
Cryptanalysis of the
Speck Family of Block Ciphers

Revision From October 9, 2013

Farzaneh Abed, Eik List, Stefan Lucks, and Jakob Wenzel

Bauhaus-Universität Weimar, Germany
{farzaneh.abed, eik.list, stefan.lucks, jakob.wenzel}@uni-weimar.de

Abstract. Simon and Speck are two families of ultra-lightweight block
ciphers which were announced by the U.S. National Security Agency
in June 2013. This paper presents differential and rectangle attacks for
almost all members of the Speck family of ciphers, where we target up
to 11/22, 12/23, 15/27, 15/29, and 18/34 rounds of the 32-, 48-, 64-, 96-,
and 128-bit version, respectively.

Keywords: Differential cryptanalysis, block cipher, lightweight cipher.

1 Introduction

Lightweight ciphers are optimized to operate on resource-constrained devices
such as RFID tags, smartcards, or FPGAs, that are limited with respect to their
memory, battery supply, and computing power. In such environments, hard- and
software efficiency is becoming more and more important. Besides ensuring effi-
ciency, preserving a reasonable security is a major challenge in this area that gets
a lot of attention and making it one of the ongoing research problem. During the
past five years, many block ciphers have been developed to address this prob-
lem, including but not limited to mCrypton [14], HIGHT [12], PRESENT [6],
KATAN [8], KLEIN [10], LED [11], and PRINCE [7].
In June 2013, the U.S. National Security Agency (NSA) contributed to this
ongoing research by proposing two ARX-based families of ultra-lightweight block
ciphers, called Simon and Speck, where the former is optimized for hardware
(like PRESENT, LED, or KATAN), and the latter for software implementations
(like KLEIN). Though, due to intensive optimizations in their round function and
the use of rotation constants, both families perform well in hard- and software.
The original paper of Simon and Speck presented only performance, specifica-
tions and implementation footprints [2,3], and was noticed by the cryptography
research community in the work by Saarinen and Engels [15] in Summer 2012.
The design team did not discuss any security assessment of these two ciphers
regarding their resistance against common attacks and left the task of analyzing
the security of their constructions to the research community.



Method Cipher Rounds Data Memory Time Ref.
Full Att. (CP) (Bytes)

Differential Speck32/64 22 10 229 216.0 229.2 Sec. 3
Speck48/72 22 12 245 224.0 245.3 Sec. 3
Speck48/96 23 12 245 224.0 245.3 Sec. 3
Speck64/96 26 15 261 232.0 261.1 Sec. 3
Speck64/128 27 15 261 232.0 261.1 Sec. 3
Speck96/96 28 15 289 248.0 289.1 Sec. 3
Speck96/144 29 15 289 248.0 289.1 Sec. 3
Speck128/128 32 17 2122 264.0 2122.1 Sec. 3
Speck128/192 33 17 2122 264.0 2122.1 Sec. 3
Speck128/256 34 17 2122 264.0 2122.1 Sec. 3

Rectangle Speck32/64 22 11 231.1 233.4 240.7 Sec. 4
Speck48/72 22 12 243.2 245.8 258.8 Sec. 4
Speck48/96 23 12 243.2 245.8 258.8 Sec. 4
Speck64/96 26 14 263.6 265.6 289.4 Sec. 4
Speck64/128 27 14 263.6 265.6 289.4 Sec. 4
Speck96/144 29 16 290.9 294.5 2135.9 Sec. 4
Speck128/192 33 18 2121.9 2125.9 2182.7 Sec. 4
Speck128/256 34 18 2121.9 2125.9 2182.7 Sec. 4

Table 1. Summary of our results on Speck. Att. = attacked, CP = chosen plaintexts,
Ref. = reference.

Contribution. In this paper, we analyze Speck regarding to its resistance
against differentials cryptanalysis. We show conventional key-recovery attacks
on round-reduced versions of almost all family variants. Thereupon, we mount
rectangle attacks where we use parts of our characteristics to extend the number
of attacked rounds for the larger versions of the cipher. A complete summary of
our results can be seen in Table 1.

Outline. In what follows, we first review the necessary details of Speck in
Section 2. The sections 3 and 4 present our differential and rectangle key-recovery
attacks. As a last part, we conclude our paper in Section 5. Prior, we list the
notations used throughout this paper.

2



n Word size.
2n State size.
k Size of the secret key in bits.
Pi, Ci Plaintext-ciphertext pair.
(Lr, Rr) Left (L) and right (R) halves of the state after encryption of Round r

in a Feistel-cipher.
Li The i-th (least-significant bit) in L, where i = 0 denotes the

least-significant bit.
∆i An n-bit (XOR) difference, where only the i-th bit is active. with

0 ≤ i ≤ n− 1 and ∆0 denotes the least significant bit.
∆i,[j] An n-bit truncated difference, where only the i-th bit is active and the

j-th bit is unknown.
∆r Difference after Round r.
∆r p−→

E
∆s A differential characteristic which yields the output difference ∆s with

probability p when encrypting over a (sub-)cipher E and starting
from an input difference ∆r.

2 Speck

The Speck2n/k family is a simple ARX-based Feistel network, which processes
the input as two words. At the beginning of each round, the left word of the
state is rotated by α bits to the left, before the right word is added modulo 2n

to that. Next, a round key Ki−1 is XORed to the left half. The right word is
then rotated by β bits to the right, before the left word is XORed to the right.
This procedure is depicted in Figure 1. The constants α and β are 8 and 3 for
most versions of the cipher, except for Speck32/64, which employs α = 7 and
β = 2.

Ri−1 i−1

Ki

Ri i

L

L

Ki−1 i−1l

Ki il

i+m−2l ...

iRF

Fig. 1. Schematic views on the round function (left) and the key schedule (right) of
Speck. RFi denotes the invocation of the round function, parametrized with i as the
key.

Differential Characteristics. We constructed differential characteristics for
Speck by using a branch-and-bound algorithm, as inspired by the work by
Alkhzaimi and Lauridsen [1]. Therefore, we started from differences with a sin-
gle active bit in the middle, and generate all possible output differences after

3



processing one round. In the following, we used the best output differences as
inputs to the next round to effectively prune the search tree. While this approach
can not consider all possible characteristics, it tries to regard those which are
most probable. Consequently, it does not necessarily deliver the exact proba-
bilites for our characteristics; however, it delivers useful lower bounds. Tables
5, 6, 7, 8, and 9 (see Appendix A) list our best found characteristics for the
individual versions of Speck in detail.

3 Differential Attacks on Speck

In the following, we describe our differentials analysis of Speck. Note that we
describe only the attack on Speck32/64 in detail since this version allows a
simple practical verification. For our attacks on the further versions of Speck,
we provide only the complexities.

3.1 Key-Recovery Attack on Speck32/64

In the following, we describe in brief an 10-round key-recovery attack on Speck
32/64. There, we use the characteristic from Table 5 over rounds 2− 9:

∆2 = (∆5,6,9,11, ∆0,2,9,14)
p≈ 2−24

←−−−−−−→
rounds 2−9

(∆1,3,5,15, ∆3,5,7,10,12,14,15) = ∆9.

Attack Procedure. In the following, we simply denote by A a probabilistic
algorithm or adversary which aims to recover the secret key for this cipher. The
full attacking procedure can be split into a collection, a key-guessing, and a
brute-force phase:

Collection phase:
1. Choose 228 pairs (Pi, P

′
i ) such that their difference after the first round is

Pi ⊕ P ′i = ∆2.
2. Collect the corresponding ciphertext pairs (Ci, C ′i) from a decryption oracle,

where Ci = EK(Pi) and C ′i = EK(P ′i ). Derive ∆L9
0−3, ∆R

9 and store all
pairs (Ci, C ′i) with ∆L9

0−3 = ∆3 and ∆R9 = ∆3,5,7,10,12,14,15 in a list C.

Key-guessing phase:
3. Initialize a list of 212 counters.
4. For all possible values of the 12 key bits K9

4−15:
– For all pairs (Ci, C ′i) ∈ C:
− Partially decrypt (Ci, C ′i) to the state after the encryption of Round

9, and derive ∆L9. If ∆L9 = ∆1,3,5,15, then increment the counter
for the current key candidate.

5. Output all keys as potentially correct which have a counter of at least four
associated to them.

6. Mark all pairs which yielded the correct ∆9 for the potentially correct key(s)
as correct pairs.

4



Brute-force phase:
7. Partially decrypt all correct pairs round by round the correct subkey bits
K9

0−3, K8, K7, and K6.

The probability that a pair follows our differential characteric is about 2−24.
Hence, the probability that no more than three correct pairs occur when using
Speck can be approximated by

Pr[false random] := PrPoisson[n = 228, p = 2−24, x ≤ 3] ≈ 9.31 · 10−5.

We also need to consider the probability of a false positive key. The probability
that a pair produces the ∆3 by random is 2−32. So, for one specific value of the
guessed keys, the probability that more than three false-positive pairs occur is

1− PrPoisson[n = 228, p = 2−32, x ≤ 3] ≈ 6.05 · 10−7.

Since A guesses 12 key bits, the probability that any key candidate produces
more than three false-positive pairs is about

Pr[false real] := 1− PrPoisson[n = 212, p = 6.05 · 10−7, x ≤ 0] ≈ 2.47 · 10−3.

Hence, the error probability of A is very close to 0, if it interprets a key candidate
as the secret key when at least four pairs satisfy ∆9.

Attack Complexity. Our attack requires 229 chosen plaintexts. The computa-
tional effort for the collection phase, Ccollect, is equivalent to 229 full encryptions
performed by an encryption oracle. The filtering effort, Cfilter, is twofold. First,
we partially decrypt all ciphertext pairs over the final round. There, we have a
20-bit filter from the four least-significant bits of ∆L9 and the full ∆R9. Assum-
ing that all differences occur uniformly at random, we can say that we expect to
have 228−20 = 28 remaining pairs afterwards. Thereupon, for 212 values ofK9

4−15,
we derive the remaining 28 pairs and derive ∆L9. In the brute-force phase, the
adversary then partially decrypts the remaining pairs round by round to identify
the correct round keys. The computational complexity is given by

229︸︷︷︸
Ccollect

+229 · 1
10

+ 28 · 212 · 1
10︸ ︷︷ ︸

Cfilter

+
(
24 + 216 + 216 + 216

)
· 28 · 1

10︸ ︷︷ ︸
Cbruteforce

≈ 229.16

encryptions. Concerning the memory complexity, A can store either a list of
counters for all key candidates or a list of all plaintext pairs – the former option
implies a lower memory complexity of 212 bytes for the first filtering phase and
216 bytes for the counters of the round keys in the brute-force phase.
For the further versions of Speck, we can apply a similar procedure. The pa-
rameters for these attacks are summarized in Table 2.

5



State Key Rounds Pr[diff.] Pairs Filter Thresh.
size size pairs

32 64 10 2−24.00 228 20 > 3

48 all 12 2−40.55 244 25 > 3

64 all 15 2−55.90 260 35 > 3

96 all 15 2−84.00 288 54 > 3

128 all 17 2−117.28 2121 67 > 3

Table 2. Parameters of our differential attacks. Filter represents the number of bits
to filter after inverting the final round with a all-zero round key.

4 Rectangle Attacks on Speck

4.1 Boomerang and Rectangle Attacks

Boomerangs [16] are differential-based attacks that allow an adversary to con-
catenate two “short” differential characteristics, which is beneficial for primitives
where “long” characteristics may have a very low probability. Boomerang attacks
have been first introduced by Wagner in 1999 [16], and were later transformed
into a chosen-plaintext attack by Kelsey, Kohno, and Schneier [13], which they
called it an amplified boomerang. In 2001, Biham, Dunkelman, and Keller added
further improvements and renamed it to the rectangle attack [4]. In 2002, the
same authors made more improvements for boomerang- and rectangle-based
key-recovery attacks [5]. In 2010, Dunkelman, Keller, and Shamir [9] extended
the technique by introducing the sandwich attack, where the adversary can in-
sert a round between the two sub-ciphers if they have a differential with high
characteristic probability.

Boomerang Attacks. In the basic setting of the attack, an adversary A first
decomposes a given cipher E into two sub-ciphers E = E2 ◦ E1, where it uses
two differentials

α
p−−→
E1

β and γ q−−→
E2

δ,

with probability p and q, respectively. Then, A collects a pair (P, P ′) with P ⊕
P ′ = α and asks an encryption oracle for their corresponding ciphertexts (C,C ′).
As a next, it derives two new ciphertexts D = C ⊕ δ and D′ = C ′ ⊕ δ, and asks
the decryption oracle for their corresponding plaintexts (Q,Q′). If Q ⊕ Q′ =
α, then the adversary obtains a correct quartet. Each quartet (P, P ′, Q,Q′),
has a probability of p2, where their respective outputs after E1, (R,R′, S, S′),
applies: R ⊕ R′ = β and S ⊕ S′ = β. At this point, one is interested in the
case when R ⊕ S = γ and automatically R′ ⊕ S′ = γ , which is called the
boomerang property. With probability q2, the ciphertexts of such a quartet will
produce the differences C ⊕D = δ and C ′ ⊕D′ = δ and one obtains the correct
quartet. Assuming that the adversary collects m pairs with difference α, then,
the expected number of correct quartets is m2 · 2−n · (pq)2.

6



For a random permutation, the number of correct quartets would be m2 · 2−2n.
So, in order to mount the attack, it must apply that pq > 2−n/2. However, in
this case, the adversary can count more correct quartets than the one would
expect from a random permutation and it can distinguish E from random.

Amplified Boomerang/Rectangle Attacks. The standard boomerang pro-
cedure explained above represents an adaptive chosen plain-/ciphertext attack.
Since this is a less practical scenario, Kelsey, Kohno, and Schneier developed
amplified boomerangs which are pure chosen-plaintext attacks.
Following their method, the adversary chooses 2(n+2)/2

pq plaintext pairs and let
the oracle to encrypt them. Since any two pairs can be used to form a quartet,
this gives the adversary 2n+1

p2q2 possible quartets. The difference γ holds with
probability 2−n after E0. Thus, one can expect a few correct quartets for which
holds C ⊕D = C ′ ⊕D′ = δ.
A first improvement to the boomerang was already considered by Wagner. In-
stead of requiring a single difference γ at the end of E0, the attack can be
mounted with all possible values γ′ for which apply that γ′ → δ. As a sec-
ond improvement, Biham et al. proposed to consider all differences β′ for which
applies α → β′ as long as β 6= γ. Hence, the probability of a correct quartet
increases to (p̂q̂)2, with

p̂ =

√∑
β′

Pr2[α→ β′] and q̂ =

√∑
γ′

Pr2[γ′ → δ].

4.2 Rectangle Attack on Speck32/64

In the remainder of this section, we explain our rectangle attack on 11-round
Speck32/64. Since our attacks on the further versions of Speck work similar,
we only specify the used trails and their complexities in Table 4.
For α→ β′ and γ′ → δ, we use the following trails:

α = (∆11,13, ∆4)
p̂≥ 2−8.01

−−−−−−→
E1

β′ and γ′ q̂≥ 2−4.56

−−−−−−→
E2

(∆15, ∆1,3,10,15) = δ.

E1 represents the rounds 2-6, and E2 the rounds 7-10. Again, we can split the
attacking procedure into a collection, a key-guessing, and a brute-force phase:

Collection phase:
1. Initialize two empty hash tables C, D, and a list Q.
2. Choose 2(n+2)/2

p̂q̂ = 234/2

2−8.012−4.56 = 229.57 plaintext pairs (P, P ′) s.t. their dif-
ference after the first round is α.

3. Ask an encryption oracle for their corresponding ciphertexts (C,C ′) and
decrypt their right word over the inverse final round to the state after
Round 10, (R10, R′

10
). Store them in C. XOR the right part of δ, to (R10 ⊕

∆1,3,10,15, R
′10 ⊕∆1,3,10,15), and store these in D.

7



4. Prior, lookup if there already is an entry in D under the index (R10 ⊕
∆1,3,10,15, R

′10⊕∆1,3,10,15). If yes, label the existing ciphertext pair in D as
(D,D′) and store the quartet (C,C ′, D,D′) in Q. Since this event requires a
match in 16 bits of the first, and 16 bits of the second pair, we can approx-
imate the average number of expected quartets with 22·29.57−1−32 ≈ 226.14.

Filtering phase:
5. Initialize a table K of 216 counters for all subkey bits in K10.
6. For all possible values of the subkeys K10:

6.1 Decrypt all quartets over the final round and check whether their dif-
ference ∆L10 is equal to ∆15. If yes, then increment the counter for the
current key candidate.

7. Output the key candidate with the maximal count in K.

Brute-force phase:
8. Partially decrypt round by round of the remaining pairs to identify the fur-

ther round keys K9, K8, and K7.

Attack Complexity. The attack requires 230.07 chosen plaintexts. The adver-
sary has to store the corresponding ciphertexts, the remaining 226.14 quartets
and a list of 216 counters for all round-key candidates. So, we can approximate
the required memory by (230.07+4 ·226.14) ·32/8+216 ≈ 232.4 bytes. The compu-
tational effort for the collection phase, Ccollect consists of 230.07 full encryptions
performed by the oracle, and 230.07 half-round decryptions. Additionally, the ad-
versary needs 230.07 memory accesses to look up potential quartets and 4 · 226.14
memory accesses in average to store the remaining quartets. To use consistent
units, we overestimate a memory access by a half-round computation. In the
filtering phase, it has to perform 216 · 4 · 226.14 = 244.14 half-round decryptions
to obtain the difference in the left word after Round 10. Summing up, we have

230.07 + (230.07 + 230.07 + 4 · 226.14) · 1
22︸ ︷︷ ︸

Ccollect

+244.14 · 1
22︸ ︷︷ ︸

Cfilter

+216 + 216 + 216︸ ︷︷ ︸
Cbruteforce

≈ 240.68

encryptions. We can apply a similar procedure to mount attacks on the further
versions of Speck. The parameters of our attacks with error probabilities of
the adversary are summarized in Table 3. The used α- and δ-differences for our
rectangle attacks on the individual versions of Speck are summarized in Table 4.

5 Conclusion

In this work, we analyzed the security of the lightweight block cipher family
Speck by applying differential and rectangle as summarized in Table 1. To the
best of our knowledge, our results are the first security analysis for Speck, since
the proposal did not include any form of security assessment. We could easily

8



State Key Rounds p̂ q̂ Data Memory Time
size size Full Att. E1 E2 (CP) (bytes)

32 64 22 11 5 4 2−8.01 2−4.56 230.1 232.4 240.7

48 72 22 12 5 5 2−9.06 2−9.11 243.2 245.8 258.8

48 96 23 12 5 5 2−9.06 2−9.11 243.2 245.8 258.8

64 96 26 14 6 6 2−15.02 2−14.58 263.6 265.6 289.4

64 128 27 14 6 6 2−15.02 2−14.58 263.6 265.6 289.4

96 144 29 16 7 7 2−22.46 2−19.39 290.9 294.5 2135.9

128 192 33 18 8 8 2−28.47 2−28.39 2121.9 2125.9 2182.7

128 256 34 18 8 8 2−28.47 2−28.39 2121.9 2125.9 2182.7

Table 3. Parameters of our rectangle attacks on Speck2n/k. CP = chosen plaintexts.

Cipher α δ

Speck32/64 (∆11,13,∆4) (∆15,∆1,3,10,15)

Speck48/k (∆12,15,∆4) (∆2,7,23,∆5,7,18,23)

Speck64/k (∆9,17,20,∆1,9) (∆1,14,30,∆4,14,25,30)

Speck96/k (∆9,17,23,∆1,9,12) (∆5,23,31,39,47,∆2,5,8,23,31,34,39,45,47)

Speck128/k (∆6,22,25,28,31,∆9,14,20,62) (∆2,5,8,31,50,63,∆0,11,31,42,53,58,63)

Table 4. Differential characteristics for our rectangle attacks.

find conventional differentials for all versions of the cipher which helped us to
mount differential and boomerang attacks on these versions with up to half of
the total number of rounds.
Since Speck has a very simple ARX structure, any new attack on generalized
ARX ciphers such as ThreeFish would be a threat to the security of Speck.
However, one positive security aspect of the NSA construction is the round-wise
key addition and the simple, yet powerful key schedule, which protects the cipher
very effectively against slide and meet-in-the-middle attacks over a reasonable
number of rounds, as we noted during our studies. The security analysis in this
paper can be seen as a starting point for upcoming research on the Speck block
cipher family. It would be interesting to see further investigation by using more
sophisticated methods of cryptanalysis or improvements of our current results.

6 Acknowledgment

We would like to thank Ivica Nikolić for helpful comments.

References

1. Hoda A. Alkhzaimi and Martin M. Lauridsen. Cryptanalysis of the SIMON Family
of Block Ciphers. Cryptology ePrint Archive, Report 2013/543, 2013. http://

9

http://eprint.iacr.org/


eprint.iacr.org/.
2. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,

and Louis Wingers. Performance of the SIMON and SPECK Families of
Lightweight Block Ciphers. Technical report, National Security Agency, May 2012.

3. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. The SIMON and SPECK Families of Lightweight Block Ci-
phers. Cryptology ePrint Archive, Report 2013/404, 2013. http://eprint.iacr.
org/.

4. Eli Biham, Orr Dunkelman, and Nathan Keller. The Rectangle Attack - Rect-
angling the Serpent. In Birgit Pfitzmann, editor, EUROCRYPT, volume 2045 of
Lecture Notes in Computer Science, pages 340–357. Springer, 2001.

5. Eli Biham, Orr Dunkelman, and Nathan Keller. New Results on Boomerang and
Rectangle Attacks. In Joan Daemen and Vincent Rijmen, editors, FSE, volume
2365 of Lecture Notes in Computer Science, pages 1–16. Springer, 2002.

6. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, CHES, volume 4727 of Lecture Notes in Computer Science,
pages 450–466. Springer, 2007.

7. Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Kneze-
vic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian
Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalcin. PRINCE -
A Low-Latency Block Cipher for Pervasive Computing Applications - Extended
Abstract. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT, volume 7658
of Lecture Notes in Computer Science, pages 208–225. Springer, 2012.

8. Christophe De Cannière and Orr Dunkelman and Miroslav Knezevic. KATAN and
KTANTAN - A Family of Small and Efficient Hardware-Oriented Block Ciphers.
In CHES, pages 272–288, 2009.

9. Orr Dunkelman, Nathan Keller, and Adi Shamir. A Practical-Time Related-Key
Attack on the KASUMI Cryptosystem Used in GSM and 3G Telephony. In Tal
Rabin, editor, CRYPTO, volume 6223 of Lecture Notes in Computer Science, pages
393–410. Springer, 2010.

10. Zheng Gong, Svetla Nikova, and Yee Wei Law. KLEIN: A New Family of
Lightweight Block Ciphers. In Ari Juels and Christof Paar, editors, RFIDSec,
volume 7055 of Lecture Notes in Computer Science, pages 1–18. Springer, 2011.

11. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The
LED Block Cipher. In Bart Preneel and Tsuyoshi Takagi, editors, CHES, volume
6917 of Lecture Notes in Computer Science, pages 326–341. Springer, 2011.

12. Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bonseok Koo,
Changhoon Lee, Donghoon Chang, Jaesang Lee, Kitae Jeong, Hyun Kim, Jongsung
Kim, and Seongtaek Chee. HIGHT: A New Block Cipher Suitable for Low-Resource
Device. In Louis Goubin and Mitsuru Matsui, editors, CHES, volume 4249 of
Lecture Notes in Computer Science, pages 46–59. Springer, 2006.

13. John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified Boomerang Attacks
Against Reduced-Round MARS and Serpent. In Fast Software Encryption, pages
75–93, 2000.

14. Chae Hoon Lim and Tymur Korkishko. mCrypton - A Lightweight Block Cipher
for Security of Low-Cost RFID Tags and Sensors. In JooSeok Song, Taekyoung
Kwon, and Moti Yung, editors, WISA, volume 3786 of Lecture Notes in Computer
Science, pages 243–258. Springer, 2005.

10

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/


15. Markku-Juhani O. Saarinen and Daniel Engels. A Do-It-All-Cipher for RFID:
Design Requirements (Extended Abstract). Cryptology ePrint Archive, Report
2012/317, 2012. http://eprint.iacr.org/.

16. David Wagner. The Boomerang Attack. In Lars R. Knudsen, editor, FSE, volume
1636 of Lecture Notes in Computer Science, pages 156–170. Springer, 1999.

A Differential Characteristics

Rd. ∆Li ∆Ri log2(Pr)

0 ∆5,6,9,11 ∆0,2,9,14

1 ∆0,4,9 ∆2,9,11
−5

2 ∆11,13 ∆4
−9

3 ∆6 0 −11

4 ∆15 ∆15
−11

5 ∆8,15 ∆1,8,15
−12

6 ∆15 ∆1,3,10,15
−15

7 ∆1,3,8,10,15 ∆5,8,10,12,15
−18

8 ∆1,3,5,15 ∆3,5,7,10,12,14,15
−24

Table 5. Our used differential characteristic for Speck32/64.

Rd. ∆Li ∆Ri log2(Pr)

0 ∆0,8,9,11,19,22 ∆0,3,14,16,19

1 ∆1,11,12,19 ∆1,3,6,11,17,22
−7

2 ∆1,4,6,22 ∆9,14,20,22
−14.55

3 ∆9,17,23 ∆1,9,12
−19.55

4 ∆12,15 ∆4
−23.55

5 ∆7 0 −25.55

6 ∆23 ∆23
−25.55

7 ∆15,23 ∆2,15,23
−26.55

8 ∆2,7,23 ∆5,7,18,23
−29.55

9 ∆5,7,15 ∆2,5,7,8,10,15,21
−33.55

10 ∆2,5,8,10,15 ∆0,2,11,13,15,18,23
−40.55

Table 6. Our used differential characteristic for Speck48/k.

11

http://eprint.iacr.org/


Rd. ∆Li ∆Ri log2(Pr)

0 ∆6,17,22,28 ∆14,17,30

1 ∆9,17,20 ∆1,9
−5

2 ∆12 ∆4
−8

3 0 ∆7
−9

4 ∆30 ∆30
−10

5 ∆22,30 ∆1,22,30
−12

6 ∆1,14,30 ∆4,14,25,30
−16

7 ∆4,6,7,14,22,30 ∆1,4,6,14,17,22,28,30
−22.93

8 ∆1,4,7,17,31 ∆9,20,25
−31.82

9 ∆20,23,28,31 ∆12,20,31
−36.9

10 ∆15,23,31 ∆2,31
−40.9

11 ∆2,7,15,23,31 ∆5,7,15,23,31
−44.9

12 ∆5,26 ∆2,5,8,10,18
−49.9

13 ∆2,5,8,10,29 ∆2,10,11,13,21,29
−55.9

Table 7. Our used differential characteristic for Speck64/k.

Rd. ∆Li ∆Ri log2(Pr)

0 ∆1,5,7,19,29,37,41,43,45 ∆0,11,19,21,22,29,32,33,37,41,44,45

1 ∆0,19,22,32,35,44,47 ∆3,14,19,24,25,36,40
−13

2 ∆3,11,19,25,27,39 ∆3,6,11,17,19,22,25,28,43
−23

3 ∆6,22,25,28,31 ∆9,14,20,46
−33

4 ∆9,17,23 ∆1,9,12
−39

5 ∆12,15 ∆4
−43

6 ∆7 0 −45

7 ∆47 ∆47
−45

8 ∆39,47 ∆2,39,47
−46

9 ∆2,31,47 ∆5,31,42,47
−49

10 ∆5,23,31,39,47 ∆2,5,8,23,31,34,39,45,47
−54

11 ∆2,5,8,15,34,47 ∆0,11,15,26,37,42,47
−63

12 ∆7,11,15,37,39,45,47 ∆2,3,7,11,14,15,18,29,37,39,40,47
−72

13 ∆2,11,14,15,18,31,40 ∆5,6,10,11,15,17,21,31,32,42,43
−84

Table 8. Our used differential characteristic for Speck96/k.

12



Rd. ∆Li ∆Ri log2(Pr)

0 ∆6,10,13,26,35,42,45,54,57,58 ∆2,18,29,34,35,46,50,61,62

1 ∆5,27,29,35,37,49,61 ∆0,1,21,27,29,32,35,38,53,61
−13

2 ∆0,19,22,32,35,44,47 ∆3,14,19,24,25,36,56
−25.66

3 ∆3,11,19,27,33 ∆3,6,7,11,19,22,59
−35.36

4 ∆6,22,25 ∆9,10,14,62
−44.04

5 ∆9,17 ∆1,9,12,13
−49.72

6 ∆12,15,16 ∆4
−58.72

7 ∆7 ∆
−61.72

8 ∆63 ∆63
−61.72

9 ∆55,63 ∆2,55,63
−62.72

10 ∆2,47,63 ∆5,47,58,63
−65.72

11 ∆5,39,47,55,63 ∆2,5,8,39,47,50,55,61,63
−70.72

12 ∆2,5,8,31,50,63 ∆0,11,31,42,53,58,63
−79.72

13 ∆11,23,31,53,55,61,63 ∆2,3,11,14,23,31,34,45,53,55,56,63
−88.72

14 ∆2,11,14,31,34,47,56,63 ∆5,6,11,17,26,31,37,47,48,58,59,63
−102.31

15 ∆3,5,11,17,23,31,37,39,47,55,59,63 ∆2,3,5,8,9,11,14,17,20,23,29,31,34
37,39,40,47,50,51,55,59,61,62,63

−117.28

Table 9. Our used differential characteristic for Speck128/k.

13


	Cryptanalysis of theSpeck Family of Block Ciphers
	Introduction
	Speck
	Differential Attacks on Speck
	Key-Recovery Attack on Speck32/64

	Rectangle Attacks on Speck
	Boomerang and Rectangle Attacks
	Rectangle Attack on Speck32/64

	Conclusion
	Acknowledgment
	Differential Characteristics


