
Homomorphic Encryption from Learning with Errors:

Conceptually-Simpler, Asymptotically-Faster, Attribute-Based

Craig Gentry∗ Amit Sahai† Brent Waters‡

June 8, 2013

Abstract

We describe a comparatively simple fully homomorphic encryption (FHE) scheme based on
the learning with errors (LWE) problem. In previous LWE-based FHE schemes, multiplication
is a complicated and expensive step involving “relinearization”. In this work, we propose a new
technique for building FHE schemes that we call the approximate eigenvector method. In our
scheme, for the most part, homomorphic addition and multiplication are just matrix addition
and multiplication. This makes our scheme both asymptotically faster and (we believe) easier
to understand.

In previous schemes, the homomorphic evaluator needs to obtain the user’s “evaluation
key”, which consists of a chain of encrypted secret keys. Our scheme has no evaluation key. The
evaluator can do homomorphic operations without knowing the user’s public key at all, except
for some basic parameters. This fact helps us construct the first identity-based FHE scheme.
Using similar techniques, we show how to compile a recent attribute-based encryption scheme
for circuits by Gorbunov et al. into an attribute-based FHE scheme that permits data encrypted
under the same index to be processed homomorphically.

1 Introduction

Fully homomorphic encryption (FHE) schemes [RAD78, Gen09, Gen10, vDGHV10] [SV10, GH11b,
CMNT11, BV11a, BV11b, GH11a, BGV12, CNT12, GHS12a, GHS12b] [LATV12, Bra12] “have
been simplified enough so that their description can fit, well, in a blog post” [BB12b, BB12a]. In
this paper, we try to make FHE even simpler.

∗IBM Research. cbgentry@us.ibm.com. This work was supported by the Intelligence Advanced Research Projects
Activity (IARPA) via Department of Interior National Business Center (DoI/NBC) contract number D11PC20202. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
annotation thereon. Disclaimer: The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of IARPA, DoI/NBC,
or the U.S. Government.
†UCLA. sahai@cs.ucla.edu. Research supported in part from a DARPA/ONR PROCEED award, NSF grants 1228984,

1136174, 1118096, 1065276, 0916574 and 0830803, a Xerox Faculty Research Award, a Google Faculty Research Award, an
equipment grant from Intel, and an Okawa Foundation Research Grant. This material is based upon work supported by the
Defense Advanced Research Projects Agency through the U.S. Office of Naval Research under Contract N00014-11-1-0389. The
views expressed are those of the author and do not reflect the official policy or position of the Department of Defense, the
National Science Foundation, or the U.S. Government.
‡UT Austin. bwaters@cs.utexas.edu. Supported by NSF CNS-0915361 and CNS-0952692, CNS-1228599 DARPA via

Office of Naval Research under Contract N00014-11-1-0382, DARPA N11AP20006, the Alfred P. Sloan Fellowship, and Microsoft
Faculty Fellowship, and Packard Foundation Fellowship. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the Department of Defense or the U.S.
Government.

1

1.1 Previous FHE Schemes Based on Learning with Errors

Currently, perhaps the simplest leveled1 FHE scheme based on the learning with errors (LWE)
assumption [Reg05] is by Brakerski [Bra12]. In fact, Barak and Brakerski do give a remarkably
clear exposition of this scheme in a blog post [BB12a]. However, while the scheme’s key generation,
encryption, decryption, and homomorphic addition procedures are easy to describe, they note that
“multiplication is more tricky”.

In Brakerski’s scheme, similar to previous FHE schemes based on LWE [BV11b, BGV12], the
ciphertext ~c and secret key ~s are n-dimensional vectors whose dot product 〈~c,~s〉 ≈ µ equals the
message µ, up to some small “error” that is removed by rounding. Homomorphic multiplication
uses an identity regarding dot products of tensor products of vectors: namely, 〈~u1 ⊗ ~u2, ~v1 ⊗
~v2〉 = 〈~u1, ~v1〉 · 〈~u2, ~v2〉. Thus, if ciphertexts ~c1 and ~c2 satisfy 〈~c1, ~s〉 ≈ µ1 and 〈~c2, ~s〉 ≈ µ2, then
〈~c1 ⊗ ~c2, ~s ⊗ ~s〉 ≈ µ1 · µ2, where ~c1 ⊗ ~c2 is interpreted as the new ciphertext and ~s ⊗ ~s as the new
secret key, each having dimension Θ(n2). Since multiplying-by-tensoring blows up the ciphertext
size, it can only be used for a constant number of steps. For efficiency, the evaluator must relinearize
[BV11b] the ciphertext after tensoring. Relinearization is a procedure that takes the long ciphertext
that encrypts µ1 ·µ2 under the long key ~s⊗~s, and compresses it into a normal-sized n-dimensional
ciphertext that encrypts µ1 · µ2 under a normal-sized n-dimensional key ~s′. To relinearize, the
evaluator multiplies the long ciphertext vector by a special n×Θ(n2) relinearization matrix. This
relinearization matrix is part of the “evaluation key” that the evaluator must obtain from the public
key to perform homomorphic evaluation.

The relinearization step [BV11b] is ingenious and is perhaps the main insight that led to FHE
based on LWE. However, relinearization is not particularly natural, nor is it easy to give an intuitive
description of how and why it works. Moreover, relinearization is expensive. Each relinearization
matrix has size Ω(n3), and the public key must contain L of them to evaluate circuits of maximum
multiplicative depth L. Computationally, relinearization requires Ω(n3) operations, where each
operation has cost polynomial in L.

This situation raises the question: Can we construct a LWE-based FHE scheme with a natural
multiplication procedure? For ciphertexts c1 and c2, can we construct a scheme where homomorphic
addition and multiplication are just c1 + c2 and c1 · c2, where ‘+’ and ‘·’ are natural algebraic
operations over some ring, and where the new ciphertexts have the “same form” as the old ones;
for example, c1 ·c2 is not a “long” ciphertext? Can we eliminate the need for an “evaluation key” in
general, and the relinearization matrices in particular? If so, LWE-based FHE might become easier
to explain. If we can simplify LWE-based FHE while also improving its efficiency and supporting
new applications, then even better.

1.2 Our Results

Our main results are:

• Conceptually simpler FHE based on LWE: We fully describe our scheme here in the
Introduction, and think our new approach will prove valuable pedagogically and theoretically.

1“Leveled” FHE is a relaxation of “pure” FHE [Gen09]. For fixed parameters, a pure FHE scheme can evaluate
arbitrary circuits. In a leveled FHE scheme, the parameters of the scheme may depend on the depth, but not the
size, of the circuits that the scheme can evaluate. We focus on leveled FHE schemes, and typically omit the term
“leveled”. One can transform our leveled FHE schemes to pure ones by using Gentry’s bootstrapping theorem and
assuming “circular security” [Gen09].

2

• Asymptotically faster FHE based on LWE: We eliminate relinearization and the large
relinearization matrices, with their Ω(n3) complexity. Instead, ciphertexts are matrices that
are added and multiplied naturally. In principle, matrix multiplication uses sub-cubic com-
putation: e.g., Strassen and Williams achieved n2.807 and n2.3727 respectively [Str69, Wil12].

• Identity-based FHE: We solve an open problem mentioned in previous works [Nac10,
GHV10, Bra12, CHT13] – namely, to construct an identity-based FHE scheme, in which
there are no user-specific keys that must be obtained by the encrypter or evaluator. Infor-
mally speaking, in an identity-based FHE scheme, a user that has only the public parameters
should be able to perform both encryption and homomorphism operations. The homomor-
phism operations should allow a user to take two ciphertexts encrypted to the same target
identity, and homomorphically combine them to produce another ciphertext under the same
target identity. Previously, only “weak” identity-based FHE schemes were known, where the
evaluator needs a user-specific evaluation key, and thus the homomorphism is not exploitable
by a user that only has the public parameters. Our scheme solves the problem by eliminating
evaluation keys entirely.

We obtain our identity-based FHE scheme by presenting a “compiler” that transforms any
LWE-based IBE scheme in the literature that satisfies certain properties, into a fully homo-
morphic identity-based encryption scheme. Several LWE-based IBE schemes in the literature
satisfy the properties needed for our compiler [GPV08, ABB10a, ABB10b, CHKP10].

• Attribute-based FHE: Recently Gorbunov et al. [GVW13] constructed an attribute-based
encryption (ABE) for circuits based on LWE. Our compiler for LWE-based IBE also works
for their ABE scheme, with relatively minor modifications. We obtain an ABE scheme in
which messages encrypted under the same index can be processed homomorphically without
any evaluation key in a polynomial depth circuit, and still be decrypted by any party that
was entitled to decrypt the original ciphertexts.2

Our FHE scheme retains advantages of other LWE-based FHE schemes, such as making bootstrap-
ping optional [BGV12], (with bootstrapping) basing security on LWE for quasi-polynomial factors
versus sub-exponential factors [BGV12], eliminating “modulus switching” [Bra12], and basing se-
curity directly on the hardness of classical GapSVP [Bra12].

We do not want to oversell our asymptotic result; we now provide some additional context: In
general, FHE schemes based on LWE have much worse performance (certainly asymptotically) than
schemes based on ring LWE (RLWE) [LPR10, BV11a, GHS12a], and even RLWE-based schemes
cannot yet be considered practical [GHS12b]. Moreover, sub-cubic matrix multiplication algorithms
may not beat cubic ones by much in practice. Rather, we view our asymptotic result mainly as
evidence of how fundamentally new our techniques are. We note that it is straightforward to
construct an RLWE-based version of our scheme, but its performance is worse than the best known
RLWE-based schemes [BGV12, Bra12, GHS12a, GHS12b] by log factors. On the other hand, while
our techniques may not reduce evaluation complexity as much as we would like, they reduce the
space complexity significantly (from quasi-cubic to quasi-quadratic), which is a significant issue for
LWE-based FHE schemes in practice.

2Independently, Garg et al. [GGH+13b] also recently constructed an ABE scheme for circuits using multilinear
maps [GGH13a, CLT13], but our techniques do not work as effectively with their scheme.

3

As with all current FHE schemes without bootstrapping, the parameters and per-gate complex-
ity of evaluation depend on the multiplicative depth L of the circuit. “Bootstrapping” [Gen09],
together with an assumption of circular security, remains the only known way of making these
performance metrics independent of L, and while the overhead of bootstrapping is high, it becomes
an attractive option once L passes some threshold. However, our scheme loses some of its advan-
tages once bootstrapping is used. First, to apply bootstrapping, the evaluator needs to obtain the
user’s secret key encrypted under its public key – in effect, an evaluation key – and therefore we no
longer achieve identity-based/attribute-based FHE in this context. Second, this encrypted secret
key has quasi-cubic size in our scheme, and while this can be mitigated by public key compres-
sion techniques [CNT12], it eliminates the space complexity advantages of our scheme. Essentially,
bootstrapping returns us to the realm of “unnatural” operations, with all of its disadvantages.
It remains a fascinating open problem to find some “natural” alternative to bootstrapping, and
(relatedly) to achieve “pure” FHE without an assumption of circular security.

1.3 An Overview of Our FHE Scheme

Our main insight is that we can achieve LWE-based homomorphic encryption where homomorphic
addition and multiplication correspond directly to matrix addition and multiplication.

1.3.1 Homomorphic Operations

Let us skip key generation and encryption for the moment, and jump directly to the homomorphic
operations (and decryption).

In our scheme, for some modulus q and dimension parameter N to be specified later, a ciphertext
C is a N ×N matrix over Zq, with “small” entries (much smaller than q) and the secret key ~v is a
N -dimensional vector over Zq with at least one “big” coefficient vi. We restrict the message µ to
be a “small” integer. We say C encrypts µ when C ·~v = µ ·~v+~e, where ~e is a “small” error vector.
To decrypt, we extract the i-th row Ci from C, compute x ← 〈Ci, ~v〉 = µ · vi + ei, and output
µ = bx/vie. In a nutshell, the essence of our scheme is that the secret key ~v is an approximate
eigenvector of the ciphertext matrix C, and the message µ is the eigenvalue.

Now, let us see why matrix addition and multiplication are correct homomorphic operations.
Suppose C1 and C2 encrypt µ1 and µ2 in that Ci · ~v = µi · ~v + ~ei for small ~ei. Let C+ = C1 + C2

and C× = C1 · C2. For addition, we have C+ · ~v = (µ1 + µ2) · ~v + (~e1 + ~e2), where the error likely
has grown a little, as usual in FHE schemes. But assuming the error is still “small”, the sum of
the ciphertext matrices encrypts the sum of the messages. For multiplication, we have

C× · ~v = C1 · (µ2 · ~v + ~e2) = µ2 · (µ1 · ~v + ~e1) + C1 · ~e2 = µ1 · µ2 · ~v + µ2 · ~e1 + C1 · ~e2

= µ1 · µ2 · ~v + small

where the final error vector is hopefully “small”, since µ2, C1, ~e1, and ~e2 are all small. If so, the
product of the ciphertext matrices encrypts the product of the messages. Interestingly, C2 · C1 is
also an encryption of µ1 · µ2, even though matrix multiplication is not commutative.

To simplify further, it might be helpful to imagine an error-free version of the scheme, where
Ci · ~v = µi · ~v exactly. In this case, the key ~v is an (exact) eigenvector of ciphertext matrices, and
the message µi is the eigenvalue. In general, if matrices C1 and C2 have a common eigenvector ~v
with eigenvalues µ1 and µ2, then C1 · C2 and C2 · C1 have eigenvector ~v with eigenvalue µ1 · µ2.

4

Of course, in our scheme, the secret key ~v is only an approximate eigenvector, not an exact one.
Introducing error is necessary to base the security of our scheme on LWE. The cost of making ~v
only an approximate eigenvector is that certain terms in our scheme must be “small” to ensure
that homomorphic operations do not disrupt the essential form of the ciphertexts. We call our new
approach to LWE-based (homomorphic) encryption the approximate eigenvector method.

1.3.2 Bounding the Error and Somewhat Homomorphic Encryption

Although we have not fully specified the scheme, let us go ahead and estimate how homomorphic
it is. The scheme above works correctly until the coefficients of the error vector begin to approach
q in magnitude. How many homomorphic operations can we perform before that happens?

Suppose C1 and C2 are B-bounded ciphertexts, in the sense that µi and the coefficients of Ci
and ~ei all have magnitude at most some bound B. Then, C+ is 2B-bounded, and C× is (N +1)B2-

bounded. In short, the error level grows worse than B2L , doubly exponentially with the multiplicative
depth L of the circuit being evaluated. Alternatively, if one wants to consider the degree (rather than
depth) of functions that can be evaluated, if we evaluate a multivariate polynomial P (x1, . . . , xt) of
total degree d, on B-bounded ciphertexts as input, the final ciphertext is |P |(N+1)d−1Bd-bounded,
where |P | is the `1-norm of P ’s coefficient vector. Taking q to comfortably exceed this bound, we
(roughly) can evaluate polynomials of degree logNB q. Since q/B must be subexponential (at most)
in N for security reasons, our scheme-so-far can only evaluate polynomials of (sublinear) polynomial
degree in N (only logarithmic depth). In short, our scheme-so-far is a somewhat homomorphic
encryption (SWHE) scheme [Gen09] that can evaluate log-depth or polynomial degree. Though
not yet fully homomorphic, it is by far the most homomorphic LWE-based encryption scheme that
uses only “natural” homomorphic operations.

1.3.3 Flattening Ciphertexts and Fully Homomorphic Encryption

To obtain a leveled FHE scheme that can evaluate circuits of polynomial depth without bootstrap-
ping or techniques like relinearization, we need to ensure better bounds on the growth of the error.
Let us say that a ciphertext C is B-strongly-bounded if its associated µ and the coefficients of
C all have magnitude at most 1, while the coefficients of its ~e all have magnitude at most B. If
we evaluate a NAND gate on B-strongly-bounded ciphertexts C1, C2 to obtain a new ciphertext
C3 ← IN − C1 · C2 (where IN is the N -dimensional identity matrix), then the message remains in
{0, 1}, and the coefficients of C3’s error vector have magnitude at most (N+1)B. If we could some-
how additionally ensure that C3’s coefficients have magnitude at most 1 so that strong-boundedness
is preserved, then we could evaluate a circuit of depth L while keeping the error magnitude at most
(N+1)LB. Setting q/B to be subexponential in N , we could evaluate a circuit of polynomial depth
rather than merely polynomial degree. In short, we would have a leveled FHE scheme.

Here we describe a operation called ciphertext flattening that keeps ciphertexts strongly bounded,
so that we obtain leveled FHE.

Flattening uses some simple transformations from [BV11b, BGV12, Bra12] that modify vectors
without affecting dot products. Let ~a, ~b be vectors of some dimension k over Zq. Let ` = blog2 qc+1
and N = k ·`. Let BitDecomp(~a) be the N -dimensional vector (a1,0, . . . , a1,`−1, . . . , ak,0, . . . , ak,`−1),
where ai,j is the j-th bit in ai’s binary representation, bits ordered least significant to most signif-
icant. For ~a′ = (a1,0, . . . , a1,`−1, . . . , ak,0, . . . , ak,`−1), let BitDecomp−1(~a′) = (

∑
2j · a1,j , . . . ,

∑
2j ·

ak,j) be the inverse of BitDecomp, but well-defined even when the input is not a 0/1 vector. For

5

N -dimensional ~a′, let Flatten(~a′) = BitDecomp(BitDecomp−1(~a′)), a N -dimensional vector with
0/1 coefficients. When A is a matrix, let BitDecomp(A), BitDecomp−1, or Flatten(A) be the ma-
trix formed by applying the operation to each row of A separately. Finally, let Powersof2(~b) =
(b1, 2b1, . . . , 2

`−1b1, . . . , bk, 2bk, . . . , 2
`−1bk), a N -dimensional vector. Here are some obvious facts:

• 〈BitDecomp(~a),Powersof2(~b)〉 = 〈~a,~b〉.
• For anyN -dimensional ~a′, 〈~a′,Powersof2(~b)〉 = 〈BitDecomp−1(~a′),~b〉 = 〈Flatten(~a′),Powersof2(~b)〉.

An interesting feature of Flatten is that it makes the coefficients of a vector or matrix small, without
affecting its product with Powersof2(~b), and without knowing ~b.

To facilitate ciphertext flattening, we give a special form to our secret key ~v. Specifically, we set
~v = Powersof2(~s) for some secret vector ~s (to be specified later). This form is consistent with our
earlier requirement that ~v have some big coefficient vi for decryption; indeed, since ~v’s coefficients
go up by blog2 qc powers of 2, it must have a big coefficient suitable to recover µ ∈ {0, 1}.

Now, for any N × N matrix C, we have Flatten(C) · ~v = C · ~v. So, after we compute an
initial ciphertext C3 ← IN − C1 · C2 for the NAND gate, we set CNAND = Flatten(C3) to obtain a
ciphertext that has 0/1 coefficients and is strongly bounded. Thus, we obtain leveled FHE without
relinearization, under a fixed approximate eigenvector secret key.

1.3.4 Key Generation, Encryption, and Reduction to LWE

Let us finally circle back to key generation and encryption. We want to base security on LWE. So,
for key generation, we generate an LWE instance. For suitable parameters q, n,m = O(n log q), an
LWE instance over Zq consists of a m×(n+1) matrix A such that there exists a (n+1)-dimensional
vector ~s whose first coefficient is 1 where ~e = A · ~s is a “small” error vector. (See Section 2 for
a formal definition of LWE.) In our scheme, A is public and ~s is secret. We set our approximate
eigenvector to be ~v = Powersof2(~s), a vector of dimension N = (n+ 1) · ` for ` = blog2 qc+ 1.

To encrypt µ ∈ Zq, the encrypter generates a random N ×m matrix R with 0/1 entries, and
sets C = Flatten(µ · IN +BitDecomp(R ·A)), where IN is the N -dimensional identity matrix. Since
Flatten does not affect the product with ~v, we have:

C · ~v = µ · ~v + BitDecomp(R ·A) · ~v = µ · ~v +R ·A · ~s = µ · ~v + small

Flatten ensures that the coefficients of C are small, and therefore that C has the proper form of a
ciphertext that permits our homomorphic operations. Decryption works as mentioned previously.

To show that security is based on LWE, it is now enough to show that C is statistically inde-
pendent of µ when A is a uniformly random m×(n+1) matrix over Zq. Let C ′ = BitDecomp−1(C).
Recall that C is Flatten’d, and so C = Flatten(C) = BitDecomp(C ′). Therefore, C reveals nothing
more than C ′. But C ′ = BitDecomp−1(µ · IN) + R · A, and R · A is statistically uniform by the
leftover hash lemma when m = O(n log q) is chosen appropriately.

1.4 Roadmap

After finishing some preliminaries in Section 2, we describe our new FHE construction more formally
in Section 3. In Section 4, we provide an overview of our identity-based and attribute-based FHE
schemes.

6

2 Preliminaries

2.1 The Learning with Errors (LWE) Problem and GapSVP

The learning with errors (LWE) problem was introduced by Regev [Reg05].

Definition 1 (LWE). For security parameter λ, let n = n(λ) be an integer dimension, let q =
q(λ) ≥ 2 be an integer, and let χ = χ(λ) be a distribution over Z. The LWEn,q,χ problem is to
distinguish the following two distributions: In the first distribution, one samples (~ai, bi) uniformly
from Zn+1

q . In the second distribution, one first draws ~s← Znq uniformly and then samples (~ai, bi) ∈
Zn+1
q by sampling ~ai ← Znq uniformly, ei ← χ, and setting bi = 〈~ai, ~s〉+ei. The LWEn,q,χ assumption

is that the LWEn,q,χ problem is infeasible.

Sometimes it is convenient to view the vectors bi‖~ai as the rows of a matrix A, and to redefine
~s as (1,−~s). Then, either A is uniform, or there is a vector ~s whose first coefficient is 1 such that
A · ~s = ~e, where the coefficients of ~e come from the distribution χ.

For lattice dimension parameter n and number d, GapSVPγ is the problem of distinguishing
whether a n-dimensional lattice has a vector shorter than d or no vector shorter than γ(n) · d. The
two theorems below capture reductions, quantum and classical, from GapSVP to LWE for certain
parameters. We state the result in terms of B-bounded distributions.

Definition 2 (B-bounded distributions). A distribution ensemble {χn}n∈N, supported over the
integers, is called B-bounded if

Pr
e←χn

[|e| > B] = negl(n) .

Theorem 1 ([Reg05, Pei09, MM11, MP12], stated as Corollary 2.1 from [Bra12]). Let q = q(n) ∈ N
be either a prime power or a product of small (size poly(n)) distinct primes, and let B ≥ ω(log n) ·√
n. Then there exists an efficient sampleable B-bounded distribution χ such that if there is an

efficient algorithm that solves the average-case LWE problem for parameters n, q, χ, then:
• There is an efficient quantum algorithm that solves GapSVPÕ(nq/B) on any n-dimensional

lattice.
• If q ≥ Õ(2n/2), then there is an efficient classical algorithm for GapSVPÕ(nq/B) on any n-

dimensional lattice.
In both cases, if one also considers distinguishers with sub-polynomial advantage, then we require
B ≥ Õ(n) and the resulting approximation factor is slightly larger than Õ(n1.5q/B).

Theorem 2 (Informal Theorem 1.1 of [BLP+13]). Solving n-dimensional LWE with poly(n) modu-
lus implies an equally efficient solution to a worst-case lattice problem (e.g., GapSVP) in dimension√
n.

2.2 Identity-Based and Attribute-Based Homomorphic Encryption

In a homomorphic encryption scheme HE = (KeyGen,Enc,Dec,Eval), the message space is some
ring, and Eval homomorphically evaluates arithmetic circuits over this ring (with addition and
multiplication gates). We omit formal definitions and theorems regarding homomorphic encryption,
which can be found in referenced papers.

An identity-based HE scheme IBHE = (Setup,KeyGen,Enc,Dec,Eval) has all of the properties
of a normal IBE scheme IBE = (Setup,KeyGen,Enc,Dec) [Sha84, BF03]. Setup generates master

7

keys (MSK,MPK), KeyGen(MSK, ID) outputs a secret key skID for identity ID, Enc(MPK, ID,m)
outputs an encryption c of m under ID, and Dec(skID, c) decrypts c (if it is under ID). Standard
security properties apply. For example, an IBE scheme is expected to be collusion-resistant – in
particular, the adversary can ask for many secret keys, as long as the challenge ciphertext is under
an unqueried identity.

For some function family F , IBHE’s procedure c← Eval(MPK, ID, f, c1, . . . , ct) homomorphically
evaluates any f ∈ F on ciphertexts {ci ← Enc(MPK, ID,mi)} under the same ID. Ultimately,
Dec(skID, c) = f(m1, . . . ,mt). We define identity-based (leveled) fully homomorphic encryption
(IBFHE) in the expected way.

The definition of IBHE can be extended to a multi-identity setting – specifically, Eval could
work over ciphertexts under multiple identities. For security to make sense, Dec would require
cooperation of all parties whose identities were used in Eval. In this paper, we restrict our attention
to the single-identity setting.

An attribute-based HE scheme ABHE = (Setup,KeyGen,Enc,Dec,Eval) has all of the properties
of a normal ABE scheme ABE = (Setup,KeyGen,Enc,Dec) [SW05, GPSW06]. For some relation
R, some function family F and any f ∈ F , and any ciphertexts {ci ← Enc(MPK, x,mi)} en-
crypted under common index x, the ciphertext c← Eval(MPK, x, f, c1, . . . , ct) can be decrypted (to
f(m1, . . . ,mt)) using a key sky for any y for which R(x, y) = 1. In an ABE scheme for circuits,
R can be a circuit of polynomial depth. We define attribute-based (leveled) fully homomorphic
encryption (ABFHE) in the expected way.

Similar to IBHE, ABHE can be extended so that Eval operates on ciphertexts under multiple
indices x1, . . . , xk. Regarding decryption, there are different possibilities. For example, the result
can only be decrypted using some sky for which R(x1, y) = · · · = R(xk, y) = 1. Alternatively, the
result can be cooperatively decrypted using sky1 , . . . , sky` such that for every xi there is some j
such that R(xi, yj) = 1. We restrict our attention to the single-index setting.

2.3 Other Preliminaries

For n, q, and ` = blog qc + 1, we define the procedures BitDecomp, BitDecomp−1, Flatten and
Powersof2 as described in the Introduction. IN denotes the N -dimensional identity matrix.

3 Our LWE-Based FHE Scheme

3.1 Basic Encryption Scheme

Here, we formally describe our basic encryption scheme (without homomorphic operations). This
description matches the description outlined in the Introduction. In our description, we split
up KeyGen into three parts Setup, SecretKeyGen and PublicKeyGen. We provide two decryption
algorithms Dec and MPDec. Dec is sufficient to recover the message µ when it is in a small space
(e.g., {0, 1}). MPDec is an algorithm by Micciancio and Peikert [MP12] that can recover any µ ∈ Zq.

• Setup(1λ, 1L): Choose a modulus q of κ = κ(λ, L) bits, lattice dimension parameter n =
n(λ, L), and error distribution χ = χ(λ, L) appropriately for LWE that achieves at least 2λ

security against known attacks. Also, choose parameter m = m(λ, L) = O(n log q). Let
params = (n, q, χ,m). Let ` = blog qc+ 1 and N = (n+ 1) · `.

8

• SecretKeyGen(params): Sample ~t ← Znq . Output sk = ~s ← (1,−t1, . . . ,−tn) ∈ Zn+1
q . Let

~v = Powersof2(~s).

• PublicKeyGen(params, sk): Generate a matrix B ← Zm×nq uniformly and a vector ~e ← χm.

Set ~b = B · ~t + ~e. Set A to be the (n + 1)-column matrix consisting of ~b followed by the n
columns of B. Set the public key pk = A. (Remark: Observe that A · ~s = ~e.)

• Enc(params, pk, µ): To encrypt a message µ ∈ Zq, sample a uniform matrix R ∈ {0, 1}N×m
and output the ciphertext C given below.

C = Flatten
(
µ · IN + BitDecomp(R ·A)

)
∈ ZN×Nq .

• Dec(params, sk, C): Observe that the first ` coefficients of ~v are 1, 2, . . . , 2`−1. Among these
coefficients, let vi = 2i be in (q/4, q/2]. Let Ci be the i-th row of C. Compute xi ← 〈Ci, ~v〉.
Output µ′ = bxi/vie.

• MPDec(params, sk, C) (for q a power of 2): Observe that q = 2`−1 and the first ` − 1
coefficients of ~v are 1, 2, . . . , 2`−2, and therefore if C · ~v = µ · ~v + small, then the first ` − 1
coefficients of C · ~v are µ · ~g + small, where ~g = (1, 2, . . . , 2`−2). Recover LSB(µ) from
µ · 2`−2 + small, then recover the next-least-significant-bit from (µ− LSB(µ)) · 2`−3 + small,
etc. (See [MP12] for the general q case.)

Dec is a BitDecomp’d version of Regev’s decryption procedure, applied to one row of the cipher-
text, which is a BitDecomp’d Regev ciphertext. (The extra rows will come into play in the homo-
morphic operations). If C is properly generated, then by the elementary properties of BitDecomp
and Powersof2, we have

C · ~v = µ · ~v +R ·A · ~s = µ · ~v +R · ~e.

Dec only uses the i-th coefficient of the above expression, which is xi = µ · vi + 〈Ri, ~e〉. The error
〈Ri, ~e〉 has magnitude at most ‖~e‖1. In general, if xi = µ · vi + e′ for some error e′ of magnitude at
most q/8, and if vi ∈ (q/4, q/2], then xi/vi differs from µ by at most (q/8)/vi < 1/2, and Dec uses
rounding to output the correct value of µ. (In the basic scheme, we set χ to ensure that the error
is so bounded with overwhelming probability.)

For the basic scheme (without homomorphic operations), one can take n to be quasi-linear in
the security parameter λ and κ = O(log n). When allowing homomorphic operations, L repre-
sents the circuit complexity of the functions that the scheme correctly evaluates (roughly, L is the
multiplicative depth); we provide a detailed analysis later of how L affects the other parameters.

3.2 Security

Observe that BitDecomp−1(C) = µ · G + R · A, where G = BitDecomp−1(IN) is (the transpose
of) the “primitive matrix” used by Micciancio and Peikert [MP12] in their construction of lattice
trapdoors, and the rows of R · A are simply Regev [Reg05] encryptions of 0 for dimension n.
Assuming BitDecomp−1(C) hides µ, C does as well, since C can be derived by applying BitDecomp.
Thus, the security of our basic encryption scheme follows directly from the following lemma, used
to prove the security of Regev’s encryption scheme [Reg05].

9

Lemma 1 (Implicit in [Reg05]). Let params = (n, q, χ,m) be such that the LWEn,q,χ assumption
holds. Then, for m = O(n log q) and A, R as generated above, the joint distribution (A,R · A) is

computationally indistinguishable from uniform over Zm×(n+1)
q × ZN×(n+1)

q .

Concretely, it suffices to take m > 2n log q [Reg05].
Like Brakerski [Bra12], we can also base security on GapSVP via a classical reduction from

LWE [Pei09, BLP+13]. Specifically, Peikert [Pei09] gives a classical reduction of GapSVP to LWE,
with the caveat that q must be exponential in n. Brakerski notes that exponential q was unusable
in previous FHE schemes, since the ratio of q to the error level B of “fresh” ciphertexts cannot be
exponential in n for security reasons (since LLL [LLL82] could be used to break such a scheme), and
since B must be very small to permit many homomorphic operations. As in Brakerski’s scheme,
we do not have that problem. The error bound B of fresh ciphertexts in our scheme does not need
to be small to permit many homomorphic operations; we only require q/B to be sub-exponential,
and we can therefore permit q to be exponential. Alternatively, we can use a sub-exponential q and
base security on GapSVP via Brakerski et al.’s [BLP+13] recent classical reduction to LWE that
works even for polynomial-size moduli, with the caveat that, in their reduction, the dimension of
the GapSVP instances may be much smaller than the dimension of the LWE instances.

3.3 Homomorphic Operations

Recall that we already described some basic “homomorphic” operations BitDecomp, BitDecomp−1,
Flatten, and Powersof2. These will play an important role in analyzing the homomorphic operations
supported by our scheme. We remark that BitDecomp could alternatively decompose with respect
to bases other than 2, or according to the Chinese Remainder Theorem.

We provide additional homomorphic operations MultConst, Add, Mult, NAND as follows.

• MultConst(C,α): To multiply a ciphertext C ∈ ZN×Nq by known constant α ∈ Zq, set Mα ←
Flatten(α · IN) and output Flatten(Mα · C). Observe that:

MultConst(C,α) · ~v = Mα · C · ~v = Mα · (µ · ~v + ~e) = µ · (Mα · ~v) +Mα · ~e
= α · µ · ~v +Mα · ~e

Thus, the error increases by a factor of at most N , regardless of what element α ∈ Zq is
used for multiplication. As in “classical” additively homomorphic encryption schemes, we
could alternatively perform multiplication-by-constant α by recursively applying Add. But
this multiplies the error size by at least α, whereas MultConst increases the error by at most
a factor of N , regardless of α. An example application of MultConst is that we can perform
homomorphic fast Fourier transformations (FFTs) natively over Zq without error growth
dependent on q. Previously, the error growth depended on the size of the field underlying the
FFT [GHS12a, GHS12b], restricting the choice of field.

• Add(C1, C2): To add ciphertexts C1, C2 ∈ ZN×Nq , output Flatten(C1 + C2). The correctness
of this operation is immediate. Note that the addition of messages is over the full base ring
Zq.

• Mult(C1, C2): To multiply ciphertexts C1, C2 ∈ ZN×Nq , output Flatten(C1 ·C2). Observe that:

Mult(C1, C2) · ~v = C1 · C2 · ~v = C1 · (µ2 · ~v + ~e2) + µ2 · (µ1~v + ~e1) + C1 · ~e2

= µ1 · µ2 · ~v + µ2 · ~e1 + C1 · ~e2

10

As in Add, the multiplication operator is over the full base field Zq. In Mult, the new error
depends on the old errors, the ciphertext C1, and the message µ2. The dependence on the
old errors seems unavoidable (and normal for LWE-based HE schemes), and observe that C1

contributes at most a factor N blowup of error, since all components of C1 are restricted to
{0, 1}. The error growth based on the message µ2, however, presents a concern. In general,
we must address this concern by using homomorphic operations in a way that restricts the
message space to small messages. One way to do this is to consider Boolean circuits using
only NAND operations: this would restrict the message space to {0, 1}. We elaborate below.

• NAND(C1, C2): To NAND ciphertexts C1, C2 ∈ ZN×Nq that are known to encrypt messages
µ1, µ2 ∈ {0, 1}, output Flatten(IN − C1 · C2). Observe that:

NAND(C1, C2) · ~v = (IN − C1 · C2) · ~v = (1− µ1 · µ2) · ~v − µ2 · ~e1 − C1 · ~e2

Note here that the NAND homomorphic operation maintains the invariant that if the input
messages are in {0, 1}, then the output ciphertext will also encryption of {0, 1}, thus guar-
anteeing small messages. Note that since µ2 ∈ {0, 1}, the error is increased by a factor of at
most N + 1.

Circuits. By iteratively applying the homomorphic operations above, different types of (bounded-
depth) circuits may be homomorphically computed while maintaining correctness of decryption.

The simplest case to analyze is the case of Boolean circuits computed over encryptions of
{0, 1} values. In this case, the circuit can be converted to use only NAND gates, and through
appropriate leveled application of the NAND homomorphic operation, the final ciphertext’s error
will be bounded by (N + 1)L ·B, where L is the NAND-depth of the circuit, and B is the original
bound on the error of a fresh encryption of {0, 1}.

More generally, with more care, we may consider arithmetic circuits over Zq that make use of
gates that perform addition, multiplication, or multiplication by a known constant. However, as
we have seen in the case of multiplication gates, the error growth may depend on the values being
encrypted in intermediate computations. One way to deal with this is to focus on situations where
(1) all input values are known to encrypt values bounded by some value T , and (2) the arithmetic
circuit is chosen to guarantee that all intermediate values are also bounded by T ′ whenever the
circuit inputs are constrained to values bounded by T . In such a situation, the final ciphertext’s
error will be bounded by (N +T ′)L ·B, where L is the depth of the arithmetic circuit, and B is the
original bound on the error of fresh encryptions of values smaller than T . For example, in this way,
we can homomorphically evaluate polynomials of degree d in this large-message-space variant when
the initial messages are bounded by roughly q1/d, achieving a scheme that is “somewhat homomor-
phic” [Gen09]. Another example application would be to convert encryptions of a polynomially
bounded set of small values to encryptions of binary values, by using an appropriate arithmetic
circuit for the conversion. Once converted to encryptions of binary values, a NAND-based Boolean
circuit could be used for further computations.

3.4 Parameters, Performance and Optimizations

Suppose that Flatten’d ciphertexts C1, C2 encrypt µ1, µ2 ∈ {0, 1} under approximate eigenvector ~v
with B-bounded error – that is, Ci ·~v = µi ·~v+~ei where |~ei|∞ ≤ B. Then CNAND ← NAND(C1, C2)
encrypts NAND(µ1, µ2) ∈ {0, 1} under ~v with (N+1)B-bounded error. As long as q/B > 8(N+1)L,

11

we can evaluate a depth-L circuit of NANDs over B-bounded ciphertexts to obtain a q/8-bounded
ciphertext, which Dec will decrypt correctly.

As in previous LWE-based FHE schemes, n (hence N) must increase linearly with log(q/B) to
maintain fixed 2λ security against known attacks, so q/B grows more like exp(L logL). We will
brush such issues under the rug and view n as a fixed parameter. Choosing χ so that B is not too
large, and since in practice there is no reason to have κ = log q grow super-linearly with n, we have
κ = O(L logN) = O(L(log n + log κ)) = O(L log n), similar to [BGV12, Bra12]. Given that the
NAND procedure is dominated by multiplication of two N ×N matrices for N = O(nκ) = Õ(nL),
we have the following theorem to characterize the performance of our FHE scheme.

Theorem 3. For dimension parameter n and depth parameter L, our FHE scheme evaluates depth-
L circuits of NAND gates with Õ((nL)ω) field operations per gate, where ω < 2.3727 is the matrix
multiplication exponent.

This compares favorably with previous LWE-based FHE schemes, which all have at least Õ(n3L)
field operations per gate [BV11b, BGV12, Bra12].

Theorem 3 hides some factors, both good and bad. On the good size, it hides the fact that
ciphertext matrices in our scheme have 0/1 entries, and therefore can be multiplied faster than
if they were general matrices over Zq. In previous LWE-based FHE schemes, the field operations
involve multiplying a small number with a general number of Zq, which has complexity Õ(κ) =
Õ(L). So, previous LWE-based FHE schemes have real complexity Õ(n3L2) whereas ours remains
Õ((nL)ω). On the bad side, Theorem 3 hides logarithmic factors in the dimension of the ciphertext
matrices, since N = O(nκ) = O(nL log n). We note that typically n will dominate L, since for
very deep circuits, one would want to use Gentry’s bootstrapping technique [Gen09] to make the
per-gate computation independent of L.

Since bootstrapping involves homomorphically evaluating the decryption function, and since
Dec is essentially Regev decryption [Reg05], bootstrapping works as in previous LWE-based FHE
schemes. In particular, we can use techniques from [BV11b] to reduce the dimension and modulus-
size of the ciphertext before bootstrapping, so that the complexity of decryption (and hence boot-
strapping) is completely independent of the depth L of the circuit that was evaluated to arrive
at that ciphertext. Regev decryption can be evaluated in O(log n) depth. Due to the logarithmic
depth, one can take q/B to be quasi-polynomial in n, and base security on LWE for quasi-polynomial
factors.

4 Our Identity-Based and Attribute-Based FHE Schemes

Identity-based encryption (IBE) [Sha84, BF03] and attribute-based encryption (ABE) [SW05,
GPSW06] are designed to provide more flexible access control of encrypted data than a traditional
public key infrastructure. Traditionally, IBE and ABE do not offer any computation over the en-
crypted data. However, access control of encrypted data remains important even (or especially)
when the data is encrypted homomorphically. (See [CHT13] for a nice discussion of applications.)

Unfortunately, while there are some IBE schemes that allow simple homomorphic operations
[GHV10, CHT13], it has remained a stubborn open problem [Nac10, GHV10, Bra12, CHT13] to
construct an IBE scheme that allows fully or even “somewhat” homomorphic encryption. Previously
it was mentioned [Bra12, CHT13]) that instead of building an FHE scheme on Regev’s encryption
scheme as we do in Section 3, one can alternatively use the “dual-Regev” system [GPV08], for

12

which it is known how to generate identity-based keys (see also [ABB10a, ABB10b, CHKP10]).
However, making the encryption/decryption keys identity-based only solves half of the problem,
and yields only a “weak” form of identity-based FHE. In all previous FHE schemes, there is also
an “evaluation key” required for homomorphic evaluation. This evaluation key is user-specific and
is not “identity-based”, in the sense that it cannot be computed non-interactively from the user’s
identity. But having to obtain this evaluation key undermines the main appeal of IBE: its non-
interactivity. Thus, identity-based FHE (IBFHE) has remained wide open, and attribute-based
FHE (ABFHE) seems even more difficult to construct.

Interestingly, however, our new FHE scheme does not have evaluation keys. To perform eval-
uation, the evaluator only needs to know some basic parameters of the scheme (like n, m and
`).

The absence of evaluation keys allows us to construct the first IBFHE scheme. We describe
a simple “compiler” that transforms any LWE-based IBE scheme (that satisfies certain natural
properties) into a IBFHE. All LWE-based IBE schemes that we know of (e.g., [GPV08, ABB10a,
ABB10b, CHKP10]) can be described so as to have the required properties.

1. Property 1 (Ciphertext and decryption key vectors): The decryption key for identity
ID, and a ciphertext for ID, are vectors ~sID,~cID ∈ Zn′q for some n′. The first coefficient of ~sID
is 1.

2. Property 2 (Small Dot Product): If ~cID encrypts 0, then 〈~cID, ~sID〉 is “small”.
3. Property 3 (Security): Encryptions of 0 are indistinguishable from uniform vectors over

Zq (under LWE).

Theorem 4. We can compile an IBE scheme E with the above properties into a related IBFHE
scheme.

Proof. The IBFHE uses E’s Setup and KeyGen algorithms, supplementing E’s MPK with the basic
parameters for our FHE scheme (such as m, `). Let N = (n+ 1) · ` for ` = blog qc+ 1, as usual. To
encrypt µ ∈ {0, 1}, the encrypter generates N encryptions of 0 using E.Enc, sets C ′ID to be the N ×
(n+1) matrix whose rows are these ciphertexts, and outputs CID = Flatten(µ·IN+BitDecomp(C ′ID)).
Suppose ~sID is the decryption key for ID, as above, and let ~vID = Powersof2(~sID). The decrypter
runs our FHE decryption algorithm Dec(~vID, CID) to recover µ. Homomorphic operations are as in
Section 3.3.

Decryption is correct, since CID · ~vID = µ · ~vID + C ′ID · ~sID = µ · ~vID + small, where C ′ID · ~sID is a
small vector by Property 2. In this setting Dec recovers µ ∈ {0, 1}. Any adversary that breaks the
semantic security of our IBFHE scheme can distinguish C ′ID from a uniform matrix over Zq, and
therefore distinguish LWE by Property 3.

For ABFHE, our approach begins by re-interpreting the decryption process in the Gorbunov
et al. (GVW) ABE scheme [GVW13]. To decrypt a ABE ciphertext under x with sky for which
R(x, y) = 1, we view the decrypter as deriving a “sub-key” ~sx,y associated to x. This sub-key
will satisfy something similar to Property 2 above – i.e., if ~cx encrypts 0 under x, then 〈~cx, ~sx,y〉 is
“small”. Viewing GVW in this way allows us to apply our compiler above.

We provide more details of our identity-based and attribute-based FHE constructions in Ap-
pendices A and B.

13

Acknowledgments

We gratefully thank Shai Halevi for his collaboration on this work. We also thank Boaz Barak and
the anonymous CRYPTO reviewers for their many helpful comments.

References

[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (h)ibe in the standard
model. In EUROCRYPT, pages 553–572, 2010.

[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed
dimension and shorter-ciphertext hierarchical ibe. In CRYPTO, pages 98–115, 2010.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In
STOC, pages 99–108, 1996.

[BB12a] Boaz Barak and Zvika Brakerski. Building the swiss army knife. Windows on Theory
Blog, http://windowsontheory.org/2012/05/02/building-the-swiss-army-knife, 2012.

[BB12b] Boaz Barak and Zvika Brakerski. The swiss army knife of cryptography. Win-
dows on Theory Blog, http://windowsontheory.org/2012/05/01/the-swiss-army-knife-
of-cryptography, 2012.

[BF03] Dan Boneh and Matt Franklin. Identity-based encryption from the Weil pairing. SIAM
J. of Computing, 32(3):586–615, 2003. Extended abstract in Crypto’01.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic en-
cryption without bootstrapping. In Innovations in Theoretical Computer Science
(ITCS’12), 2012. Available at http://eprint.iacr.org/2011/277.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In STOC, pages 575–584, 2013.

[Boy13] Xavier Boyen. Attribute-based functional encryption on lattices. In TCC, pages 122–
142, 2013.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from clas-
sical gapsvp. In CRYPTO, pages 868–886, 2012.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In CRYPTO, volume 6841, page
501, 2011.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In FOCS, pages 97–106, 2011. References are to full version:
http://eprint.iacr.org/2011/344.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to
delegate a lattice basis. In EUROCRYPT, pages 523–552, 2010.

14

[CHT13] Michael Clear, Arthur Hughes, and Hitesh Tewari. Homomorphic encryption with
access policies: Characterization and new constructions. In AFRICACRYPT, pages
61–87, 2013.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. IACR Cryptology ePrint Archive, 2013:183, 2013. To appear
in CRYPTO 2013.

[CMNT11] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi. Fully
homomorphic encryption over the integers with shorter public keys. In CRYPTO,
pages 487–504, 2011.

[CNT12] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key compres-
sion and modulus switching for fully homomorphic encryption over the integers. In
Advances in Cryptology - EUROCRYPT 2012, volume 7237 of Lecture Notes in Com-
puter Science, pages 446–464. Springer, 2012.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–178, 2009.

[Gen10] Craig Gentry. Toward basing fully homomorphic encryption on worst-case hardness.
In CRYPTO, pages 116–137, 2010.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In EUROCRYPT, pages 1–17, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters. Attribute-
based encryption for circuits from multilinear maps. IACR Cryptology ePrint Archive,
2013:128, 2013. To appear in CRYPTO 2013.

[GH11a] Craig Gentry and Shai Halevi. Fully homomorphic encryption without squashing using
depth-3 arithmetic circuits. In FOCS, pages 107–109, 2011.

[GH11b] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption
scheme. In EUROCRYPT, volume 6632 of Lecture Notes in Computer Science, pages
129–148. Springer, 2011.

[GHL+11] Craig Gentry, Shai Halevi, Vadim Lyubashevsky, Christopher Peikert, Joseph Silver-
man, and Nigel Smart, 2011. Observation.

[GHS12a] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with
polylog overhead. In EUROCRYPT, pages 465–482, 2012.

[GHS12b] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the aes
circuit. In CRYPTO, pages 850–867, 2012.

[GHV10] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. A simple bgn-type cryptosys-
tem from lwe. In EUROCRYPT, pages 506–522, 2010.

15

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based en-
cryption for fine-grained access control of encrypted data. In ACM CCS, pages 89–98,
2006.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, pages 197–206. ACM, 2008.

[GS02] Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In ASI-
ACRYPT, pages 548–566, 2002.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryp-
tion for circuits. In STOC, pages 545–554, 2013.

[HL02] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In
EUROCRYPT, pages 466–481, 2002.

[LATV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. In STOC, pages
1219–1234, 2012.

[LLL82] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261:515–534, 1982. 10.1007/BF01457454.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. In EUROCRYPT, pages 1–23, 2010.

[MM11] Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample com-
plexity of lwe search-to-decision reductions. In CRYPTO, pages 465–484, 2011.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In EUROCRYPT, pages 700–718, 2012.

[Nac10] David Naccache. Is theoretical cryptography any good in practice? Invited talk
at Crypto/CHES 2010, available at http://www.iacr.org/workshops/ches/ches2010,
2010.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In STOC, pages 333–342, 2009.

[RAD78] Ron Rivest, Leonard Adleman, and Michael L. Dertouzos. On data banks and privacy
homomorphisms. In Foundations of Secure Computation, pages 169–180, 1978.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC, pages 84–93, 2005.

[Reg10] Oded Regev. The learning with errors problem (invited survey). In IEEE Conference
on Computational Complexity, pages 191–204. IEEE Computer Society, 2010.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pages
47–53, 1984.

16

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354–356,
1969.

[SV10] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with rela-
tively small key and ciphertext sizes. In Public Key Cryptography - PKC’10, volume
6056 of Lecture Notes in Computer Science, pages 420–443. Springer, 2010.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
volume 3494 of Lecture Notes in Computer Science, pages 457–473, 2005.

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully ho-
momorphic encryption over the integers. In EUROCRYPT, pages 24–43, 2010.

[Wil12] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd.
In STOC, pages 887–898, 2012.

A Our Identity-Based FHE Construction: More Details

In this section, as an example, we review Cash et al.’s LWE-based IBE scheme [CHKP10], and
show that it has the properties required by our compiler described in Section 4. Since Cash et
al. actually describe a hierarchical IBE (HIBE) scheme, our compiler turns it into a hierarchical
IBFHE scheme.

A.1 (Hierarchical) IBFHE: Definition

An identity-based encryption (IBE) scheme IBE has four algorithms Setup, KeyGen, Enc, Dec [Sha84,
BF03]. Setup generates master keys (MSK,MPK), KeyGen(MSK, ID) outputs a secret key skID for
identity ID, Enc(MPK, ID, µ) outputs an encryption c of µ under ID, and Dec(skID, c) decrypts c (if it
is under ID). (Often KeyGen is instead called “Extract” to avoid confusion with the key generation
that occurs in Setup.)

In a d-hierarchical IBE (HIBE) scheme [HL02, GS02], identities are vectors of length at most
d, and there is fifth algorithm called Derive. Given identities ID, ID′ where ID is a proper prefix of
ID′ and a secret key skID for ID, Derive(skID, ID, ID

′) outputs a secret key skID′ for ID′.
In a d-hierarchical IBFHE (HIBFHE) scheme, there is a sixth algorithm Eval. For some function

family F , c ← Eval(MPK, ID, f, c1, . . . , ct) homomorphically evaluates any f ∈ F on ciphertexts
{ci ← Enc(MPK, ID, µi)} under the same ID. Since the scheme is (leveled) fully homomorphic, F
consists of all circuits of depth L for some L, consisting of (e.g.) NAND gates. In the hierarchical
context, it is also fine if ID is a prefix of all of the identity tuples associated to the original ciphertexts.

Correctness for d-HIBFHE means the following: For any (MSK,MPK)← Setup and any legal se-
quence of calls to KeyGen and Derive to obtain a secret key skID for any identity ID = (id1, . . . , idk),
for any t and any ciphertexts {ci ← Enc(MPK, IDi, µi) : i ∈ [t]} generated under d-hierarchical iden-
tities IDi that all have ID as a prefix, for any t-ary function f ∈ F , c← Eval(MPK, ID, f, c1, . . . , ct)
is a ciphertext that satisfies Dec(skID, c) = f(µ1, . . . , µt). We could consider a weaker version of
HIBFHE where ID = IDi for all i, but our construction will satisfy the stronger version.

Notions of security for HIBFHE are the same as for HIBE, with the understanding that Eval
is an additional (public) algorithm that the adversary may try to exploit in its attack. We refer
to prior papers on HIBE for details about HIBE security; here, we highlight a few details. The

17

adversary may be selective or adaptive in its choice of which target identity to use in its challenge
ciphertext. In either case, the adversary is permitted to query secret keys for many identities as
long as none of these identities are prefixes of the target identity. However, in a selective-ID attack,
the adversary must specify the target identity before receiving MPK. Also, a HIBE scheme may
be anonymous. In an anonymous HIBE scheme, it is hard for an adversary to distinguish under
which of two equal-length identities a ciphertext was constructed. Similarly, one can define a notion
of anonymous HIBFHE. In a HIBFHE scheme, of course Eval cannot take as input any identity
information. In fact, our HIBE to HIBFHE compiler does not require any identity information,
and therefore can be used to compile anonymous HIBE schemes (such as Cash et al.’s scheme) into
anonymous HIBFHE schemes.

A.2 Review of Cash et al.’s Hierarchical IBE Construction

Perhaps the key lemma of Cash et al. [CHKP10] is the following:

Lemma 2 (Lemma 3.3 in full version of [CHKP10]). There is a deterministic polynomial-time
algorithm ExtBasis with the following properties: given an arbitrary A ∈ Zn×mq whose columns

generate the entire group Znq , an arbitrary basis S ∈ Zm×m of Λ⊥(A), and an arbitrary Ā ∈ Zn×m̄q ,

ExtBasis(S,A′ = A‖Ā) outputs a basis S′ of Λ⊥(A′) ⊆ Zm+m̄ such that ‖S̃′‖ = ‖S̃‖.

Above, Λ⊥(A) = {~x ∈ Zm : A · ~x = ~0 ∈ Znq } is the space of vectors orthogonal modulo q to all

of the rows of A, and S̃′ and S̃ are the Gram-Schmidt orthogonalizations of S′ and S. Assuming
the vectors in S are short, we may sometimes refer to S as a matrix of short integer solutions
associated to the matrix A. These short vectors are “solutions” in the sense that A · S = 0 mod q.
The above lemma basically says that if we are given short integer solutions for A, we can extend
them to obtain short integer solutions for A′ = A‖Ā, where Ā can be any matrix (of appropriate
dimension). There are efficient algorithms to generate a statistically uniform A together with a
basis S of short integer solutions for A (see [Ajt96] and more recently [MP12]). Gentry, Peikert and
Vaikuntanathan (Theorem 4.1 in [GPV08]) showed that, given a basis S of short integer solutions
for A (where A’s columns are full-rank) and any vector ~z ∈ Znq , there is an efficient algorithm

SampleD(S,A, ~z) that samples a short vector ~t ∈ Zm such that A · ~t = ~z mod q.
With this machinery, we now sketch Cash et al.’s scheme (with minor variations). We limit

ourselves to their “binary tree encryption” (BTE) scheme, where identities are tuples of bits. HIBE
schemes whose identities use larger alphabets can be mapped to a BTE scheme using a collision-
resistant hash function.

Setup(d): Generate statistically uniform A0 ∈ Zn×mq together with a short basis S0 ∈ Zm×m of

Λ⊥(A0). For each (i, b) ∈ [d] × {0, 1}, generate a uniform and independent matrix Ai,b ∈ Zn×mq .
Choose ~z ∈ Znq uniformly at random. Output MPK = (A0, {Ai,b}, ~z, d) and MSK = S0.

KeyGen(MSK, ID): Let ID = (id1, . . . , idk) ∈ {0, 1}k for k ≤ d. Define AID = A0‖A1,id1‖ · · · ‖Ak,idk .
Generate SID ← ExtBasis(S0, AID), a basis of short integer solutions for AID.

Once it obtains SID, the user itself does the following. It sets ~tID ← SampleD(SID, AID, ~z) and
~sID = (1,−~tID). Let A′ID = ~z‖AID. Observe that A′ID · ~sID = ~0 mod q.

Derive(SID, ID, ID
′): Similar to KeyGen, it uses ExtBasis to generate a secret key for lower-level

identity ID′.

18

Enc(MPK, ID, µ ∈ {0, 1}): Let ID = (id1, . . . , idk) ∈ {0, 1}k for k ≤ d. Define A′ID as above. Suppose
A′ID has m′ columns. Let ~µ ∈ Zm′q be the vector of all 0’s except with µ ·bq/2c in the first coefficient.

Choose random ~r ∈ Znq and small error vector ~e ∈ Zm′ . Output ~cID ← ~r ·A′ID + ~e+ ~µ ∈ Zm′q .

Dec(~sID,~cID): Pad ~sID with 0’s if necessary to make it the same length as ~cID. Set δ ← 〈~cID, ~sID〉 ∈ Zq.
If δ is small, output ‘µ = 0’; if δ − q/2 mod q is small, output ‘µ = 1’; otherwise, output ‘⊥’.

Regarding correctness, observe that we have 〈~cID, ~sID〉 = ~r ·A′ID · ~sID + 〈~e+ ~µ,~sID〉 = µ · bq/2c+
small. Regarding security, Cash et al. show that encryptions of 0 (i.e., vectors of the form ~r·A′ID+~e)
are indistinguishable from uniformly random vectors under the LWE assumption in an adaptive-ID
attack model.

A.3 Hierarchical IBFHE: Applying Our Compiler to Cash et al.’s HIBE

Our compiler from Section 4 applies immediately to Cash et al.’s (non-hierarchical) IBE scheme.
It is clear from the description above that their scheme has the three properties required by our
compiler.

For the hierarchical setting, we need to address case where Dec uses ~sID for some ID that is
a (possibly proper) prefix of all of the identities {IDi} associated to ciphertexts {~ci} used in Eval.
Our compiler basically works as before, except that all ciphertext matrices need to be padded with
0’s so that they all have the same square dimension, and the secret key vector is also padded with
0’s to match this dimension.

In more detail, let ID1 be a prefix of ID2. Applying our compiler, a ciphertext for ID2 has the
form CID2 = Flatten(µ · IN +BitDecomp(C ′ID2

)), where the rows of C ′ID2
are Cash et al. encryptions

of 0. In Cash et al.’s scheme, if ID1 is a prefix of ID2, and ~cID2 is an encryption of 0 under ID2,
it holds that 〈~cID2 , ~sID1〉 is small, when ~sID1 is appropriately padded with 0’s. Therefore, if we set
~vID1 ← Powersof2(~sID1), we have that

CID2 · ~vID1 = µ · ~vID1 + C ′ID2
· ~sID1 = µ · ~vID1 + small.

Thus CID2 has the proper form of an approximate eigenvector encryption of µ under ID1, and
homomorphic operations proceed as usual.

Regarding security, it is easy to see that an attack on the semantic security of this scheme would
imply an algorithm to distinguish Cash et al. encryptions of 0 from random vectors, breaking LWE.
Our HIBFHE scheme inherits the adaptive-ID security of Cash et al.’s HIBE.

B Our Attribute-Based FHE Construction: More Details

In this section, we review a recent attribute-based encryption (ABE) scheme by Gorbunov, Vaikun-
tanathan and Wee (GVW) [GVW13], and show that we can re-interpret their decryption procedure
so that we can apply our compiler from Section 4 to obtain an attribute-based FHE (ABFHE)
scheme.3

3We believe our techniques would work on Boyen’s recent LWE-based ABE scheme [Boy13] as well, but do not
pursue this further.

19

B.1 ABFHE: Definition

An attribute-based encryption (ABE) scheme [SW05, GPSW06] is associated to some efficiently
computable relation R(x, y), x ∈ {0, 1}k, y ∈ {0, 1}`, and has four algorithms Setup, KeyGen,
Enc, Dec. Setup generates master keys (MSK,MPK), KeyGen(MSK, y) outputs a secret key sky
for string y ∈ {0, 1}`, Enc(MPK, x, µ) outputs an encryption c of µ under string x ∈ {0, 1}k, and
Dec(sky, c) decrypts c (if c is under x where R(x, y) = 1). In an ABE scheme for circuits, R can be
any efficiently computable relation. Recently, the first ABE schemes for circuits were constructed
[GGH+13b, GVW13].

An ABFHE scheme has a fifth algorithm Eval associated to some function family F . For any
f ∈ F , c ← Eval(MPK, x, f, c1, . . . , ct) homomorphically evaluates any f on ciphertexts {ci ←
Enc(MPK, x, µi)} under the same string x. Since the scheme is (leveled) fully homomorphic, F
consists of all circuits of depth L for some L, consisting of (e.g.) NAND gates.

Correctness for ABFHE means the following: For any (MSK,MPK)← Setup, for any secret key
sky ← KeyGen(MSK, y) for any y ∈ {0, 1}`, for any t and any ciphertexts {ci ← Enc(MPK, x, µi) :
i ∈ [t]} generated under string x ∈ {0, 1}k for which R(x, y) = 1, for any t-ary function f ∈ F ,
c← Eval(MPK, x, f, c1, . . . , ct) is a ciphertext that satisfies Dec(sky, c) = f(µ1, . . . , µt).

Notions of security for ABFHE are the same as for ABE, with the understanding that Eval is
an additional (public) algorithm that the adversary may try to exploit in its attack. As in ABE
schemes, the adversary may be selective or adaptive in its choice of which string x∗ to use in its
challenge ciphertext. In either case, the adversary is permitted to query secret keys for many strings
yi as long as R(x∗, yi) = 0 for all i. In a selective attack, the adversary must specify x∗ before
receiving MPK.

B.2 Review of the GVW ABE Construction

Gorbunov et al. describe a selectively-secure ABE scheme for circuits. We describe their ABE
scheme in a rather different way than [GVW13]. The main difference is that we split decryption
into a two-step process. In the first step, assuming R(x, y) = 1, the keyholder uses sky to generate a
sub-key ~sx,y for x. This sub-key is a short vector. Moreover, if ~cx encrypts 0 under x, then 〈~cx, ~sx,y〉
is “small”. The second part of decryption begins with computing this dot product. Splitting GVW
decryption in this way allows us to apply a compiler similar to our compiler for the IBE case.

We re-use some notation from the description of Cash et al.’s IBE scheme in Appendix A. In
particular, for a matrix A ∈ Zn×mq , we let Λ⊥(A) = {~x ∈ Zm : A · ~x = ~0 ∈ Znq } denote the
space of vectors orthogonal modulo q to all of the rows of A. When S ∈ Zm×m is a basis of short
(much smaller than q) vectors that generate Λ⊥(A), we may refer to S as a basis of short integer
solutions for A in the sense that A · S = 0 mod q. There are efficient algorithms to generate a
statistically uniform A together with a basis S of short integer solutions for A (see [Ajt96] and
more recently [MP12]). Gentry, Peikert and Vaikuntanathan (Theorem 4.1 in [GPV08]) showed
that, given a basis S of short integer solutions for A (where A’s columns are full-rank) and any
vector ~z ∈ Znq , there is an efficient algorithm SampleD(S,A, ~z) that samples a short vector ~t ∈ Zm

such that A · ~t = ~z mod q.
The GVW scheme uses recoding matrices. We say that matrix R2m×m recodes matrix A0 ∈

Zn×mq in terms of matrices A1‖A2 ∈ Zn×2m
q if [A1‖A2] ·R = A0 mod q, and moreover the entries of

R are small. We can efficiently generate a recoding matrix from A0 to A1‖A2 given a basis of short
integer solutions for A1‖A2 using SampleD.

20

An important tool in GVW is what we will call “recoding of recodings”, a recursive process which
uses a recoding of A0 in terms of some lower-level matrices together with recodings of the lower-
level matrices in terms of even-lower-level ones to recode A0 strictly in terms of the even-lower-level
matrices. For example, suppose we have recodings R0, R1, R2 such that [A1‖A2] · R0 = A0 mod q,
and [A3‖A4] ·R1 = A1 mod q, and [A4‖A5] ·R2 = A2 mod q. The idea, in English, is that since each
column of A0 is expressed (via R0) as a short integer linear combination of columns in A1‖A2, and
since each column of A1‖A2 is expressed (via R1 and R2) as a short integer linear combination of
columns from A3‖A4‖A5, we can use R0, R1, R2 to efficiently construct a new recoding matrix R′0
that represents each column of A0 as a (somewhat) short linear combination strictly of the columns
of A3‖A4‖A5 (no columns from A1‖A2 are used anymore). Mathematically, if we let R0,top be the
top m rows of R0 and R0,bot be the bottom m rows, we have A0 = A1 ·R0,top+A2 ·R0,bot. Similarly,
we have A1 = A3 · R1,top + A4 · R1,bot and A2 = A4 · R2,top + A5 · R2,bot. Plugging the latter two
equations into the first equation, we obtain

A0 = (A3 ·R1,top +A4 ·R1,bot) ·R0,top + (A4 ·R2,top +A5 ·R2,bot) ·R0,bot

= A3 · (R1,top ·R0,top) +A4 · (R1,bot ·R0,top +R2,top ·R0,bot) +A5 · (R2,bot ·R0,bot)

= [A3‖A4‖A5] ·R′0,

where R′0 is the transposed concatenation of R1,top · R0,top, R1,bot · R0,top + R2,top · R0,bot, and
R2,bot · R0,bot, and is the “recoding of recodings” of A0 strictly in terms of A3‖A4‖A5. This new
recoding R′0 is only “somewhat” short, since it is quadratic in the original “short” recodings. If we
were to recursively recode A0 in terms of matrices that are d levels lower, the resulting recoding
matrix would have entries that are roughly the d-th power of the entries of the initial recoding
matrices.

In GVW, y defines some predicate Py : {0, 1}k → {0, 1}, represented by a boolean circuit of
depth at most d. We are now ready to describe the GVW scheme, with minor variations, restricting
to the case of 1-bit messages.

Setup(k, d): Generate statistically uniform matrices A0,1 ∈ Zn×1
q , {Ai,b ∈ Zn×mq : i ∈ [k], b ∈ {0, 1}},

together with bases of short integer solutions {Si,b}. Output MPK = (A0,1, {Ai,b}, k, d) and MSK =
{Si,b}.

KeyGen(MSK, y): Let Py : {0, 1}k → {0, 1} be the d-depth boolean circuit associated to y. Associate
A0,1 to the output wire of Py (with an assignment of 1) and associate Ai,b to the i-th input wire
of Py (with an assignment of b). For each internal wire w ∈ Py and b ∈ {0, 1}, generate uniform
and independent matrices Aw,b ∈ Zn×mq together with a basis Sw,b of short integer solutions. For
each gate g in Py, do the following. Suppose g’s wires are wl (left), wr (right) and wo (output).
For each possible pair of inputs (bl, br) ∈ {0, 1}2 to g, use the short integer solution matrices to
generate a recoding matrix Rg,bl,br from Awo,g(bl,br) to Awl,bl‖Awr,br . The key sky consists of the
recoding matrices {Rg,bl,br}.

Enc(MPK, x, µ ∈ {0, 1}): Let Ax = A1,x1‖ · · · ‖Ak,xk and A′x = A0,1‖Ax, the latter of which has
1 + km columns. Let ~µ ∈ Z1+km

q be the vector of all 0’s except that the first coefficient is µ · bq/2e.
Choose random ~r ∈ Znq and small error vector ~e ∈ Z1+km. Output x and ~cx ← ~r ·A′x+~e+~µ ∈ Z1+km

q .

Dec(sky, x,~cx): Evaluate Py(x). If Py(x) = 0, then output ‘⊥’. Otherwise, run ~tx,y ← Recode(sky, x)
to obtain a recoding of A0,1 in terms of Ax – that is, ~tx,y ∈ Zkmq is a short vector such that

21

A0,1 = Ax · ~tx,y mod q. Let ~sx,y = (1,−~tx,y) ∈ Z1+km
q . Compute δ ← 〈~cx, ~sx,y〉 ∈ Zq. If δ is small,

output ‘µ = 0’; if δ − q/2 mod q is small, output ‘µ = 1’; otherwise, output ‘⊥’.

Recode(sky, x): Evaluate Py(x) to obtain a bit b
(x)
w for each wire w in Py. Partition the wires of the

circuit into k ≤ d levels W0, . . . ,Wk, where W0 is the output level and Wk is the input level. To
begin, sky contains a way to recode A0,1 in terms of A

wl,b
(x)
wl

‖A
wr,b

(x)
wr

where wl, wr ∈W1 are the left

and right input wires of the output gate of Py. Similarly and recursively, for each i ∈ {2, . . . , k}, use
the recoding matrices from sky and the “recoding of recodings” technique to transform the recoding
of A0,1 under ∪w∈Wi−1Aw,b(x)w

into a recoding under ∪w∈WiAw,b(x)w
. Finally, at the input level, output

the recoding of A0,1 in terms of Ax – i.e., a short vector ~tx,y such that Ax · ~tx,y = A0,1 mod q.

Regarding correctness, observe that ~sx,y ∈ Z1+km
q is a short vector that satisfies A′x · ~sx,y = ~0.

Therefore, 〈~cx, ~sx,y〉 = ~r ·A′x · ~sx,y + 〈~e+ ~µ,~sx,y〉 = µ · bq/2e+ small.
Regarding security, the details are unimportant for us, except Gorbunov et al. show that,

assuming LWE, GVW encryptions of 0 under an index x are computationally indistinguishable
from uniform to an adversary given MPK and only permitted to query keys for predicates Py for
which Py(x) = 0.

B.3 ABFHE: Applying Our Compiler to the GVW ABE

Once the decrypter runs ~tx,y ← Recode(sky, x) and computes the “sub-key” ~sx,y ← (1,−~tx,y), we
are again in a setting where we can apply our compiler from Section 4. Namely, the following three
properties are met:

1. Property 1 (Ciphertext and decryption key vectors): The sub-key for index x for key
sky, and the ciphertext for index x, are vectors ~sx,y,~cx ∈ Zm′q for some m′. The first coefficient
of ~sx,y is 1.

2. Property 2 (Small Dot Product): If ~cx encrypts 0, then 〈~cx, ~sx,y〉 is “small”.
3. Property 3 (Security): Encryptions of 0 are indistinguishable from uniform vectors over

Zq (under LWE).

The compiler works exactly as before. In detail, our ABFHE uses the ABE scheme’s Setup
and KeyGen algorithms. Let N = m′ · ` for ` = blog qc + 1. To encrypt µ ∈ {0, 1} under x, the
encrypter generates N ABE encryptions of 0 under x, sets C ′x to be the N × m′ matrix whose
rows are these ciphertexts, and outputs Cx = Flatten(µ · IN + BitDecomp(C ′x)). Suppose ~sx,y is
the sub-key for x and sky, as above, and let ~vx,y = Powersof2(~sx,y). The decrypter runs our FHE
decryption algorithm Dec(~vx,y, Cx) to recover µ. Homomorphic operations are as in Section 3.3.

Decryption is correct, since Cx · ~vx,y = µ · ~vx,y +C ′x · ~sx,y = µ · ~vx,y + small, where C ′x · ~sx,y is a
small vector by Property 2. In this setting Dec recovers µ ∈ {0, 1}. Any adversary that breaks the
semantic security of our ABFHE scheme can distinguish C ′x from a uniform matrix over Zq, and
therefore distinguish LWE by Property 3.

C Approximate Eigenvector FHE Based on Other Assumptions

C.1 Ring LWE

The ring learning with errors (RLWE) problem was introduced by Lyubaskevsky, Peikert and Regev
(LPR) [LPR10]. It is a natural adaptation of the LWE problem from vectors over Zq to vectors

22

over polynomial rings Zq[x]/f(x). The similarity between LWE and RLWE makes it very easy to
map our LWE-based FHE scheme to a RLWE-based scheme.

Our RLWE-based scheme is more efficient than the LWE-based one, but not (yet) as efficient
as previous RLWE-based FHE schemes. The reason for this relative inefficiency is that, while
previous RLWE-based FHE schemes after [BV11a] (such as [BGV12, Bra12]) use “relinearization”,
this relinearization is much more efficient for RLWE-based FHE schemes than LWE-based ones.
In particular, since RLWE-based ciphertext vectors in previous schemes have constant dimension,
the relinearization matrices are only constant size (up to a log q factor). Nonetheless, we describe
our approximate eigenvector FHE scheme under RLWE here in the hope that it will stimulate new
ideas.

First, let us recall RLWE. We use an simplified special-case version of the problem that is easier
to work with [Reg10, BV11a].

Definition 3 (RLWE). For security parameter λ, let f(x) = xd + 1 where d = d(λ) is a power of
2. Let q = q(λ) ≥ 2 be an integer. Let R = Z[x]/(f(x)) and let Rq = R/qR. Let χ = χ(λ) be a
distribution over R. The RLWEd,q,χ problem is to distinguish the following two distributions: In
the first distribution, one samples (ai, bi) uniformly from R2

q . In the second distribution, one first
draws s ← Rq uniformly and then samples (ai, bi) ∈ R2

q by sampling ai ← Rq uniformly, ei ← χ,
and setting bi = ai · s+ ei. The RLWEd,q,χ assumption is that the RLWEd,q,χ problem is infeasible.

Typically, one chooses the noise distribution χ according to a Gaussian distribution with de-
viation small relative to q. This Gaussian distribution may need to be “ellipsoidal” for certain
reductions to go through [LPR10]. It has been shown for RLWE that one can equivalently assume
that s is alternatively sampled from the noise distribution χ [LPR10].

In this paper, we prefer to view the vectors bi‖ai as the rows of a matrix A, and define ~s as
(1,−s). Then, either A is uniform, or there is a two-dimensional vector ~s whose first coefficient is
1 such that A · ~s = ~e, where the coefficients of ~e come from the distribution χ.

The RLWE problem is useful, because the well-established shortest vector problem (SVP) over
ideal lattices can be reduced to it, specifically:

Theorem 5 (Lyubashevsky-Peikert-Regev [LPR10]). For any d that is a power of 2, ring R =
Z[x]/(xd + 1), prime integer q = q(d) = 1 mod d, and B = ω(

√
d log d), there is an efficiently sam-

plable distribution χ that outputs elements of R of length at most B with overwhelming probability,
such that if there exists an efficient algorithm that solves RLWEd,q,χ, then there is an efficient
quantum algorithm for solving dω(1) · (q/B)-approximate worst-case SVP for ideal lattices over R.

Toward constructing our FHE scheme, we begin with the LPR encryption scheme [LPR10]. The
public key in LPR is simply a RLWE instance; in our case, just a 1 × 2 matrix A over Rq. The
secret key is ~s = (1, s1) ∈ R2

q , where A ·~s = e is small. We assume s1 is also small (chosen according
to distribution χ). To encrypt 0, one samples small r ∈ Rq and short vector ~e′ ∈ R2

q according to
distribution χ, and outputs ~c ← r · A + ~e′ ∈ R2

q . By a standard hybrid argument, RLWE implies
that ~c is indistinguishable from a random vector in R2

q . To encrypt µ ∈ {0, 1} in LPR, one adds
µ · bq/2e to the first coefficient of ~c. Decryption computes 〈~c,~s〉 = r · e + 〈~e′, ~s〉 + µ · bq/2e, and
outputs ‘µ = 0’ or ‘µ = 1’ depending on whether or not the result is small.

(One drawback of the above approach to RLWE-based encryption, for our purposes, is that it
needs ‖~e′‖ · ‖~s‖ < q, and therefore the error distribution χ essentially needs to be B-bounded for
B ≈ √q. For various reasons (e.g., to base security on classical GapSVP), we would like to permit

23

B to be larger. To fix this “problem”, we can alternatively use an encryption approach more similar
to Regev and the scheme described in Section 3.1, in which the size of the ciphertext error does
not depend on the size of the secret key, and in particular s1 can be uniform in Rq.)

Recall that we transform Regev’s encryption scheme into our approximate eigenvector encryp-
tion scheme by computing a ciphertext as C ← Flatten(µ · IN +BitDecomp(C ′)), where the rows of
C ′ are Regev encryptions of 0. We do a similar thing here to adapt the LPR encryption scheme to
the approximate eigenvector framework. For ` = blog qc+ 1, we set N = 2 · `. The encrypter gener-
ates N LPR encryptions of 0, sets this as matrix C ′, and sets C ← Flatten(µ ·IN +BitDecomp(C ′)),
where BitDecomp(a) = (a0, . . . , a`−1) ∈ R`q where each ai is an element of R that when represented
as a polynomial of degree d−1 has coefficients that are all in {0, 1}. (Alternatively, the elements ai
could be size-reduced with respect to the canonical embedding [LPR10] rather than with respect to
the coefficient embedding.) The approximate eigenvector of the scheme becomes ~v ← Powersof2(~s),
where as before Powersof2(~a) = (a0, 2a0, . . . , 2

`−1a0, a1,); if ~a ∈ Rkq , then Powersof2(~a) ∈ Rk·`q .
Decryption computes C · ~v = µ · ~v+BitDecomp(C ′) · ~v = µ · ~v+C ′ · ~s = µ · ~v+ small. The security
of the scheme follows from the fact that LPR encryptions of 0 are indistinguishable from random
vectors under the RLWE assumption.

Homomorphic operations proceed as expected, where adding or multiplying ciphertext matrices
(followed by Flatten) gives a small ciphertext that encrypts the sum or product of the original
messages. If we restrict the messages to µ ∈ {0, 1}, then for reasons similar to the LWE setting, the
noise level of the ciphertext remains tightly constrained so that we obtain a leveled FHE scheme.

We can adapt NTRU-based FHE [GHL+11, LATV12] to the approximate-eigenvector framework
in a similar fashion.

C.2 Approximate GCD

Van Dijk et al. [vDGHV10] constructed a FHE scheme based on the approximate gcd problem.

Definition 4 (Approximate GCD). Let ρ, η, γ be some parameters. For a specific η-bit odd positive
integer p, let Dγ,ρ(p) be the distribution induced by sampling integer q uniformly from [0, 2γ/p),
integer r uniformly from (−2ρ, 2ρ), and outputting x ← p · q + r. The (ρ, η, γ)-approximate-gcd
problem is: given polynomially samples from Dγ,ρ(p) for a randomly chosen η-bit odd positive
integer p, output p.

In their original scheme, they suggested parameters ρ = O(λ), η = Õ(λ2), γ = Õ(λ5).
Work building on [vDGHV10] (e.g., [CMNT11, CNT12]) typically uses a stronger assumption.

Definition 5 (Error-Free Approximate GCD). Like Approximate GCD, except that the instance
also includes a single x0 that is sampled from Dγ,0(p). In other words, the instance includes a
single integer x0 that is an exact multiple of p.

This assumption is much stronger, since breaking it reduces to factoring integers, but it still seems
hard for the suggested parameters above.

One can construct a very simple somewhat homomorphic encryption scheme based on error-
free approximate gcd. (Van Dijk et al. use bootstrapping to make the somewhat homomorphic
scheme leveled fully homomorphic.) KeyGen outputs sk as a η-bit odd positive integer p and
pk as integers xi ← Dγ,ρ(p), with x0 an exact multiple of p. Encrypt(pk, µ ∈ {0, 1}) outputs
c← µ+ 2r+ 2

∑
i∈S xi mod x0, where r is a random integer in (−2ρ

′
, 2ρ

′
) for ρ′ slightly larger than

24

ρ and S is a random subset of indices. Dec(sk, c) outputs (c mod p) mod 2. Eval evaluates addition
(XOR) and multiplication (AND) gates simply by adding and multiplying the ciphertexts modulo
x0. Van Dijk et al. provide a search-to-decision reduction that effectively shows that encryptions of
0 are indistinguishable from random numbers of equivalent bit-length. (Their proof is actually for
a scheme based on approximate gcd rather than error-free approximate gcd, but the proof adapts
easily to the latter context.)

To adapt the error-free approximate gcd scheme to the approximate-eigenvector framework, we
first re-interpret the the error-free approximate gcd scheme so that the secret key becomes a vector,
and decryption involves a dot product. Let ` = blog x0c + 1. Let ~c ← BitDecomp(c) be the `-bit
decomposition of a ciphertext c, and let ~v ← Powersof2(1) have coefficients {2i : i ∈ [0, ` − 1]}.
Then, we have c = 〈~c,~v〉. Recall that an encryption of 0 in the error-free approximate gcd scheme
is a near-multiple of p, and therefore 〈~c,~v〉 mod p is very small.

Now, to get an approximate-eigenvector scheme based on error-free approximate gcd, we use
our standard tricks. To encrypt µ, we construct ` van Dijk et al. encryptions of 0, arranged
as a ` × 1 matrix C ′, and then set our ciphertext to be C ← Flatten(µ · I` + BitDecomp(C ′)).
(The BitDecomp−1 procedure inside Flatten is defined modulo x0.) Decryption computes C · ~v =
µ · ~v + BitDecomp(C ′) · ~v = µ · ~v + C ′ = µ · ~v + small mod p, and then recovers µ. Security follows
from the fact that C reveals nothing more than BitDecomp−1(C), which looks random modulo x0,
since C ′ looks random modulo x0. Homomorphic operations are as in Section 3.3. If we restrict the
messages to µ ∈ {0, 1}, then for reasons similar to the LWE setting, the noise level of the ciphertext
remains tightly constrained so that we obtain a leveled FHE scheme.

With a little more work, we can obtain an approximate-eigenvector FHE scheme based on a
variant of (non-error-free) approximate gcd. Specifically, van Dijk et al. provide a variant of their
scheme in which the public key contains additional near-multiples of p – namely, for i = 0, . . . , γ,
the values x′i ← 2(q′i · p + r′i), where r′i comes from the usual noise distribution (−2ρ, 2ρ), but the
quotient q′i is an integer sampled from [2γ+i−1/p, 2γ+i/p]. Thus, the values x′i ∈ [2γ+i, 2γ+i+1] form
a “ladder” of near-multiples of p, each one about twice the size of the previous one, until finally the
largest one has size about 22γ . After a multiplication of two ciphertexts, we can now size-reduce
the resulting ciphertext (which has size about 22γ) by subtracting off an appropriate subset sum
of the terms in the ladder of near-multiples, to obtain a ciphertext of normal size (about 2γ) that
encrypts the same value. Since this variant is based on a variant of approximate gcd where the
instance includes such a ladder of near multiples, it may be subject to additional attacks, but at
least no error-free multiples are provided that would allow an immediate reduction to factoring.

In our setting, we use van Dijk et al.’s ladder of near-multiples as follows. Suppose C ∈ Z`×`
is a ciphertext matrix whose entries are no longer in {0, 1} (e.g., because it the sum or product
of two previous ciphertext matrices). Set C ′ ← BitDecomp−1(C) without any modular reduction,
so that a row Ci = (Ci,0, . . . , Ci,`−1) is mapped to C ′i ←

∑
j Ci,j2

j ∈ Z. Now use the ladder of

near-multiples to size-reduce each C ′i, to obtain a new ciphertext C† ∈ Z`. Since we subtracted
“encryptions of 0” from each entry, C ′ ≈ C† mod p, up to a small (additive) error. Now that the
entries of C† each have only about γ bits, BitDecomp(C†) gives a vector with coefficients in {0, 1}
that encrypts the same value as C, with only a small difference in error.

25

