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Abstract. In 2013, Joux, and then Barbulescu, Gaudry, Joux and Thomé, presented
new algorithms for computing discrete logarithms in finite fields of small and medium
characteristic. We show that these new algorithms render the finite field F36·509 = F33054

weak for discrete logarithm cryptography in the sense that discrete logarithms in this
field can be computed significantly faster than with the previous fastest algorithms. Our
concrete analysis shows that the supersingular elliptic curve over F3509 with embedding
degree 6 that had been considered for implementing pairing-based cryptosystems at the
128-bit security level in fact provides only a significantly lower level of security. Our
work provides a convenient framework and tools for performing a concrete analysis of
the new discrete logarithm algorithms and their variants.

1. Introduction

Let Fq denote a finite field of order q, and let Q = qn. The discrete logarithm problem
(DLP) in FQ is that of determining, given a generator g of F∗

Q and an element h ∈ F∗
Q, the

integer x ∈ [0, Q − 2] satisfying h = gx. The integer x is called the discrete logarithm of
h to the base g and is denoted by logg h. In the remainder of the paper, we shall assume
that the characteristic of Fq is 2 or 3.

The fastest general-purpose algorithm known for solving the DLP is Coppersmith’s
1984 index-calculus algorithm [18] with a running time1 of LQ[

1
3 , (32/9)

1/3 ] ≈ LQ[
1
3 , 1.526],

where as usual LQ[α, c] with 0 < α < 1 and c > 0 denotes the expression

exp
(
(c+ o(1))(logQ)α(log logQ)1−α

)

that is subexponential in logQ. In 2006, Joux and Lercier [37] presented an algorithm

with a running time of LQ[
1
3 , 3

1/3] ≈ LQ[
1
3 , 1.442] when q and n are balanced in the sense

that

q = exp
(
3−2/3 · (logQ)1/3(log logQ)2/3

)
and n = 32/3 ·

(
logQ

log logQ

)2/3

.

In 2012, Joux [33] introduced a ‘pinpointing’ technique that improves the running time of

the Joux-Lercier algorithm to LQ[
1
3 , 2/3

2/3] ≈ LQ[
1
3 , 0.961].

In February 2013, Joux [34] presented a new DLP algorithm with a running time of
LQ[

1
4 + o(1), c] (for some undetermined c) when q and n are balanced in the sense that

Date: July 15, 2013; updated on November 30, 2013.
This work was done while the first, third and fourth authors were visiting the University of Waterloo.
1All running times in this paper have been determined using heuristic arguments, and have not been

rigorously proven.
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q ≈ m where n = 2m. Also in February 2013, Göloğlu, Granger, McGuire and Zumbrägel
[27] proposed a variant of the Joux-Lercier algorithm that imposes a further divisibility
condition on ℓ where q = 2ℓ. The running time of the Gögloğlu et al. algorithm is
(i) LQ[

1
3 , 2/3

2/3] ≈ LQ[
1
3 , 0.961] when n ≈ 2md1, d1 ≈ 2m, and m | ℓ; and (ii) between

LQ[
1
3 , (2/3)

2/3] ≈ LQ[
1
3 , 0.763] and LQ[

1
3 , 1/2

1/3] ≈ LQ[
1
3 , 0.794] when n ≈ 2md1, 2

m ≫ d1,
and m | ℓ. The new algorithms were used to compute discrete logarithms in F28·3·255 =
F26120 in only 750 CPU hours [28], and in F28·3·257 = F26168 in only 550 CPU hours [35]. The
astoundingly small computational effort expended in these experiments depends crucially
on the special nature of the fields F26120 and F26168 — namely that F26120 is a degree-
255 extension of F28·3 with 255 = 28 − 1, and F26168 is a degree-257 extension of F28·3

with 257 = 28 + 1. Despite these remarkable achievements, the effectiveness of the new
algorithms for computing discrete logarithms in general finite fields of small characteristic
remains unclear.

In June 2013, Barbulescu, Gaudry, Joux and Thomé [7] presented a new DLP algorithm
that, for many choices of field sizes, is asymptotically faster than all previous algorithms.
Most impressively, in the case where q ≈ n and n ≤ q+2, the discrete logarithm problem
in Fq2n = FQ can be solved in quasi-polynomial time

(1) (logQ)O(log logQ).

Note that (1) is asymptotically smaller than LQ[α, c] for any α > 0 and c > 0. However,
the practical relevance of the new algorithm has not yet been determined.

The aforementioned advances in DLP algorithms are potentially relevant to the security
of pairing-based cryptosystems that use bilinear pairings derived from supersingular ellip-
tic curves E or genus-2 hyperelliptic curves C defined over finite fields Fq of characteristic
2 or 3. Such a symmetric pairing, classified as a Type 1 pairing in [25], is a non-degenerate
bilinear map e : G × G → GT where G and GT are groups of prime order N . Here, G
is either a subgroup of E(Fq), the group of Fq-rational points on E, or a subgroup of
JacC(Fq), the jacobian of C over Fq, and GT is the order-N subgroup of F∗

qk where k is

the embedding degree (the smallest positive integer such that #G | (qk − 1)). A nec-
essary condition for the security of pairing-based cryptosystems that employ the pairing
e is the intractability of the discrete logarithm problem in GT . Hence, any advance in
algorithms for solving the DLP in Fqk can potentially impact the security of pairing-based
cryptosystems.

Three symmetric pairings that have received a great deal of attention in the literature
are: (i) the k = 6 pairings derived from supersingular elliptic curves Y 2 = X3 − X + 1
and Y 2 = X3 −X − 1 over F3ℓ ; (ii) the k = 4 pairings derived from supersingular elliptic
curves Y 2 + Y = X3 +X and Y 2 + Y = X3 +X +1 over F2ℓ ; and (iii) the k = 12 pairing
derived from supersingular genus-2 curves Y 2 +Y = X5 +X3 and Y 2 +Y = X5 +X3 +1
over F2ℓ ; in all cases, ℓ is chosen to be prime. These symmetric pairings were considered in
some early papers [15, 23, 9, 24] on pairing-based cryptography. Since then, many papers
have reported on software and hardware implementation of these pairings; some examples
are [8, 29, 43, 3, 30, 13, 16, 20, 12, 4, 1].

In all the papers cited in the previous paragraph, the pairing parameters were chosen
under the assumption that Coppersmith’s algorithm is the fastest method for finding
discrete logarithms in Fqk . For example, to achieve the 128-bit security level, [3] chose
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ℓ = 1223 for the k = 4 pairing and ℓ = 509 for the k = 6 pairing, [16] chose ℓ = 439
for the k = 12 pairing, and [4] chose ℓ = 367 for the k = 12 pairing. These choices
were made because Coppersmith’s algorithm, as analyzed by Lenstra [39], has running
time approximately 2128 for computing logarithms in F24·1223 , F36·509 , F212·439 , and F212·367 ,
respectively.

In 2012, Hayashi et al. [31] reported on their implementation of the Joux-Lercier al-
gorithm for computing logarithms in F36·97 . Their work demonstrated that in practice
the Joux-Lercier algorithm is considerably faster than Coppersmith’s algorithm for DLP
computations in F36·97 ; note that the k = 6 pairing with ℓ = 97 was considered in [9, 24].
In contrast, the largest discrete logarithm computation reported using Coppersmith’s al-
gorithm (and its generalizations [2, 36]) is the April 2013 computation by Barbulescu et
al. [5] of logarithms in F2809 ; note that 809 is prime and 36·97 ≈ 2922. Shinohara et al.
[44] estimated that F36·509 offers only 111-bits of security against Joux-Lercier attacks,
considerably less than the assumed 128-bits of security against Coppersmith attacks.

The purpose of this paper is to demonstrate that the new algorithms by Joux [34] and
Barbulescu et al. [7] can be combined to solve the discrete logarithm problem in F36·509

significantly faster than the Joux-Lercier algorithm. More precisely, we estimate that
logarithms in this field can be computed in 281.7 time with the new algorithms, where
the unit of time is the (inexpensive) cost of a multiplication in F312 . Moreover, the 281.7

computation is effectively parallelizable, whereas the Joux-Lercier algorithm isn’t because
of the very large size of the linear system of equations than needs to be solved. While
the 281.7 computation is certainly a formidable challenge, it is already within the realm of
feasibility for a very well-funded adversary. Thus, we conclude that F36·509 does not offer
adequate security for discrete logarithm cryptosystems and, in particular, the supersin-
gular elliptic curve over F3509 with embedding degree 6 is not suitable for implementing
pairing-based cryptosystems.

We also analyze the efficacy of the new algorithms for computing discrete logarithms
in F212·367 and conclude that the supersingular genus-2 curve over F2367 with embedding
degree 12 should be considered weak and not employed in pairing-based cryptography.

The remainder of the paper is organized as follows. §2 collects some results on the
number of smooth polynomials over a finite field. The new discrete logarithm algorithms
are outlined in §3. Our estimates for discrete logarithm computations in F36·509 and F212·367

are presented in §4 and Appendix A, respectively. We draw our conclusions in §5.

2. Smooth polynomials

2.1. Number of smooth polynomials. The number of monic polynomials of degree n
over Fq is qn. The number of monic irreducible polynomials of degree n over Fq is

(2) Iq(n) =
1

n

∑

d|n

µ(n/d)qd,

where µ is the Möbius function. A polynomial in Fq[X] is said to be m-smooth if all its
irreducible factors in Fq[X] have degree at most m. Define

F (u, z) =
m∏

ℓ=1

(
1 +

uzℓ

1− zℓ

)Iq(ℓ)

.
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F (u, z) is the generating function for m-smooth monic polynomials in Fq[X], where u
marks the number of distinct irreducible factors, and z marks the degree of the polynomial.
Thus, the number of monic m-smooth degree-n polynomials in Fq[X] that have exactly k
distinct monic irreducible factors is

(3) Nq(m,n, k) = [uk zn]F (u, z)

where [ ] denotes the coefficient operator, whereas the total number of monic m-smooth
degree-n polynomials in Fq[X] is

(4) Nq(m,n) = [zn]F (1, z).

Furthermore, the average number of distinct monic irreducible factors among all monic
m-smooth degree-n polynomials in Fq[X] is

(5) Aq(m,n) =
[zn]

(
∂F
∂u

∣∣
u=1

)

Nq(m,n)
.

For any given q, m and n, Nq(m,n) can be obtained by using a symbolic algebra package
such as Maple [42] to compute the first n + 1 terms of the Taylor series expansion of
F (1, z) and then extracting the coefficient of zn. Similarly, one can compute Nq(m,n, k)
and Aq(m,n). For example, we used Maple 17 on a 3.2 GHz Intel Xeon CPU X5672
machine to compute N312(30, 254) in 3.2 seconds, A312(30, 254) = 14.963 in 102.9 seconds,
and N312(30, 254, 9) in 4305 seconds.

Example 1. (q = 312, n = 33, m = 7) Table 1 lists, for each t ∈ [1, 33], the proportion
of monic 7-smooth degree-33 polynomials in F312 [X] that have exactly t distinct monic
irreducible factors, and the proportion that have at most t distinct monic irreducible
factors (cf. §4.6). We see that most 7-smooth degree-33 polynomials in F312 [X] will have
6, 7, 8, 9 or 10 distinct monic irreducible factors. In fact, the average number of distinct
monic irreducible factors is A312(7, 33) = 8.072.

2.2. Smoothness testing. A degree-d polynomial f ∈ Fq[X] can be tested for m-
smoothness by computing

(6) w(X) = f ′(X) ·

m∏

i=⌈m/2⌉

(Xqi −X) mod f(X)

and checking whether w(X) = 0 [18]. Here, f ′ denotes the formal derivative of f . If f
indeed is m-smooth, then w(X) = 0. On the other hand, if f is not m-smooth then a
necessary condition to have w(X) = 0 is that f be divisible by the square of an irreducible
polynomial of degree > m. Since randomly selected polynomials f are unlikely to satisfy
this condition, the vast majority of polynomials that pass the smoothness test are indeed
m-smooth. The polynomials that are declared to be m-smooth are then factored using a
general-purpose polynomial factorization algorithm, at which time the polynomials falsely
declared to be m-smooth are identified.

Without loss of generality, we can assume that f is monic. Then the product of two
polynomials of degree < d can be multiplied modulo f in time 2d2, where the unit of time
is an Fq-multiplication. To compute w(X), one first precomputes Xq mod f . This can be
accomplished by repeated square-and-multiplication at a cost of at most 2||q||2 modular
multiplications, where ||q||2 denotes the bitlength of q. Then, Xqi mod f for 2 ≤ i ≤ d−1
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t Exactly t distinct irred. factors At most t distinct irred. factors
1 0.000000000000000000000000000000 0.000000000000000000000000000000
2 0.000000000000000000000000000000 0.000000000000000000000000000000
3 0.000000000000000000000000000000 0.000000000000000000000000000000
4 0.000000000000000000000000000000 0.000000000000000000000000000000
5 0.006943962587253657277835842266 0.006943962587253657277835842266
6 0.094508235237374712577063021493 0.101452197824628369854898863759
7 0.252394617047441064890337803216 0.353846814872069434745236666975
8 0.300996732023133627463574655796 0.654843546895203062208811322771
9 0.208505984721518279111258348913 0.863349531616721341320069671684
10 0.095666915122986916225455033585 0.959016446739708257545524705269
11 0.031431153500729712069119759222 0.990447600240437969614644464492
12 0.007781729666933963402298111588 0.998229329907371933016942576080
13 0.001504553977022317970302510303 0.999733883884394250987245086382
14 0.000233175504774219447997449230 0.999967059389168470435242535613
15 0.000029539839348629531062050590 0.999996599228517099966304586203
16 0.000003105026114577322728183235 0.999999704254631677289032769438
17 0.000000273913853891240679141964 0.999999978168485568529711911402
18 0.000000020455745079269350203882 0.999999998624230647799062115284
19 0.000000001301469873795730818942 0.999999999925700521594792934226
20 0.000000000070853335885380661976 0.999999999996553857480173596201
21 0.000000000003308814369077458356 0.999999999999862671849251054557
22 0.000000000000132633223456585201 0.999999999999995305072707639758
23 0.000000000000004557715382559271 0.999999999999999862788090199029
24 0.000000000000000133804578363524 0.999999999999999996592668562553
25 0.000000000000000003336091284541 0.999999999999999999928759847094
26 0.000000000000000000070002399226 0.999999999999999999998762246320
27 0.000000000000000000001220209967 0.999999999999999999999982456287
28 0.000000000000000000000017346134 0.999999999999999999999999802422
29 0.000000000000000000000000195878 0.999999999999999999999999998300
30 0.000000000000000000000000001690 0.999999999999999999999999999990
31 0.000000000000000000000000000010 1.000000000000000000000000000000
32 0.000000000000000000000000000000 1.000000000000000000000000000000
33 0.000000000000000000000000000000 1.000000000000000000000000000000

Table 1. Proportion of monic 7-smooth degree-33 polynomials in F312 [X]
that have exactly t (resp. at most t) distinct monic irreducible factors.

can be computed by repeated multiplication of Xq mod f with itself at a cost of approx-

imately d modular multiplications, and Xqi mod f for 2 ≤ i ≤ m can be computed by
repeated exponentiation by q with each exponentiating having cost d2 Fq-multiplications.
Finally, the product in (6) can be computed using m/2 modular multiplications at a cost
of md2 Fq-multiplications. The total cost for testing m-smoothness of f is thus

(7) Sq(m,d) = 2d2(d+m+ 2||q||2) Fq-multiplications.

We will mostly be interested in the case q = 312. Then, Xq mod f can be deter-
mined by first precomputing X3,X6, . . . ,X3(d−1) mod f by repeated multiplication by X.
Thereafter, cubing a polynomial modulo f can be accomplished by cubing the coefficients
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of the polynomial, and then multiplying the precomputed polynomials by these cubes
(and adding the results). In this way, we get a loose upper bound of 3d2 + 11d2 = 14d2

F312-multiplications of the cost to compute X312 mod f , and the total cost for testing
m-smoothness of f becomes

(8) S312(m,d) = 2d2(d+m+ 7) F312-multiplications.

3. New DLP algorithm of Joux and Barbulescu et al.

The DLP algorithm we describe is due to Joux [34], with a descent step from the quasi-
polynomial time algorithm (QPA) of Barbulescu et al. [7]. For lack of a better name, we
will call this algorithm the “new DLP algorithm”.

Let Fq2n be a finite field where n ≤ q + 2. The elements of Fq2n are represented as

polynomials of degree at most n − 1 over Fq2 . Let N = q2n − 1. Let g be an element of
order N in F∗

q2n , and let h ∈ F∗
q2n . We wish to compute logg h. The algorithm proceeds by

first finding the logarithms of all degree-one (§3.2) and degree-two (§3.3) elements in Fq2n .
Then, in the descent stage, logg h is expressed as a linear combination of logarithms of
degree-one and degree-two Fq2n elements. The descent stage proceeds in several steps, each
expressing the logarithm of a degree-D element as a linear combination of the logarithms
of elements of degree ≤ m for some m < D. Four descent methods are used; these are
described in §3.4–§3.7. The cost of each step is given in Table 2.

Finding logarithms of linear polynomials (§3.2)
Relation generation 6q2 · Sq2(1, 3)
Linear algebra q5 · AN

Finding logarithms of irreducible quadratic polynomials (§3.3)
Relation generation q16/Nq2(1, 6) · Sq2(1, 6)
Linear algebra q7 · AN

Descent (Degree D to degree m)
Continued-fraction (§3.4) {D = n− 1} (qn−1/Nq2(m, (n− 1)/2))2 · Sq2(m, (n− 1)/2)

Classical (§3.5) q2(t1−D+t2)/(Nq2(m, t1 −D)Nq2(m, t2)) ·min(Sq2(m, t1 −D), Sq2(m, t2))
QPA (§3.6) q6D+2/Nq2(m, 3D) · Sq2(m, 3D) + q5 · AN

Gröbner bases (§3.7) Gq2 (m,D) + q6m−2D/Nq2(m, 3m−D) · Sq2(m, 3m−D)

Table 2. Estimated costs of the main steps of the new DLP algorithm for
computing discrete logarithms in Fq2n . AN and Mq2 denote the costs of an
addition modulo N and a multiplication in Fq2 . The smoothness testing
cost Sq2(m,D) is given in (7). See §3.5 for the definitions of t1 and t2. The
Gröbner basis cost Gq2(m,D) is defined in §3.7.

Notation. For γ ∈ Fq2 , γ denotes the element γq. For P ∈ Fq2 [X], P denotes the
polynomial obtained by raising each coefficient of P to the power q. The cost of an integer
addition modulo N is denoted by AN , and the cost of a multiplication in Fq2 is denoted
by Mq2 . The projective general linear group of order 2 over Fq is denoted PGL2(Fq). Pq

is a set of distinct representatives of the left cosets of PGL2(Fq) in PGL2(Fq2); note that

#Pq = q3 + q.
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3.1. Setup. Select polynomials h0, h1 ∈ Fq2 [X] of degree at most 2 so that h1X
q − h0

has an irreducible factor IX of degree n in Fq2 [X]; we will henceforth assume that
max(deg h0,deg h1) = 2. In order to avoid the “traps” discussed in [17], we further
assume that each irreducible factor J ∈ Fq2 [X] of (h1X

q − h0)/IX satisfies the following
two conditions: (i) gcd(deg J, n) = 1; and (ii) deg J > m where m is the integer specified
in the continued-fraction descent stage (§3.4). Note have Xq ≡ h0/h1 (mod IX). The field
Fq2n is represented as Fq2n = Fq2 [X]/(IX ) and the elements of Fq2n can be represented as
polynomials in Fq2 [X] of degree at most n− 1. Let g be a generator of F∗

q2n .

3.2. Finding logarithms of linear polynomials. Let B1 = {X + a | a ∈ Fq2}, and

note that #B1 = q2. To compute the logarithms of B1-elements, we first generate linear
relations of these logarithms. Let a, b, c, d ∈ Fq2 with ad − bc 6= 0. Substituting Y 7→
(aX + b)/(cX + d) into the systematic equation

(9) Y q − Y =
∏

α∈Fq

(Y − α),

and then multiplying by (cX + d)q+1 yields

(ah0 + bh1)(cX + d)− (aX + b)(ch0 + dh1)(10)

≡ h1 · (cX + d) ·
∏

α∈Fq

[(a− αc)X + (b− αd)] (mod IX).

Note that the left side of (10) is a polynomial of degree (at most) 3. If this polynomial
is 1-smooth, then taking logarithms of both sides of (10) yields a linear relation of the
logarithms of B1-elements2 and the logarithm of h1. As explained in [7], in order to avoid
redundant relations one selects quadruples (a, b, c, d) from Pq; here we are identifying a
quadruple (a, b, c, d) with the matrix

(
a b
c d

)
.

Now, the probability that the left side of (10) is 1-smooth is

Nq2(1, 3)

q6
=

(
q2 + 2

3

)
/q6 ≈

1

6
.

Thus, after approximately 6q2 trials one expects to obtain (slightly more than) q2 rela-
tions. The cost of the relation generation stage is 6q2 · Sq2(1, 3). The logarithms can
then be obtained by using Wiedemann’s algorithm for solving sparse systems of linear
equations [45]. The expected cost of the linear algebra is q5 · AN since each equation has
approximately q nonzero terms.

Remark 1. (running time of Wiedemann’s algorithm) Let B be the matrix obtained
after the relation generation stage. Note that B is a matrix over ZN . However, the entries
of B are coefficients of the discrete logarithms of linear polynomials that occur in the
relations. Thus the vast majority of these entries are expected to be 0, 1, and −1, with
the remaining entries (corresponding to repeated factors) being a number that is small in
absolute value (e.g. ±2). Wiedemann’s algorithm treats B as a black box, and uses it only
to perform matrix-vector multiplication with vectors over ZN . Since the nonzero entries
of B are very small in absolute value, and since B has approximately q nonzero entries

2It is understood that all polynomials of the right side of (10) and factors of the left side of (10) should
be made monic. The same holds for (17) and (19).
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per row, the expected cost of each matrix-by-vector multiplication is q3 · AN . Finally,
since the block version of Wiedemann’s algorithm [19] requires no more than q2 such
matrix-by-vector multiplications, the overall running time is q5 · AN .

3.3. Finding logarithms of irreducible quadratic polynomials. Let u ∈ Fq2 , and

let Q(X) = X2 + uX + v ∈ Fq2 [X] be an irreducible quadratic. Define B2,u to be the

set of all irreducible quadratics of the form X2 + uX + w in Fq2 [X]; one expects that

#B2,u ≈ (q2−1)/2. The logarithms of all elements in B2,u are found simultaneously using
one application of QPA descent (see §3.6). More precisely, one first collects relations of
the form (17), where the left side of (17) factors as a product of linear polynomials (whose
logarithms are known). The expected number of relations one can obtain is

Nq2(1, 6)

q12
· (q3 + q).

Provided that this number is significantly greater than #B2,u, the matrixH(Q) is expected
to have full (column) rank. One can then solve the resulting system of linear equations to
obtain the logarithms of all irreducible translates Q + w of Q. This step is repeated for
each u ∈ Fq2 . Hence, there are q2 independent linear systems of equations to be solved.

For each u ∈ Fq2 , the cost of relation generation is q14/Nq2(1, 6) · Sq2(1, 6), while the

linear algebra cost is q5 · AN .

3.4. Continued-fraction descent. Recall that we wish to compute logg h, where h ∈
Fq2n = Fq2 [X]/(IX ). Note that deg h ≤ n − 1; we will henceforth assume that deg h =
n− 1. The descent stage begins by multiplying h by a random power of g. The extended
Euclidean algorithm is used to express the resulting field element h′ in the form h′ =
w1/w2 where degw1,degw2 ≈ n/2 [14]; for simplicity, we shall assume that n is odd and
degw1 = degw2 = (n−1)/2. This process is repeated until both w1 and w2 are m-smooth
for some chosen m < (n − 1)/2. This gives logg h

′ as a linear combination of logarithms
of polynomials of degree at most m. The expected cost of this continued-fraction descent
step is approximately

(11)

(
qn−1

Nq2(m, (n− 1)/2)

)2

· Sq2(m, (n − 1)/2).

The expected number of distinct irreducible factors of w1 and w2 is 2Aq2(m, (n − 1)/2).
In the analysis, we shall assume that each of these irreducible factors has degree exactly
m. The logarithm of each of these degree-m polynomials is then expressed as a linear
combination of logarithms of smaller degree polynomials using one of the descent methods
described in §3.5, §3.6 and §3.7.

3.5. Classical descent. Let p be the characteristic of Fq, and let q = pℓ. Let s ∈ [1, ℓ],
and let R ∈ Fq2 [X,Y ]. Then

R(X,Xps)p
ℓ−s

= R′(Xpℓ−s

,Xq) ≡ R′(Xpℓ−s

,
h0
h1

) (mod IX),

where R′ is obtained from R by raising all its coefficients to the power pℓ−s. For the sake
of simplicity, we will assume in this section that h1 = 1 and so

(12) R(X,Xps)p
ℓ−s

≡ R′(Xpℓ−s

, h0) (mod IX).
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Let Q ∈ Fq2 [X] with degQ = D, and let m < D. In the Joux-Lercier descent method
[37], as modified by Joux [34], one selects suitable parameters d1, d2 and searches for
a polynomial R ∈ Fq2 [X,Y ] such that (i) degX R ≤ d1 and degY R ≤ d2; (ii) Q | R1

where R1 = R(X,Xps); and (iii) R1/Q and R2 are m-smooth where R2 = R′(Xpℓ−s

, h0).
Taking logarithms of both sides of (12) then gives an expression for logg Q in terms of the
logarithms of polynomials of degree at most m.

A family of polynomials R satisfying (i) and (ii) can be constructed by finding the null
space of the D× (D+ δ) matrix whose columns are indexed by monomials XiY j for D+ δ
pairs (i, j) ∈ [0, d1] × [0, d2], and whose XiY j-th column entries are the coefficients of
the polynomial Xi(Xps)j mod Q. The components of the vectors in the null space of this
matrix can be interpreted as the coefficients of polynomials R ∈ Fq2 [X,Y ] satisfying (i)
and (ii). The dimension of this null space is expected to be δ, and so the null space is
expected to contain (q2)δ−1 monic polynomials. Let degR1 = t1 and degR2 = t2. We
have t1 ≤ d1 + psd2 and t2 ≤ pℓ−sd1 + 2d2; the precise values of t1 and t2 depend on the
(i, j) pairs chosen (see §4.5 for an example). In order to ensure that the null space includes
a monic polynomial R such that both R1/Q and R2 are m-smooth, the parameters must
be selected so that

(13) q2δ−2 ≫
q2(t1−D)

Nq2(m, t1 −D)
·

q2t2

Nq2(m, t2)
.

Ignoring the time to compute the null space, the expected cost of finding a polynomial R
satisfying (i)–(iii) is

(14)
q2(t1−D)

Nq2(m, t1 −D)
·

q2t2

Nq2(m, t2)
·min(Sq2(m, t1 −D), Sq2(m, t2)).

The expected number of distinct irreducible factors of R1/Q and R2 is Aq2(m, t1 −D) +
Aq2(m, t2). In the analysis, we shall assume that each of these irreducible factors has
degree exactly m.

3.6. QPA descent. The QPA descent method is so named because it was a crucial step
in the Barbulescu et al. quasi-polynomial time algorithm for the DLP in finite fields of
small characteristic [7].

Let Q ∈ Fq2 [X] with degQ = D, and let m ∈ [⌈D/2⌉,D − 1]. Let (a, b, c, d) ∈ Pq,

and recall that #Pq = q3 + q. Substituting Y 7→ (aQ + b)/(cQ + d) into the systematic
equation (9) and multiplying by (cQ+ d)q+1 yields

(15) (aQ+ b)q(cQ+ d)− (aQ+ b)(cQ+ d)q = (cQ+ d)
∏

α∈Fq

[(a− αc)Q+ (b− αd)].

The left side of (15) can be written as

(aQ(Xq) + b)(cQ+ d)− (aQ+ b)(cQ(Xq) + d)

≡ (aQ(
h0
h1

) + b)(cQ+ d)− (aQ+ b)(cQ(
h0
h1

) + d) (mod IX).
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Hence

(aQ(
h0
h1

) + b)(cQ+ d)− (aQ+ b)(cQ(
h0
h1

) + d)(16)

≡ (cQ+ d)
∏

α∈Fq

[(a− αc)Q+ (b− αd)] (mod IX).

Multiplying (16) by hD1 yields

(aQ̃+ bhD1 )(cQ+ d)− (aQ+ b)(cQ̃+ dhD1 )(17)

≡ hD1 · (cQ+ d) ·
∏

α∈Fq

[(a− αc)Q+ (b− αd)] (mod IX),

where Q̃(X) = hD1 ·Q(h0/h1). Note that the polynomial on the left side of (17) has degree
≤ 3D. If this polynomial is m-smooth, then (17) yields a linear relation of the logarithms
of some degree-m polynomials and logarithms of translates of Q. After collecting slightly
more than q2 such relations, one searches for a linear combination of these relations that
eliminates all translates of Q except for Q itself. To achieve this, consider row vectors in

(ZN )q
2

with coordinates indexed by elements λ ∈ Fq2 . For each relation, we define a vector
v whose entry vλ is 1 if Q − λ appears in the right side of (17), and 0 otherwise. If the
resulting matrix H(Q) of row vectors has full column rank, then one obtains an expression
for logg Q in terms of the logarithms of polynomials of degree ≤ m. The number of distinct

polynomials of degree ≤ m in this expression is expected to be Aq2(m, 3D) · q2; in the
analysis we shall assume that each of these polynomials has degree exactly m.

Since the probability that a degree-3D polynomial is m-smooth is Nq2(m, 3D)/(q2)3D,
one must have

(18)
Nq2(m, 3D)

q6D
· (q3 + q) ≫ q2

in order to ensure that H(Q) has ≫ q2 rows, whereby H(Q) can be expected to have full
rank.

Example 2. If q = 36 (so q2 = 531, 441), D = 11, and m = 6, then the left side of (18)
is approximately 86,885 so QPA descent from 11 to 6 fails. On the other hand, if q = 36,
D = 11, and m = 7 then the left side of (18) is approximately 570,172 so QPA descent
from 11 to 7 should succeed. For q = 36 and each D ∈ [2, 28], Table 3 shows the smallest
m ∈ [⌈D/2⌉,D − 1] for which inequality (18) is satisfied.

The expected cost of the relation generation portion of QPA descent is

q6D

Nq2(m, 3D)
q2 · Sq2(m, 3D),

while the cost of the linear algebra is q5 ·AN .

3.7. Gröbner bases descent. Let Q ∈ Fq2 [X] with degQ = D, and let m = ⌈(D+1)/2⌉.

In Joux’s new descent method [34, §5.3], one finds degree-m polynomials3 k1, k2 ∈ Fq2 [X]
such that Q | G, where

G = hm1 (kq1k2 − k1k
q
2) mod IX .

3More generally, the degrees of k1 and k2 can be different.
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D m 3D ratio D m 3D ratio D m 3D ratio
2 1 6 1.0125 11 7 33 1.0729 20 13 60 1.0435
3 2 9 5.2634 12 8 36 1.6867 21 14 63 1.3637
4 3 12 9.6178 13 9 39 2.3927 22 15 66 1.7168
5 3 15 1.1193 14 9 42 1.0597 23 15 69 1.0382
6 4 18 2.6162 15 10 45 1.5305 24 16 72 1.3140
7 5 21 4.3795 16 11 48 2.0631 25 17 75 1.6154
8 5 24 1.0924 17 11 51 1.0503 26 17 78 1.0340
9 6 27 1.9687 18 12 54 1.4317 27 18 81 1.2762

10 7 30 2.9948 19 13 57 1.8571 28 19 84 1.5388

Table 3. Let q = 36. For each D ∈ [2, 28], the table gives the smallest
m ∈ [⌈D/2⌉,D − 1] for which QPA descent from degree D to degree m
could succeed, i.e., inequality (18) is satisfied. The fourth column shows
the ratio [Nq2(m, 3D) · (q3 + q)/q6D]/q2.

We then have

hm1 · k2 ·
∏

α∈Fq

(k1 − αk2) ≡ G(X) (mod IX)

as can be seen by making the substitution Y 7→ k1/k2 into the systematic equation (9)

and clearing denominators. Define k̃(X) = hm1 · k(h0/h1) and note that deg k̃ = 2m. We

thus have G ≡ k̃1k2 − k1k̃2 (mod IX), and consequently G = k̃1k2 − k1k̃2 provided that
3m < n. It follows that G(X) = Q(X)R(X) for some R ∈ Fq2 [X] with degR = 3m−D.
If R is m-smooth, we obtain a linear relationship between logg Q and logs of degree-m
polynomials by taking logarithms of both sides of the following:

(19) hm1 · k2 ·
∏

α∈Fq

(k1 − αk2) ≡ Q(X)R(X) (mod IX).

To determine (k1, k2, R) that satisfy

(20) k̃1k2 − k1k̃2 = Q(X)R(X),

one can transform (20) into a system of multivariate bilinear equations over Fq. Specif-
ically, each coefficient of k1, k2 and R is written using two variables over Fq, the two
variables representing the real and imaginary parts of that coefficient (which is in Fq2).

The coefficients of k̃1 and k̃2 can then be written in terms of the coefficients of k1 and k2.
Hence, equating coefficients of Xi of both sides of (20) yields 3m+1 quadratic equations.
The real and imaginary parts of each of these equations are equated, yielding 6m + 2
bilinear equations in 10m − 2D + 6 variables over Fq. This system of equations can be
solved by finding a Gröbner basis for the ideal it generates. Finally, solutions (k1, k2, R)
are tested until one is found for which R is m-smooth. This yields an expression for logg Q
in terms of the logarithms of approximately q+1+Aq2(m, 3m−D) polynomials of degree
(at most) m; in the analysis we shall assume that each of the polynomials has degree
exactly m.

Now, the number of candidate pairs (k1, k2) is ((q
2)m+1)2 = q4(m+1). Since (q2)3m−D+1

of the (q2)3m+1 degree-(3m) polynomials in Fq2 [X] are divisible by Q(X), the number of
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solutions (k1, k2, R) is expected to be approximately

q2(3m−D+1)

q2(3m+1)
· q4(m+1) = q4(m+1)−2D .

However, the number of distinct R obtained will be significantly less than q4(m+1)−2D. For
example, any two pairs (k′1, k

′
2) and (k′′1 , k

′′
2 ) with k′1/k

′
2 = k′′1/k

′′
2 will generate the same

R, so the expected number of distinct R is at most q4(m+1)−2D/(q2− 1). Let us denote by
R(m,D) the expected number of distinct R obtainable. Then the condition

(21) R(m,D) ≫
q2(3m−D)

Nq2(m, 3m−D)
,

can ensure that there exists a solution (k1, k2, R) for which R is m-smooth.
The number R(m,D) has not been determined in general. For the case m = 1 and

D = 2, one must select k1 = aX + b and k2 = cX + d with (a, b, c, d) ∈ Pq to avoid

collisions; hence R(1, 2) ≤ q4

q8
(q3 + q) ≈ 1

q and descending from 2 to 1 can be expected

to succeed only for 1 out of every q quadratics; this is indeed what we observed in our
experiments. In general, the success of the Gröbner bases descent step is best determined
experimentally (cf. §4.7).

It is difficult to determine the exact cost Gq2(m,D) of the Gröbner basis finding step.

After the Gröbner basis is found, the cost to find an m-smooth R is (q2)3m−D/Nq2(m, 3m−
D) · Sq2(m, 3m−D).

4. Computing discrete logarithms in F36·509

We present a concrete analysis of the DLP algorithm described in §3 for computing
discrete logarithms in F36·509 . In fact, this field is embedded in the quadratic extension
field F312·509 , and it is the latter field where the DLP algorithm of §3 is executed. Thus,
we have q = 36 = 729, n = 509, and N = 312·509 − 1. Note that 312·509 ≈ 29681. We wish
to find logg h, where g is a generator of F∗

312·509 and h ∈ F∗
312·509 .

As mentioned in §1, our main motivation for finding discrete logarithms in F36·509 is to
attack the elliptic curve discrete logarithm problem in E(F3509), where E is the supersingu-
lar elliptic curve Y 2 = X3−X+1 with #E(F3509) = 7r, and where r = (3509−3255+1)/7
is an 804-bit prime. Note that r2 ∤ N . The elliptic curve discrete logarithm problem
in the order-r subgroup of E(F3509) can be efficiently reduced to the discrete logarithm
problem in the order-r subgroup of F∗

312·509 . In the latter problem, we are given two ele-
ments α, β of order r in F∗

312·509 and we wish to find logα β. It can readily be seen that
logα β = (logg β)/(logg α) mod r. Thus, we will henceforth assume that h has order r and
that we only need to find logg h mod r. An immediate consequence of this restriction is
that all the linear algebra in the new algorithm has to be performed modulo the 804-bit
r instead of modulo the 9681-bit N .

The parameters for each step of the algorithm were carefully chosen in order to balance
the running time of the steps. We also took into account the degree to which each step
could be parallelized on conventional computers. A summary of the parameter choices for
the descent is given in Figure 1. The costs of each step are given in Table 4.
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Continued fraction descent
Time: 279 Mq2

254 (2)

Classical descent

15 (870)
Classical descent
Time: 870 · 271 Mq2

Time: 30 · 274 Mq2

30 (30)

11 (23,490)
QPA descent
Time: 23, 490 · (246 Mq2 + 248 Ar)

7 (237)

4 (247)
Gröbner bases descent
Time: 247 · (0.03135 seconds)

Gröbner bases descent
Time: 255.5 · (0.002532 seconds)

2

3 (255.5)

Time: 237 · (76.9 seconds)
Gröbner bases descent

Figure 1. A typical path of the descent tree for computing an individual
logarithm in F312·509 (q = 36). The numbers in parentheses next to each
node are the expected number of nodes at that level. ‘Time’ is the expected
time to generate all nodes at a level.
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Finding logarithms of linear polynomials

Relation generation 230Mq2 230Mq2

Linear algebra 248Ar 250Mq2

Finding logarithms of irreducible quadratic polynomials

Relation generation 312 · 239Mq2 258Mq2

Linear algebra 312 · 248Ar 269Mq2

Descent

Continued-fraction (254 to 30) 279Mq2 279Mq2

Classical (30 to 15) 30 · 274Mq2 279Mq2

Classical (15 to 11) 870 · 271Mq2 281Mq2

QPA (11 to 7) 23, 490 · (246Mq2 + 248Ar) 265Mq2

Gröbner bases (7 to 4) 237 · (76.9 seconds) 273Mq2

Gröbner bases (4 to 3) 247 · (0.03135 seconds) 272Mq2

Gröbner bases (3 to 2) 255.5 · (0.002532 seconds) 277Mq2

Table 4. Estimated costs of the main steps of the new DLP algorithm for
computing discrete logarithms in F312·509 (q = 36). Ar and Mq2 denote the

costs of an addition modulo the 804-bit prime r = (3509−3255+1)/7 and a
multiplication in F312 . We use the cost ratio Ar/Mq2 = 4, and also assume

that 230 multiplications in F312 can be performed in 1 second (cf. §4.8).

4.1. Setup. We chose the representations

F36 = F3[U ]/(U6 + 2U4 + U2 + 2U + 2)

and

F312 = F36 [V ]/(V 2 + U365).

We selected

h0 = (U553V + U343)X2 + (U535V + U417)X + (U172V + U89) ∈ F312 [X]

and h1 = 1, and IX ∈ F312 [X] to be the degree-509 monic irreducible factor of X36 − h0.
The other irreducible factors have degrees 43, 55 and 122.

4.2. Finding logarithms of linear polynomials. The factor base B1 has size 3
12 ≈ 219.

The cost of relation generation is approximately 230Mq2 , whereas the cost of the linear

algebra is approximately 248Ar.

4.3. Finding logarithms of irreducible quadratic polynomials. For each u ∈ F312 ,
the expected cost of computing logarithms of all quadratics in B2,u is 239Mq2 for the

computation of H(Q), and 248Ar for the linear algebra. Note that the number of columns
in H(Q) can be halved since the logarithms of all reducible quadratics are known. Since
the expected number of relations obtainable is

Nq2(1, 6)

q12
· (q3 + q) ≈

1

719.98
· (q3 + q) ≈ q2 + 6659,

one can expect that the matrix H(Q) will have full rank.
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4.4. Continued-fraction descent. For the continued-fraction descent, we selected m =
30. The expected cost of this descent is 279Mq2 . The expected number of distinct irre-
ducible factors of degree (at most) 30 obtained is 2A312(30, 254) ≈ 30.

4.5. Classical descent. Two classical descent stages are employed. In the first stage, we
have D = 30 and select m = 15, s = 3, d1 = 5, d2 = 5, and δ = 4. The set of D + δ pairs
(i, j) selected was

([0, 3] × [0, 5]) ∪ {(4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (5, 0), (5, 1), (5, 2), (5, 3), (5, 4)},

yielding t1 = 138 and t2 = 143. Note that inequality (13) is satisfied. The expected cost
of the descent for each of the 30 degree-30 polynomials is approximately 252 ·Sq2(15, 108).
The expected total number of distinct irreducible polynomials of degree (at most) 15
obtained is approximately 870.

In the second classical descent stage, we have D = 15 and select m = 11, s = 3, d1 = 3,
d2 = 4, and δ = 4. The set of D + δ pairs (i, j) selected was

([0, 2] × [0, 4]) ∪ {(3, 0), (3, 1), (3, 2), (3, 3)},

yielding t1 = 110 and t2 = 87. Note that inequality (13) is satisfied. The expected cost
of the descent for each of the 870 degree-15 polynomials is approximately 250 ·Sq2(11, 87).
The expected total number of distinct irreducible polynomials of degree (at most) 11
obtained is approximately 23,490.

4.6. QPA descent. The QPA descent method is then applied to each of the 23,490
degree-11 polynomials Q obtained from the classical descent stage. We have D = 11 and
m = 7. For each Q, the expected number of rows in H(Q) is 570,172, so we can expect
this matrix to have full column rank (namely, q2 = 531, 441). For each Q, the expected
cost of relation generation is 229 · Sq2(7, 33) and the cost of the linear algebra is 248Ar.
Also for each Q, the expected number of distinct polynomials of degree at most 7 obtained
is expected to be Aq2(7, 33) · q

2 ≈ 222. Thus, the total number of distinct polynomials of

degree at most 7 obtained after the QPA descent stage is approximately 237.

4.7. Gröbner bases descent. The Gröbner bases descent method is applied to each of
the 237 polynomials of degree (at most) 7 obtained after QPA descent. Our experiments
were run using Magma v2.19-7 [41] on a 2.9 GHz Intel core i7-3520M.

First, one descends from 7 to 4, i.e., D = 7 and m = 4. For each degree-7 polynomial
Q, we have to solve a system of 26 quadratic polynomial equations in 32 variables over Fq

(cf. (20)). Since the ideal generated by these polynomials typically has dimension greater
than 0, we randomly fix some of the variables in the hope of obtaining a 0-dimensional
ideal. (More precisely, we added some linear constraints involving pairs of variables, one
variable from k1 and the other from k2.) Each degree-5 R obtained from the variety of
the resulting ideal is tested for 4-smoothness. If no 4-smooth R is obtained, we randomly
fix some other subset of variables and repeat. We ran 17,510 Gröbner bases descent
experiments with randomly-selected degree-7 polynomials Q. On average, we had to find
1.831 Gröbner bases for each Q. The average number of R’s tested for 4-smoothness for
each Q was 1.252, which agrees with the expected number q10/Nq2(4, 5) ≈ 1.25. The
average time to find each Gröbner basis was 42.0 seconds, and the memory consumption
was 64 Mbytes. In total, the expected number of polynomials of degree at most 4 obtained
is 237(q + 1 +Aq2(4, 5)) ≈ 247.
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Next, one descends from 4 to 3, i.e., D = 4 and m = 3. For each degree-4 polynomial
Q, we have to solve a system of 20 quadratic polynomial equations in 28 variables over Fq.
We proceed as above, by fixing some of the 28 variables. We ran 1,230,000 Gröbner bases
descent experiments with randomly-selected degree-4 polynomials Q. On average, we had
to find 2.361 Gröbner bases for each Q. The average number of R’s tested for 3-smoothness
for each Q was 1.815, which agrees with the expected number q10/Nq2(3, 5) ≈ 1.818. The
average time to find each Gröbner basis was 0.01328 seconds, and the memory consumption
was 32 Mbytes. In total, the expected number of polynomials of degree at most 3 obtained
is 247(q + 1 +Aq2(3, 5)) ≈ 257.

Finally, one descends from 3 to 2, i.e., D = 3 and m = 2. Since the total number of
monic irreducible cubics over Fq2 is approximately 255.5, which is less than 257, we perform
the 3 to 2 descent for all monic irreducible cubics. For each such polynomial Q, we have to
solve a system of 14 quadratic polynomial equations in 20 variables over Fq. We proceed
as above, by fixing some of the 20 variables. We ran 8,100,000 Gröbner bases descent
experiments with randomly-selected degree-3 polynomials Q. On average, we had to find
2.026 Gröbner bases for each Q. The average number of R’s tested for 2-smoothness for
each Q was 1.499, which agrees with the expected number q6/Nq2(2, 3) ≈ 1.5. The average
time to find each Gröbner basis was 0.00125 seconds, and the memory consumption was
32 Mbytes.

4.8. Overall running time. The second column of Table 4 gives the running time esti-
mates for the main steps of the new DLP algorithm in three units of time: Ar, Mq2 , and
seconds. In order to assess the overall time, we make some assumptions about the ratios
of these units of time.

First, we shall assume that Ar/Mq2 = 4. To justify this, we observe that an 804-bit
integer can be stored in thirteen 64-bit words. The X86-64 instruction set has an ADD

operation that adds two 64-bit unsigned integers in one clock cycle. Hence, integer addi-
tion can be completed in 13 clock cycles. Modular reductions comprises one conditional
statement plus one subtraction (required in roughly half of all modular additions). One
can use a lazy reduction technique that amortizes the cost of a modular reduction among
many integer additions. All in all, the cost of Ar can be estimated to be 13 clock cycles.
Unlike for 64-bit integer multiplication, there is no native support for F312 multiplication
on an Intel Core i7 machine. However, we expect that a specially designed multiplier could
be built to achieve a multiplication cost of 4 clock cycles. While building such a native
multiplier would certainly be costly, this expense can be expected to be within the budget
of a well-funded adversary who is contemplating implementing the new DLP algorithm.
This gives us an Ar/Mq2 ratio of approximately 4.

Next, since a multiplication in F312 can be done in 4 clock cycles, we will transform
one second on a 2.9 GHz machine (on which the Gröbner bases descent experiments were
performed) into 230Mq2 .

Using these estimates, we see from the third column of Table 4 that the overall running
time of the new algorithm is approximately 281.7Mq2 . We note that the relation generation,
continued-fraction descent, classical descent, and Gröbner bases descent steps, and also
the relation generation portion of QPA descent, are effectively parallelizable in the sense
that one can essentially achieve a factor-C speedup if C processors are available. Using
the experimental results in [32, 5] as a guide, we can safely estimate that each linear
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system of equations can be solved in less than one day of using a small number of GPUs
and CPUs. Thus, we conclude that the linear system of equations for finding logarithms
of linear polynomials, the 312 ≈ 219 linear systems of equations for finding logarithms of
irreducible quadratic polynomials, and the 23, 490 linear systems of equations in QPA can
be effectively parallelized on conventional computers.

Remark 2. (caveat emptor) Although our analysis is concrete rather than asymptotic, it
must be emphasized that the analysis makes several heuristic assumptions and approxi-
mations. For example, there are the usual heuristic assumptions that certain polynomials
encountered are uniformly distributed over the set of all polynomials of the same degree.
Furthermore, we have assumed that the matrix H(Q) in QPA descent indeed has full col-
umn rank. Also, our run time analysis ignores operations such as additions in F312 and
memory accesses. Thus, further analysis and experimentation is needed before one can
conclude with certainty that the 281.7Mq2 running time estimate is an accurate measure of
the efficiency of the new DLP algorithm for computing logarithms in the order-r subgroup
of F∗

36·509 .

Remark 3. (looseness of our upper bound on the running time) Remark 2 notwithstand-
ing, our analysis is quite conservative and there are several possible ways in which the
upper bound on the running time could be improved. (i) In our estimates for the number
of branches in a descent step, we assume that each distinct irreducible polynomial obtained
has degree exactly m, whereas in practice many of these polynomials will have degree sig-
nificantly less than m. Thus, it would appear that our upper bound on the number of
nodes in the descent tree is quite loose. (ii) The Gröbner bases descent running times re-
ported in §4.7 can be expected to be significantly improved by a native implementation of
the F4 [21] or F5 [22] Gröbner basis finding algorithms optimized for characteristic-three
finite fields. (Magma implements the F4 algorithm, but is not optimized for characteristic-
three finite fields.) (iii) An optimized Gröbner basis implementation might be successful
in performing the descent from D = 11 to D = 6, thereby replacing the QPA descent
from D = 11 to D = 7 and significantly reducing the number of nodes in the descent
tree. (iv) Bernstein’s smoothness testing method [11] might be faster in practice than the
basic method described in §2.2. (v) Sieving can be expected to significantly speedup the
continued-fraction descent stage [6].

4.9. Comparisons with Joux-Lercier. Shinohara et al. [44] estimated that the running
time of the Joux-Lercier algorithm [37] for computing discrete logarithms in F36·509 is 2

111.35

for the relation generation stage, and 2102.69 for the linear algebra stage; the units of time
were not specified. The relation generation time can be significantly decreased using Joux’s
pinpointing technique [33] without having a noticeable impact on the linear algebra time.
We note also that the linear algebra cost of 2102.69 is an underestimation since it does
not account for the number of nonzero coefficients in each equation. In any case, since
the relation generation is effectively parallelizable on conventional computers whereas the
linear algebra is not, the linear algebra stage is the dominant step of the Joux-Lercier
algorithm. Due to its large size, the linear algebra stage will remain infeasible for the
forseeable future.

In contrast, the new algorithm is effectively parallelizable and has an overall running
time of 281.7Mq2 . If one had access to a massive number of processors (e.g., 230 processors),
then the new algorithm could be executed within one year.
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We believe that these comparisons justify the claim made in the abstract about the
weakness of the field F36·509 , and thereby also the supersingular elliptic curve over F3509

with embedding degree 6.

5. Concluding remarks

Our concrete analysis of the new algorithm of Joux and Barbulescu et al. has shown
that the supersingular elliptic curve over F3509 with embedding degree 6 is significantly
less resistant to attacks on the elliptic curve discrete logarithm problem than previously
believed. Consequently, this elliptic curve is not suitable for implementing pairing-based
cryptosystems. Our analysis applies equally well to the supersingular elliptic curve over
F35·97 with embedding degree 6 that has been proposed for compact hardware implemen-
tation of pairing-based cryptosystems by Estibals [20], and to the genus-2 curves over
F212·367 and F212·439 with embedding degree 12 (see Appendix A).

An important open question is whether the new algorithm or its implementation can
be improved to the extent that the discrete logarithm problem in F36·509 can be feasibly
solved using existing computer technology.

Another important question is whether the new attack is effective for finding discrete
logarithms in other small-characteristic finite fields of interest in pairing-based cryptogra-
phy. Our preliminary analysis suggests that the new algorithm is ineffective for computing
discrete logarithms in F24·1223 .
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ηT pairing over small-characteristic supersingular elliptic curves”, IEEE Transactions on Computers,
60 (2011), 266–281.
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puter”, available at http://eprint.iacr.org/2013/306.
[29] R. Granger, D. Page and M. Stam, “Hardware and software normal basis arithmetic for pairing based

cryptography in characteristic three”, IEEE Transactions on Computers, 54 (2005), 852–860.
[30] D. Hankerson, A. Menezes and M. Scott, “Software implementation of pairings”, In M. Joye and

G. Neven, editors, Identity-Based Cryptography, IOS Press, 2008.
[31] T. Hayashi, T. Shimoyama, N. Shinohara and T. Takagi, “Breaking pairing-based cryptosystems using

ηT pairing over GF (397)”, Advances in Cryptology – ASIACRYPT 2012, LNCS 7658 (2012), 43–60.
[32] H. Jeljeli, “Accelerating iterative SpMV for discrete logarithm problem using GPUs”, available at

http://arxiv.org/abs/1209.5520.
[33] A. Joux, “Faster index calculus for the medium prime case: Application to 1175-bit and 1425-bit

finite fields”, Advances in Cryptology – EUROCRYPT 2013, LNCS 7881 (2013), 177–193.
[34] A. Joux, “A new index calculus algorithm with complexity L(1/4+o(1)) in very small characteristic”,

available at http://eprint.iacr.org/2013/095.



20 G. ADJ, A. MENEZES, T. OLIVEIRA, AND F. RODRÍGUEZ-HENRÍQUEZ
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Appendix A. Computing discrete logarithms in F212·367

We present a concrete analysis of the DLP algorithm described in §3 for computing
discrete logarithms in F212·367 . In fact, this field is embedded in the quadratic extension
field F224·367 , and it is the latter field where the DLP algorithm of §3 is executed. Thus,
we have q = 212, n = 367, and N = 224·367 − 1. Note that 224·367 ≈ 28808. We wish to find
logg h, where g is a generator of F∗

224·367 and h ∈ F∗
224·367 .

As mentioned in §1, our main motivation for finding discrete logarithms in F212·367 is
to attack the discrete logarithm problem in JacC(F2367), where C is the supersingular
genus-2 curve Y 2 + Y = X5 + X3 with #JacC(F2367) = 13 · 7170258097 · r, and where
r = (2734 + 2551 + 2367 + 2184 + 1)/(13 · 7170258097) is a 698-bit prime. Note that r2 ∤ N .
The discrete logarithm problem in the order-r subgroup of JacC(F2367) can be efficiently
reduced to the discrete logarithm problem in the order-r subgroup of F∗

212·367 . Thus, we
will henceforth assume that h has order r and that we only need to find logg h mod r.
An immediate consequence of this restriction is that all the linear algebra in the new
algorithm has to be performed modulo the 698-bit r instead of modulo the 8808-bit N .

The parameters for each step of the algorithm were chosen in order to balance the
running time of the steps. We also took into account the degree to which each step could
be parallelized on conventional computers. A summary of the parameter choices for the
descent is given in Figure 2. The costs of each step are given in Table 5.

If f ∈ Fq[X] has degree d, then Xq mod f can be determined by first precomputing

X4,X8, . . . ,X4(d−1) mod f by repeated multiplication by X. Thereafter, computing the
fourth power of a polynomial modulo f can be accomplished by computing fourth powers
of the coefficients of the polynomial, and then multiplying the precomputed polynomials
by these fourth powers (and adding the results). In this way, we get a loose upper bound

of 4d2 + 11d2 = 15d2 F224 -multiplications of the cost to compute X224 mod f , and the
total cost for testing m-smoothness of f (cf. §2.2) becomes

(22) S224(m,d) = 2d2(d+m+ 7.5) F224-multiplications.
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QPA descent
Time: 233 · (251 Mq2 + 260 Ar)

6 (259)

4 (271)
Gröbner bases descent
Time: 271 · (0.02771 seconds)

Gröbner bases descent
Time: 270.4 · (0.005428 seconds)

2

3 (270.4)

Gröbner bases descent

Continued fraction descent
Time: 2100 Mq2

183 (2)

QPA descent
Time: 35 · (254 Mq2 + 260 Ar)

17 (35)

10 (233)

Time: 259 · (64.9 seconds)

Figure 2. A typical path of the descent tree for computing an individual
logarithm in F224·367 (q = 212). The numbers in parentheses next to each
node are the expected number of nodes at that level. ‘Time’ is the expected
time to generate all nodes at a level.

A.1. Setup. We chose the representations

F212 = F2[U ]/(U12 + U7 + U6 + U5 + U3 + U + 1)

and

F224 = F212 [V ]/(V 2 + U152V + U3307).
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Finding logarithms of linear polynomials

Relation generation 235Mq2 235Mq2

Linear algebra 260Ar 260Mq2

Finding logarithms of irreducible quadratic polynomials

Relation generation 224 · 244Mq2 268Mq2

Linear algebra 224 · 260Ar 284Mq2

Descent

Continued-fraction (183 to 17) 2100Mq2 2100Mq2

QPA (17 to 10) 35 · (254Mq2 + 260Ar) 265Mq2

QPA (10 to 6) 233 · (251Mq2 + 260Ar) 293Mq2

Gröbner bases (6 to 4) 259 · (64.9 seconds) 293Mq2

Gröbner bases (4 to 3) 271 · (0.02771 seconds) 294Mq2

Gröbner bases (3 to 2) 270.4 · (0.005428 seconds) 291Mq2

Table 5. Estimated costs of the main steps of the new DLP algorithm
for computing discrete logarithms in F224·367 (q = 212). Ar and Mq2 denote

the costs of an addition modulo the 698-bit prime r = (2734 +2551+2367+
2184 + 1)/(13 · 7170258097) and a multiplication in F224 . We use the cost
ratio Ar/Mq2 = 1, and also assume that 228 multiplications in F224 can be
performed in 1 second (cf. §A.8).

We selected

h0 = (U2111V + U2844)X2 + (U428V + U2059)X + (U1973V + U827) ∈ F224 [X]

and

h1 = X + U2904V + U401 ∈ F224 [X],

and IX ∈ F224 [X] to be the degree-367 monic irreducible factor of h1X
212 −h0. The other

irreducible factors of h1X
212 − h0 have degrees 23, 103, 162, 298 and 3144.

A.2. Finding logarithms of linear polynomials. The factor base B1 has size 2
24. The

cost of relation generation is approximately 235Mq2 , whereas the cost of the linear algebra

is approximately 260Ar.

A.3. Finding logarithms of irreducible quadratic polynomials. For each u ∈ F224 ,
the expected cost of computing logarithms of all quadratics in B2,u is 244Mq2 for the

computation of H(Q), and 260Ar for the linear algebra.

A.4. Continued-fraction descent. For the continued-fraction descent, we selected m =
17. The expected cost of this descent is 2100Mq2 . The expected number of distinct
irreducible factors of degree (at most) 17 obtained is 2A224(17, 183) ≈ 35.

A.5. Classical descent. When applicable, classical descent is preferable to QPA descent
since the former produces a far smaller number of branches when descending from a
polynomial Q. However, in the field under consideration we have q = 212, so at least one

of X2s and X212−s

has degree at least 64. This means that at least one of the polynomials

R1 = R(X,X2s) and R2 = R′(X212−s

, h0) (cf. §3.5) has very large degree, rendering
classical descent ineffective.
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A.6. QPA descent. The QPA descent method is applied to each of the 35 degree-17
polynomials Q obtained from the continued-fraction descent stage. We have D = 17 and
m = 10. For each Q, the expected cost of relation generation is 254Mq2 and the cost of the

linear algebra is 260Ar. Also for each Q, the expected number of distinct polynomials of
degree at most 6 obtained is expected to be Aq2(10, 51) · q

2 ≈ 228. Thus, the total number
of distinct polynomials of degree at most 10 obtained after the first QPA descent stage is
approximately 233.

The QPA descent method is then applied to each of these 233 degree-10 polynomials
Q. We have D = 10 and m = 6. For each Q, the expected cost of relation generation is
251Mq2 and the cost of the linear algebra is 260Ar. Also for each Q, the expected number

of distinct polynomials of degree at most 6 obtained is expected to be Aq2(6, 30) ·q
2 ≈ 226.

Thus, the total number of distinct polynomials of degree at most 6 obtained after the
second QPA descent stage is approximately 259.

A.7. Gröbner bases descent. The Gröbner bases descent method is applied to each of
the 259 polynomials of degree (at most) 6 obtained after QPA descent. Our experiments
were run using Magma v2.19-7 [41] on a 2.9 GHz Intel core i7-3520M.

First, one descends from 6 to 4, i.e., D = 6 and m = 4. For each degree-6 polynomial
Q, we have to solve a system of 26 quadratic polynomial equations in 34 variables over
Fq (cf. (20)). After fixing some variables, each degree-6 R obtained from the variety of
the resulting ideal is tested for 4-smoothness. If no 4-smooth R is obtained, we randomly
fix some other subset of variables and repeat. We ran 11,810 Gröbner bases descent
experiments with randomly-selected degree-6 polynomials Q. On average, we had to find
2.112 Gröbner bases for each Q. The average number of R’s tested for 4-smoothness for
each Q was 1.585, which agrees with the expected number q12/Nq2(4, 6) ≈ 1.579. The
average time to find each Gröbner basis was 30.74 seconds. In total, the expected number
of polynomials of degree at most 4 obtained is 259(q + 1 +Aq2(4, 6)) ≈ 271.

Next, one descends from 4 to 3, i.e., D = 4 and m = 3. For each degree-4 polynomial
Q, we have to solve a system of 20 quadratic polynomial equations in 28 variables over Fq.
We proceed as above, by fixing some of the 28 variables. We ran 3,608,000 Gröbner bases
descent experiments with randomly-selected degree-4 polynomials Q. On average, we had
to find 2.362 Gröbner bases for each Q. The average number of R’s tested for 3-smoothness
for each Q was 1.817, which agrees with the expected number q10/Nq2(3, 5) ≈ 1.818. The
average time to find each Gröbner basis was 0.01173 seconds. In total, the expected
number of polynomials of degree at most 3 obtained is 271(q + 1 +Aq2(3, 5)) ≈ 283.

Finally, one descends from 3 to 2, i.e., D = 3 and m = 2. Since the total number of
monic irreducible cubics over Fq2 is approximately 270.4, which is less than 283, we perform
the 3 to 2 descent for all monic irreducible cubics. For each such polynomial Q, we have to
solve a system of 14 quadratic polynomial equations in 20 variables over Fq. We proceed
as above, by fixing some of the 20 variables. We ran 1,080,000 Gröbner bases descent
experiments with randomly-selected degree-3 polynomials Q. On average, we had to find
2.024 Gröbner bases for each Q. The average number of R’s tested for 2-smoothness for
each Q was 1.5, which agrees with the expected number q6/Nq2(2, 3) ≈ 1.5. The average
time to find each Gröbner basis was 0.002682 seconds.

A.8. Overall running time. In order to assess the overall time, we make some assump-
tions about the ratios of units of time used in Table 5, namely Ar, Mq2 , and seconds.
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First, we shall assume that Ar/Mq2 = 1. To justify this, we use estimates similar to
the ones in §4.8. An integer modulo r can be accommodated in elevent 64-bit words,
so we estimate Ar to be 11 clock cycles. Using the carry-less multiplication instruction
PCLMULQDQ, a multiplication in F224 can be performed at a price of approximately 10
clock cycles. This gives us an Ar/Mq2 ratio of approximately 1.

Next, since a multiplication in F224 can be done in approimately 10 clock cycles, we
will transform one second on a 2.9 GHz machine (on which the Gröbner bases descent
experiments were performed) into 228Mq2 .

Using these estimates, we see from the third column of Table 4 that the overall run-
ning time of the new algorithm is approximately 2100Mq2 . As with the case of F312·509 ,
the relation generation, continued-fraction descent, classical descent, and Gröbner bases
descent steps, and also the relation generation portion of QPA descent, are effectively
parallelizable on conventional computers. Moreover, the linear system of equations for
finding logarithms of linear polynomials, the 224 linear systems of equations for finding
logarithms of irreducible quadratic polynomials, and the 233 linear systems of equations
are also effectively parallelizable on conventional computers since each linear system of
equations can be expected to be solvable in less than 12 days using a small number of
GPUs and CPUs (cf. [32, 5]).

A.9. Comparisons with Joux-Lercier. The Joux-Lercier algorithm [37] with pinpoint-
ing [33] is an alternative method for computing discrete logarithms in the order-r subgroup
of F∗

212·367 . The algorithm works with two polynomial representations of F212·367 .
The factor base can be taken to be the set of all monic irreducible polynomials of

degree at most 4 over F212 in each of the two representations. The action of the 212-power
Frobenius is used to reduce the factor base size by a factor of 12, yielding a factor base
of size 243.4. Taking d1 = 37 and d2 = 10 (see Section 2 of [33] for the definitions of
d1 and d2), the running time of relation generation is approximately 294.0Mq, where Mq

denotes the cost of a multiplication in F212 (cf. Section 4 of [33]). The (sparse) matrix in
the linear algebra stage has 243.4 rows and columns, and approximately 28 nonzero entries
per row. Using standard techniques for solving sparse systems of linear equations [38],
the expected cost of the linear algebra is approximately 291.6 operations modulo r. Since
relation generation is effectively parallelizable, whereas the linear algebra is not amenable
to parallelization due to its large size, the dominant step in the Joux-Lercier algorithms
is the linear algebra.

In contrast, even though the new algorithm has a greater overall running time of
2100Mq2 , it is effectively parallelizable. Thus a reasonable conclusion is that the new
algorithm is more effective than Joux-Lercier for computing logarithms in F212·367 .

To lend further weight to this conclusion, we observe that special-purpose hardware
for solving the relatively-small linear systems of equations in the new algorithm can rea-
sonably be expected to be built at a cost that is well within the budget of a well-funded
organization. In 2005, Geiselmann et al. [26] estimated that the cost of special-purpose
hardware for solving a linear system where the matrix has 233 rows and columns, and ap-
proximately 27 nonzero entries (integers modulo 2) per row would be approximately U.S.
$2 million; the linear system would be solvable in 2.4 months. For F212·367 , each matrix
in the new algorithm has 224 rows and columns, and approximately 212 nonzero entries
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(integers modulo r) per row. On the other hand, the cost of special-purpose hardware for
solving the linear system encountered in the Joux-Lercier algorithm would be prohibitive.

Our conclusion about the relative weakness of F212·367 for discrete logarithm cryptogra-
phy also applies to the field F212·439 . Both these conclusions are subject to the caveats in
Remark 2 in §4.8.
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