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1 Introduction

At TCC 2012, Dziembowski and Faust show how to construct leakage resilient circuits using
secret sharing based on the inner product [2]. At Asiacrypt 2012, Ballash et al. turned the
latter construction into an efficient masking scheme and they apply it to protect an imple-
mentation of AES against side-channel attacks [1]. The so-called Inner-Product masking (IP
masking for short) was claimed to be secure with respect to two different security models:
the λ-limited security model3 (Section 4 of [1]), and the dth-order security model (see defini-
tions p.8 of [1]). In the former model, the security proof makes sense for a sharing dimension
n > 130 which is acknowledged impractical by the authors. In the latter model, the scheme
is claimed secure up to the order d = n− 1.

In this note, we contradict the dth-order security claim by exhibiting a 1st-order flaw in
the masking algorithm for any chosen sharing dimension n.

2 Inner Product Masking Scheme

Let us first recall the basic principle of IP masking. In the following, Fq will denote some field of
characteristic 2 (i.e. q = 2m for some m > 1), and let ⊕ and ⊗ denote respectively the addition
and the multiplication over Fq. The inner product between two vectors X = (X1, X2, . . . , Xn)
and Y = (Y1, Y2, . . . , Yn) from Fn

q is denoted by:

〈X,Y 〉 = (X1 ⊗ Y1)⊕ (X2 ⊗ Y2)⊕ · · · ⊕ (Xn ⊗ Yn) .

The principle of the IP masking scheme is to manipulate every sensitive variable V as a
sharing composed of 2n elements, namely the coordinates of two vectors L = (L1, L2, . . . , Ln)
and R = (R1, R2, . . . , Rn) such that V = 〈L,R〉. In order to prevent a direct 1st-order flaw,
the coordinates of L are randomly drawn from F∗q = Fq\{0}.

In order to perform computation in the masked domain, the authors of [1] define some
addition and multiplication functions (IPAdd and IPMult) processing masked variables. Both
of them are based on two building blocks: the IPHalfMask and IPRefresh procedures, which
are recalled hereafter.4

The IPHalfMask procedure (see Algorithm 1) takes a variable V ∈ Fq and a half sharing
L ∈ (F∗q)n and it outputs random half sharing R ∈ Fn

q satisfying V = 〈L,R〉.
3 Often referred to as the continuous bounded-range leakage model.
4 We do not use the algorithmic presentation from [1] involving two different processors as it is useless for the
dth-order security model.



Algorithm 1 Half-Masking a variable: (L,R)← IPHalfMask(V,L)
Input: variable V ∈ Fq and the vector L of the non-zero shares
Output: masked variable (L,R) such that Z = 〈L,R〉

1. for i = 2 to n do

2. Ri ← rand()

3. R1 ← (V ⊕
⊕n

i=2 Li ⊗Ri)⊗ L−1
1

4. return (L,R)

The IPRefresh procedure (see Algorithm 2), takes a sharing (L,R) and computes a new
fresh sharing (L′,R′) such that 〈L′,R′〉 = 〈L,R〉.

Algorithm 2 Refresh Vector: (L′,R′)← IPRefresh(L,R)
Input: Masked variable (L,R)
Output: New masked variable (L′,R′) such that 〈L,R〉 = 〈L′,R′〉

1. L′ ← (randNonZero())n

2. for i = 1 to n do [A← L⊕L′]

3. Ai ← Li ⊕ L′i
4. X ← 〈A,R〉
5. B ← IPHalfMask(X,L′)

6. R′ ← R⊕B

7. return (L′,R′)

Remark 1. In Algorithm 2, the steps (1-3) for generating A does not correspond to what is
described in [1]. We chose this algorithm for simplicity, this has no incidence whatsoever on
the following.

We now recall the masked addition IPAdd and the masked multiplication IPMult in the
two following algorithms.

Algorithm 3 Masked Addition: (X,Y )← IPAdd((L,R), (K,Q))
Input: Two Masked variables (L,R) and (K,Q)
Output: New masked variable (X,Y ) such that 〈X,Y 〉 = 〈L,R〉 ⊕ 〈K,Q〉

1. (A,B)← IPRefresh(K,Q⊕R)

2. (C,D)← IPRefresh(L⊕K,R)

3. Z ← 〈C,D〉
4. Y ← IPHalfMask(Z,A)

5. X ← A

6. Y ← Y ⊕B

7. return (X,Y )



Algorithm 4 Masked Multiplication: (X,Y )← IPMult((L,R), (K,Q))
Input: Two Masked variables (L,R) and (K,Q)
Output: New masked variable (X,Y ) such that 〈X,Y 〉 = 〈L,R〉 ⊗ 〈K,Q〉

1. for i = 0 to n− 1 do

2. for j = 1 to n do

3. Ũi∗n+j ← Li+1 ⊗Kj

4. Ṽi∗n+j ← Ri+1 ⊗Qj

5. (U ,V )← IPRefresh(Ũ , Ṽ )

6. A← (U1, · · · , Un); C ← (Un+1, · · · , Un2)

7. B ← (V1, · · · , Vn); D ← (Vn+1, · · · , Vn2)

8. Z ← 〈C,D〉
9. Y ← IPHalfMask(Z,A)

10. X ← A

11. Y ← Y ⊕B

12. return (X,Y )

3 A First-Order Flaw

Balasch et al. claim that the above IP masking scheme is secure against any side-channel
attack of order d = n − 1, or equivalently, that any family of n − 1 intermediate variables is
independent of any sensitive variable. We contradict this claim hereafter by showing that for
any fixed parameter n, there always exists a first-order side-channel attack on the IP masking
scheme. To this end, we will exhibit an intermediate variable that is statistically dependent
on some sensitive variable in both the IPRefresh and IPAdd procedures (Algorithms 2 and 3
above).

Let A = (A1, A2, . . . , An) and B = (B1, B2, . . . , Bn) be random vectors uniformly dis-
tributed over (F∗q)n, and let R = (R1, R2, . . . , Rn) be a random vector uniformly distributed
over Fn

q , such that A, B and R are mutually independent. Consider the function fn defined
by:

fn(a, b) = Pr[〈A,R〉 = a ∧ 〈B,R〉 = b] . (1)

We first study fn with respect to n before exhibiting the IP masking flaw.

3.1 Study of fn

The study of fn developed in this section is recursive. First, in Lemma 1, we give an explicit
expression to f1. Then, in Lemma 2, we exhibit a recursive relationship for fn. Both lemmas
are eventually involved to provide an explicit expression to fn (Theorem 1).

Lemma 1. The function f1 satisfies

f1(a, b) =


1
q if (a, b) = (0, 0)

0 if (a, b) ∈ ({0} × F∗q) ∪ (F∗q × {0})
1

q(q−1) if (a, b) ∈ F∗q × F∗q

Proof. First, since both A1 and B1 are non-zero, we have

f1(0, 0) = Pr[A1 ⊗R1 = 0 ∧B1 ⊗R1 = 0] = Pr[R1 = 0] =
1

q
.



Moreover, for any a 6= 0, we have

f1(a, 0) = Pr[R1 = a⊗A−11 ∧R1 = 0] = 0 .

Similarly, we also have f(0, b) = 0 if b 6= 0.
Eventually, the total probability law together with the mutual independence between A1, B1

and R1, imply

f1(a, b) =
∑
a1∈F∗q

Pr[A1 = a1]× Pr[R1 = a⊗ a−11 ∧B1 ⊗R1 = b] ,

which for a 6= 0 and b 6= 0 gives

f1(a, b) =
∑
a1∈F∗q

Pr[A1 = a1]× Pr[R1 = a⊗ a−11 ∧B1 = b (a−1 ⊗ a1)] =
1

q(q − 1)
.

�

Lemma 2. For every n > 1, there exist f00n , f01n , f11n ∈ R such that

fn(a, b) =


f00n if (a, b) = (0, 0)
f01n if (a, b) ∈ ({0} × F∗q) ∪ (F∗q × {0})
f11n if (a, b) ∈ F∗q × F∗q

Moreover, we have

f00n+1 =
1

q
f00n +

q − 1

q
f11n ,

f01n+1 =
2

q
f01n +

q − 2

q
f11n ,

f11n+1 =
1

q(q − 1)
f00n +

2(q − 2)

q(q − 1)
f01n +

(q − 1) + (q − 2)2

q(q − 1)
f11n .

Proof. The first statement is true for n = 1 by Lemma 1. It is then implied by recurrence
from the second statement. Therefore, we only need to show the latter statement.

For every n > 1, the total probability law implies

fn+1(a, b) =
∑

(a0,b0)∈F2
q

fn(a⊕ a0, b⊕ b0)f1(a0, b0) . (2)

1. For (a, b) = (0, 0), the terms in the sum (2) are of the form fn(a0, b0)f1(a0, b0). Then
by Lemma 1, we get

fn(a0, b0)f1(a0, b0) =


1
qfn(0, 0) if (a0, b0) = (0, 0)

0 if (a0, b0) ∈ ({0} × F∗q) ∪ (F∗q × {0})
1

q(q−1)fn(a0, b0) if (a0, b0) ∈ F∗q × F∗q

We deduce

fn+1(a, b) =
1

q
f00n + (q − 1)2

1

q(q − 1)
f11n . (3)



2. For (a, b) ∈ {0} × F∗q , the terms in the sum (2) are of the form fn(a0, b⊕ b0)f1(a0, b0),
with b 6= 0. Then by Lemma 1, we get

fn(a0, b⊕ b0)f1(a0, b0) =


1
qfn(0, b) if (a0, b0) = (0, 0)

0 if (a0, b0) ∈ ({0} × F∗q) ∪ (F∗q × {0})
1

q(q−1)fn(a0, 0) if (a0, b0) ∈ F∗q × {b}
1

q(q−1)fn(a0, b0) if (a0, b0) ∈ F∗q × (F∗q\{b})

We deduce

fn+1(a, b) =
1

q
f01n + (q − 1)

1

q(q − 1)
f01n + (q − 1)(q − 2)

1

q(q − 1)
f11n . (4)

For (a, b) ∈ F∗q × {0}, we have the same equality by symmetry of the function fn.

3. For (a, b) ∈ F∗q×F∗q , the terms in the sum (2) are of the form fn(a⊕a0, b⊕b0)f1(a0, b0),
with a 6= 0 and b 6= 0. Then by Lemma 1, we get

fn(a⊕a0, b⊕b0)f1(a0, b0) =



1
qfn(a, b) if (a0, b0) = (0, 0)
1

q(q−1)fn(0, 0) if (a0, b0) = (a, b)

0 if (a0, b0) ∈ ({0} × F∗q) ∪ (F∗q × {0})
1

q(q−1)fn(a⊕ a0, 0) if (a0, b0) ∈ (F∗q\{a})× {b}
1

q(q−1)fn(0, b⊕ b0) if (a0, b0) ∈ {a} × (F∗q\{b})
1

q(q−1)fn(a⊕ a0, b⊕ b0) if (a0, b0) ∈ (F∗q\{a})× (F∗q\{b})

We deduce

fn+1(a, b) =
1

q
f11n +

1

q(q − 1)
f00n + 2

(
(q − 2)

1

q(q − 1)
f01n

)
+ (q − 2)2

1

q(q − 1)
f11n . (5)

Equations (3), (4) and (5) directly yield the second statement. �

Theorem 1. For every n > 1 we have

fn(a, b) =


1
q2

+ 1
q2(q−1)n−2 if (a, b) = (0, 0)

1
q2
− 1

q2(q−1)n−1 if (a, b) ∈ ({0} × F∗q) ∪ (F∗q × {0})
1
q2

+ 1
q2(q−1)n if (a, b) ∈ F∗q × F∗q

Proof. From Lemma 2, we havef00n+1

f01n+1

f11n+1

 =


1
q 0 q−1

q

0 2
q

q−2
q

1
q(q−1)

2(q−2)
q(q−1)

(q−1)+(q−2)2
q(q−1)

 ·
f00nf01n
f11n

 = P ·

1 0 0
0 0 0
0 0 1

q−1

 · P−1 ·
f00nf01n
f11n

 (6)

where P is the matrix of eigenvectors which satisfies

P =

1 1− q q2 − 2q + 1
1 1

2(2− q) 1− q
1 1 1





By recursively applying (6), we can express (f00n , f01n , f11n ) with respect to (f001 , f011 , f111 ) asf00nf01n
f11n

 = P ·

1 0 0
0 0 0
0 0 1

(q−1)n−1

 · P−1 ·
f001f011
f111


Finally, by Lemma 1 we have (f001 , f011 , f111 ) =

(
1
q , 0,

1
q(q−1)

)
, which together with the above

equation yields the theorem statement. �

3.2 Application to the IP Masking Scheme

The flaw occurs in the mask-refreshing procedure IPRefresh and in the addition procedure
IPAdd (see in Algorithm 2 and Algorithm 3). For the sake of clarity, we first detail it in the
IPRefresh setting and then show it occurs as well in the IPAdd procedure.

Flaw in mask-refreshing procedure. The IPRefresh procedure takes an IP masking
(L,R) of some sensitive variable V (i.e. such that V = 〈L,R〉), and it returns a fresh masking
(L′,R′) such that V = 〈L′,R′〉. The first step of the procedure consists in randomly picking
some vector A ∈ Fn

q such that Ai 6= Li for every i. Then one computes L′ = L ⊕ A and
X = 〈A,R〉. Note that L and L′ are mutually independent and both uniformly distributed
over (F∗q)n. We show hereafter that X leaks information on the sensitive variable V . Indeed
we have

Pr[X = x | V = v] =
Pr[V = v ∧X = x]

Pr[V = v]
=

Pr[V = v ∧X ⊕ V = x⊕ v]

Pr[V = v]
.

Then from

Pr[V = v ∧X ⊕ V = x⊕ v] = Pr[〈L,R〉 = v ∧ 〈L′,R〉 = x⊕ v] = fn(v, x⊕ v) ,

we get

Pr[X = x | V = v] =
fn(v, x⊕ v)

Pr[V = v]
. (7)

By Theorem 1 and given that Pr[V = v] = 1
q , (7) gives

Pr[X = x | V = v] =

{
1
q + 1

q(q−1)n−2 if x = 0
1
q −

1
q(q−1)n−1 if x 6= 0

for v = 0, and

Pr[X = x | V = v] =

{
1
q −

1
q(q−1)n−1 if x = v

1
q + 1

q(q−1)n if x 6= v

otherwise.
We see that when the sensitive variable V equals 0, then the intermediate variable X is

more likely to equal 0 than another value in Fq. On the other hand, when V does not equal
0, the sensitive variable X is more likely to be any value of Fq but v. Although the bias is
exponentially small in n, for small values of n it may induce a significant information leakage.



Flaw in the addition procedure. The IPAdd procedure is subject to a similar flaw. Indeed
at Step 3 of Algorithm 3, one computes

Z = 〈C,D〉 = 〈L⊕K,R〉 ,

where L and K are mutually independent and both uniformly distributed over (F∗q)n. There-
fore the distribution of Z given V = 〈L,R〉 suffers the exact same bias as the distribution of
X in the IPRefresh procedure.

Remark 2. It can be noted that the IPMult procedure looks more secure. Indeed except for
the IPRefresh call, we did not find any flaw in the actual algorithm. Moreover the IPRefresh
procedure is called on a sharing of dimension n2. Hence, even for small values of n, the observed
bias quickly becomes very small.

4 Mutual Information Evaluation of the First-Order Flaw

We have seen in Section 3.2 that Balasch et al. ’s proposal possesses a first-order flaw whatever
the masking dimension n of their scheme. To complete our study, we conduct hereafter an
information theoretic evaluation of the flaw in a common leakage model (namely Hamming
weight leakage with Gaussian noise). We compare the quantity of leaking information from
the flaw with that of the natural nth-order leakage from the right half sharing R for n = 2
and n = 3.

To quantify the amount of leaking information, we model the relationship between the
physical leakage and the manipulated variables as follows. Each tuple of variables (V1, V2, · · · , Vt)
is associated with a tuple of leakages L = (L1, L2, · · · , Lt) s.t. Lj = HW(Vj) +Nj , where HW
denotes the Hamming weight function and Nj denotes an independent Gaussian variable with
mean 0 and standard deviation σ. We use the notation L ←↩ (V1, V2, · · · , Vt) to refer to this
association. To compare the information revealed by the flaw and that revealed by the leakage
the right half sharing, we computed the mutual information5 I(V,L) between the sensitive
variable V = 〈L,R〉 and the leakage L in the following situations:

Right-half leakage for n = 2: L ←↩ (R = (R1, Rn)) . (8)

Right-half leakage for n = 3: L ←↩ (R = (R1, R2, R3)) . (9)

First-order flaw for n = 2: L ←↩ (X = 〈L⊕L′,R〉) . (10)

First-order flaw for n = 3: L ←↩ (X = 〈L⊕L′,R〉) . (11)

Figure 4 summarizes the information theoretic evaluation for each leakage (8) to (11). It
can be observed that for each sharing dimension n, there exists a gap value of σ up to which
the first-order flaw become more informative than the overall right-half leakage. For instance,
for n = 2, this gap value is σ ≈ 4.5. This observation is in accordance with the soundness
of the dth-order security notion: a security at a greater order implies a smaller asymptotic
leakage (with respect to an increasing noise). We also emphasize that the dth-order security
notion is relevant towards more practical issues: the resynchronization of leakage traces and

5 As shown in [3], the number of measurements required to achieve a given success-rate in a maximum
likelihood attack is related to the mutual information evaluation and it roughly equals c× I(A,L)−1, where
c is a constant related to the chosen success-rate.
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Fig. 1. Mutual information (log10) between the leakage and the sensitive variable over an increasing noise
standard deviation (x-axis).

detection of the points of interest. These issues make higher-order attacks much more difficult
to mount in practice than first-order ones. As a consequence, the first-order flaw has a greater
impact from a practical point of view than suggested in Fig. 4.
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