
Low Data Complexity Biclique Cryptanalysis of
Block Ciphers with Application to Piccolo and

HIGHT

Siavash Ahmadi, Zahra Ahmadian, Javad Mohajeri, and Mohammad Reza Aref

Sharif University of Technology, Tehran, Iran.
{s_ahmadi,ahmadian}@ee.sharif.edu,{mohajer,aref}@sharif.edu

Abstract. In this paper, we present a framework for biclique crypt-
analysis of block ciphers with an extremely low data complexity. To that
end, we enjoy a new representation of biclique attack. Then an algorithm
for choosing two differential characteristics is also presented to simulta-
neously minimize the data complexity and control the computational
complexity.
Then we characterize those block ciphers that are vulnerable to this
technique and among them, we apply this attack on lightweight block
ciphers Piccolo-80, Piccolo-128 and HIGHT. The data complexities of
these attacks are considerably less than the existing results. For full-
round Piccolo-80 and 128, the data complexity of the attacks are only 16
plaintext-ciphertext pairs and for full-round HIGHT our attack requires
256 pairs. In all attacks the computational complexity remains the same
as the previous ones or even it is slightly improved.

Keywords: Biclique Cryptanlysis, Attack Complexity, Lightweight Block
Ciphers

1 Introduction

Amongst the current methods for security evaluation of block ciphers, biclique
attack has attracted lots of attention since it could be applied on the full version
of those block ciphers on which many other existing attacks did not work [1–
10]. In spite of most of the statistical attacks whose computational complexities
increase exponentially with the number of rounds, biclique attack is inherently
an accelerated exhaustive search (that is why it can break the full-round cipher)
in which some optimizations are made in two directions:

1. Use of a biclique structure that reduces the meet in the middle part and
partitions the key space into some groups of some related keys.

2. Exploiting the similarity of the keys to be tested in each key group to avoid
a limited number of recomputations.

So due to the exhaustive search essence of this attack, there is no surprise that
computational complexity is very close to brute force attack, but in many cases,

2 S. Ahmadi et al.

beside the marginal computational complexity, the data complexity is not prac-
tical as well.

On the other hand, in order to adhere to ”real-life” scenarios, it is encour-
aged that some restrictions on the resources available to the adversary is taken
into account [11, 12]. A direction of research could be the situation where the
computational power of the attacker is assumed to be bounded by the exhaus-
tive search, but the data complexity is restricted to a few known or chosen
plaintexts. The importance of this scenario is apparent when a lightweight block
cipher is targeted by the attacker where due to the small size of the cipher key
(typically 64 bits), an accelerated exhaustive search might not be too far from
reality, under a practical assumption for the attacker’s computational budget.
But, the cryptographic protocol in which that primitive is used, might not allow
the attacker to eavesdrop on an enormous amount of plaintext-ciphertext pairs.

Motivated by this approach, we propose a new variant of biclique attack,
namely Low Data Complexity (LDC) biclique attack, that aims to confine the
amount of data required for the attack to a practical value without any expenses
in the computational complexity. Out results shows that compared to the con-
ventional biclique attacks the computational complexity of this attack is not
increased or even it is improved slightly. There are a few work on reducing the
data complexity of biclique attack [13, 14] both on AES. The approach of [13]
is reducing the biclique dimension to 4 while the attack in [14] uses the same
dimension biclique, i.e. 8, but with a shorter biclique.

In a nutshell, block ciphers with round keys shorter than the master key
(usually generalized feistel ciphers) which have a word-wise permutation-like
key schedules are potential targets for this attack. In order to confine the data
complexity to a practical value, we enjoy the asymmetric biclique in a special
form, in which the number of vertexes in the plaintext (or ciphertext) side of the
biclique is the square of that in the other side (i.e. 2d and 22d respectively, for
some d). The other trick that we used is the computations in the matching part
that proceeds in 3 levels: computations that are performed once, those performed
2d times, and those performed for 22d times.

Using this method, we propose new attacks on the full-round Piccolo-80,
Piccolo-128 [15] and HIGHT [16] block ciphers. Our results show a significant
reduction in data complexity: in case of Piccolo-80 and Piccolo-128 the amount
of data required by the attack is just 16 pairs of plaintext-ciphertext and in
case of HIGHT, it is 256 pairs. It is worth noting again that computational
complexities of our attacks does not exceeds the previous ones, even there are
slight improvements in computational complexity in the case of Piccolo-80 and
Piccolo-128 achieved. A summary of the previous biclique attacks on full-round
Piccolo and HIGHT as well as our results is reported in Table 1.

The outline of the paper is as follows: Section 2 presents the biclique attack
puzzle. Section 3 presents the method used for low data complexity biclique
cryptanalysis. The block ciphers vulnerable to this technique are also character-
ized in this section. Section 4 presents brief descriptions of Piccolo and HIGHT,

Title Suppressed Due to Excessive Length 3

Table 1. Summary of cryptanalytic results of biclique attacks on Piccolo and Hight

Block cipher Rounds Data Computations Biclique length Reference

Piccolo-80

25∗ 248 278.95 6 [3]
Full (25) 248 279.13 6 [4]
Full (25) 248 279.34 4 [5]
Full (25) 24 279.07 3 This paper

Piccolo-128

28 224 2126.79 6 [3]
Full (31) 224 2127.35 7 [4]
Full (31) 248 2127.36 4 [5]
Full (31) 24 2127.12 5 This paper

Hight
Full (32) 248 2126.4 8 [6]
Full (32) 248 2126∗∗ 9 [5]
Full (32) 28 2126.07 5 This paper

*Without postwhitening key
**The corrected computations of the attack in [5].

respectively. We apply our attacks on Piccolo-80, Piccolo-128 and HIGHT block
ciphers in Section 5. Finally we conclude our work in Section 6.

2 Biclique Attack Puzzle

In the biclique attack, the biclique can be constructed either in the plaintext or
ciphertext side. In this section, we explain the attack steps in the case that the
biclique is constructed in the plaintext side. We consider an asymmetric biclique
in which the number of vertexes in the two sides are not equal [9]. More precisely,
we enjoy an special case of this structure in which the number of vertexes in the
internal state side of the biclique is 22d while it is 2d in the plaintext side. The
four main steps of this attack are as follows.

2.1 Key partitioning

Let us divide the master key K into four disjoint sets of bits, namely Kf0 , Kf1 ,
Kb and Kg, with d, d, d and n−3d bit lengths, respectively. We can partition the
key space into 2n−3d groups of keys where the value of Kg is fixed in each group
(and hence enumerates the groups), and Kf0 , Kf1 and Kb take all possible
values. All the keys in a group are denoted by K[i, j] where (Kf1 ||Kf0) = j,
j ∈ {0, ..., 22d− 1} and Kb = i, i ∈ {0, ..., 2d− 1}. Then, the next three steps are
carried out for each group. We also define the differentials ∇K

i = K[0, 0]⊕K[i, 0]
and ∆K

j = K[0, 0]⊕K[0, j].

2.2 Asymmetric biclique constructing

Definition 1. (d,2d)-dimensional asymmetric biclique. The 3-tuple [{Pi}, {Sj}, {K[i, j]}]
is called a (d, 2d)-dimensional asymmetric biclique with length l, if ∀i ∈ {0, 1, ..., 2d−

4 S. Ahmadi et al.

0P

0S

1S

12 dP

122 dS

.

.

.

]0,0[K

]12,12[2 ddK

.

.

.

Fig. 1. (d, 2d)-Dimensional asymmetric biclique in plaintext side

1} and ∀j ∈ {0, 1, ..., 22d−1}:
Pi

K[0,j]−−−−→
0,l−1

Sj (1)

Where {Pi} is a set of 2d plaintexts, {Sj} is a set of 22d internal states and
K−−→
a,b

denotes the encryption with key K from round a to round b (
K←−−
a,b

stands for the

corresponding decryption).

The structure of the (d, 2d)-dimensional asymmetric biclique is shown in Fig. 1.
The two groups of vertexes in the graph stand for some plaintexts and some

internal states of the cipher respectively, while the edges stand for the keys under
which the encryption of the plaintext yields the corresponding internal state.
All the 23d keys in a group defined in section 2.1 should fit into an asymmetric
biclique. The most common method for constructing the biclique is independent
biclique method [1]:

– Step 1. Choose a random plaintext P0 and compute S0 as P0
K[0,0]−−−−→
0,l−1

S0

– Step 2. Compute Pi as Pi
K[i,0]←−−−−
0,l−1

S0 for all i ∈ {1, ..., 2d − 1}.

– Step 3. Compute Sj as P0
K[0,j]−−−−→
0,l−1

Sj for all j ∈ {1, ..., 22d − 1}.

It can be shown that (1) is satisfied for the above-generated 3-tuple [{Pi}, {Sj}, {K[i, j]}],
if the related key differential characteristic ∆K

j in forward direction does not
share any active nonlinear component with the related key differential charac-
teristic ∇K

i in backward direction within rounds 0 to l − 1.
The data complexity of the attack is upper bounded by all the possible values

of active plaintext bits in the backward differential characteristic Pi
K[i,0]←−−−−
0,l−1

S0,

provided that all the bicliques are constructed from the same P0.

2.3 Partial matching with precomputation and recomputation

Partial matching with precomputation and recomputation is the procedure in
which all the keys in a group are tested in an efficient way [1]. In the case that

Title Suppressed Due to Excessive Length 5

Encryption Oracle

0P

0S

1S

12 2
dP

12 10
ddS

0C

12 2
dC

Asymmetric biclique Match

.

.

.

.

.

.

.

ijV

.

.

.

Fig. 2. Asymmetric biclique cryptanalysis

biclique is constructed at the plaintext side, partial matching is performed at
the ciphertext side. The intermediate variable V , is selected in an appropriate
position between round l and the last round. In forward direction, we partially
encrypt Sj under key K[0, j] to drive the matching variable in forward direction
−−→
V0,j , and also save all the intermediate states associated to this computation.
Similarly, in backward direction, we partially decrypt Ci under key K[i, 0] to

drive the matching variable in backward direction
←−
Vi,0, and save again all the

intermediate states associated to this computation.

Now suppose that we want to check K[i, j]. In forward direction, for finding
−→
Vi,j by encrypting Sj under key K[i, j], i 6= 0, we only need to recompute those
bytes between S and V that are influenced by Kb when i changes while the other
bytes are not recomputed (i.e. the active bytes in ∇i differential characteristic
in the forward direction in the matching part are computed 2d times and the

other ones are computed only once). In backward direction, for finding
←−
Vi,j by

decrypting Ci under key K[i, j], j 6= 0, we only need to recompute those bytes
between C and V that are influenced by Kf0 ||Kf1 when j changes (i.e. the
active bytes in ∆j differential characteristic in the backward direction in the
matching part). But, there are some bytes which are influenced either by Kf0

only or by Kf1 only. Such bytes can be recomputed only 2d times and just the
bytes influenced by both of Kf0 and Kf1 should be recomputed 22d times. This
method has shown some improvement in the computational complexity of the

biclique attack on some algorithms. Finally, If
−→
Vi,j =

←−
Vi,j , key K[i, j] will be

saved as a right key candidate.

The memory required for the attack is bounded by the amount of memory
required for saving 22d intermediate states for an encryption algorithm.

6 S. Ahmadi et al.

K

i

K

j

P S

Cutset

Biclique

Fig. 3. A cutset in the biclique

F

rk

F

rk

F

rk

F

rk

Fig. 4. Example of two cutsets

2.4 Rechecking the candidate keys

Finally, we test the candidate keys by a valid (P,C) pair to filter out all the
wrong keys and find the correct key.

The total scheme of the asymmetric biclique cryptanalysis of a block cipher
is shown in Fig. 2. For the biclique in the plaintext side, this attack is a chosen
plaintext attack in the single key model and needs only the encryption oracle
(For the biclique in the ciphertext side, it is a chosen ciphertext attack and needs
the decryption oracle).

3 Low Data Complexity Biclique Cryptanalysis

3.1 A New Representation for Biclique Attack

In this section, we propose a new representation of biclique that is very useful in
describing the algorithm of LDC biclique attack. First, some preliminaries and
definitions are stated.

Definition 2. Cutset. Let b be the block size. A b-bit part of the intermediate
states of the cipher from which the plaintext and ciphertext can be calculated
completely, provided that the cipher key is known, is called a cut-set.

Plaintext and ciphertext are two trivial examples of cutset. Two other in-
stances are shown in Fig. 4

Definition 3. Let A and B be two cutsets in a block cipher and g(·) be the partial
encryption/decryption function from one cutset to another. L(g) is defined as the
amount of computations involved in g.

Title Suppressed Due to Excessive Length 7

Encryption Oracle

Asymmetric biclique Match

1g
2g 3g

4g

Y

U
P

S
C

T

W

K

i

K

j

P S

Y

K

i

K

j

C

T

W

U

Asymmetric biclique Match

Fig. 5. Asymmetric biclique cryptanalysis model

It is conventional in biclique attack to estimate this value by the number of
computationally dominate component of the algorithm.

Definition 4. The distance between two cutsets A and B is defined based on
the value of the associated L(g).

It can be shown that for an independent biclique, there exists at least a cutset
among the biclique rounds, in which all bits are unaffected by ∇K

i differentials
in backward direction and ∆K

j differentials in forward direction (Fig. 3). This
is exactly equivalent to the independence of the two characteristics. We call
such cutsets the root cutset of the biclique, since they are common in all paths

Pi
K[i,j]−−−−→
0,l−1

Sj . In the other words, all the Pi and Sj can be generated from that

cutset along with the associated related key differential∇K
i and∆K

j , respectively.
Thus, the biclique topology reduces to that shown in Fig. 5. In this figure, all
the points between Y and T are actually a root cutset.

In some cases these cutsets can be seen clearly, while in some other cases
they may not be seen explicitly. The root cutset for the AES-128 independent
biclique in [1] is shown in Fig. 6 with light gray boxes.

This representation of biclique attack is very useful in describing the algo-
rithm of LDC biclique attack presented in the following.

8 S. Ahmadi et al.

K
ey

 S
ch

ed
u

le

K
ey

 S
ch

ed
u

le

SB
SR
MC

SB
SR
MC

SB
SR

C

#20

#19

#18

#17

#16

#15

S

K

i

K
ey

 S
ch

ed
u

le

K
ey

 S
ch

ed
u

le

SB
SR
MC

SB
SR
MC

SB
SR

C

#20

#19

#18

#17

#16

#15

S

K

j

Fig. 6. Independent biclique of AES-128. The differntial characteristics are shown in
dark gray. The set of light gray boxes makes the root cutset

3.2 Algorithm of Choosing Two Differntials

Suppose that S is the internal state of the round on which the ∇K
i differentials

in forward direction in matching part does not affect any. Let Y be the closest
cutset to the plaintext that is not affected by the ∇K

i differential in backward
direction in the biclique, T be the closest cutset to S that is not affected by ∆K

j

differential in forward direction in the biclique, W be the farthest cutset from
S that is not affected by ∇K

i differentials in forward direction in the partial
matching, and U be the farthest cutest from C that is not affected by the ∆K

j

differentials in backward direction in the partial matching. All the above defined
are shown in Fig. 5.

Let g1 be equal to partial encryption from P to Y, g2 be equal to partial
encryption from Y to W, g3 be equal to partial encryption from W to U , and
g4 be equal to partial encryption from U to C (see Fig. 5). We define g−1i as the
associated decryption algorithm of gi.

if ∇K
i differential is selected in such way that the common bits between Y

and plaintext cutset P are as many as possible, the data complexity of the attack

Title Suppressed Due to Excessive Length 9

will reduce as much as possible, as well. This is the key idea behind the low data
complexity biclique attack. In fact, the diffusion of ∇K

i backward differential in
biclique in the plaintext directly determines the data complexity of the attack,
and it exclusively depends on g−11 diffusion. So, L(g−11) should be minimized.
On the other hand, the longer biclique, the less computational complexity; So,
L(g2) should be maximized, as well. Note that choosing ∇K

i differential solely
determines the exact value of L(g1) and L(g2) or S. So, Here we are actually
faced with the following multi objective optimization problem:

min L(g1) , max L(g2)

s.t. all possible ∇K
i (2)

The optimum point for (2), ∇K
i
∗
, guarantees the lowest possible data com-

plexity and the longest possible biclique length at the same time. Now there is
still room for reducing the computational complexity by an appropriate choose
of ∆K

j .

In order to reduce the computational complexity, we should find ∆K
j differ-

ential which has maximum L(g−14) and, at the same time, does not share any
active nonlinear component in the biclique part with ∇K

i
∗

differential (it means
that the cutset T can be driven only by encrypting the cutset Y). Since L(g1)
has been minimized, there is not so limitation in choosing ∆K

j differentials and
there is enough room for choosing an appropriate one that most reduces the com-
putational complexity by maximizing L(g−14). So, after solving (2) the following
optimization problem should be solved:

max L(g−14)

s.t. ∆K
j ⊥⊥ ∇K

i

∗
(3)

where ⊥⊥ is the symbol for the independence of two characteristics.
The presented algorithm actually breaks the problem of simultaneous search

of the two characteristics ∆K
j and ∇K

i in the conventional biclique attack into

the two separate searches of first ∇K
i , then ∆K

j . It is clear that it is impossible

to search all the possible values of ∆K
j and ∇K

i differentials, but this algorithm
gives the cryptanalyst a deeper perspective for finding appropriate differential
for the biclique attack.

3.3 The Potential Vulnerable Algorithms to This Method

For an efficient attack, it is required that some consecutive rounds of the al-
gorithm are independent of some parts of the master key. In more details, we
require that g2 is independent of Kb according to the definition ofW and Y and
g4 is independent of Kf , according to the definition of U . The farther W and Y,
and also the farther U and C result in a more efficient attack.

One can immediately concludes that this requirement implies that the round
key of the target block cipher must be shorter than the master key, that is a

10 S. Ahmadi et al.

F

2rk

F

3rk

F

0rk

F

1rk

0wk
1wk

P

.

.

.

.

.

.

.

.

.

.

.

.

F

22 rrk

F

12 rrk

2wk 3wk

C

IP

IP

Fig. 7. Piccolo block cipher

necessary condition for not depending the round keys on all bits of the master
keys. Generalized feistel structures typically have such a property.

The other condition is on the key schedule. To fulfil the independence of g4
from Kf , the diffusion of the key schedule should not be too high to mix all bits
of the master key in the last rounds. So, the key schedules whose operations are
confined to word-wise permutations, Sbox operations, and eventually addition
to constants are very vulnerable to this attack.

We found Piccolo family of block ciphers and HIGHT block cipher proper tar-
gets for this attack. In the following sections we briefly describe these algorithms
and then, examine the LDC biclique attack method on them.

4 Brief Description of Piccolo and Hight

In this section we briefly describe Piccolo and HIGHT block ciphers. For more
details about these two algorithms refer to [15, 16].

4.1 Piccolo-80 and 128

Notations. Let ki be the ith 16-bit part of the master key K counting from
left. Then, we call the left and right halves of ki, k

L
i and kRi , respectively. Also,

we call the left and right nibbles of kRi , kR0
i and kR1

i , respectively. The same
notation is used for kLi . Round i of the algorithm uses two 16-bit subkeys namely

Title Suppressed Due to Excessive Length 11

16

4

4

4

4

4

4

4

4

16
M

S

S

S

S

S

S

S

S

Fig. 8. Structure of Piccolo F-function [15]

(rk2i, rk2i+1). Two 16-bit prewhitening keys (wk0, wk1), and postwhitening keys
(wk2, wk3) are also used in the first and last rounds of the algorithm, respectively.

Specifications. Piccolo citepiccolo is a lightweight block cipher with a general-
ized Fiestel structure. It has two versions Piccolo-80 and Piccolo-128 with 80 and
128-bit key sizes, and 25 and 31 rounds, respectively. Both versions have 64-bit
block size. Each round i consists of two nonlinear F -functions (F : {0, 1}16 →
{0, 1}16), an internal permutation (IP : {0, 1}64 → {0, 1}64), and a addition to
subkeys (rk2i, rk2i+1). Fig.7 shows Piccolo block cipher in detail.

Piccolo F -function. F -function of Piccolo is a SDS network consisting of an
Sbox layer with four parallel 4-bit Sboxes, followed by a linear matrix M , and
finally another Sbox layer (Fig. 8). Since the computational complexity for com-
plete calculation of a single F -function has the dominate complexity compared
to the other operations (XOR and IP) in the algorithm, all the computations of
the attack are estimated by the number of F -functions to be calculated. In the
matching step, we will also require to compute only half of the F -function’s out-
put bits that involves computing the four input Sboxes and two output Sboxes.
Hence, its complexity is equal to 3/4 F -function. Moreover, if half (or one fourth)
of the input bits are active, the complexity will be equal to 3/4 F -function (5/8
F -function), too.

Key schedule. Piccolo-80 and 128 have simple linear key schedules that are
summarized in Tables 2 and 3 of appendix A. Ignoring the constants additions,
the key schedule of Piccolo can be regarded as a word-wise permutation-based
key schedule.

4.2 HIGHT

Notations. Let k′i be the ith bytes of the master key K counting from right.
Round i of the algorithm uses four 8-bit subkeys namely sk4i+3, sk4i+2, sk4i+1, sk4.
Four 8-bit prewhitening keys (wk0, wk1, wk2, wk3), and postwhitening keys (wk4, wk5, wk6, wk7),
are also used in the first and last rounds of the algorithm, respectively.

12 S. Ahmadi et al.

C

P

1F0F

7sk 6sk

1F0F

5sk
4sk

0wk
2wk 1wk3wk

1F0F

123sk
122sk

1F0F

121sk 120sk

Round

0

1

2-29

30

31

1F0F

3sk
2sk

1F0F

1sk 0sk

1F0F

127sk 126sk

1F0F

125sk
124sk

4wk6wk 5wk7wk

Fig. 9. HIGHT block cipher

Specifications. HIGHT [16] is a lightweight block cipher with generalized Fies-
tel structure. It has 64-bit block size, 128-bit key length, and 32 rounds encryp-
tion. Each round i consists of two linear functions (F0 : {0, 1}9 → {0, 1}8, F1 :
{0, 1}9 → {0, 1}8), an internal permutation (IP : {0, 1}64 → {0, 1}64) and, four
XOR and modular addition (mod 28). Fig. 9 shows HIGHT block cipher in
detail. Both F0 and F1 are referred to as F -function.

F-functions. The F0 and F1 functions have linear structure as follows:

F0(x) = x≪ 1⊕ x≪ 2⊕ x≪ 7

F1(x) = x≪ 3⊕ x≪ 4⊕ x≪ 6 (4)

Since any F -function is followed by a XOR and a modular addition operation,
counting the number of F-function calculations in the attack procedure is a good
criteria for the attack computations.

Key schedule. HIGHT has a simple key schedule that is summarized in Tables
4 of appendix A. Regardless some modular additions to round constants, HIGHT
key schedule can be regarded as a byte-wise permutation-based key schedule, too.

Title Suppressed Due to Excessive Length 13

C

Round

22

23

24

S

F

48rk

F

49rk

2wk 3wk

46rk

F

47rk

F

F

44rk

F

45rk

alsdifferentiK

j

F

48rk

F

49rk

2wk 3wk

F

46rk

F

47rk

F

44rk

F

45rk

C

Round

22

23

24

S

alsdifferentiK

i

Fig. 10. 3-Round (4,8)-dimensional asymmetric biclique constructing for Piccolo-80

5 Low Data Complexity Biclique cryptanalysis of
Piccolo-80, Piccolo-128 and Hight

5.1 Attack on Piccolo-80

With use of LDC biclique attack algorithm described in section 3.2 in a scenario
that biclique is constructed in the ciphertext side, we obtained Kf = kL0

0 ,Kb0 =
kL0
4 , and Kb1 = kR1

4 as a good key partitioning. A 3-round (4,8)-dimensional
asymmetric biclique at the ciphertext side is constructed on rounds 22 to 24.
Thus, the intermediate state S refers to the input state of round 22. As it can
be seen in Fig. 10, the ∇K

j and ∆K
i differentials are independent within the

last three rounds of the algorithm. The cutsets Y and T are those boxes with
thickened borders in right and left part of Fig 10. Furthermore, note that there
are no active F -functions in the ∆k

i differential characteristic in biclique part.
This provided us with maximum degree of freedom for selecting Kb0 and Kb1

that is chosen in such way that maximizes L(g4) in the optimization problem
(3) (see Fig. 11). The cutsets U and W are the boxes with thickened borders in
left and right part of Fig. 11.

Data Complexity As we can see in Fig.9, Ci = C0⊕∆K
i . Therefore without any

computations, Ci are known all. So, the data complexity is exactly 24 plaintext-
ciphertext pairs.

Computational Complexity Computational Complexity of the attack is three-
fold: biclique, partial matching and candidate key testing complexities:

14 S. Ahmadi et al.

F
0rk

F
1rk

0wk
1wk

P

.

.

.

.

.

.

.

.

.

.

.

.

F
6rk

F
7rk

Round

0

1

2

3

4

5

6

7-8

9

10

11

12

8rk 9rk

F
10rk

F
11rk

F
20rk

F
21rk

.

.

.

.

.

.

.

.

.

.

.

.

F
18rk

F
19rk

F
22rk

F
23rk

F
24rk

F
25rk

ijV

alsdifferentiK

j

F F

F
36rk

F
37rk

F
28rk 29rk

F
26rk

F
27rk

F
30rk

F
31rk

F
40rk

F
41rk

F
42rk

F
43rk

F
38rk

F
39rk

.

.

.

.

.

.

.

.

.

.

.

.

S

Round

13

14

15

16

17

18

19

20

21

F

ijV

alsdifferentiK

i

Fig. 11. Partial Matching for Piccolo-80

Biclique complexity. In order to compute Sj in a biclique, (Fig. 10, left), 0.75 F -
function should be calculated once (the gridded bytes), 2.25 F -function should
be calculated 24 times (the light gray bytes), and 3 F -functions should be cal-

Title Suppressed Due to Excessive Length 15

culated 28 times (the dark gray bytes). So, the normalized computational com-
plexity of this step is (a 25-round encryption of Piccolo-80 is taken as the unit
of computation which is equivalent to 50 F -function computations):

Cbiclique =
0.75 + 2.25× 24 + 3× 28

50
= 24.01 (5)

Matching complexity. The left most byte of the input of IP layer in round 12
is chosen as the matching variable V . In backward direction of partial matching
(rounds 21 to 13) for each Sj , 3.875 F -functions should be calculated once and
12.375 F -functions should be calculated 24 times (see Fig. 11, right; The bytes
in white is not required to be computed). Also, in forward direction of partial
matching (rounds 0 to 12) for each Pi, 8.5 F -functions should be calculated once,
0.5 F -function should be calculated 24 times, and 13.25 F -functions should be
calculated 28 times (see Fig. 11, left). Hence, the computational complexity for
checking all the keys in a group normalized to a full-round encryption of Piccolo-
80 is:

Cbackward =
28(3.875 + 12.375× 24)

50
= 210.01

Cforward =
24(8.5 + 0.5× 24 + 13.25× 28)

50
= 210.09 (6)

Hence,

Cmatch = Cbackward + Cforward = 211.05 (7)

Candidate keys testing. By using of the 8-bit matching variable, the probability
of accepting a wrong key is 2−8. Also, we check 212 keys in each group. So, the
computational complexity of rechecking the false keys is:

Crecheck = 212 × 2−8 = 24 (8)

Since all steps are executed for each group, the total computational complexity
of the attack is:

Ctotal = 268 × (Cbiclique + Cmatch + Crecheck)

= 268 × (24.01 + 211.05 + 24) = 279.07 (9)

5.2 Attack on Piccolo-128

Here, we obtained Kf0 = kR0
1 ,Kf1 = kR1

1 , and Kb = kL0
0 for a 5-round (4,8)-

dimensional asymmetric biclique at the plaintext side for rounds 0 to 4. Thus,
the intermediate state S refers to the output state of round 4. Fig. 12 shows the
biclique part of the attack and Fig. 13 shows the matching part. The associated
cutsets Y, T ,W,U are shown as the same manner with Piccolo-80, in Figurs 12
and 13.

16 S. Ahmadi et al.

2rk

F

3rk

F

F

0rk

F

1rk

0wk
1wk

P

S

F

4rk

F

5rk

F

6rk

F

7rk

F

8rk

F

9rk

Round

0

1

2

3

4

alsdifferentiK

j

F

2rk

F

3rk

F

0rk

F

1rk

0wk
1wk

P

S

F

4rk

F

5rk

F

6rk

F

7rk

F

8rk

F

9rk

alsdifferentiK

i

Round

0

1

2

3

4

Fig. 12. 5-Round (4,8)-dimensional asymmetric biclique constructing for Piccolo-128

Data complexity As we can see in Fig. 12, Pi = P0⊕∇K
i . Thus, Pi are known

all, without any computations. So, the data complexity is exactly 24 plaintext-
ciphertext pairs.

Computational complexity

Biclique complexity In order to compute Sj in a biclique, 1.75 F -function should
be calculated once, 0.25 F -function should be calculated 24, and 8 F -functions
should be calculated 28 times (see Fig. 12, left). So, the normalized computa-
tional complexity of asymmetric biclique constructing is:

Cbiclique = (1.75 + 0.25× 24 + 8× 28)/62 = 25.05 (10)

Matching complexity. The left most byte of the input of IP layer in round 16
is chosen as the matching variable V . In backward direction of partial matching
(rounds 30 to 17) for each Ci, 9.75 F -functions should be calculated once, 0.25

Title Suppressed Due to Excessive Length 17

ijV

F
12rk

F
13rk

F
10rk

F
11rk

S

F
14rk

F
15rk

F
16rk

F
17rk

F
28rk

F
29rk

.

.

.

.

.

.

.

.

.

F
26rk

F
27rk

F
30rk

F
31rk

F
32rk

F
33rk

Round

5

6

7

8

9

10-12

13

14

15

16

alsdifferentiK

i

F
48rk

F
49rk

F
36rk

F
37rk

F
34rk

F
35rk

F
38rk

F
39rk

.

.

.

.

.

.

.

.

.

F
52rk 53rk

F
54rk

F
55rk

50rk

F
51rk

.

.

.

.

.

.

.

.

.

C

F
60rk

F
61rk

2wk 3wk

Round

17

18

19

20

21-23

24

25

26

27

28

29

30

ijV

alsdifferentiK

j

F

F

Fig. 13. Partial Matching for Piccolo-128

18 S. Ahmadi et al.

1F0F

2 1

1F0F

0 7

S

P

1F0F

7 6

1F0F

5 4

1214 1315

1F0F

11 10

1F0F

9 8

1F0F

15 14

1F0F

13 12

Round

0

1

2

3

4

1F0F

3 2

1F0F

1 0

alsdifferentiK

i

Round

0

1

2

3

4 1F0F

2 1

1F0F

0 7

S

P

1F0F

7 6

1F0F

5 4

1214 1315

1F0F

11 10

1F0F

9 8

1F0F

15 14

1F0F

13 12

1F0F

3 2

1F0F

1 0

alsdifferentiK

j

Fig. 14. 5-Round (8,16)-dimensional asymmetric biclique constructing for HIGHT

F -function should be calculated 24 times, and 16.25 F -functions should be calcu-
lated 28 times (see Fig. 13, right). Also, in forward direction of partial matching
(rounds 5 to 16) for each Sj , 3.875 F -functions should be calculated once and
16.375 F -functions should be calculated 24 times (see Fig. 13, left). Hence, the
computational complexity for checking all the keys in a group normalized to a
full-round encryption of Piccolo-128 is:

Cforward =
28(3.875 + 16.375× 24)

62
= 210.10

Cbackward =
24(9.75 + 0.25× 24 + 16.25× 28)

62
= 210.07 (11)

Therefore,

Cmatch = Cforward + Cbackward = 211.09 (12)

Candidate keys testing. The complexity of this procedure is totally similar to
that in Piccolo-80. Since all steps are executed for each key group, the total
computational complexity of the attack is:

Ctotal = 2116 × (Cbiclique + Cmatch + Crecheck)

= 2116 × (25.05 + 211.09 + 24) = 2127.12 (13)

Title Suppressed Due to Excessive Length 19

5.3 Attack on HIGHT

Here, we obtained Kf0 = k′4,K
f1 = k′6, and Kb = k′3 for a 5-round (8,16)-

dimensional asymmetric biclique at the plaintext side for rounds 0 to 4. Thus,
the intermediate state S refers to the output state of round 4. See Fig. 14 and
15 for biclique and matching part, repectively. In these figures, the associated
cutsets are shown with thickened data paths.

Data Copmlexity As we can see in Fig. 14, Pi = P0 ⊕ ∇K
i . Therefore with-

out any computations, Pi are known all and the data complexity is exactly 28

plaintext-ciphertext pairs.

Computational Complexity

Biclique complexity To compute Sj in a asymmetric biclique, 12 F -functions
should be calculated once and 8 F -functions should be calculated 28 times (see
Fig. 14, left). So, the normalized computational complexity of biclique construct-
ing is (a 32-round encryption of HIGHT is taken as the unit of computation which
is equivalent to 128 F -function computations):

Cbiclique =
12 + 8× 28

128
= 24.01 (14)

Matching complexity The right most byte of the input of round 15 is chosen as
the matching variable V . In backward direction of partial matching (rounds 31 to
15) for each Ci, 18 F -functions should be calculated once, 16 F -function should
be calculated 28 times and 18 F -functions should be calculated 216 times (see
Fig. 15, right). Also, in forward direction of partial matching (rounds 5 to 14) for
each Sj , 13 F -functions should be calculated once and 15 F -functions should be
calculated 28 times (see Fig. 15, left). Hence, the computational complexity for
checking all the keys in a group normalized to a full-round encryption of HIGHT
is:

Cbackward =
28(18 + 16× 28 + 18× 216)

128
= 221.18

Cforward =
216(13 + 15× 28)

128
= 220.91 (15)

Hence,
Cmatch = Cbackward + Cforward = 222.05. (16)

Candidate keys testing. By using of the 8-bit matching variable, the probability
of accepting a wrong key is 2−8. Also, we check 224 keys in each group. So, the
computational complexity of rechecking false keys is:

Crecheck = 224 × 2−8 = 216 (17)

20 S. Ahmadi et al.

1F0F

1 0

1F0F

7 6

S

1F0F

10 9

1F0F

8 15

1F0F

14 13

1F0F

12 11

Round

5

6

7

8

9

10

11

12

13

14

1F0F

5 4

1F0F

3 2

1F0F

9 8

1F0F

15 14

1F0F

13 12

1F0F

11 10

1F0F

0 7

1F0F

6 5

1F0F

6 5

1F0F

4 3

1F0F

4 3

1F0F

2 1

1F0F

8 15

1F0F

14 13

ijV

alsdifferentiK

i

1F0F

8 15

1F0F

14 13

C

1F0F

4 3

1F0F

2 1

Round

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

02 13

1F0F

9 8

1F0F

15 14

1F0F

13 12

1F0F

11 10

1F0F

1 0

1F0F

7 6

1F0F

5 4

1F0F

3 2

1F0F

10 9

1F0F

8 15

1F0F

14 13

1F0F

12 11

1F0F

2 1

1F0F

0 7

1F0F

6 5

1F0F

4 3

1F0F

11 10

1F0F

9 8

1F0F

15 14

1F0F

13 12

1F0F

3 2

1F0F

1 0

1F0F

7 6

1F0F

5 4

1F0F

12 11

1F0F

10 9

ijV

alsdifferentiK

j

1F0F

0 7

1F0F

6 5

Fig. 15. Partial Matching for HIGHT

Title Suppressed Due to Excessive Length 21

Finally, since all steps are executed for each group, the total computational
complexity of the attack is:

Ctotal = 2104 × (Cbiclique + Cmatch + Crecheck)

= 2104(24.01 + 222.05 + 216) = 2126.07. (18)

This algorithm is also analyzed in [5] by a biclique attack, in which the com-
putational complexity is computed erroneously where the internal permutation
between rounds 11 and 12 was not considered in matching part. We took this
into account and calculated the correct computations for this attack as 2126.0.

6 Conclusions

We presented a variant of biclique attack adapted to cryptanalysis of generalized
feistel ciphers with word-wise permutation-like key schedules. What distinguishes
our attack is the dramatically low amount of data that it requires. Our attack
model fits some realistic scenarios where the data available to the adversary is
limited, while its computational budget is not considered to be limited.

We applied this attack on piccolo-80, Piccolo-128 and HIGHT block ciphers.
In the two former cases the attack requires only 16 plaintext-ciphertext pairs
and in the latter case it requires 256 pairs. The presented method is flexible
enough to control the computational complexity as well, and hence, the compu-
tational complexity of the presented attacks are not sacrificed for reducing data
complexity and even some slight improvements are achieved.

It is worth noticing that these low data complexities are achieved by making
use of an asymmetric biclique shorter than that in the most efficient attacks on
Piccolo-80, Piccolo-128 and HIGHT. Our results also challenge the convention
that the longer biclique necessarily results in a more efficient attack.

References

1. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique Cryptanalysis of the Full
AES, ASIACRYPT 2011, LNCS, vol. 7073, pp. 344-371. Springer, Heidelberg (2011)

2. Khovratovich, D., Leurent, G., Rechberger, C.: Narrow-Bicliques: Cryptanalysis of
Full IDEA. In EUROCRYPT 2012, LNCS, pp. 392-410. Springer, Heidelberg (2012).

3. Wang, Y., Wu, W., and Yu, X.: Biclique Cryptanalysis of Reduced-Round Piccolo
Block Cipher, ISPEC 2012, LNCS 7232, pp. 337-352, Springer, Heidelberg (2012)

4. Jeong, K., Kang, H. C., Lee, C., Sung, J., Hong, S.: Biclique Cryptanalysis
of Lightweight Block Ciphers PRESENT, Piccolo and LED. Cryptology ePrint
Archive, Report 2012/621, (2012)

5. Song, J., Lee, K., and Lee, H.: Biclique cryptanalysis on lightweight block cipher:
HIGHT and Piccolo. International Journal of Computer Mathematics, (2013)

6. Hong, D., Koo, B., and Kwon, D.: Biclique attack on the full HIGHT. Information
Security and Cryptology-ICISC2011, LNCS 7259, pp. 365-374, Springer, Berlin,
(2012)

22 S. Ahmadi et al.

7. Wang, Y., Wu, W., Yu, X., Zhang, L.: Security on LBlock against Biclique Crypt-
analysis, WISA 2012, LNCS 7690, pp 1-14, Springer, Heidelberg, (2012)

8. Karakoc, F., Demirci, H., Harmanci, A.E.: Biclique cryptanalysis of LBlock and
TWINE, Information Processing Letters, Volume 113, Issue 12, pp. 423429, (2013)

9. Ahmadian, Z., Salmasizadeh, M., Aref, M.R.: Biclique Cryptanalysis of the Full-
round KLEIN Block Cipher, Cryptology ePrint Archive, Report 2013/097 (2013)

10. Abed, F., Forler, C., List, E., Lucks, S., Wenzel, J., A Framework for Automated
Biclique Cryptanalysis of Block Ciphers, FSE 2013.

11. Canteaut A., Naya-Plasencia M., Vayssiere B., Sieve-in-the-Middle: Improved
MITM Attacks, CRYPTO’13, (2013)

12. Bouillaguet, C., Derbez, P. , Dunkelman, O. , Fouque, P. , Keller, N. , Rijmen, V.,
Low-Data Complexity Attacks on AES, IEEE Transactions on Information Theory,
Volume 58, Issue 11, pp. 7002-7017, (2012)

13. Chang, D., Ghosh, M., Sanadhya, S. K., Biclique cryptanalysis of full round AES
with reduced data complexity, IIITD-TR-2013-001 Report, 2013.

14. Bogdanov, A., Kavun, E. B., Paar, C., Rechberger, C., and Yalcin, T., Better
than brute-force-optimized hardware architecture for efficient biclique attacks on
AES-128, SHARCS 2012.

15. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita T., and Shirai, T.:
Piccolo: An Ultra-Lightweight Blockcipher, CHES 2011, LNCS 6917, pp. 342-357,
Springer, Heidelberg, (2011)

16. Hong, D., Sung, J., Hong, S., Lim , J., Lee , S., Koo, B., Lee, C., Chang, D., Lee, J.,
Jeong, K., Kim, H., Kim, J., and Chee, S., HIGHT: A new block cipher suitable for
low-resource device, Cryptographic Hardware and Embedded Systems-CHES2006,
LNCS 4249, pp. 4659, Springer, Berlin, (2006)

Appendix A

Tables 2 and 3 show the key schadule of Piccolo block cipher. (rk2i, rk2i+1) are
16-bit round keys and (con802i , con

80
2i+1) and (con1282i , con

128
2i+1) are 16-bit round

constants for Piccolo-80 and Piccolo-128, respectively.

Title Suppressed Due to Excessive Length 23

Table 2. Key schedule of Piccolo-80

Piccolo-80

Whitening Keys
wk0 = kL0 ||kR1 , wk1 = kl1||kR0
wk2 = kL4 ||kR3 , wk3 = kL3 ||kR4

round i rk2i ⊕ con80
2i rk2i+1 ⊕ con80

2i+1 round i rk2i ⊕ con80
2i rk2i+1 ⊕ con80

2i+1

0 k2 k3 13 k4 k4
1 k0 k1 14 k0 k1
2 k2 k3 15 k2 k3
3 k4 k4 16 k0 k1
4 k0 k1 17 k2 k3
5 k2 k3 18 k4 k4
6 k0 k1 19 k0 k1
7 k2 k3 20 k2 k3
8 k4 k4 21 k0 k1
9 k0 k1 22 k2 k3
10 k2 k3 23 k4 k4
11 k0 k1 24 k0 k1
12 k2 k3

Table 3. Key schedule of Piccolo-128

Piccolo-128

Whitening Keys
wk0 = kL0 ||kR1 , wk1 = kl1||kR0
wk2 = kL4 ||kR7 , wk3 = kL7 ||kR4

round i rk2i ⊕ con128
2i rk2i+1 ⊕ con128

2i+1 round i rk2i ⊕ con128
2i rk2i+1 ⊕ con128

2i+1

0 k2 k3 16 k2 k7
1 k4 k5 17 k4 k3
2 k6 k7 18 k6 k5
3 k2 k1 19 k2 k1
4 k6 k7 20 k6 k5
5 k0 k3 21 k0 k7
6 k4 k5 22 k4 k3
7 k6 k1 23 k6 k1
8 k4 k5 24 k4 k3
9 k2 k7 25 k2 k5
10 k0 k3 26 k0 k7
11 k4 k1 27 k4 k1
12 k0 k3 28 k0 k7
13 k6 k5 29 k6 k3
14 k2 k7 30 k2 k5
15 k0 k1

24 S. Ahmadi et al.

Table 4. Key schedule of HIGHT (the ith byte of the master key K counting from
right, is shown with i itself.)

HIGHT

Whitening Keys
wk0 = 12, wk1 = 13, wk2 = 14, wk3 = 15
wk4 = 0, wk5 = 1, wk6 = 2, wk7 = 3

Round i sk4i+j � δ4i+j , j = 0, ..., 3 Round i sk4i+j � δ4i+j , j = 0, ..., 3

0 3,2,1,0 16 7,6,5,4

1 7,6,5,4 17 3,2,1,0

2 11,10,9,8 18 15,14,13,12

3 15,14,13,12 19 11,10,9,8

4 2,1,0,7 20 6,5,4,3

5 6,5,4,3 21 2,1,0,7

6 10,9,8,15 22 14,13,12,11

7 14,13,12,11 23 10,9,8,15

8 1,0,7,6 24 5,4,3,2

9 5,4,3,2 25 1,0,7,6

10 9,8,15,14 26 13,12,11,10

11 13,12,11,10 27 9,8,15,14

12 0,7,6,5 28 4,3,2,1

13 4,3,2,1 29 0,7,6,5

14 8,15,14,13 30 12,11,10,9

15 12,11,10,9 31 8,15,14,13

