ues u′ for k0 are (11̄) ≡ 1 and (11) ≡ 3. For

u′ = 1, possible two-digit values u0 for k1 are

(01̄) ≡ −1, (00) ≡ 0, (11̄) ≡ 1 and (10) ≡ 2. These

values correspond to table entries u′P0 + u0P1:

P [0] = P0 − P1, P [1] = P0, P [2] = P0 +P1, P [3] =

P0 + 2P1. Similarly, for u′ = 3, possible two-digit

values u0 for k1 are (00) ≡ 0, (01) ≡ 1, (10) ≡ 2

and (11) ≡ 3. These values correspond to table

entries u′P0 + u0P1: P [4] = 3P0, P [5] = 3P0 + P1,

P [6] = 3P0 + 2P1, P [7] = 3P0 + 3P1. Again, points

corresponding to negative values of u′ do not need

to be stored in the table because they can be com-

puted on-the-fly. Conveniently, Algorithm 1 can

also be used to obtain wGLV-SAC(kj), with the

only change in the fixed length to l = (dlog2 r/we+
1) mod w + (dlog2 r/we + 1). After conversion to

the wGLV-SAC representation, scalar multiplica-

tion then proceeds by scanning w-digit columns in

the recoded matrix from left to right.

Example 2. Letm = 2, log2 r = 8, w = 2 and kP =

11P0 + 14P1. Using Algorithm 1, the correspond-

ing wGLV-SAC representation with fixed length

l = (d8/2e+ 1) mod 2 + d8/2e+ 1 = 6, arranged in

matrix form from top to bottom, is given by[
k0

k1

]
≡
[

0 0 1 0 1 1

0 0 1 1 1 0

]
≡
[

1 1̄ 1̄ 1 1̄ 1

1 1̄ 0 0 1̄ 0

]
In this case, one can consider the following con-

vention for the 2-digit columns: Ki = [b12i+1b
1
2i,

b02i+1b
0
2i] ≡ |2b12i+1 + b12i| + (3 · |2b02i+1 + b02i| +

1)/2−1 with signs si = b02i+1, for 0 ≤ i < l
2 (using

the notation kj = (bjl−1, . . . , b
j
0)wGLV-SAC). Thus,

the 2-digit columns are given by K0 = [2̄, 1̄] ≡ 3,

K1 = [0, 1̄] ≡ 1 and K2 = [1, 1] ≡ 2, and their cor-

responding si are s0 = −1, s1 = −1 and s2 = 1.

As explained in the text before the example, pre-

computed values are given by P [u] = u′P0 + u0P1

for 0 ≤ u < 8 and u′ ∈ {1, 3}. Explicitly, P [0] =

P0 − P1, P [1] = P0, P [2] = P0 + P1, P [3] = P0 +

2P1, P [4] = 3P0, P [5] = 3P0 +P1, P [6] = 3P0 +2P1

and P [7] = 3P0 + 3P1. In the evaluation stage we

first set Q = s2P [K2] = P [2] = P0 + P1 and then

execute:
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i 1 0

2wQ 4P0 + 4P1 12P0 + 16P1

Q+ siP [Ki] 3P0 + 4P1 11P0 + 14P1

Since the requirement of precomputations, given

by 2wm−1, increases rapidly as w and m grow,

windowed GLV-SAC is especially attractive for 2-

dimensional GLV implementations. In this case, by

fixing w = 2 the number of precomputed points is

only 8. At the same performance level (in terms of

number of additions and doublings in the evalua-

tion stage), this is approximately half the memory

requirement of a method based on the regular win-

dowed recoding [34] 1.

Whereas joining columns in the representation

matrix is amenable for small m using windowing,

for large m it is recommended to join rows instead.

We illustrate the approach with m = 8. Given a set

of sub-scalars ks = {kj}m for 0 ≤ j < 8, we first

partition it in c consecutive sub-sets k′i such that

c|8, and then convert every sub-set to the GLV-

SAC representation (using Algorithm 1). In this

case, every column in the matrix consists of c sub-

columns, each one corresponding to a sub-set k′i.

Scalar multiplication then proceeds by scanning c

sub-columns per iteration from left to right. Thus,

with this “partitioned” GLV-SAC approach, one

increases the number of point additions per iter-

ation in the main loop of Algorithm 2 from one

to c. However, the number of required precom-

putations is reduced significantly from 2m−1 to

c ·2
m
c −1. For example, for m = 8, this introduces a

reduction in the number of points from 128 to only

16 if c is fixed to 2 (each sub-table corresponding

to a sub-set of scalars contains 8 points). At the

same performance level (in terms of number of ad-

ditions and doublings in the evaluation stage), this

is approximately half the memory requirement of

a method based on the regular windowed recod-

ing [34], as discussed by the recent work by Bos et

al. [9]. Performance is also expected to be improved

since the number of point operations in the pre-

computation stage is significantly reduced. Note

that, if one only considers positive sub-scalars and

the endomorphism mapping is inexpensive in com-

parison to point addition, then sub-tables can be

computed by simply applying the endomorphism

to the first sub-table arising from the base point

P0. In some instances, such as the 8-GLV in [9],

this approach is expected to reduce further the

1 However, in some cases one can afford the reduction
of precomputations from 16 to 8 when using the win-
dowed recoding if endomorphisms are cheap and can be
computed on-the-fly during the evaluation stage; e.g.,
see [35].

cost of precomputation. However, an issue arises

when sub-scalars can also be negative. We solve

this problem in the next subsection.

3.3 Extended GLV-SAC Representation: Dealing

with Negative Sub-Scalars

Typically, sub-scalars obtained from decomposi-

tion methods can be positive as well as negative.

However, for efficiency reasons (specifically, to get

the minimum length in the representation) the ba-

sic version of GLV-SAC only works for positive in-

tegers (see at the beginning of Section 3). In gen-

eral, a straightforward solution during the scalar

multiplication is to simply convert negative sub-

scalars to positive and then negate the correspond-

ing base Pi. Recoding to GLV-SAC can then be

performed with Algorithm 1 as before. However,

an issue with this approach arises when the pre-

computed table needs to be partitioned in more

than one sub-table (see, for example, the case of 8-

GLV in the previous subsection). If the bases Pi are

negated depending on the sign of their correspond-

ing sub-scalar then cheap applications of the GLV

endomorphism cannot be conveniently applied to

compute instances of the original sub-table.

Algorithm 3 Protected Recoding Algorithm for

the Extended GLV-SAC Representation.

Input: m l-bit integers kj = (kjl−1, . . . , k
j
0)2 and their

corresponding signs sj ∈ {−1, 1} for 0 ≤ j < m, an odd
“sign-aligner” kJ ∈ {kj}m, where l = dlog2 r/me + 2,
m is the GLV dimension and r is the prime subgroup
order.
Output: (bjl−1, . . . , b

j
0)Ext-GLV-SAC for 0 ≤ j < m,

where bJi ∈ {1,−1}, and bji ∈ {0, bJi } for 0 ≤ j < m
with j 6= J .

1: bJl−1 = 1
2: for i = 0 to (l − 2) do
3: bJi = sJ · (2kJi+1 − 1)
4: for j = 0 to (m− 1), j 6= J do
5: for i = 0 to (l − 1) do

6: bji = bJi · k
j
0

7: kj = bkj/2c − sj · bbji/2c
8: return (bjl−1, . . . , b

j
0)Ext-GLV-SAC for 0 ≤ j < m.

To solve this problem, we present an extended

version of the GLV-SAC representation that ex-

hibits the following properties:

(i) The length of the digit representation of ev-

ery sub-scalar kj is fixed and given by l =

dlog2 r/me+2, where r is the prime subgroup

order.
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(ii) and (iii) are the same as the original GLV-

SAC representation (see at the beginning of

Section 3).

Thus, the only difference with the original GLV-

SAC representation is the addition of one digit

to the length, in order to deal with the sign. We

present Algorithm 3 for the efficient recoding to

this representation.

4 Modified LSB-Set Comb Method for

Fixed-Base Scalar Multiplication

The side-channel protected comb methods by Feng

et al. [13,14] and Hedabou et al. [22] used a sim-

ple version of the Lim-Lee’s comb method that is

restricted to only one table (see [28] for more de-

tails). Recently, Hamburg [19] precisely proposed

to combine the original multi-table Lim-Lee’s comb

approach with Hedabou et al.’s SAB-set represen-

tation for improved performance. In this section,

we follow a similar observation to extend Feng et

al.’s LSB-set comb method with the use of multiple

tables.

Let t be the bitlength of the prime subgroup

order r. Assume that the binary representation of

a scalar k ∈ [1, r − 1] is updated to (kl−1, kl−2,

. . . , k0) by padding with (dw − t) zeros to the

left for some window width w, where l = dw,

d = dt/we and w ≥ 2 (see Section 2.3). First, we

note that the basic LSB-set comb method [13] re-

quires additional operations in comparison with

the original comb method when w|t. In [14], Feng

et al. fixed this deficiency by proposing an MSB-

set representation that recodes the most signifi-

cant d bits to a nonzero representation, instead of

the least significant d bits. In addition, MSB-set

lifts the restriction to odd integers, inherent to the

LSB-set representation. We show here that it is

possible to modify the original LSB-set represen-

tation to fix the problem with the extra operations.

Moreover, we easily solve the restriction to odd in-

tegers by exploiting the group order during scalar

multiplication, and thus benefit from a somewhat

simpler recoding algorithm.

As in [28], we add a parameter, referred to as

v, that represents the number of tables to use.

The modified LSB-set representation (denoted by

mLSB-set) has the following properties

(i) Given a window width w ≥ 2, a table param-

eter v ≥ 1 and an odd integer k ∈ [1, r −
1], where r is the prime subgroup order, the

digit-length of mLSB-set(k) is given by l =

dw, where d = ev, e = dt/(wv)e and t =

dlog2 re.
(ii) The least significant d digits (bd−1, . . . , b0)

are in signed nonzero form, i.e., bi ∈ {1,−1}
for 0 ≤ i < d.

(iii) Remaining digits bi for d ≤ i < l are expressed

by a signed representation (c, bl−1, . . . , bd) s.t.

bi ∈ {0, bi mod d} and c ∈ {0, 1}. If wv - t, c is

always 0 and can be discarded.

Similarly to GLV-SAC, (i) and (ii) will enable

a constant-time execution regardless of the value

of k without having to appeal to masking for deal-

ing with the identity element. Item (iii) will al-

low us to reduce the size of the precomputed ta-

ble by a factor of 2, while minimizing the cost

of precomputation. In our optimized setting us-

ing multiple tables, there is an additional carry

bit c whenever wv | t. We remark that the latter

reveals nothing since the appearance of the carry

bit depends on public parameters. To deal with

this extra bit during scalar multiplication we per-

form a correction with a precomputed value (see

next section). Again, the condition that k should

be odd enables the conversion of the least signifi-

cant d bits to a signed nonzero representation using

the equivalence 1 ≡ 11̄ . . . 1̄. To deal with this re-

striction during scalar multiplication, we take ad-

vantage that our setting consists of a subgroup of

prime order r. Hence, −k (mod r) = r − k gives

an odd result if k is even.

Algorithm 4 Protected Odd-Only Recoding Al-

gorithm for the Modified LSB-Set Representation.

Input: An odd l-bit integer k = (kl−1, . . . , k0)2, win-
dow width w ≥ 2 and table parameter v ≥ 1, where
l = dw, d = ev and e = dlog2 r/(wv)e.
Output: (c, bl−1, . . . , b0)mLSB-set, where bi ∈ {1,−1}
for 0 ≤ i < d and bi ∈ {0, bi mod d} for d ≤ i ≤ l − 1. If
wv|t then c ∈ {0, 1}, otherwise, c = 0 can be discarded.

1: bd−1 = 1
2: for i = 0 to (d− 2) do
3: bi = 2ki+1 − 1
4: c = bk/2dc
5: for i = d to (l − 1) do
6: bi = bi mod d · c0
7: c = bc/2c − bbi/2c
8: return (c, bl−1, . . . , b0)mLSB-set.

An efficient algorithm to recode a given scalar

to its mLSB-set representation is given in Algo-

rithm 4. Conveniently, the recoding algorithm is

simple and regular, exhibiting resistance to timing

attacks. Note that, depending on the targeted plat-

form, other implementation alternatives are pos-
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sible. For example, Step 3 can be computed as

bi = (ki+1 − 1) | 1, where | represents a logical OR

operation.

4.1 Fixed-Base Scalar Multiplication using

mLSB-Set

The new algorithm for computing fixed-base scalar

multiplication using the modified LSB-set repre-

sentation is shown as Algorithm 5. Disregarding c,

the basic idea is to split mLSB-set(k) = (c, bl−1,

. . . , b0) in consecutive d-digit parts Kw′ , for 0 ≤
w′ < w, and arrange them in matrix form from

top to bottom, with the least significant d digits

(i.e., K0) at the top. Then, partition each Kw′

in v strings of e digits each, where v ≥ 1 repre-

sents a suitably chosen number of tables (each ta-

ble consists of v consecutive digit-columns). Thus,

we have that Kw′

v′,e′ = bdw′+ev′+e′ , where Kw′

v′,e′ de-

notes the e′-th digit in the v′-th string of a given

Kw′ . We then run a simultaneous multi-scalar mul-

tiplication scanning digit-columns from left to right,

taking an entry from each table. With the mLSB-

set recoding, every digit-column is nonzero by def-

inition and has any of the possible combinations

[Kw−1
v′,e′ , . . . ,K

1
v′,e′ ,K

0
v′,e′ ], where K0

v′,e′ ∈ {1,−1},
and Kw′

v′,e′ ∈ {0,K0
v′,e′} for 1 ≤ w′ < w. Since

nonzero digits in the same column have the same

sign, one only needs to precompute all the posi-

tive combinations P [u][v′] = 2ev
′
(1 + u02d + . . .+

uw−22(w−1)d)P for all 0 ≤ u < 2w−1 and 0 ≤ v′ <
v, where u = (uw−2, . . . , u0)2 and P is the base

point. Assuming that negation of group elements

is inexpensive in a given curve subgroup, negative

values can be computed on-the-fly during the eval-

uation stage. Note that, in the fixed-base scenario,

P is assumed to be known in advance and, hence,

the precomputation can be computed off-line. Fi-

nally, if wv | t for the chosen values for w and v, we

need to precompute the extra point 2wdP and ap-

ply a correction at the end of the evaluation stage

(Step 10 of Alg. 5). A detailed proof is shown in

Appendix A.

As can be seen, the main loop of Algorithm 5

computes kP using the regular pattern of one dou-

bling and v additions. This regularity in the execu-

tion is the first requisite towards achieving protec-

tion against timing attacks and SSCA attacks such

as SPA. Following previous recommendations, ta-

ble accesses and conditional statements (e.g., Steps

3, 5, 8-10) should be performed in constant-time

to guarantee protection against timing attacks. We

also note that for the GLV-setting Algorithm 5

Algorithm 5 Protected Fixed-Base Scalar Mul-

tiplication using the Modified LSB-Set Comb

Method.
Input: A point P ∈ E(Fq) of prime order r, a scalar
k ∈ [1, r − 1], window width w ≥ 2, table parameter
v ≥ 1, where d = ev, e = dt/wve and t = dlog2 re.
Output: kP .

Precomputation stage:
1: Compute
P [u][v′] = 2ev′(1 + u02d + . . . + uw−22(w−1)d)P
for all 0 ≤ u < 2w−1 and 0 ≤ v′ < v, where u =
(uw−2, . . . , u0)2. If wv | t then compute 2wdP .
Recoding stage:
2: even = k mod 2
3: if even = 0 then k = r − k
4: Pad k with (dw − t) zeros to the left and convert
it to the mLSB-set representation using Algorithm 4
s.t. k = (c, bl−1, . . . , b0)mLSB-set, where l = dw. Set
k = Kw−1 || . . . || K1 || K0, where each Kw′ consists
of v strings of e digits each. Let the v′-th string in a
given Kw′ be denoted by Kw′

v′ , and the e′-th digit

in a given Kw′

v′ be denoted by Kw′

v′,e′ , s.t. Kw′

v′,e′ =
bdw′+ev′+e′ . Set digit-columns

Kv′,e′ = [Kw−1
v′,e′ , . . . ,K

2
v′,e′ ,K

1
v′,e′ ]

≡ |Kw−1
v′,e′ 2

w−2 + . . .+K2
v′,e′2 +K1

v′,e′ |
and digit-column signs sv′,e′ = K0

v′,e′ .
Evaluation stage:
5: Set

Q = s0,e−1P [K0,e−1][0] + s1,e−1P [K1,e−1][1]

+ . . .+ sv−1,e−1P [Kv−1,e−1][v − 1]

6: for i = e− 2 to 0 do
7: Q = 2Q
8: Q = Q+ s0,iP [K0,i][0] + s1,iP [K1,i][1]

+ . . .+ sv−1,iP [Kv−1,i][v − 1]
9: if (wv | t ∧ c = 1) then Q = Q+ 2wdP
10: if even = 0 then Q = −Q
11: return Q

does not exploit endomorphisms. It is an open prob-

lem to derive a scalar multiplication method that

exploits endomorphisms efficiently in the fixed-base

case.

In the on-line computation, the method requires

e−1 = d t
w·v e−1 doublings and ev−1 = vd t

w·v e−1

additions, using v ·2w−1 precomputed points. This

cost should be increased in one addition using an

extra precomputed point for the case in which wv |
t. This cost is similar to Hamburg’s method using

the SAB-set representation [19]. In comparison,

the SAB-set [22] and MSB-set [14] comb methods

require approximately (d− 1) doublings and d ad-

ditions using 2w−1 points, where d = dt/we. For

example, if we assume that one addition costs 1.3

doublings and t = 256 bits using 256 precomputed

points, previous comb methods cost approximately

66 doublings (with w = 9), whereas the proposed
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method costs approximately 57 doublings (with

w = 8, v = 2 optimal), injecting a 14% speedup.

Example 3. Let w = 2, v = 2 and kP = 395P . Us-

ing Algorithm 4 and assuming t = 9, the corre-

spondingmLSB-set representation with fixed digit-

length l = 6 · 2 = 12, where e = 3 and d = 6,

arranged in matrix form from top to bottom, is

given by[
K0

K1

]
≡
[

0 0 1 0 1 1

0 0 0 1 1 0

]
≡
[

1 1̄ 1̄ 1 1̄ 1

1 1̄ 1̄ 0 1̄ 0

]
Following Alg. 5, the digit columns are given by

K0,2 = [0] = 0, K0,1 = [1̄] = 1, K0,0 = [0] = 0, K1,2

= [1] = 1, K1,1 = [1̄] = 1 and K1,0 = [1̄] = 1, and

their corresponding sv′,e′ are s0,2 = 1, s0,1 = −1,

s0,0 = 1, s1,2 = 1, s1,1 = −1 and s1,0 = −1. Precom-

puted values P [u][v′] are given by

P [0][0] = P,
P [1][0] = (1 + 64)P = 65P
P [0][1] = 8P
P [1][1] = 8 · (1 + 64)P = 520P

In the evaluation stage we first compute

Q = s0,2P [K0,2][0] + s1,2P [K1,2][1]
= P + 520P
= 521P

and then execute as shown in Table 2.

5 High-Speed Implementation on

GLV-GLS Curves

In this section, we describe implementation aspects

of the GLV-GLS curve Ted127-glv4. We present

optimized algorithms for prime field, quadratic ex-

tension field and point arithmetic. We also present

the technique of interleaving NEON and ARM-

based multiprecision operations over Fp2 . Although

our techniques are especially tuned for the targeted

curve, we remark that they can be adapted and ex-

ploited in other scenarios.

5.1 The Curve

For complete details about the 4-dimensional me-

thod using GLV-GLS curves, the reader is referred

to [16] and [32]. We use the following GLV-GLS

curve in twisted Edwards form [31], referred to as

Ted127-glv4:

E′TE/Fp2 : −x2 + y2 = 1 + dx2y2, (1)

where Fp2 is defined as Fp[i]/(i2 − β), β = −1 is

a quadratic non-residue in Fp and u = 1 + i is a

quadratic non-residue in Fp2 . Also, p = 2127−5997,

d = 170141183460469231731687303715884099728+

116829086847165810221872975542241037773i and

#E′TE(Fp2) = 8r, where r is the 251-bit prime

2251 − (749)2128 − (12824516829589989391)264 −
4923708382627145895. E′TE is isomorphic to the

Weierstrass curve E′W /Fp2 : y2 = x3 − 15/2 u2x−
7u3, which is the quadratic twist of a curve isomor-

phic to the GLV curve EW /Fp : y2 = 4x3−30x−28

(see [31, Section 5]). E′TE/Fp2 is equipped with two

efficiently computable endomorphisms Φ and Ψ de-

fined over Fp2 , which enable a 4-dimensional de-

composition for any scalar k ∈ [1, r−1] in the sub-

group generated by a point P of order r and, con-

sequently, enable a four-dimensional scalar multi-

plication given by

kP = k1P + k2Φ(P ) + k3Ψ(P ) + k4ΨΦ(P ),

with maxi(|ki|) < C r1/4, where C = 179 [31]. Let

ζ8 = u/
√

2 be a primitive 8th root of unity. The

affine formulas for Φ and Ψ are given by Φ(x, y) =(
− (ζ38+2ζ28+ζ8)xy2+(ζ38−2ζ28+ζ8)x

2y ,
(ζ28−1)y2+2ζ38−ζ

2
8+1

(2ζ38+ζ28−1)y2−ζ28+1

)
and Ψ(x, y) = (ζ8x

p, 1/yp), respectively. It can be

verified that Φ2 + 2 = 0 and Ψ2 + 1 = 0. The for-

mulas in homogeneous projective coordinates can

be found in Appendix B.

Note that the curve Ted127-glv4 has a = −1

(in the twisted Edwards equation; see [3]), cor-

responding to the most efficient set of formulas

proposed by Hisil et al. [23]. Although GLV-GLS

curves with suitably chosen parameters when trans-

formed to twisted Edwards form offer roughly the

same performance, as discussed in [31], there are

certain differences in the cost of formulas for com-

puting the endomorphisms Φ and Ψ . Ted127-glv4

exhibits relatively efficient formulas for comput-

ing the endomorphisms in comparison with other

GLV-GLS curves from [31]. On the other hand,

our selection of the pseudo-Mersenne prime p =

2127−5997 enables efficient field arithmetic by ex-

ploiting lazy and incomplete reduction techniques

(see the next section for details). Also, since p ≡ 3

(mod 4), β = −1 is a quadratic non-residue in Fp,
which minimizes the cost of multiplication over Fp2
by transforming multiplications by β to inexpen-

sive subtractions.

5.2 Field Arithmetic

For field inversion, we use the modular exponenti-

ation ap−2 (mod p) ≡ a−1 using a fixed and short



Efficient and Secure Algorithms for GLV-Based Scalar Multiplication 13

i 1 0

2Q 1042P 914P

Q+ sv′,iP [Kv′,i][v
′] (1024− 65− 520)P = 457P (914 + 1− 520)P = 395P

Table 2 Execution of the main loop of Algorithm 5 in Example 3.

addition chain. This method is simple to imple-

ment and inherently protected against timing at-

tacks.

In the case of a pseudo-Mersenne prime of the

form p = 2m − c, with c small, field multiplication

can be efficiently performed by computing an inte-

ger multiplication followed by a modular reduction

exploiting the special form of the prime. This sepa-

ration of operations also enables the use of lazy re-

duction in the extension field arithmetic. For x64,

integer multiplication is implemented in product

scanning form (a.k.a Comba’s method), mainly ex-

ploiting the powerful 64-bit unsigned multiplier in-

struction. Let 0 ≤ a, b < 2m+1. To exploit the ex-

tra room of one bit in our targeted prime 2127 −
5997, we first compute M = a ·b = 2m+1MH +ML

followed by the reduction step R = ML+2cMH ≤
2m+1(2c+1)−2. Then, given R = 2mRH +RL, we

compute RL + cRH (mod p), where RL, cRH <

2m. This final operation can be efficiently carried

out by employing the modular addition proposed

by Bos et al. [8] to get the final result in the range

[0, p− 1]. Note that the computation of field mul-

tiplication above naturally accepts inputs in unre-

duced form without incurring in extra costs, en-

abling the use of additions without correction or

operations with incomplete reduction (see below

for more details). We follow a similar procedure

for computing field squaring. For ARM, we imple-

ment the integer multiplication using the school-

book method. In this case, and also for modular

reduction, we extensively exploit the parallelism

of ARM and NEON instructions. The details are

discussed in Section 5.4.

Let 0 ≤ a, b < 2m − c. Field subtraction is

computed as (a−b)+borrow·2m−borrow ·c, where

borrow = 0 if a ≥ b, otherwise borrow = 1. Notice

that in practice the addition with borrow·2m can be

efficiently implemented by clearing the (m+ 1)th

bit of a− b.

Incomplete Reduction. Similar to [30], we exploit

the form of the pseudo-Mersenne prime in combi-

nation with the incomplete reduction technique to

speed up computations. We also mix incompletely

reduced and completely reduced operands in novel

ways.

Let 0 ≤ a < 2m − c and 0 ≤ b < 2m. Field ad-

dition with incomplete reduction is computed as

(a+ b)− carry · 2m + carry · c, where carry = 0 if

a + b < 2m, otherwise carry = 1. Again, in prac-

tice the subtraction with carry · 2m can be effi-

ciently implemented by clearing the (m+ 1)th bit

of a+ b. The result is correct but falls in the range

[0, 2m − 1]. Thus, this addition operation with in-

complete reduction works with both operands in

completely reduced form or with one operand in

completely reduced form and one in incompletely

reduced form. A similar observation applies to sub-

traction. Consider two operands a and b, such that

0 ≤ a < 2m and 0 ≤ b < 2m−c. The standard field

subtraction (a − b) mod (2m − c) described above

will then produce an incompletely reduced result

in the range [0, 2m−1], since a−b with borrow = 0

produces a result in the range [0, 2m−1] and a− b
with borrow = 1 produces a result in the range

[−2m + c + 1,−1], which is then fully reduced by

adding 2m−c. Thus, performance can be improved

by using incomplete reduction for an addition pre-

ceding a subtraction. For example, this technique

is exploited in the point doubling computation (see

Steps 7-8 of Algorithm 11). Note that, in contrast

to addition, only the first operand is allowed to be

in incompletely reduced form for subtraction.

To guarantee correctness in our software, and

following the previous description, incompletely re-

duced results are always fed to one of the following:

one of the operands of an incompletely reduced ad-

dition, the first operand of a field subtraction, a

field multiplication or squaring (which ultimately

produces a completely reduced output), or a field

addition without correction preceding a field mul-

tiplication or squaring.

In the targeted setting, there are only a lim-

ited number of spots in the curve arithmetic in

which incompletely reduced numbers cannot be ef-

ficiently exploited. For these few cases, we require

a standard field addition. We use the efficient im-

plementation proposed by Bos et al. [8]. Again,

let 0 ≤ a, b < 2m − c. Field addition is then com-

puted as ((a+ c) + b)− carry · 2m− (1− carry) · c,
where carry = 0 if a + b + c < 2m, otherwise

carry = 1. Similar to previous cases, the subtrac-

tion with carry · 2m can be efficiently carried out
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by clearing the (m+ 1)th bit in (a + c) + b. As

discussed above, this efficient computation is also

advantageously exploited in the modular reduction

for multiplication and squaring.

5.3 Quadratic Extension Field Arithmetic

For the remainder, we use the following notation:

(i) I,M, S,A and R represent inversion, multipli-

cation, squaring, addition and modular reduction

over Fp, respectively, (ii)Mi and Ai represent in-

teger multiplication and integer addition, respec-

tively, and (iii) i,m, s, a and r represent analogous

operations over Fp2 . When representing registers

in algorithms, capital letters are used to allocate

operands with “double precision” (in our case, 256

bits). For simplification purposes, in the opera-

tion counting an integer operation with double-

precision is considered equivalent to two integer

operations with single precision. We assume that

addition, subtraction, multiplication by two and

negation have roughly the same cost.

Let a = a0 + a1i ∈ Fp2 and b = b0 + b1i ∈ Fp2 .

Inversion over Fp2 is computed as a−1 = (a0 −
a1i)/(a

2
0 + a2

1). Addition and subtraction over Fp2
consist in computing (a0 + b0) + (a1 + b1)i and

(a0−b0)+(a1−b1)i, respectively. We compute mul-

tiplication over Fp2 using the Karatsuba method.

In this case, we fully exploit lazy reduction and

the room of one bit that is gained by using a 127-

bit prime. The details for the x64 implementation

are shown in Algorithm 6. Remarkably, note that

only the subtraction in Step 3 requires a correc-

tion to produce a positive result. No other addi-

tion or subtraction requires correction to positive

or to modulo p. That is, ×, + and − represent

operations over the integers. In addition, the algo-

rithm accepts inputs in completely or incompletely

reduced form and always produces a result in com-

pletely reduced form. Optionally, one may “delay”

the computation of the final modular reductions

(by setting rdcn=FALSE in Alg. 6) if lazy reduc-

tion could be exploited in the curve arithmetic.

This has been proven to be useful to formulas for

the Weierstrass form [1], but unfortunately the

technique cannot be advantageously exploited in

the most efficient formulas for twisted Edwards (in

this case, one should set rdcn=TRUE ). Squaring

over Fp2 is computed using the complex method.

The details for the x64 implementation are shown

in Algorithm 7. In this case, all the additions are

computed as integer operations since, again, re-

sults can be let to grow up to 128 bits, letting sub-

sequent multiplications take care of the reduction

step.

Algorithm 6 Multiplication in Fp2 with reduc-

tion (m = 3Mi+ 9Ai+ 2R) and without reduction

(mu = 3Mi + 9Ai), using completely or incom-

pletely reduced inputs (x64 platform).

Input: a = (a0 + a1i) and b = (b0 + b1i) ∈ Fp2 , where
0 ≤ a0, a1, b0, b1 ≤ 2127 − 1, p = 2127 − c, c small.
Output: a · b ∈ Fp2 .

1: T0 ← a0 × b0 [0, 2254 >
2: T1 ← a1 × b1 [0, 2254 >
3: C0 ← T0 − T1 < −2254, 2254 >
4: if C0 < 0, then C0 ← C0 + 2128 · p [0, 2255 >
5: if rdcn=TRUE, then c0 ← C0 mod p [0, p >
6: t0 ← a0 + a1 [0, 2128 >
7: t1 ← b0 + b1 [0, 2128 >
8: T2 ← t0 × t1 [0, 2256 >
9: T2 ← T2 − T0 [0, 2256 >

10: C1 ← T2 − T1 [0, 2256 >
11: if rdcn=TRUE, then c1 ← C1 mod p [0, p >
12: return if rdcn=TRUE then a · b = (c0 + c1i), else

a · b = (C0 + C1i) .

Algorithm 7 Squaring in Fp2(s = 2M+1A+2Ai),

using completely reduced inputs (x64 platform).

Input: a = (a0 + a1i) ∈ Fp2 , where 0 ≤ a0, a1 ≤ p− 1,
p = 2127 − c, c small.
Output: a2 ∈ Fp2 .

1: t0 ← a0 + a1 [0, 2128 >
2: t1 ← a0 − a1 mod p [0, p >
3: c0 ← t0 × t1 mod p [0, p >
4: t0 ← a0 + a0 [0, 2128 >
5: c1 ← t0 × a1 mod p [0, p >
6: return a2 = (c0 + c1i).

5.4 Extension Field Arithmetic on ARM:

Efficient Interleaving of ARM-Based and

NEON-Based Multiprecision Operations

The potential performance gain when interleav-

ing ARM and NEON operations is well-known.

This feature was exploited in [7] to speed up the

Salsa20 stream cipher. On the other hand, Sánchez

and Rodŕıguez-Henŕıquez [38] showed how to take

advantage of NEON instructions to perform in-

dependent multiplications in operations over Fp2 .

In the following, we go a step further and show

how to exploit the increasingly efficient capacity

of modern ARM processors for executing ARM

and NEON instructions “simultaneously” to im-

plement multiprecision operations, such as mul-

tiplication, squaring and modular reduction, over
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Fp2 . In other words, we exploit the fact that when

ARM code produces a data hazard in the pipeline,

the NEON unit may be ready to execute vector

instructions, and vice versa. Note that loading or

storing values from ARM to NEON registers still

remains relatively expensive, so in order to achieve

an effective performance improvement, one should

carefully interleave independent operations while

minimizing the loads and stores from one unit to

the other. Hence, operations such as multiplication

and squaring over Fp2 are particularly friendly to

this technique, given the availability of internal in-

dependent multiplications in their formulas.

Thus, using this approach, we implemented:

– double mul neonarm: a double integer multi-

plier detailed in Algorithm 8, which interleaves

a single 128-bit multiplication using NEON and

a single 128-bit multiplication using ARM.

– triple mul neonarm: a triple integer multiplier

detailed in Algorithm 9, which interleaves two

single 128-bit multiplication using NEON and

one single 128-bit multiplication using ARM.

– double red neonarm: a double modular reduc-

tion algorithm detailed in Algorithm 10, that

interleaves a modular reduction using ARM and

a modular reduction using NEON.

Note that integer multiplication is implemented

using the schoolbook method, which requires one

multiplication, two additions, one shift and one

bit-wise AND operation per iteration. These op-

erations were implemented using efficient fused in-

structions such as UMLAL, UMAAL, VMLAL and

VSRA [29], which add the result of a multiplica-

tion or shift operation to the destination register

in one single operation, reducing code size.

To validate the efficiency of our approach, we

compared the interleaved algorithms above with

standard implementations using only NEON or only

ARM instructions. In all the cases, we observed a

reduction of costs in favor of our novel interleaved

ARM/NEON implementations (see Section 6 for

benchmark results).

Triple mul neonarm fits nicely in the compu-

tation of multiplication over Fp2 , since this opera-

tion requires three 128-bit integer multiplications

(Steps 1, 2 and 8 of Alg. 6). Similarly, for the case

of squaring over Fp2 , we use double mul neonarm

to compute the two independent integer multipli-

cations (Steps 3 and 5 of Alg. 7). Finally, for each

case we can efficiently use a double red neonarm.

The final algorithms for ARM are shown as Algo-

rithms 13 and 14 in Appendix C.

5.5 Point Arithmetic

In this section, we describe implementation details

and our optimized formulas for the point arith-

metic. We use as basis the most efficient set of

formulas proposed by Hisil et al. [23], correspond-

ing to the case a = −1, that uses a combination

of homogeneous projective coordinates (X : Y : Z)

and the extended homogeneous coordinates of the

form (X : Y : Z : T ), where T = XY/Z.

The basic algorithms for computing point dou-

bling and addition are shown in Algorithms 11

and 12, respectively. In these algorithms, we exten-

sively exploit incomplete reduction (denoted with

⊕,	), following the details given in Section 5.2. To

ease coupling of doubling and addition in the main

loop of the scalar multiplication computation, we

make use of Hamburg’s “extensible” strategy and

output values {Ta, Tb}, where T = Ta · Tb, at every

point operation, so that a subsequent operation

may compute coordinate T if required. Note that

the cost of doubling is given by 4m+ 3s+ 5a. We

do not apply the standard transformation 2XY =

(X + Y )2 − (X2 + Y 2) because in our case it is

faster to compute one multiplication and one in-

complete addition than one squaring, one subtrac-

tion and one addition. In the setting of variable-

base scalar multiplication (see Alg. 2), the main

loop of the evaluation stage consists of a doubling-

addition computation, which corresponds to the

successive execution of Algorithms 11 and 12. For

this case, precomputed points are more efficiently

represented as (X+Y, Y −X, 2Z, 2T ) (correspond-

ing to setting EXT COORD=TRUE in Alg. 12),

so the cost of addition is given by 8m+ 6a. In the

fixed-base scenario, the main loop of the evaluation

stage consists of one doubling and v mixed addi-

tions. In this case, we consider two possibilities:

representing precomputations as (x, y) or as (x +

y, y − x, 1, 2t), where t = xy. The latter case (also

corresponding to setting EXT COORD=TRUE,

but with Z = 1) allows saving three additions and

one multiplication per iteration (Steps 2, 8 and 11

of Alg. 12), but increases the memory requirements

to store the additional coordinate. Hence, each op-

tion ends up being optimal for certain storage val-

ues. We evaluate these options in Section 6. For

the case (x, y), mixed addition costs 8m+10a and,

for the case (x+ y, y−x, 2t), mixed addition costs

7m + 7a. In the fixed/variable-base double scalar

scenario, precomputed points corresponding to the

variable base are stored as (X + Y, Y −X, 2Z, 2T )

and, thus, addition with these points costs 8m+6a;
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Algorithm 8 Double 128-bit integer product with ARM and NEON interleaved (double mul neonarm).

Input: a = {ai}, b = {bi}, c = {ci}, d = {di}, i ∈ {0, . . . , 3}.
Output: (F,G)← (a× b, c× d).

1: (F,G)← (0, 0)
2: for i = 0 to 1 do
3: (C0, C1, C2)← (0, 0, 0)
4: for j = 0 to 3 do
5: (C0, Fi+j , C1, Fi+j+2)← (Fi+j + aibj + C0, Fi+j+2 + ai+2bj + C1) {done by NEON}
6: for j = 0 to 3 do
7: (C2, Gi+j)← Gi+j + cjdi + C2 {done by ARM}
8: (Fi+4, Fi+6, Gi+4)← (Fi+4 + C0, C1, C2)
9: for i = 2 to 3 do

10: for j = 0 to 3 do
11: (C2, Gi+j)← Gi+j + cjdi + C2 {done by ARM}
12: Gi+4 ← C2

13: return (F,G)

Algorithm 9 Triple 128-bit integer product with ARM and NEON interleaved (triple mul neonarm).

Input: a = {ai}, b = {bi}, c = {ci}, d = {di}, e = {ei}, f = {fi}, i ∈ {0, . . . , 3}.
Output: (F,G,H)← (a× b, c× d, e× f).

1: (F,G,H)← (0, 0, 0)
2: for i = 0 to 3 do
3: (C0, C1, C2)← (0, 0, 0)
4: for j = 0 to 3 do
5: (C0, Fi+j , C1, Gi+j)← (Fi+j + ajbi + C0, Gi+j + cjdi + C1) {done by NEON}
6: for j = 0 to 3 do
7: (C2, Hi+j)← Hi+j + ejfi + C2 {done by ARM}
8: (Fi+4, Gi+4, Hi+4)← (C0, C1, C2)
9: return (F,G,H)

Algorithm 10 Double modular reduction with ARM and NEON interleaved (double red neonarm).

Input: A prime p = 2127 − c, a = {ai}, b = {bi}, i ∈ {0, . . . , 7}.
Output: (F,G)← (a mod p, b mod p).

1: (Fi, Gi)← (ai, bi)i∈{0,...,3}
2: (C0, C1, C2)← (0, 0, 0)
3: for j = 0 to 1 do
4: (C0, Fj , C1, Fj+2)← (Fj + aj+4c+ C0, Fj+2 + aj+6c+ C1) {done by NEON}
5: for j = 0 to 3 do
6: (C2, Gj)← Gj + bj+4c+ C2 {done by ARM}
7: (F2, F4, G4)← (F2 + C0, C1, C2)
8: (F0, G0)← (F4c+ F0, G4c+G0)
9: return (F,G)

Algorithm 11 Twisted Edwards point doubling over Fp2 (DBL = 4m+ 3s+ 5a).

Input: P = (X1, Y1, Z1).
Output: 2P = (X2, Y2, Z2) and {Ta, Tb} such that T2 = Ta · Tb.

1: Ta ← X2
1 (X2

1 )
2: t1 ← Y 2

1 (Y 2
1 )

3: Tb ← Ta ⊕ t1 (X2
1 + Y 2

1 )
4: Ta ← t1 − Ta (Y 2

1 −X2
1 )

5: Y2 ← Tb × Ta (Y2 = (X2
1 + Y 2

1 )(Y 2
1 −X2

1 ))
6: t1 ← Z2

1 (Z2
1 )

7: t1 ← t1 ⊕ t1 (2Z2
1 )

8: t1 ← t1 	 Ta (2Z2
1 − (Y 2

1 −X2
1 ))

9: Z2 ← Ta × t1 (Z2 = (Y 2
1 −X2

1 )[2Z2
1 − (Y 2

1 −X2
1 )])

10: Ta ← X1 ⊕X1 (2X1)
11: Ta ← Ta × Y1 (2X1Y1)
12: X2 ← Ta × t1 (X2 = 2X1Y1[2Z2

1 − (Y 2
1 −X2

1 )])
13: return 2P = (X2, Y2, Z2) and {Ta, Tb} such that T2 = Ta · Tb.
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Algorithm 12 Twisted Edwards point addition over Fp2 (ADD = 8m + 6a, mADD = 7m + 7a or

8m+ 10a).

Input: P = (X1, Y1, Z1) and {Ta, Tb} such that T1 = Ta · Tb. If EXT COORD=FALSE then Q = (x2, y2), else
Q = (X2 + Y2, Y2 −X2, 2Z2, 2T2).
Output: P +Q = (X3, Y3, Z3) and {Ta, Tb} such that T3 = Ta · Tb.

1: T1 ← Ta × Tb (T1)
2: if EXT COORD=FALSE then T2 = x2 ⊕ x2, T2 = T2 × y2 (2T2)
3: t1 ← T2 × Z1 (2T2Z1)
4: if Z2 = 1 then t2 ← T1 ⊕ T1 else t2 ← T1 × 2Z2 (2T1Z2)
5: Ta ← t2 − t1 (Ta = α = 2T1Z2 − 2T2Z1)
6: Tb ← t1 ⊕ t2 (Tb = θ = 2T1Z2 + 2T2Z1)
7: t2 ← X1 ⊕ Y1 (X1 + Y1)
8: if EXT COORD=TRUE then Y3 = Y2 −X2, else Y3 = y2 − x2 (Y2 −X2)
9: t2 ← Y3 × t2 (X1 + Y1)(Y2 −X2)

10: t1 ← Y1 −X1 (Y1 −X1)
11: if EXT COORD=TRUE then X3 = X2 + Y2, else X3 = x2 ⊕ y2 (X2 + Y2)
12: t1 ← X3 × t1 (X2 + Y2)(Y1 −X1)
13: Z3 ← t2 − t1 β = (X1 + Y1)(Y2 −X2)− (X2 + Y2)(Y1 −X1)
14: t1 ← t1 ⊕ t2 ω = (X1 + Y1)(Y2 −X2) + (X2 + Y2)(Y1 −X1)
15: X3 ← Tb × Z3 (X3 = βθ)
16: Z3 ← t1 × Z3 (Z3 = βω)
17: Y3 ← Ta × t1 (Y3 = αω)
18: return P +Q = (X3, Y3, Z3) and {Ta, Tb} such that T3 = Ta · Tb.

whereas points corresponding to the fixed base can

again be represented as (x, y) or as (x+y, y−x, 2t),
following the same trade-offs and costs for mixed

addition discussed above. These options are also

evaluated in Section 6.

6 Performance Analysis and Experimental

Results

In this section, we carry out the performance ana-

lysis of the proposed GLV-SAC representation for

GLV-based variable-base scalar multiplication and

the mLSB-set method for fixed-base scalar mul-

tiplication, and present benchmark results of our

constant-time implementations of curve Ted127-

glv4 on x64 and ARM platforms. We also assess

the performance improvement obtained with the

proposed ARM/NEON interleaving technique. For

our experiments, we targeted a 3.4GHz Intel Core

i7-2600 Sandy Bridge processor and a 3.4GHz In-

tel Core i7-3770 Ivy Bridge processor, from the

Intel family, and a Samsung Galaxy Note with

a 1.4GHz Exynos 4 Cortex-A9 processor and an

Arndale Board with a 1.7GHz Exynos 5 Cortex-

A15 processor, from the ARM family (equipped

with a NEON vector unit). The x64 implementa-

tion, compatible with both Windows and Linux

OS, was compiled using Microsoft Visual Studio

2012 in the case of Windows (Microsoft Windows

8 OS) and GNU GCC v4.7.3 in the case of Linux

(Ubuntu 14.04 LTS). In our experiments, we turned

off Intel’s Hyper-Threading and Turbo Boost tech-

nologies; we averaged the cost of 104 operations

which were measured with the timestamp counter

instruction rdtsc. The ARM implementation was

developed and compiled with the Android NDK

(ndk8d) toolkit. In this case, we averaged the cost

of 104 operations which were measured with the

clock gettime() function and scaled to clock cy-

cles using the processor frequency.

First, we present timings for all the fundamen-
tal operations of scalar multiplication in Table 3.

Implementation details for the quadratic extension

field operations and point operations over Fp2 can

be found in Section 5. “IR” stands for incomplete

reduction and “extended” represents the use of

the extended coordinates (X + Y, Y −X, 2Z, 2T )

to represent precomputed points. The four-dimen-

sional decomposition of the scalar follows [31]. In

particular, a scalar k is decomposed in smaller

ki s.t. max(|ki|) < C r1/4 for 0 ≤ i ≤ 3, where

r is the 251-bit prime order and C = 179 for

our case (see §5.1). In practice, however, we have

found that the bitlength of ki is at most 63 bits

for our targeted curve. The decomposition can be

performed as a linear transformation by computing

ki =
∑3
j=0 round(Sjk) ·Mi,j for 0 ≤ i < 4, where

Mi,j and Sj are integer constants. We truncate

operands in the round() operation, adding enough

precision to avoid loss of data. Thus, the compu-

tation involves a few multi-precision integer oper-

ations exhibiting constant-time execution.
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Table 3 Cost (in cycles) of basic operations on curve Ted127-glv4.

Operation
ARM ARM

Intel Intel

Cortex-A9 Cortex-A15
Sandy Bridge Ivy Bridge

(Linux / Win8) (Linux / Win8)

Fp2

ADD with IR 20 19 12 / 12 13 / 12

SUB 39 37 13 / 12 12 / 12

SQR 223 141 57 / 59 55 / 56

MUL 339 185 71 / 78 69 / 75

INV 13,390 9,675 6,100 / 6,060 5,880 / 5,890

ECC

DBL 2,202 1,295 - / 545 - / 525

ADD 3,098 1,831 - / 690 - / 665

mADD (Z1 = 1) 2,943 1,687 - / 622 - / 606

Φ endomorphism (Z1 = 1) 3,118 1,724 - / 745 - / 712

Ψ endomorphism (Z1 = 1) 1,644 983 - / 125 - / 119

Misc

8-point LUT (extended) 291 179 84 / 83 80 / 79

GLV-SAC recoding 1,236 873 500 / 482 502 / 482

4-GLV decomposition 756 430 304 / 305 295 / 290

Next, we analyze the different scalar multipli-

cation scenarios on curve Ted127-glv4.

Variable-Base Scenario. Based on Alg. 2, scalar

multiplication on curve Ted127-glv4 involves the

computation of one Φ endomorphism, 2 Ψ endo-

morphisms, 3 additions and 4 mixed additions in

the precomputation stage; 63 doublings, 63 ad-

ditions, one mixed addition and 64 protected ta-

ble lookups (denoted by LUT8) in the evaluation

stage; and 1 inversion and 2 multiplications over

Fp2 for converting the final result to affine:

COSTvariable kP = 1i + 833m + 191s + 769a +

64LUT8 + 4M + 9A.

This operation count does not take into ac-

count other additional computations, such as the

recoding to the GLV-SAC representation or the

decomposition to 4-GLV, which are relatively in-

expensive (see Table 3).

Compared to [31], which uses a method based

on the regular windowed recoding [34], the GLV-

SAC method for variable-base scalar multiplica-

tion introduces a reduction in about 181 multipli-

cations, 26 squarings and 228 additions over Fp2 .

Additionally, it only requires 8 precomputed points,

which involve 64 protected table lookups over 8

points during scalar multiplication, whereas the

method in [31] requires 36 precomputed points,

which involve 68 protected table lookups over 9

points. For example, this represents in practice a

17% speedup in the computation and a 78% re-

duction in the memory consumption of precompu-

tation on curve Ted127-glv4.

Fixed-Base Scenario. In this case, we analyze costs

when using the mLSB-set comb method (Algo-

rithm 5) with 32, 64, 128, 256 and 512 precom-

puted points. Recalling Section 4, and since t = 251,

the method costs d 251
w·v e−1 doublings and vd 251

w·v e−1

additions using v · 2w−1 points. Again, there are

two options: storing points as (x, y) (affine coor-

dinates) or as (x+ y, y − x, 2t) (“extended” affine

coordinates). We show in Table 6, Appendix D,

the costs in terms of multiplications over Fp2 per

bit for curve Ted127-glv4. Best results for a given

memory requirement are highlighted. As can be

seen, in most cases each precomputation represen-

tation is optimal for specific storage values in the

targeted platforms. For large tables, however, ex-

tended affine coordinates achieve better results.

Fixed/Variable-Base Double Scalar Scenario. Sin-

ce this operation does not need to run in con-

stant time, it can be computed using the standard

width-w non-adjacent form (w-NAF) with inter-

leaving [17,33]. In the setting of m-dimensional

GLV, the idea is to split the two scalars in two

sets of m sub-scalars with maximum bitlength l =

dlog2 r/me each, convert them to w-NAF and run

a multi-exponentiation. Thus, the cost is given by

m · ( l
w1+1 ) mixed additions, m · ( l

w2+1 ) − 1 addi-

tions and (l−1) doublings using m·(2w1−2+2w2−2)

precomputed points, where w1 is the window size

for the fixed base and w2 is the window size for

the variable base. Since precomputation for the

fixed base is performed offline, one may arbitrar-

ily increase the window size for this case, only

taking into consideration any memory restriction.

Moreover, it is possible to choose different win-

dow sizes for each sub-scalar, giving more flexi-

bility in the selection of the optimal number of

precomputations. In this direction, we analyze the

cost of Ted127-glv4 for different values of w1,j
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(corresponding to each of the j sub-scalars of the

fixed base, where 0 ≤ j < 4), using the opti-

mal value w2 = 4 for the sub-scalars of the vari-

able base. This value for w2 was determined dur-

ing experimentation on the targeted platforms. Let

l = 63 be the maximum bitlength of the eight sub-

scalars. The computation approximately involves

62 doublings, 48 additions and
(∑3

j=0
63

w1,j+1

)
+ 3

mixed additions in the evaluation stage using six-

teen “ephemeral” points and
∑3
j=0 2w1,j−2 “per-

manent” points; 2 doublings, 6 additions, 8 Ψ en-

domorphisms and one Φ endomorphism in the on-

line precomputation stage; and 1 inversion with 2

multiplications over Fp2 to convert the final result

to affine. Again, we examine storing points as (x, y)

or as (x + y, y − x, 2t). We show in Table 7, Ap-

pendix E, the costs in terms of multiplications over

Fp2 per bit for curve Ted127-glv4. In this case, ex-

tended coordinates offer a higher performance in

all cases. This is mainly due to the reduced cost

for extracting points from the precomputed table,

which is not required to be performed in constant

time in this scenario.

6.1 Results

Table 4 includes our benchmark results for all the

core scalar multiplication operations: variable-base,

fixed-base and fixed/variable-base double scalar sce-

nario. In Table 5 we compare them with other

implementations in the literature for the variable-

base case. The reader should note that we compare

timings for constant-time implementations only.

Hence, results are not directly comparable with

an analysis based on unprotected implementations

[16,15].

The results for the representative variable-base

scenario set a new speed record for protected ellip-

tic curve scalar multiplication on several x64 and

ARM processors. In comparison to the previously

fastest x64 implementation by Longa and Sica [31],

which runs in 137,000 cycles, the presented result

injects a cost reduction of about 30% on a Sandy

Bridge machine. Our results are more than 2 times

faster than Bernstein et al.’s implementation us-

ing a Montgomery curve over Fp [5] on the tar-

geted x64 processors. In comparison with curve-

based implementations on genus 2 curves or binary

curves, we observe that our results are between

24%-26% faster than the genus 2 implementation

by Bos et al. [8], and between 19%-24% faster than

the implementation by Oliveira et al. [35] based

on a binary GLS curve using the 2-GLV method1.

Only the recent implementation by Bernstein et

al. [4], which uses the same genus 2 Kummer sur-

face employed by Bos et al. [8], is able to achieve

a performance that is comparable to this work,

with a result that is slightly slower on the In-

tel Ivy Bridge processor. In addition, the appli-

cability of the Kummer surface is essentially re-

stricted to ECDH; e.g., it cannot be used directly

for signature schemes and its performance is poor

in ECDHE when precomputations (via fixed-base

scalar multiplication) can be exploited. Our results

also demonstrate that the proposed techniques en-

able a significant reduction of the overhead for

protecting against timing attacks. An unprotected

version of our implementation computes a scalar

multiplication in 87,000 cycles on the Sandy Bridge

processor (Windows OS), which is only 9% faster

than our protected version. In the case of ARM,

our implementation of variable-base scalar multi-

plication on curve Ted127-glv4 is 27% and 32%

faster than Bernstein and Schwabe’s [6] and Ham-

burg’s [19] Montgomery curve implementations (re-

spect.) on a Cortex-A9 processor. Note, however,

that comparisons on ARM are particularly dif-

ficult. The implementation of [7] was originally

optimized for Cortex-A8, and the implementation

of [19] does not exploit NEON.

We achieve similar results in the fixed-base and

double scalar scenarios. For instance:

– Hamburg [19] computes key generation (domi-

nated by a fixed-base scalar multiplication) in

60K cycles on a Sandy Bridge and 254K cycles

on a Cortex-A9 (without NEON) using a table

of size 7.5KB. Using only 6KB, our software

runs a fixed-base scalar multiplication in 51K

cycles and 204K cycles, respectively.

– Hamburg [19] computes signature verification

(dominated by a double scalar multiplication)

in 169K cycles on a Sandy Bridge and 618K

cycles on a Cortex-A9 (without NEON) using

a table of size 3KB. Our software runs a double

scalar multiplication in only 119K cycles and

495K cycles, respectively, using the same table

size.

Finally, when assessing the improvement ob-

tained with the ARM/NEON interleaving tech-

nique on the Cortex-A9 processor, we observed

1 In the case of unprotected software on x64, Oliveira
et al. [35] hold the current speed record with 72,000
cycles on an Intel Sandy Bridge. Their protected version
is significantly more costly and runs in about 115,000
cycles.
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Table 4 Cost (in 103 cycles) of core scalar multiplication operations on curve Ted127-glv4 with full protection
against timing-type side-channel attacks at approximately 128-bit security level. Results are approximated to the
nearest 103 cycles.

Scalar Multiplication ARM ARM
Intel Intel

Cortex-A9 Cortex-A15
Sandy Bridge Ivy Bridge

Parameters (Linux / Win8) (Linux / Win8)

kP , variable base 8 points, 1KB, extended 417 244 92 / 96 89 / 92

kP , fixed base

v = 4, w = 5, 64 points, 6KB, ext. 204 116 51 / 54 49 / 52

v = 4, w = 6, 128 points, 12KB, ext. 181 106 47 / 50 45 / 49

v = 8, w = 6, 256 points, 24KB, ext. 172 100 45 / 48 43 / 46

kP + lQ

w2 = 3, 8 points, 768 bytes, extended 560 321 131 / 136 126 / 130

w2 = 5, 32 points, 3KB, extended 495 285 119 / 123 115 / 118

w2 = 7, 128 points, 12KB, extended 463 266 112 / 116 108 / 111

Table 5 Cost (in 103 cycles) of implementations of variable-base scalar multiplication with protection against
timing-type side-channel attacks at approximately 128-bit security level. Results are approximated to the nearest
103 cycles. Only results for Linux are shown for the Intel platforms.

Work ARM ARM Intel Intel

(Curve) Cortex-A9 Cortex-A15 Sandy Bridge Ivy Bridge

Ted127-glv4 (this work) 417 244 92 89

Ted127-glv4, Longa-Sica [31] - - 137 (*) -

Montgomery curve E/Fp, Hamburg [19] 616 - 153 -

Curve25519, Bernstein et al. [5,7] 568 (**) - 194 (**) 183 (**)

Binary GLS E/F2254 , Oliveira et al. [35] - - 115 113

Genus 2 Kummer C/Fp, Bos et al. [9] - - 126 (**) 117

Genus 2 Kummer C/Fp, Bernstein et al. [4] - - 92 91

(*) Running on Windows 7.
(**) Source: eBACS [6].

speedups close to 17% and 24% in comparison with

implementations exploiting only ARM or NEON

instructions, respectively. Remarkably, for the same

figures on the Cortex-A15, we observed speedups

in the order of 34% and 35%, respectively. These

experimental results confirm the significant perfor-

mance improvement enabled by the proposed tech-

nique, which exploits the increasing capacity of the

latest ARM processors for parallelizing ARM and

NEON instructions.
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duction in modular arithmetic. In IEE Proc. of
Computers and Digital Techniques, volume 149(2),
pages 46–52, 2002.

42. S.-M. Yen and M. Joye. Checking before output
may not be enough against fault- based cryptanaly-
sis. IEEE Trans. Computers, 49(9):967–970, 2000.

43. S.-M. Yen, S. Kim, S. Lim, and S.-J. Moon. A coun-
termeasure against one physical cryptanalysis may
benefit another attack. In K. Kim, editor, Informa-
tion Security and Cryptology - ICISC 2001, volume
2288 of Lecture Notes in Computer Science, pages
414–427. Springer, 2002.

A Comb Method using the Modified

LSB-Set Representation

Let t be the bitlength of the prime subgroup order r.
Assume that k ∈ [1, r−1] is partitioned in w consecutive
parts of d digits each, and each part is partitioned in v
strings of e digits each, padding k with (dw − t) zeros
to the left, where l = dw, d = ev and e = dt/wve. The
modified LSB-set representation of k is given by

k = c · 2l +

l−1∑
i=0

bi2
i ≡ (c, bl−1, . . . , b0)mLSB-set, (2)

where bi ∈ {1,−1} for 0 ≤ i < d, and bi ∈ {0, bi mod d}
for d ≤ i ≤ l − 1. If wv | t then the carry bit c ∈ {0, 1}.
Otherwise, c is always zero. Disregarding the carry bit,
rewrite the representation (2) in matrix form as follows

k′ = k − c · 2l

≡



K0

...

Kw′

...
Kw−1


≡



K0
v−1 · · · K0

v′ · · · K0
0

...
...

...

Kw′

v−1 · · · Kw′

v′ · · · Kw′

0

...
...

...

Kw−1
v−1 · · · K

w−1
v′ · · · Kw−1

0


≡

w−1∑
w′=0

Kw′2dw′

(3)

where each Kw′ consists of v strings of e digits each.
Let the v′-th string in a given Kw′ be denoted by Kw′

v′ ,

and the e′-th digit in a given Kw′

v′ be denoted by Kw′

v′,e′ ,

such that Kw′

v′,e′ = bdw′+ev′+e′ . Then, to compute the

scalar multiplication we have

k′P =

w−1∑
w′=0

Kw′2dw′P =

w−1∑
w′=0

v−1∑
v′=0

Kw′

v′ 2ev′2dw′P

=

w−1∑
w′=0

v−1∑
v′=0

e−1∑
e′=0

Kw′

v′,e′2
e′2ev′2dw′P.

(4)

Assuming that P [w′] = 2dw′P for 0 ≤ w′ ≤ w− 1, then

k′P =
e−1∑
e′=0

2e′
(

v−1∑
v′=0

w−1∑
w′=0

Kw′

v′,e′2
ev′P [w′]

)
=

e−1∑
e′=0

2e′
(

v−1∑
v′=0

2ev′
(
K0

v′,e′P [0]

+
w−1∑
w′=1

Kw′

v′,e′P [w′]

))
.

(5)

Recall that by definition of the mLSB-set repre-
sentation K0

v′,e′ ∈ {1,−1} and Kw′

v′,e′ ∈ {0,K0
v′,e′} for

1 ≤ w′ ≤ w − 1, for a given pair of indices (v′, e′). As-
sume that the following values are precomputed for all
0 ≤ u < 2w−1 and 0 ≤ v′ < v

P [u][v′] = 2ev′(P [0] + u0P [1] + · · ·+ uw−2P [w − 1])

= 2ev′(1 + u02d + . . .+ uw−22(w−1)d)P,

(6)

where u = (uw−2, . . . , u0)2. Then, k′P can be rewritten
as

k′P =

e−1∑
e′=0

2e′

(
v−1∑
v′=0

sv′,e′P [Kv′,e′ ][v
′]

)
, (7)

where digit-columns Kv′,e′ = [Kw−1
v′,e′ , . . . ,K

2
v′,e′ ,K

1
v′,e′ ]

≡ |Kw−1
v′,e′ 2

w−2 + . . . + K2
v′,e′2 + K1

v′,e′ |, and the sign

sv′,e′ = K0
v′,e′ ∈ {1,−1}.

Based on equation (7), k′P can be computed from
left-to-right using precomputed points (6) together with
a variant of the double-and-add algorithm (see Algo-
rithm 5). The final result is obtained after a final cor-
rection computing kP = k′P + c · 2wdP using the pre-
computed value 2wdP .

B Formulas for Endomorphisms Φ and Ψ

on Curve Ted127-glv4

Let P = (X1, Y1, Z1) be a point in homogeneous pro-
jective coordinates on a twisted Edwards curve with
eq. (1), u = 1 + i be a quadratic non-residue in Fp2 ,

and ζ8 = u/
√

2 be a primitive 8th root of unity. Then,
we can compute Φ(P ) = (X2, Y2, Z2, T2) as follows

X2 = −X1

(
αY 2

1 + θZ2
1

) [
µY 2

1 − φZ2
1

]
Y2 = 2Y1Z

2
1

[
φY 2

1 + γZ2
1

]
Z2 = 2Y1Z

2
1

[
µY 2

1 − φZ2
1

]
T2 = −X1

(
αY 2

1 + θZ2
1

) [
φY 2

1 + γZ2
1

]
where α = ζ38 + 2ζ28 + ζ8, θ = ζ38 − 2ζ28 + ζ8, µ =
2ζ38 + ζ28 − 1, γ = 2ζ38 − ζ28 + 1 and φ = ζ28 − 1.

For curve Ted127-glv4, we have the fixed values

ζ8 = 1 +Ai, µ = (A− 1) + (A+ 1)i, θ = A+Bi,

α = A+ 2i, γ = (A+ 1) + (A− 1)i, φ = B + 1 + i,
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whereA = 143485135153817520976780139629062568752,
B = 170141183460469231731687303715884099729.

Computing an endomorphism Φ with the formula
above costs 12m+2s+5a or only 8m+1s+5a if Z1 = 1.
Similarly, we can compute Ψ(P ) = (X2, Y2, Z2, T2) as
follows

X2 = ζ8X
p
1Y

p
1 , Y2 = Zp2

1 ,

Z2 = Y p
1 Z

p
1 , T2 = ζ8X

p
1Z

p
1 .

Given the value for ζ8 on curve Ted127-glv4 com-
puting an endomorphism Ψ with the formula above costs
approximately 3m+1s+2M+5A or only 1m+2M+4A
if Z1 = 1.

C Algorithms for Quadratic Extension

Field Operations exploiting Interleaved

ARM/NEON Operations

Algorithms targeting ARM platforms for multiplication
and squaring over Fp2 , with p = 2127−c, are detailed by
Algorithms 13 and 14, respectively. These algorithms ex-
ploit functions interleaving ARM/NEON-based opera-
tions, namely double mul neonarm, triple mul neonarm

and double red neonarm, which are detailed in Algo-
rithms 8, 9 and 10, respectively.

D Cost of Fixed-Base Scalar

Multiplication using the mLSB-Set Comb

Method

In Table 6, we present estimated costs in terms of multi-
plications over Fp2 per bit for fixed-base scalar multipli-
cation on curve Ted127-glv4 using the mLSB-set comb
method (Algorithm 5). Precomputed points are stored
as (x, y) coordinates (“affine”) or as (x + y, y − x, 2t)
coordinates (“extended”).

E Cost of Fixed/Variable-Base Double

Scalar Multiplication on Curve Ted127-glv4

using wNAF with Interleaving

In Table 7,, we present estimated costs in terms of mul-
tiplications over Fp2 per bit for fixed/variable-base dou-
ble scalar multiplication on curve Ted127-glv4 using w-
NAF with interleaving. Precomputations for the fixed
base are stored as (x, y) coordinates (“affine”) or as
(x + y, y − x, 2t) coordinates (“extended”). The win-
dow size w1,j for each sub-scalar j, number of points
and memory listed in the first column correspond to re-
quirements for the fixed base. For the variable base, we
fix w2 = 4, corresponding to the use of 16 precomputed
points (see §6).
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Algorithm 13 Multiplication in Fp2 using completely or incompletely reduced inputs, m = 3Mi+9Ai+

2R (ARM platform).

Input: a = (a0 + a1i) and b = (b0 + b1i) ∈ Fp2 , where 0 ≤ a0, a1, b0, b1 ≤ 2127 − 1, p = 2127 − c, c small.
Output: a · b ∈ Fp2 .

1: t0 ← a0 + a1 [0, 2128 >
2: t1 ← b0 + b1 [0, 2128 >
3: (T0, T1, T2)← triple mul neonarm(a0, b0, a1, b1, t0, t1) [0, 2256 >
4: C0 ← T0 − T1 < −2254, 2254 >
5: if C0 < 0, then C0 ← C0 + 2128 · p [0, 2255 >
6: T2 ← T2 − T0 [0, 2256 >
7: C1 ← T2 − T1 [0, 2256 >
8: return (c0, c1)← double red neonarm(C0, C1) [0, p >

Algorithm 14 Squaring in Fp2 using completely reduced inputs, s = 2M + 1A+ 2Ai (ARM platform).

Input: a = (a0 + a1i) ∈ Fp2 , where 0 ≤ a0, a1 ≤ p− 1, p = 2127 − c, c small.
Output: a2 ∈ Fp2 .

1: t0 ← a0 + a1 [0, 2128 >
2: t1 ← a0 − a1 mod p [0, p >
3: t2 ← a0 + a0 [0, 2128 >
4: (C0, C1)← double mul neonarm(t0, t1, t2, a1) [0, p2 >
5: return a2 = double red neonarm(C0, C1) [0, p >

Table 6 Cost (in Fp2 multiplications per bit) of fixed-base scalar multiplication using the mLSB-set representation
on curve Ted127-glv4.

v, w, # of points, memory
precomp ARM ARM Intel Intel

coordinates Cortex-A9 Cortex-A15 Sandy Bridge Ivy Bridge

1, 6, 32 points, 2KB 2.88 3.24 3.05 3.08

2, 5, 32 points, 2KB affine 2.66 2.97 2.81 2.83

4, 4, 32 points, 2KB 2.77 3.06 2.91 2.93

1, 6, 32 points, 3KB 2.76 3.11 2.92 2.94

2, 5, 32 points, 3KB extended 2.46 2.73 2.58 2.60

4, 4, 32 points, 3KB 2.47 2.71 2.58 2.60

2, 6, 64 points, 4KB 2.33 2.63 2.46 2.49

4, 5, 64 points, 4KB affine 2.32 2.59 2.45 2.47

8, 4, 64 points, 4KB 2.56 2.83 2.68 2.70

2, 6, 64 points, 6KB 2.21 2.50 2.33 2.35

4, 5, 64 points, 6KB extended 2.12 2.35 2.22 2.24

8, 4, 64 points, 6KB 2.26 2.48 2.36 2.38

2, 7, 128 points, 8KB 2.26 2.60 2.40 2.43

4, 6, 128 points, 8KB affine 2.07 2.34 2.18 2.21

8, 5, 128 points, 8KB 2.17 2.42 2.28 2.30

2, 7, 128 points, 12KB 2.25 2.60 2.37 2.40

4, 6, 128 points, 12KB extended 1.95 2.20 2.05 2.07

8, 5, 128 points, 12KB 1.96 2.17 2.05 2.07

4, 7, 256 points, 16KB 2.02 2.34 2.14 2.18

8, 6, 256 points, 16KB affine 1.94 2.19 2.04 2.07

16, 5, 256 points, 16KB 2.09 2.33 2.19 2.21

4, 7, 256 points, 24KB 2.02 2.34 2.12 2.15

8, 6, 256 points, 24KB extended 1.82 2.06 1.91 1.93

16, 5, 256 points, 24KB 1.88 2.09 1.96 1.98

8, 7, 512 points, 32KB 1.92 2.22 2.03 2.06

16, 6, 512 points, 32KB affine 1.86 2.10 1.96 1.98

32, 5, 512 points, 32KB 2.04 2.27 2.14 2.16

8, 7, 512 points, 48KB 1.91 2.22 2.00 2.04

16, 6, 512 points, 48KB extended 1.75 1.97 1.82 1.85

32, 5, 512 points, 48KB 1.83 2.03 1.91 1.93
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Table 7 Cost (in Fp2 multiplications per bit) of fixed/variable-base double scalar multiplication on curve
Ted127-glv4 using w-NAF with interleaving, w2 = 4, 16 “ephemeral” precomputed points.

w1,j , # of points, memory
precomp ARM ARM Intel Intel

coordinates Cortex-A9 Cortex-A15 Sandy Bridge Ivy Bridge

2/2/3/3, 6 points, 384 bytes affine 6.66 7.28 7.11 7.14

2/2/2/2, 4 points, 384 bytes extended 6.57 7.14 7.00 7.03

3/3/4/4, 12 points, 768 bytes affine 6.07 6.64 6.51 6.53

3/3/3/3, 8 points, 768 bytes extended 5.95 6.47 6.36 6.38

4/4/5/5, 24 points, 1.5KB affine 5.71 6.24 6.13 6.15

4/4/4/4, 16 points, 1.5KB extended 5.58 6.07 5.98 6.00

5/5/6/6, 48 points, 3KB affine 5.42 5.92 5.82 5.84

5/5/5/5, 32 points, 3KB extended 5.33 5.80 5.72 5.74

6/6/7/7, 96 points, 6KB affine 5.20 5.68 5.59 5.61

6/6/6/6, 64 points, 6KB extended 5.08 5.53 5.46 5.48

7/7/8/8, 192 points, 12KB affine 5.05 5.52 5.44 5.46

7/7/7/7, 128 points, 12KB extended 4.95 5.40 5.33 5.35

8/8/9/9, 384 points, 24KB affine 4.98 5.44 5.37 5.39

8/8/8/8, 256 points, 24KB extended 4.83 5.26 5.20 5.22


