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On Algebraic Immunity of Trace Inverse Functions
over Finite Fields with Characteristic Two

Xiutao Feng and Guang Gong

Abstract—The trace inverse function Tr(λx−1) over the finite
field F2n is a class of very important Boolean functions and
has be used in many stream ciphers, for example, SFINKS,
RAKAPOSHI, the simple counter stream cipher presented by W.
Si and C.S. Ding, etc. In order to evaluate the security of those
algorithms in assistance to (fast) algebraic attacks, it is essential to
algebraic properties of Tr(λx−1). However, currently only some
bounds on algebraic immunity of Tr(λx−1) are given in public
literature. In this work we give the exact value of Tr(λx−1) over
finite fields F2n , that is, AI(Tr(λx−1)) = b

√
nc+ d n

b
√
nce − 2 =

d2
√
ne − 2, where n ≥ 2, λ ∈ F2n and λ 6= 0, which is just the

upper bound given by Y. Nawaz et al. And at the same time
our result shows that D.K. Dalai’ conjecture on the algebraic
immunity of Tr(λx−1) is correct. What is more, we further
demonstrate some weak properties of Tr(λx−1) in resistance to
fast algebraic attacks.

Index Terms—Trace inverse function; Algebraic immunity;
Fast algebraic attacks.

I. INTRODUCTION

Boolean functions have wide applications in cryptogra-
phy [1]. An important topic in symmetric ciphers is the
discussion of cryptographic properties of Boolean functions
and constructions of Boolean functions with good crypto-
graphic properties, which are mainly motivated by nonlinear
filter/combiner generators (mainly corresponding to single-
output Boolean functions) in stream ciphers and S-boxes
(mainly corresponding to multi-output Boolean functions)
in block ciphers. Since 70’s in the 20th century, Boolean
functions have been paid attention widely, and so far many
fruitful and profound results on Boolean functions have been
achieved [2].

The inverse function x−1 over the finite field F2n is an
important multi-output Boolean function, which is first intro-
duced by K. Nyberg [3]. The inverse function x−1 possesses
many good cryptographic properties, including permutation,
high algebraic degree, high nonlinearity, almost optimal d-
ifferential uniformity, etc, and has been adopted in many
symmetric algorithms, for example, AES [4] in block ciphers,
SNOW 2.0/3G [5], [6], ZUC [7] in stream ciphers, and so on.

The trace function Tr(λx) over the finite field F2n is
another important Boolean function, which characters all linear
functions from extension fields to base fields [8]. The com-
posite Tr(λx−1) of these two functions has been adopted by
many stream ciphers, including SFINKS [9](eStream project),
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RAKAPOSHI [10], the simple counter stream cipher proposed
by W. Si and C.S. Ding [11].

Recently an important progress in cryptanalysis areas is
algebraic attacks and fast algebraic attacks presented by N.
Courtois and W. Meier [12], [13]. Algebraic attacks and fast
algebraic attacks are very powerful analysis tools and can be
applies to almost all cryptographic algorithms [14], [15], [16].
In order to resist against algebraic attacks, the concept of
the algebraic immunity is introduced [12] and has been got
attention widely [17], [18], [19], [20]. Therefore it is necessary
to discuss the algebraic immunity of Tr(λx−1) in the sense of
both itself cryptographic properties and security evaluations
of those adopting them as a building component in resistance
to algebraic attacks. In this paper we mainly deal with the
algebraic immunity of Tr(λx−1).

A. Known results on the algebraic immunity of Tr(λx−1)

In FSE 2006 Y. Nawaz et al [21] gave an upper bound of
the algebraic immunity of Tr(λx−1) over F2n by multiplying
a very special Boolean function, that is,

AI(Tr(λx−1)) ≤ b
√
nc+ d n

b
√
nc
e − 2, (1)

where λ ∈ F2n and λ 6= 0, AI(Tr(λx−1)) denotes the
algebraic immunity of Tr(λx−1), which will be defined in the
next section.

In 2008 V.V. Bayev [22] further provided a lower bound
of the algebraic immunity of Tr(λx−1) when n ≥ 5 and
constructed a large class of Boolean functions defined by their
trace form with algebraic immunity O(

√
n), that is,

AI(Tr(λx−1)) ≥ b2
√
n+ 4c − 4. (2)

It is easy to see that the lower bound given by V.V. Bayev is
bounded by a constant difference no more than 4 compared
to the upper bound given by Y. Nawaz et al.

Recently D.K. Dalai [23] (See IACR eprint 2013/273)
presented a method of computing algebraic immunities by
means of incident matrices and utilized it to verify the upper
bound given by Y. Nawaz et al when n ≤ 21. On the basis of
experiments, he further conjectured the algebraic immunity of
Tr(λx−1) just arrives the upper bound given by Y. Nawaz et
al, that is,

Conjecture 1 (Dalai’s Conjecture):

AI(Tr(λx−1)) = b
√
nc+ d n

b
√
nc
e − 2. (3)
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B. Main works in the paper

Inspired by V.V. Bayev’s work [22], we introduce the
concept of mono-integers in this paper. Based on mono-
integers, two main contributions are made: one is to give the
exact value of algebraic immunity of Tr(λx−1), see Theorem
1, which just arrives the upper bound given by Y. Nawaz et al,
and at the same time shows that Dalai’s conjecture is correct;
the other is to demonstrate some weak properties of Tr(λx−1)
in resistance to fast algebraic attacks, see Propositions 3 and
4 in Section 5.

Theorem 1 (Main Theorem): Let Tr(λx−1) be the trace in-
verse function over finite fields F2n , where n ≥ 2, λ ∈ F2n

and λ 6= 0. Then

AI(Tr(λx−1)) = b
√
nc+ d n

b
√
nc
e − 2 = d2

√
ne − 2. (4)

C. The organization of the paper

The rest of the paper is organized as below: In Section
2 some preliminaries including basic concepts and notations
are provided. In Section 3 a key concept, i.e., mono-integers,
is introduced, and then some properties on mono-integers
are derived. Based on mono-integers, an entire proof of the
main theorem is given in Section 4, and further some weak
properties of Tr(λx−1) in resistance against fast algebraic
attacks are demonstrated in Section 5.

II. PRELIMINARIES

A. Boolean functions

Let F2 be the binary field with elements 0 and 1. For a given
integer n ≥ 2, we denote by Zn, Fn2 and F2n the residue class
ring modulo n, the vector space of dimension n over F2 and
the finite field with 2n elements respectively.

Let f(x0, x1, · · · , xn−1) be a mapping from Fn2 to F2,
which is called an n-variables Boolean function. Denote by
Bn the set of all possible n-variables Boolean functions. For
any f(x0, x1, · · · , xn−1) ∈ Bn, f(x0, x1, · · · , xn−1) can be
uniquely represented as a multivariate polynomial over F2:

f(x0, x1, · · · , xn−1) =
∑
I⊆Zn

cI

(∏
i∈I

xi

)
, cI ∈ F2, (5)

which is called the algebraic normal form of
f(x0, x1, · · · , xn−1). The algebraic degree of
f(x0, x1, · · · , xn−1), denoted by deg(f(x0, x1, · · · , xn−1)),
is defined as

deg(f(x0, x1, · · · , xn−1)) = max{|I||I ⊆ Zn and cI 6= 0},

where |I| means the size of the set I .
Let φ be an arbitrary isomorphism from Fn2 onto F2n . Then

f(φ−1(x)) =

2n−1∑
k=0

ckx
k, ck ∈ F2n

is called a polynomial representation of f(x0, x1, · · · , xn−1)
over F2n . We write f(φ−1(x)) as f(x) in short without con-
fusion. For distinguishing from the degree of the polynomial
f(x), we call the algebraic degree of f(φ−1(x)) the Boolean

algebraic degree of f(x), denoted by degB(f(x)). It is easy
to see that

degB(f(x)) = deg(f(φ−1(x)))

= max{wH(k)|ck 6= 0, 0 ≤ k ≤ 2n − 1},

where wH(k) denotes the Hamming weight of k in the binary
representation.

B. Trace inverse function

Let Tr(x) be the trace function over F2n , which is defined
as

Tr(x) =
n−1∑
i=0

x2
i

.

The trace function Tr(x) is a linear Boolean function from
F2n to F2. Let x−1 be the inverse function over F2n . In this
paper we make convention that 0−1 = 0 and 00 = 0 (here 0
denotes the zero element in F2 or F2n ). Then the trace inverse
function Tr(λx−1) is written as

Tr(λx−1) =
n−1∑
i=0

(λx−1)2
i

=

n−1∑
i=0

λ2
i

x−2
i

.

For any nonzero λ ∈ F2n , it is easy to verify that Tr(λx−1)
is a Boolean function over F2n and has the Boolean algebraic
degree n− 1.

One of main works in this paper is to determine the
algebraic immunity of Tr(λx−1) over F2n , which is defined
as the minimal Boolean algebraic degree of nonzero annihi-
lators f(x) of Tr(λx−1) or Tr(λx−1) + 1, and denoted by
AI(Tr(λx−1)). For any given Boolean function f(x) with
degB(f(x)) = d, where d is a positive integer, denote

Dt(f) = { 0 ≤ k ≤ 2n − 1 | wH(k) = t, ck 6= 0 } , 0 ≤ t ≤ d.

So f(x) can be written as

f(x) =

d∑
t=0

∑
k∈Dt(f)

ckx
k.

Note that x2
n

= x for any x ∈ F2n , we have

(Tr(λx−1) + δ)f(x)

=

d∑
t=0

∑
k∈Dt(f)

ck

(
δxk +

n−1∑
i=0

λ2
i

xk−2
i mod(2n−1)

)
,(6)

where δ ∈ F2.
Our main idea is to observe when the monomial

xk−2
i mod(2n−1) occurs only one time in the expansion of

(Tr(λx−1) + δ)f(x). If there exists such an integer k such
that xk−2

i mod(2n−1) occurs exactly one time in equality (6),
then we have (Tr(λx−1) + δ)f(x) 6= 0, that is, f(x) must be
not an annihilator of both Tr(λx−1) and Tr(λx−1) + 1.
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C. Loop runs of integers

For a given integer 0 < k < 2n − 1, we are interest-
ed in its loop runs in the binary representation. Set k =
k[n−1]k[n−2] · · · k[1]k[0] =

∑n−1
i=0 k[i]2

i, where k[i] means the
i-th bit of k in the binary representation and takes 0 or 1 for
0 ≤ i ≤ n−1. Joint all bits of k head to tail and form a circle.
We call some consecutive 1s (or 0s) in the circle a loop one

(or zero) run of k, and denote by b

x︷ ︸︸ ︷
b · · · b b the x successive

b’s, where b = 0 or 1, b means the complement of b, and x
is called the length of the loop b run. For any given integer
0 < k < 2n − 1, we only focus on the number of loop one
(or zero) runs, the maximal length of loop one runs and the
maximal length of loop zero runs of k, denoted by τ(k), r(k)
and s(k) respectively.

Example 1: Set n = 8 and k = 26 = (00011010)2. Then
11 and 1 are two loop one runs of 26, and 0000 and 0 are two
loop zero runs of 26. So τ(26) = 2, r(26) = 2 and s(26) = 4.

III. MONO-INTEGERS

For two given integers n ≥ 4 and 1 ≤ d < n, in this section
we will be interested in which integers 0 < k < 2n − 1 of
weight d and i ∈ Zn make the monomial xk−2

i mod(2n−1)

occur exactly one time in the expansion of (Tr(λx−1)+δ)f(x).
In order to character the above feature, we introduce a concept
on mono-integers.

Definition 1: Let n and d be two integers such that n ≥ 4
and 1 ≤ d < n. An integer 0 < k < 2n − 1 is called a mono-
integer of size n and weight d if it meets the following two
conditions:

1) wH(k) = d; and
2) there exists an integer i ∈ Zn such that for any 0 <

k′ < 2n − 1 with wH(k′) ≤ d and j ∈ Zn, if

k − 2i ≡ k′ − 2j mod(2n − 1),

then k = k′ and i = j.
For any given n and d, denote by Mn,d the set of all

mono-integers of size n and weight d. Here we provide some
properties on k and i mentioned in Definition 1, which will be
used in the next section. For simplicity, throughout the paper
we will make convention that the addition and subtraction on
the exponents of monomials are done in the residue class ring
modulo (2n − 1). So k − 2i mod(2n − 1) can be written as
k−2i in short, similarly k−2i+2j mod(2n−1) for k−2i+2j ,
and so on.

Lemma 1: Let k ∈Mn,d and i be mentioned as Definition
1. When d ≥ 2, we have

1) k[i+1] = k[i] = k[i−1] = 0; and
2) wH(k − 2i) > d.

Proof: Since Item 2 can be derived directly from Item 1, we
only prove Item 1. By Condition 2 in Definition 1, we have
wH(k − 2i + 2j) > d for any i 6= j ∈ Zn. First we claim
k[i] = 0. This is because that if k[i] = 1, we take j such
that k[j] = 0, then wH(k − 2i + 2j) = d. A contradiction.
Second, if k[i+1] = 1, we can always take j 6= i such that
(k − 2i)[j] = 1 due to d ≥ 2. Then wH(k − 2i + 2j) ≤ d.
A contradiction. Finally, if k[i−1] = 1, take j = i − 1, and

then we have wH(k − 2i + 2j) = wH(k − 2i−1) = d − 1. A
contradiction. So Item 1 holds. �

Corollary 1: When d ≥ 2, we have s(k) ≥ 3 for any k ∈
Mn,d.

In order to check k ∈ Mn,d, in practice we only need to
check whether some i’s indicating the second zero position in
the maximal loop zero runs of k meet Condition 2 in Definition
1 or not, which is illustrated in the following figure:

· · · 1
s(k)︷ ︸︸ ︷

0 · · · 0
i
0 1 · · · .

Roughly speaking, if one of such i’s does meet Condition 2
in Definition 1, then k ∈ Mn,d, otherwise, k 6∈ Mn,d. More
precisely, we have the following conclusion on k and i.

Lemma 2 (n ≥ 4): For any given 0 < k < 2n − 1 with
wH(k) = d, k ∈ Mn,d if and only if either of the following
two conditions holds

1) s(k) ≥ r(k) + 2; or
2) s(k) = r(k) + 1, r(k) ≥ 2 and k contains exactly one

maximal loop one run which is just the left neighbor of
some maximal loop zero run of k.

Proof: When d = 1, since n ≥ 4, thus s(k) ≥ 3, and when
d ≥ 2, by Corollary 1 we have s(k) ≥ 3 as well if k ∈Mn,d.
Therefore below we only consider the case s(k) ≥ 3. In this
case we can take i as indicated below

· · · 1
s(k)︷ ︸︸ ︷

0 · · · 0
i
0 1 · · · .

Then k − 2i can be written as

· · · 0
s(k)−1︷ ︸︸ ︷
1 · · · 1

i
01 · · · ,

and

wH(k − 2i) = (d− 1) + (s(k)− 1) = d+ s(k)− 2.

Note that for any j ∈ Zn, we have

wH(k − 2i + 2j) ≥ wH(k − 2i)− (r(k − 2i)− 1)

= d+ s(k)− 1− r(k − 2i),

where the equality holds if and only if j’s are token as
indicated below:

k − 2i k − 2i + 2j

· · · 0
r(k−2i)︷ ︸︸ ︷
1 · · · 1

j
0 · · · ⇒ · · · 1

r(k−2i)︷ ︸︸ ︷
0 · · · 0

j
0 · · ·

Since Condition 2 in Definition 1 holds if and only if k − 2i

has exactly one maximal loop one run and i just locates at the
starting position among this maximal loop one run. It is easy
to check that the above event occurs only under the following
two cases: 1) s(k) ≥ r(k) + 2; 2) s(k) = r(k) + 1 and k
contains exactly one maximal loop one run which is just the
left neighbor of some maximal loop zero run of k. The latter
is illustrated in the following figure

k k − 2i

· · · 0
r(k)︷ ︸︸ ︷

1 · · · 1
r(k)+1︷ ︸︸ ︷
0 · · · 0

i
0 1 · · · ⇒ · · · 0

r(k)−1︷ ︸︸ ︷
1 · · · 1 0

r(k)︷ ︸︸ ︷
1 · · · 1

i
01 · · ·
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Note that r(k) = s(k)−1 ≥ 2, the desired conclusion follows.
�

For any given positive integers n and d, denote by Wn,d

the set of integers 0 < k < 2n−1 of weight d. The following
corollary further gives an efficient and necessary condition on
Mn,d =Wn,d, that is,

Corollary 2: Let n ≥ 4 and 1 ≤ d < n. Then Mn,d =
Wn,d if and only if for any 1 ≤ τ ≤ d, we have

dn− d
τ
e ≥ d− τ + 3. (7)

Proof: By the definitions of s(k) and r(k), we have

s(k) ≥ dn− d
τ(k)

e and r(k) ≤ d− τ(k) + 1

for any k ∈ Wn,d. Since Mn,d = Wn,d is equivalent to
s(k) ≥ r(k) + 2 for any k ∈ Wn,d, that is, inequality (7)
holds. �

Corollary 3: 1) M4,1 =W4,1;
2) Mn,d =Wn,d for any n ≥ 5 and 1 ≤ d ≤ b2

√
n+ 4c−

5.
Proof: Item 1 is trivial, and we only prove Item 2. Obviously,
by Corollary 2, if d meets n−d

τ ≥ d − τ + 3 for any 1 ≤
τ ≤ d, then d meets inequality (7) as well, which implies
that Mn,d = Wn,d. Note that (d − τ + 3)τ ≤ (d+3

2 )2 for
any 1 ≤ τ ≤ d, further if d meets n − d ≥ (d+3

2 )2, we have
Mn,d = Wn,d as well. Note that the latter is equivalent to
d ≤ b2

√
n+ 4c − 5, thus Item 2 holds. �

Remark 1: By Item 2 of Corollary 3 a lower bound of the
algebraic degree of Tr(λx−1) can be derived directly, which
is just the one given by V.V. Bayev in [22].

IV. PROOF OF MAIN THEOREM

Note that b
√
nc+d n

b
√
nce = d2

√
ne for all positive integers

n, we denote d0 = d2
√
ne − 2 for simplicity. In order to

prove the main theorem, we only need to prove d ≥ d0 for
any nonzero annihilator f(x) of Tr(λx−1) or Tr(λx−1) + 1
with Boolean algebraic degree d. Based on mono-integers
introduced in the previous section we can do it. Before the
proof of the main theorem we provide some conclusions
related to mono-integers.

Proposition 1: Let f(x) be a Boolean function with
degB(f(x)) = d over F2n and Dd(f) be defined as above,
where 1 ≤ d < n. If Dd(f) ∩Mn,d 6= ∅, then (Tr(λx−1) +
δ)f(x) 6= 0 for δ = 0, 1.
Proof: Let k ∈ Dd(f) ∩Mn,d. By the definition of mono-
integers, the monomial xk−2

i mod(2n−1) occurs exactly one
time in the expansion of (Tr(λx−1)+δ)f(x) for some i ∈ Zn.
So (Tr(λx−1) + δ)f(x) 6= 0. �

Corollary 4: Let f(x) be an annihilator of Tr(λx−1)+δ for
some δ ∈ F2 with degB(f(x)) = d. Then for any k ∈ Dd(f),
we have k 6∈ Mn,d.

Below we always assume that f(x) is an annihilator of
Tr(λx−1) or Tr(λx−1)+1 with degB(f(x)) = d. By Corollary
3, we have d ≥ 2.

Lemma 3: Let d ≥ 2 and Dt(f) be defined as above, where
1 ≤ t ≤ d. Then

1) for any k ∈ Dd(f), we have s(k) ≤ r(k) + 1; and

2) for any k ∈ Dd−1(f), we have s(k) ≤ r(k) + 3. In
particular, when k contains exactly one maximal loop
one runs which is just the left neighbor of some maximal
loop zero runs, we have s(k) ≤ r(k) + 2.

Proof: Item 1 follows directly from Lemma 2. Below we
consider Item 2. Suppose that there exists an k ∈ Dd−1(f)
such that s(k) ≥ r(k) + 4. Without loss of generality, let k
have the form

· · · 1
≥r(k)+4︷ ︸︸ ︷
0 · · · 0

j
0
i
0 1 · · ·

and take i and j as indicated above. Set k′ = k − 2i + 2j .
Then k′ ∈ Dd(f) and has the form

· · · 1
≥r(k)+2︷ ︸︸ ︷
0 · · · 0

j
1
i
01 · · · .

By Lemma 2, k′ ∈ Mn,d. A contradiction. The second part
of Item 2 can be deduced directly by Item 2 of Lemma 2. So
the conclusion follows. �

Since it is easy to verify the main theorem for n = 2, 3,
below we assume that n ≥ 4 and prove the main theorem
under the cases r(k) ≥ 2 and r(k) = 1 respectively.

A. The case r(k) ≥ 2

In this section we will prove Theorem 1 under the case
r(k) ≥ 2 for some k ∈ Dd(f). First when s(k) < r(k), we
have the following conclusion:

Lemma 4 (s(k) < r(k)): Let k ∈ Dd(f). If s(k) < r(k),
then d ≥ d0.
Proof: By the definition of s(k) and r(k), we have

s(k) ≥ n− d
τ

and r(k) ≤ d− τ + 1,

where τ(k) = τ . Thus we have

n− d
τ
≤ s(k) ≤ r(k)− 1 ≤ d− τ

⇒ n− d ≤ (d− τ)τ ≤ d2

4
⇒ d ≥ d2

√
n+ 1e − 2 ≥ d0.

�
Lemma 4 shows that we only need to consider the cases

s(k) = r(k) + 1 and s(k) = r(k) when r(k) ≥ 2.
Lemma 5: Let k ∈ Dd(f). If s(k) = r(k)+1 ≥ 3, then the

length of the loop zero run after any maximal loop one run in
k must be 1.
Proof: By the position relation of the maximal loop one runs
and maximal loop zero runs of k, we subdivided k into two
cases: adjacent and non-adjacent, which are illustrate in the
following figure:

k k′ = k − 2i + 2j

· · · 1

r(k)+1︷ ︸︸ ︷
0 · · · 0

i
0 1 · · · 0

r(k)︷ ︸︸ ︷
1 · · · 1

j

x︷ ︸︸ ︷
0 · · · 0 1 · · · ⇒ · · · 0

r(k)︷ ︸︸ ︷
1 · · · 1

i
01 · · · 1

r(k)+x︷ ︸︸ ︷
0 · · · 0

j
1 · · ·

and
k k′ = k − 2i + 2j

· · · 1

r(k)+1︷ ︸︸ ︷
0 · · · 0

i
0

r(k)︷ ︸︸ ︷
1 · · · 1

j

x︷ ︸︸ ︷
0 · · · 0 1 · · · ⇒ · · · 0

r(k)+1︷ ︸︸ ︷
1 · · · 1

i

r(k)+x︷ ︸︸ ︷
0 · · · 0

j
1 · · ·
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In order to eliminate the monomial xk−2
i

of Tr(x−1+δ)f(x),
f(x) must contain another monomial ck′xk

′
, that is, k′ ∈

Dd(f). Note that when x ≥ 2, we have k′ ∈ Mn,d by
Lemma 2, which contradicts with Dd(f) ∪ Mn,d = ∅. So
the conclusion follows. �

Lemma 6 (s(k) = r(k) + 1): Let k ∈ Dd(f). If s(k) =
r(k) + 1 and r(k) < d− τ + 1, then d ≥ d0.
Proof: By Lemma 5, it is known that k contains at least one
loop zero run of length 1, thus we have

s(k) ≥ n− d− 1

τ − 1
.

Thus we have
n− d− 1

τ − 1
≤ s(k) = r(k) + 1 ≤ d− τ + 1

⇒ n− d− 1 ≤ (d− τ + 1)(τ − 1) ≤ d2

4
⇒ d ≥ d2

√
ne − 2 = d0.

�
Lemma 7 (s(k) = r(k) + 1): Let k ∈ Dd(f). If s(k) =

r(k) + 1 and r(k) = d− τ + 1 ≥ 2, then d ≥ d0.
Proof: The condition r(k) = d−τ +1 implies that k contains
exactly one maximal loop one run and all except this maximal
loop one run are loop one runs of length 1. Without loss of
generality, let k have the form:

· · · 0
r(k)︷ ︸︸ ︷

1 · · · 1 01
x︷ ︸︸ ︷

0 · · · 0 1 · · · .

We first claim x ≤ r(k). Assume that x = r(k) + 1, we take
i and j as indicated below:

k k′ = k − 2i + 2j

· · · 0
r(k)︷ ︸︸ ︷

1 · · · 1
j
01

r(k)+1︷ ︸︸ ︷
0 · · · 0

i
0 1 · · · ⇒ · · · 1

r(k)+2︷ ︸︸ ︷
0 · · · 0

j
00

r(k)︷ ︸︸ ︷
1 · · · 1

i
01 · · ·

and set k′ = k − 2i + 2j . Then k′ ∈ Dd(f). But by Lemma
2, k′ ∈Mn,d. A contradiction. So x ≤ r(k).

Below we subdivide k into two cases:
• Case 1: k has the form:

· · · 0
r(k)︷ ︸︸ ︷

1 · · · 1 01
x︷ ︸︸ ︷

0 · · · 0 1 · · · 1
r(k)+1︷ ︸︸ ︷
0 · · · 00

i
1
j

y︷ ︸︸ ︷
0 · · · 0 1 · · · ,

and i and j are taken as indicated above. Set k′ = k −
2i + 2j . Then k′ ∈ Dd−1(f) and has the form

· · · 0
r(k)︷ ︸︸ ︷

1 · · · 1 01
x︷ ︸︸ ︷

0 · · · 0 1 · · · 1
r(k)+2+y︷ ︸︸ ︷
0 · · · 00 1 · · · .

By Lemma 3 we have y = 1. The above result shows
that k contains at least two loop zero runs of length 1
and one loop zero runs with length no more than r(k),
thus we have

s(k) ≥ n− d− 2 + 1

τ − 2
=
n− d− 1

τ − 2
.

So
n− d− 1

τ − 2
≤ s(k) = r(k) + 1 = d− τ + 2,

which follows d ≥ d0.
• Case 2: k has the form:

· · · 1
r(k)+1︷ ︸︸ ︷
0 · · · 0

i
0

r(k)︷ ︸︸ ︷
1 · · · 1

j
01

x︷ ︸︸ ︷
0 · · · 0 10 · · · ,

and i and j are taken as indicated above. Set k′ = k −
2i + 2j . Then k′ ∈ Dd(f) and has the form

· · · 0
r(k)+1︷ ︸︸ ︷
1 · · · 1

i
1

r(k)+1︷ ︸︸ ︷
0 · · · 0

j
0 1

x︷ ︸︸ ︷
0 · · · 0 10 · · · .

Take i′ and j′ as indicated below:

· · · 0
r(k)+1︷ ︸︸ ︷
1 · · · 11

r(k)+1︷ ︸︸ ︷
0 · · · 00

i′
1
j′

x︷ ︸︸ ︷
0 · · · 0 10 · · · ,

and set k′′ = k′− 2i
′
+2j

′
. Then k′′ ∈ Dd−1(f) and has

the form

· · · 0
r(k)+1︷ ︸︸ ︷
1 · · · 11

r(k)+2+x︷ ︸︸ ︷
0 · · · 00

i′
0
j′
0 · · · 0 10 · · · .

By Item 2 of Lemma 3, we have x = 1. So

s(k′) ≥ n− d− 1

τ(k′)− 1
=
n− d− 1

τ − 2
.

Note that s(k′) = r(k′) = r(k) + 1 = d− τ + 2, thus

n− d− 1

τ − 2
≤ d− τ + 2,

which follows d ≥ d0.
Combine the above two cases, we can get the desired conclu-
sion. �

Finally we give a proof of the case s(k) = r(k) ≥ 2.
Lemma 8 (s(k) = r(k)): Let k ∈ Dd(f). If s(k) = r(k) ≥

2, then d ≥ d0.
Proof: First, if r(k) < d− τ + 1, we have

n− d
τ
≤ s(k) = r(k) ≤ d− τ,

which follows d ≥ d0.
Second, when r(k) = d−τ+1, we divide k into two cases:
• Case 1: k contains exactly one maximal loop zero run.

Then we have

s(k) ≥ n− d+ (τ − 1)

τ
.

Since s(k) = r(k) ≤ d− τ + 1, thus

n− d+ (τ − 1)

τ
≤ d− τ + 1,

which follows d ≥ d0.
• Case 2: k contains at least two maximal loop zero runs.

Without loss of generality, let k have the form

· · · 0
r(k)︷ ︸︸ ︷

1 · · · 1
x︷ ︸︸ ︷

0 · · · 0 1 · · · 1
r(k)︷ ︸︸ ︷

0 · · · 0 1
y︷ ︸︸ ︷

0 · · · 0 1 · · · .
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Since we have proved the case x = r(k) (see the proof on
k′ at Case 2 in Lemma 7), thus below we always assume
x < r(k). Take i as indicated below:

· · · 0
r(k)︷ ︸︸ ︷

1 · · · 1
j1

x︷ ︸︸ ︷
0 · · · 0 1 · · · 1

r(k)︷ ︸︸ ︷
0 · · · 0

i
1
j2

y︷ ︸︸ ︷
0 · · · 0 1 · · · ,

and here j can be taken two possible values which are
indicated above, that is, j1 and j2. When j = j1, set
k′ = k − 2i + 2j1 . Then k′ ∈ Dd(f) and has the form

· · · 1
r(k)+x︷ ︸︸ ︷

0 · · · 0
j1
0 · · · 0 1 · · · 0

r(k)+1︷ ︸︸ ︷
1 · · · 1

i
1

y︷ ︸︸ ︷
0 · · · 0 1 · · · .

By Item 1 of Lemma 3, we have x ≤ 2. When x = 2,
by Lemma 7, we can obtain d ≥ d0. When x = 1, note
that

n− d− 1

τ − 1
≤ s(k) = r(k) ≤ d− τ + 1,

we have d ≥ d0 as well.
When j = j2, set k′ = k − 2i + 2j2 . Then we have
k′ ∈ Dd−1(f) and

· · · 0
r(k)︷ ︸︸ ︷

1 · · · 1
x︷ ︸︸ ︷

0 · · · 0 1 · · · 1
r(k)+1+y︷ ︸︸ ︷
0 · · · 0 1 · · · .

By Item 2 of Lemma 3, we have y ≤ 2. Note that x <
r(k), thus we have

n− d− y + 1

τ − 1
≤ s(k) = r(k) ≤ d− τ + 1,

which follows d ≥ d0.
Combine the above all cases, we can get the desired conclu-
sion. �

B. The case r(k) = 1

In this section we will prove Theorem 1 under the case
r(k) = 1 for some k ∈ Dd(f). Note that r(k) = 1 implies
τ = τ(k) = d and ri = 1 for all 1 ≤ i ≤ τ . By Lemma 2, we
have s(k) ≤ 2. The following conclusion shows that k does
not contain two adjacent loop zero runs of length 2.

Lemma 9: For any k ∈ Dd(f), if r(k) = 1, then k does
not contain the substring 100100.
Proof: Suppose that k contains the substring 100

i
1
j
00 and i

and j are taken as indicated above. Set k′ = k − 2i + 2j .
Then k′ ∈ Dd−1(f) and contains the substring 100

i
0
j
00, which

contradicts with Item 2 in Lemma 3. So the conclusion holds.
�

Proposition 2: Let n ≥ 4 and f(x) be an annihilator of
Tr(λx−1) + δ for some δ ∈ F2 with degB(f(x)) = d ≥ 2. If
there exists an k ∈ Dd(f) such that r(k) = 1, then d ≥ d0.
Proof: We will adopt reductio ad absurdum to prove the above
conclusion, that is, assume that there exists an annihilator of
Tr(λx−1) or Tr(λx−1) + 1 whose Boolean algebraic degree
d is less than d0. It is noticed that if the Boolean algebraic
degree of f(x) is less than d0 − 1, we always find another
function g(x), which is a multiple of f(x) and has the Boolean

algebraic degree d0−1, such that (Tr(λx−1)+δ)g(x) = 0 for
some δ ∈ F2. Therefore below we always assume d = d0−1.

Table I lists the values of the 3-tuples (n, n − d, d)
for 4 ≤ n ≤ 25. The case n = 4 is trivial, and it
is easy to verify that for any k ∈ Dd(f), when n =
6, 8, 9, 11, 12, 13, 14, 15, 17, 18, 21, k always contains two ad-
jacent loop zero runs of length 2, and when n = 16, 19, 20 and
n ≥ 22, k has at least one loop zero runs with length no less
than 3, which contradicts with Lemmas 9 and 3 respectively.
Thus we have d ≥ d0.

TABLE I
THE VALUES OF THE 3-TUPLES (n, n− d, d) FOR 4 ≤ n ≤ 25

n 4 5 6 7 8 9 10 11 12 13 14
n− d 3 3 4 4 5 6 6 7 8 8 9
d 1 2 2 3 3 3 4 4 4 5 5
n 15 16 17 18 19 20 21 22 23 24 25

n− d 10 11 11 12 13 14 14 15 16 17 17
d 5 5 6 6 6 6 7 7 7 7 8

When n = 5, k has the form 10010 for any k ∈ D2(f). Take
i and j as indicated below: 100

i
1
j
0, and set k′ = k − 2i + 2j .

Then k′ ∈ D1(f) and has the form 10000, which contradicts
with Item 2 of Lemma 3. So d ≥ d0.

When n = 7, k has the form 1001010 for any k ∈ D3(f).
Take i and j as indicated below: 100

i
1
j
010, and set k′ = k −

2i+2j . Then k′ ∈ D2(f) and has the form 1000010. Take i′ as
indicated below: 10000

i′
10. Then j′ can be taken two possible

values, that is, j1 and j2, indicated as below: 1000
j1
0
i′
1
j2
0. When

j′ = j1, set k′′ = k′ − 2i
′
+ 2j1 , then k′′ ∈ D3(f) and

has the form 1000110, which is corresponding to the case
r(k

′′
) ≥ 2 and has been proven in Section IV-A. When j = j2,

set k(3) = k′ − 2i
′
+ 2j2 , then k(3) ∈ D1(f) and has the

form 1000000. Take i′′ as indicated below: 1000000
i′′

. Then

k(3) − 2i
′′

has the form 0111111. It is easy to verify that for
any i′′ 6= j3 ∈ Z7, we have r(k(3) − 2i

′′
+ 2j3) ≥ 2, which

implies that d ≥ d0.
When n = 10, since s(k) ≤ 2, k has just the form

1001010010 by Lemma 9. Similarly to the case n = 7, we
have d ≥ d0 as well and do not repeat it here.

Combine the above all cases, and we can get the desired
conclusion. �

V. WEAK PROPERTIES IN RESISTANCE TO FAST
ALGEBRAIC ATTACKS

When n is a bit larger, it is easy to see that d0 is far smaller
than dn2 e, which shows that Tr(λx−1) has weak properties in
resistance to algebraic attacks. In this section we will further
demonstrate that Tr(λx−1) has weak properties in resistance
to fast algebraic attacks as well.

Proposition 3: Let n ≥ 5 and 2 ≤ d < d0, and f(x) be a
Boolean function of the form

∑
k∈Wn,d

ckx
k over F2n . Denote

gδ(x) = (Tr(λx−1) + δ)f(x) for δ = 0, 1. Then we have

degB(gδ(x)) = d+ max
k∈Dd(f)

s(k)− 1. (8)
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In particular, we have

degB(gδ(x)) ≥ d+ d
n

d
e − 2, (9)

where the equality holds if and only if s(k) = dnd e− 1 for all
k ∈ Dd(f).
Proof: We first prove equality (8). Since s(k) ≥ 2 for any
k ∈ Dd(f) when d < d0, it is easy to see that

degB(gδ(x)) ≤ max
k∈Dd(f),i∈Zn

{wH(k), wH(k − 2i) }

= d+ max
k∈Dd(f)

s(k)− 1.

On the other hand, without loss of generality, let k ∈ Dd(f)
with maximal s(k) among Dd(f), and take i ∈ Zn as

indicated below: · · · 1
s(k)︷ ︸︸ ︷

0 · · · 0
i
1 · · · . Then k − 2i has the form

· · · 0
s(k)+1︷ ︸︸ ︷
1 · · · 1

i
1 · · · and wH(k − 2i) = d+ s(k)− 1 > d.

By Lemma 4, we have s(k) ≥ r(k). When s(k) > r(k)
or s(k) = r(k) but k has exactly one maximal loop one run
which is just at the left neighbor of the maximal loop zero
run of k, it is easy to see that k− 2i occurs exactly one time
in gδ(x), thus degB(gδ(x)) ≥ wH(k − 2i) = d + s(k) − 1.
Otherwise, we take j as indicated below:

· · · 0
r(k)︷ ︸︸ ︷

1 · · · 1
j
0 · · · 1

s(k)︷ ︸︸ ︷
0 · · · 0

i
1 · · · ,

and set k′ = k− 2i+2j . Then wH(k′) = d and has the form:

· · · 1
≥r(k)+1︷ ︸︸ ︷

0 · · · 0
j
· · · 0 · · · 0

≥s(k)+1︷ ︸︸ ︷
1 · · · 1

i
· · · 1 · · · .

If k′ ∈ Dd(f), since s(k′) ≥ r(k) + 1 = s(k) + 1 > s(k),
it is a contradiction with the pick of k, which shows that
k − 2i occurs exactly one time in gδ(x). So degB(gδ(x)) ≥
wH(k − 2i) = d+ s(k)− 1. So equality (8) follows.

Second, note that for any k ∈ Wn,d, we have

s(k) ≥ dn− d
τ(k)

e ≥ dn− d
d
e = dn

d
e − 1.

So the conclusion follows. �
Further for a general Boolean function f(x) with

degB(f(x)) = d, we have
Proposition 4: Let n ≥ 7 and n 6= 9, and f(x) be a

Boolean function with degB(f(x)) = d, where 2 ≤ d ≤
b
√
nc. Denote gδ(x) = (Tr(λx−1) + δ)f(x) for δ = 0, 1.

Then we have

degB(gδ(x)) ≥ d+ max
k∈Dd(f)

s(k)− 2. (10)

In particular, we have

degB(gδ(x)) ≥ d+ d
n

d
e − 3. (11)

Proof: By Corollaries 2 and 3, it is easy to verify thatMn,d =
Wn,d for n ≥ 7, n 6= 9 and 2 ≤ d ≤ b

√
nc. For any k ∈

Dd(f), take i as indicated below: · · · 1
s(k)︷ ︸︸ ︷

0 · · · 0
i
0. Then wH(k) =

d+s(k)−2 and xk−2
i mod(2n−1) only occurs one time in gδ(x).

So the conclusion follows. �
Example 2: Let n ≥ 5 and 2 ≤ k ≤ b

√
nc. For any

given nonzero ξ ∈ F2n , denote fξ(x) = Tr(ξxk) 6= 0,
where wH(k) = d and s(k) = dnd e − 1. Set gδ,ξ(x) =
(Tr(λx−1) + δ)fξ(x) for δ = 0, 1. By Proposition 3, we have
degB(gδ,ξ(x)) = d+ dnd e − 2.

When Tr(λx−1) is used as a component in stream ciphers,
an attacker can achieve good trade-off of time-memory-data by
choosing carefully different d, k and ξ. For example, take n =
128, and some possible combination of d and degB(gδ,ξ(x))
are listed in Table 2.

Table 2 Possible combination of d and degB(gδ,ξ(x))

d degB(gδ,ξ(x))

2 64
4 34
8 22

Remark 2: By Proposition 4, it is possible to achieve
gδ,ξ(x) with lower Boolean algebraic degree by choosing more
complex fξ(x) when 2 ≤ d < b

√
nc. At this time the Boolean

algebraic degree of gδ,ξ(x) will reduce at most 1 than those
listed in Table 2. When d = 8, if there exists fξ(x) such that
degB(gδ,ξ(x)) = 21, which is just equal to AI(Tr(λx−1)),
then the attacker utilizes fξ(x) and gδ,ξ(x) to launch fast
algebraic attacks and will take the same cost in the off-line
phase as that by algebraic attacks, however the cost taken by
the attacker in the on-line phase will be reduced dramatically
down.
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[2] T.W. Cusick and P. Stănică, Cryptographic Boolean Functions and
Applications, Access Online via Elsevier, 2009.

[3] K. Nyberg, Differentially uniform mappings for cryptography, EU-
ROCRYPT’93, LNCS 765, pp.55-64, 1994.

[4] J. Daemen and V. Rijmen, The Design of Rijndael, Springer-Verlag,
2002.

[5] P. Ekdahl and T. Johansson, A new version of the stream cipher
SNOW, SAC 2002, LNCS 2595, pp.47C61, 2003.

[6] ETSI/SAGE, Specification of the 3GPP Confidentiality and Integrity
Algorithms UEA2 & UIA2, Document 2: SNOW 3G Specification,
v1.1, 2006.

[7] ETSI/SAGE, Specification of the 3GPP Confidentiality and Integrity
Algorithms 128-EEA3 & 128-EIA3, Document 2: ZUC Specification,
v1.6, 2011.

[8] S.W. Golomb and G. Gong, Signal Design for Good Correlation:
For wireless Communication, Cryptography and Radar, Cambridge
University Press, 2005.

[9] A. Braeken, J. Lano, N. Mentens, B. Preneel and I. Veerbauwhede,
SFINK: A synchronous stream cipher for restricted hardware environ-
ments, eStream project, available at http:www.ecrypt.eu.org/stream.

[10] C. Cid, S. Kiyomoto and J. Kurihara, The rakaposhi Stream Cipher,
ICICS 2009. LNCS 5927, pp.32C46, 2009.

[11] W. Si and C. Ding, A simple stream cipher with proven properties,
Cryptography and Communications, Vol.4, Issue 2, pp.79-104, 2012.

[12] N. Courtois and W. Meier, Algebraic attacks on stream ciphers with
linear feedback, EUROCRYPT 2003, LNCS 2656, pp.346-359, 2003.

[13] N. Courtois, Fast algebraic attacks on stream ciphers with linear
feedback, CRYPTO 2003, LNCS 2729, pp.176-194, 2003.

[14] N. Courtois and J. Pieprzyk, Cryptanalysis of block ciphers with
overdefined systems of equations, ASIACRYPT 2002, LNCS 2501,
pp.267-287, 2002.



8

[15] F. Armknecht, Algebraic attacks on combiners with memory, CRYP-
TO 2003, LNCS 2729, pp.162-176, 2003.

[16] N. Courtois, Algebraic attacks on combiners with memory and several
outputs, ICISC 2004, LNCS 3506, pp.3-20, 2004.

[17] D. Dalai, K. Gupta and S. Maitra, Results on algebraic immunity
for cryptographically significant boolean function, INDOCRYPT2004,
LNCS 1880, pp.92-106, 2004.

[18] C. Carlet and K. Feng, An infinite class of balanced functions with
optimal algebraic immunity, good immunity to fast algebraic attacks
and good nonlinearity, ASIACRYPT 2008, LNCS 5350, pp.425-440,
2008.

[19] Z. Tu and Y Deng, A conjecture about binary strings and its
applications on constructing Boolean functions with optimal algebraic
immunity, Design, Codes Cryptography, Vol.60, No.1, pp.1-14, 2011.

[20] M. Liu, Y. Zhang and D. Lin, Perfect algebraic immune functions,
ASIACRYPT 2012, LNCS 7658, pp.172-189, 2012.

[21] Y. Nawaz, G. Gong and K.C. Gupta, Upper bounds on algebraic
immunity of Boolean power functions, FSE 2006, LNCS 4047,
pp.375-389, 2006.

[22] V.V. Bayev, Some lower bounds on the algebraic immunity of func-
tions given by their trace forms, Problems of Information Transmis-
sion, Vol.44, No.3, pp.243-265, 2008.

[23] D.K. Dalai, Computing the rank of incidence matrix and algebraic
immunity of Boolean functions, http://eprint.iacr.org/2013/273.pdf.


