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Abstract. The block cipher used in the Chinese Wireless LAN Standard (WAPI), SMS4, was
recently renamed as SM4, and became the block cipher standard issued by the Chinese government3.
This paper improves the previous linear cryptanalysis of SMS4 by giving the first 19-round one-
dimensional approximations. The 19-round approximations hold with bias 2−62.27; we use one of
them to leverage a linear attack on 23-round SMS4. Our attack improves the previous 23-round
attacks by reducing the time complexity. Furthermore, the data complexity of our attack is further
improved by the multidimensional linear approach.
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1 Introduction

SMS4 was issued in 2006 by the Chinese government as the block cipher used in the wireless LAN
products [26], the English translation of the specification can be found in [9]. Recently, in 2012, SMS4
was announced as the Chinese commercial block cipher standard with the name SM4 [25], which implies
that this cipher will be more widely used.

Since SMS4 was known to the public, quite a few cryptanalytic results were proposed to evaluate its
security. Liu et al. proposed an integral attack on 13-round SMS4 in [18]; Ji and Hu gave an algebraic
cryptanalysis by analysing the structure of the cipher [14]. In [20], Lu presented a 14-round rectangle
attack and a 16-round impossible differential attack. Later, Toz and Dunkelman claimed that the com-
plexities in [20] are underestimated; they made a more comprehensive analysis of the attacks in [20] and
further improved the results [30]. Zhang et al. gave a rectangle attack and a differential attack on SMS4
reduced to 16 rounds and 18 rounds, respectively [33]. Several attacks were proposed in [17] by Kim et
al., which were rectangle and boomerang attacks on 18-round SMS4, as well as linear and differential
attacks on the 22-round version. Etrog and Robshaw also presented a linear attack on 22-round SMS4
and discussed the possibility of extending the attack to 23 rounds by using multiple linear attack [10].
Zhang et al. gave an improved 22-round differential attack in [34]; Liu et al. gave a multiple linear attack
on SMS4 reduced to 22 rounds [19]. Su et al. further improved the result in [34] by proposing a differ-
ential attack on the 23-round version [29]; the attack is the best previous attack in terms of attacked
number of rounds and complexity. Cho and Nyberg responsed to the question in [10] and proposed a
multidimensional linear attack on 23-round SMS4 [5]. In addition, Zhang and Jin gave the lower bound
of the number of linear active S-boxes for SMS4-like ciphers in [32].

Linear cryptanalysis was proposed by Matsui [21]. The attack first finds the linear approximation
between the plaintexts, ciphertexts and the key bits with the highest bias, then recovers one bit of the
key information; this method is called Algorithm 1. Matsui also gave another algorithm named Algorithm
2 which is more efficient. Algorithm 2 adds an additional round to the bottom of the linear approximation;
the attacker recovers a part of the key of the last round by guessing the partial key and ranking them by
the number of plaintext-ciphertext pairs that satisfy the linear approximation. In 2007, Collard et al [6]
used Fast Fourier Transform to reduce the off-line time complexity of Matsui’s algorithm 2 from O(22k)
to O(k2k) where k is the number of bits in key guessing.

Kaliski and Robshaw proposed multiple approximations linear cryptanalysis that the same key bit
information is involved in different approximations [15,16]. Later, Biryukov et al. removed the restric-
tion and presented a framework of linear attack using multiple linear approximations [3]. The attacks in
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3 In this paper, we will keep using the old name SMS4 as it is more familiar to the cryptographic community.
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[3,15,16] are all based on the assumption that the linear approximations are statistically independent.
Using the multidimensional probability distribution and standard statistical methods, Hermelin et al.
proposed the frameworks of multidimensional linear attacks without the assumption of statistical inde-
pendence for Algorithm 1 and Algorithm 2 in [11] and [12], respectively. Later, Hermelin and Nyberg
gave another statistical method to reduce the off-line time complexity of Algorithm 1 [13]. Nguyen et al.
improved the on-line complexity of Algorithm 2 in [23].

Our contributions. The linear attacks on SMS4 in [5,10,17,19] are all based on 18-round linear approx-
imations whose fundamental parts are 5-round iterative linear approximations. The first contribution of
this paper is proposing a new family of 19-round linear approximations with a different approach. We give
a two-step method for finding the linear approximations. In the first step, the MILP manner proposed
in [22] by Mouha et al. is adopted to obtain the framework of a 19-round linear approximation with
the smallest number of active S-boxes. Since the result found by MILP is a lower bound that usually
cannot be achieved, we add one more active S-box to each active round. Then in the second step, we
give an algorithm to search for the linear approximation of this form. A useful observation is given as the
starting point of the algorithm. In order to reduce the time complexity caused by the large search space, a
time-memory tradeoff method is also used. Our algorithm returns eight 16-round linear approximations,
each of which can be extended to 25 19-round linear approximations with the same bias. Our 19-round
approximations have the same number of active S-boxes as the previous 18-round ones. While we cannot
ensure that each active S-box has the highest bias, our 19-round approximations hold with bias 2−62.27.
The second contribution of the paper is improving the previous linear attacks on SMS4. With one of these
19-round linear approximations, we propose a linear attack on 23-round SMS4; the data complexity is
2126.54, the time complexity is about 2122 23-round encryptions and the memory complexity is about 2116

bytes. By using more linear approximations and applying the multidimensional linear attack, the data
complexity of our attack is improved to 2122.6, while the time and memory complexities are increased to
2122.7 encryptions and 2120.6 bytes, respectively.

The rest of the paper is organized as follows. Section 2 briefly describes the SMS4 block cipher and
(multidimensional) linear attack, as well as some notations and definitions. Improved linear attacks on
SMS4 are illustrated in Sect. 3. Finally, Sect. 4 concludes the paper.

2 Preliminaries

This section first denotes some notations and definitions used throughout the paper, then gives a brief
description of SMS4 as well as the method of (multidimensional) linear cryptanalysis.

2.1 Notations and Definitions

– ⊕ bit-wise OR (XOR)
– || cascade of two words
– ≪ n rotation to the left for n bits
– Vn the space of n-dimensional binary vectors
– Linear mask: for x = (x0, · · · , xn−1), y = (y0, · · · , yn−1) ∈ Vn, x is called a linear mask of y if

x · y = x0y0 ⊕ · · · ⊕ xn−1yn−1, where · is the bit-wise inner product.

Definition 1. Given a linear mask Γ , a characteristic function χ is defined as:

χ(Γ ) =

{
1 Γ ̸= 0
0 Γ = 0,

Definition 2. Branch Number [8]. If we denote the byte weight of a vector v as HW (v), the linear
branch number of a linear transformation L is

minb ̸=0(HW (b) +HW (Lt(b))),

where b is a vector of linear masks, Lt is the transpose of L.
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A function f : Vn → V1 is called a Boolean function. A function f : Vn → Vm with f = (f0, · · · , fm−1),
where fi (i = 0, · · · ,m− 1) are Boolean functions, is named a vector Boolean function of dimension m.

The correlation of a Boolean function g: Vn → V1 is defined as:

c = 2−n(#{ξ|g(ξ) = 0} −#{ξ|g(ξ) = 1}), ξ ∈ Vn.

The bias of g is ϵ = c/2. Throughout the paper, when we refer to the values of correlations and biases,
we mean the absolute values of them.

2.2 Brief Description of SMS4

SMS4 is a block cipher with unbalanced generalized Feistel structure. The block size and key size of the ci-
pher are both 128 bits; the number of rounds is 32. Denote the main key of SMS4 asMK =(MK0,MK1,MK2,
MK3), the round subkeys (rk0, rk1, · · · , rk31) are deduced from MK by the key schedule algorithm, where
MK0,MK1,· · · ,MK3 and rki (0 ≤ i ≤ 31) are 32-bit words.

Let the plaintext be (P0, P1, P2, P3) = (X0, X1, X2, X3) ∈ (Z32
2 )4, the encryption procedure can be

described as:

Xi+4 = F (Xi, Xi+1, Xi+2, Xi+3) = Xi ⊕ T (Xi+1 ⊕Xi+2 ⊕Xi+3 ⊕ rki)

= Xi ⊕ L ◦ S(Xi+1 ⊕Xi+2 ⊕Xi+3 ⊕ rki), for i = 0, · · · , 31,

and the ciphertext (C0, C1, C2, C3) = R(X32, X33, X34, X35) = (X35, X34, X33, X32), where R is the switch
transformation4. The decryption procedure is the same as the encryption procedure except that the
subkeys are intervened in the reverse order.

The schematic description of one round of SMS4 is given in Fig. 1. One can know from the figure that
the round function F is composed of subkey addition and the function T , where there are two layers in
T , which are the non-linear layer S and the linear transformation L. In layer S, an 8 × 8 S-box is used
four times in parallel. The specification of the S-box could be found in [9]. L transforms a 32-bit word B
to a 32-bit word D:

D = L(B) = B ⊕ (B ≪ 2)⊕ (B ≪ 10)⊕ (B ≪ 18)⊕ (B ≪ 24).

One can easily verify that the linear branch number of the linear transformation L is 5.
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Fig. 1. One Round of SMS4

In the key schedule algorithm, first denote Ki ∈ Z32
2 (i = 0, · · · , 35) and (K0,K1,K2,K3) = (MK0 ⊕

FK0,MK1 ⊕ FK1,MK2 ⊕ FK2,MK3 ⊕ FK3), where FKi (i = 0, 1, · · · , 3) are constants. Then the round
subkeys are generated by:

rki = Ki+4 = Ki ⊕ T ′(Ki+1 ⊕Ki+2 ⊕Ki+3 ⊕ CKi),

where the function T ′ is the same as T , except the linear transformation L is replaced by L′:

L′(B) = B ⊕ (B ≪ 13)⊕ (B ≪ 23).

CKj (j = 0, 1, · · · , 31) are constants, we refer to [9] for the details of them.
Note that, from the key schedule we deduce that if the subkeys of four successive rounds are known,

then the main key is uniquely determined.

4 To be simplified, we will omit the switch transformation R when we attack the reduced versions of SMS4.
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2.3 Linear Attack

Linear cryptanalysis aims to find the linear approximation of a cipher:

ΓP · P ⊕ ΓC · C = ΓK ·K, (1)

where ΓP , ΓC and ΓK are called the linear masks of P,C andK, respectively. Denote ΓK ·K = κ, if Eq. (1)
holds with probability 1/2± ϵ, Matsui showed that with about |ϵ|−2 plaintexts, the one bit information
κ of the key can be recovered. The method is so called Algorithm 1 in [21]. Matsui also provided a more
efficient manner (Algorithm 2) by adding an additional round after the linear approximation; the last
round key is guessed and ranked. We restate the framework of linear cryptanalysis which follows the
principle of Biryukov et al.’s approach [3]:

– Distillation Phase. This phase can be regarded as a phase that preprocesses the plaintexts/ciphertexts.
Each plaintext-ciphertext pair is evaluated by the parity of a part of the linear approximation that is
related to the plaintext/ciphertext; counters indexed by the key-relevant parts of the plaintext and
ciphertext are incremented or decremented accordingly.

– Analysis Phase. This phase guesses a part of the (equivalent) key which is necessary to compute
the other part of the linear approximation, evaluates the parity of this part of linear approximation
and sets up a counter for each guessed (equivalent) key by utilising the values in the counters of the
distillation phase. If we guess k-bit (equivalent) key and would like to get a-bit advantage5, the top
2k−a (equivalent) keys with the highest absolute values are the (equivalent) keys we will keep.

– Search Phase. For each of the kept (equivalent) key, guess the remaining key information and recover
the correct key by trial encryption.

A formal way to calculate the success rate PS and the data complexity can be found in [28].

2.4 Multidimensional Linear Attack

Unlike [15] and [16], Biryukov et al. proposed an approach that could use multiple linear approximations
with different key bits involved [3]. However, these methods assume that the linear approximations are
statistically independent.

Biryukov et al. proved that, if the attacker had m′ linear approximations, ci (i = 0, · · · ,m′ − 1) are
the theoretical correlations, ĉi (i = 0, · · · ,m′−1) are the empirical correlations, and κ = (κ0, · · · , κm′−1)
are the key bits involved in the linear approximations, then the correct key is most likely implied when
the minimal value of the following distance happens:

|ĉ− cκ|2 =
m′−1∑
i=0

(ĉi − (−1)κici)
2,

where ĉ = (ĉ0, · · · , ĉm′−1), cκ = ((−1)κ0c0, · · · , (−1)κm′−1cm′−1). They also gave a heuristic enhancement
to this method by adding more approximations that are dependent.

In [11], Hermelin et al. constructed the multidimensional probability distribution; based on this, they
proposed the statistical methods for multidimensional linear versions of Algorithm 1 [11] and Algorith-
m 2 [12]. We simply recall these here.

Let f : Vl → Vn be a vector Boolean function, binary vectors ui ∈ Vl and wi ∈ Vn (i = 0, · · · ,m− 1)
be linear masks such that (ui, wi) are linearly independent. Denote the functions gi as:

gi(ξ) := wi · f(ξ)⊕ ui · ξ,

the correlation of gi is ci, i = 0, · · · ,m− 1.

Lemma 1. (from [24]) Let g = (g0, · · · , gm−1): Vl → Vm be a vector-valued Boolean function and p =
(p0, · · · , p2m−1) its probability distribution. Then

2lpη = 2−m
∑
b∈Vm

∑
ξ∈Vl

(−1)b·(g(ξ)⊕η), η ∈ Vm.

5 a-bit advantage means that with probability PS the right key is ranked among the top 2k−a (equivalent) keys
out of all 2k key (equivalent) candidates.
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For all b ∈ Vm, the combined approximations b · g has the correlation c(b).

Corollary 1. (from [11]) Let g : Vl → Vm be a Boolean function with probability distribution p and
correlations c(b) of b · g. Then

pη = 2−m
∑
b∈Vm

(−1)b·ηc(b), η ∈ Vm.

Let q = (q0, · · · , q2m−1) be the empirical distribution of p; statistical methods like χ2-statistic and LLR-
statistic could be used to distinguish the correct key from the wrong ones [12].

Hermelin and Nyberg pointed out that Biryukov et al.’s enhancement is equivalent to the convolution
method [13], that is, for Biryukov et al.’s enhancement,

B(κ) =
∑
b∈Vm

((−1)b·κc(b)− ĉ(b))2, κ ∈ Vm.

The key that minimises B(κ) is suggested as the right key.
Moreover,

B(κ) = −2
∑
b∈Vm

(−1)b·κc(b)ĉ(b) +
∑
b∈Vm

(c(b)2 + ĉ(b)2).

Then the key that maximum

G(κ) =
∑
b∈Vm

(−1)b·κc(b)ĉ(b) = 2m
∑
η∈Vm

qηpη⊕κ

is supposed to be the right key. Hermelin and Nyberg also deduced that the LLR-method has the smallest
data complexity given the success rate PS , and the data required by the convolution method had the
same order of magnitude as the LLR-method in practice.

Before we present our attack, we recall two important tools to compute matrix multiplication. Given
a k-dimensional vector e and a matrix F of size k×k, the algorithm to obtain Fe can be optimized when
every entry of the matrix F satisfies F (i, j) = (−1)ij or F (i, j) = e2π

√
−1ij/k. The former one is called a

Hadamard matrix and the later one is a Fourier matrix. For either Hadamard matrix or Fourier matrix,
the vector Fe can be obtained with complexity O(k log k) by Fast Walsh Hadamard Transform [31] or
Fast Fourier Transform[7]. In [6], Collard et al. proposed that when F (i, j) can be denoted as a function
of i⊕ j, the computation of Fe can be achieved by three products between a Fourier matrix and a vector.
That implies Fe can be computed in O(3k log k) operations when F (i, j) = f(i ⊕ j), here f is a known
function.

3 Improved Linear Attacks on SMS4

In this section, we first introduce how to construct our new linear approximations which are quite different
from the previous ones with a semi-automatic method. Based on one of these linear approximations,
we then give a 23-round attack on SMS4. Finally, we improve the data complexity of the attack by
multidimensional linear extension.

3.1 A Novel Way to Find the Linear Approximations of SMS4

Biham pointed out that similar to differential cryptanalysis [2], characteristics can be defined in linear
cryptanalysis [1]. Consequently, one can find the linear approximations of a cipher by concatenating
characteristics of each round. However, there are important differences for the concatenation rule:

– For the XOR operation: If x = y ⊕ z, Γx, Γy and Γz are the masks of x, y and z, respectively. Then
Γx = Γy = Γz.

– For the branching operation: If x = y = z, Γx, Γy and Γz are the masks of x, y and z, respectively.
Then Γx = Γy ⊕ Γz.

– For the linear layer L: If y = L(x), Γx and Γy are the masks of x and y, respectively. Then Γx = Lt(Γy),
where Lt is the transpose of L.
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With these rules, one can find a linear approximation just as finding a differential trail. The rest of the
task is to design a manner to find a linear approximation that is as long as possible. In this subsection,
we propose a new method to search for the linear approximations of SMS4. The purpose of our method is
to seek for the linear approximations with as few active S-boxes as possible, which results in non-iterative
ones that are different from those in [5,10,17,19]. We use a two-step procedure to achieve this goal.

In the first step, we would like to determine the lower bound of the number of active S-boxes of the
linear approximation, as well as the positions of the active rounds. As proposed by Mouha et al. in [22],
this can be done using Mixed-Integer Liner Programming (MILP). For linear cryptanalysis, Mouha et al.
first constructed the equations with extra binary dummy variables for all the branching operations and
the linear transformations in the cipher, then they put the equations into a MILP solver for the answer.
For example, if the masks of a branching operation are Γx, Γy, Γz and the binary dummy variable is d1,
then the equations for this branching operation are:

χ(Γx) + χ(Γy) + χ(Γz) ≥ 2d1 ,

d1 ≥ χ(Γx) ,

d1 ≥ χ(Γy) ,

d1 ≥ χ(Γz) .

Similarly, if the input and output byte-masks of a linear transformation are Γin1 , Γin2 , Γin3 , Γin4 , Γout1 ,
Γout2 , Γout3 , Γout4 and the dummy variable is d2, then the equations are:

χ(Γin1) + χ(Γin2) + χ(Γin3) + χ(Γin4) + χ(Γout1) + χ(Γout2) + χ(Γout3) + χ(Γout4) ≥ bd2 ,

d2 ≥ χ(Γin1) ,

d2 ≥ χ(Γin2) ,

d2 ≥ χ(Γin3
) ,

d2 ≥ χ(Γin4) ,

d2 ≥ χ(Γout1) ,

d2 ≥ χ(Γout2) ,

d2 ≥ χ(Γout3) ,

d2 ≥ χ(Γout4) .

Where b is the linear branch number, in the case of SMS4, b = 5. Following this method, we generate
the MILP for SMS4 and put it to the solver implemented in SAGE [27]. Since the best previous linear
approximation is 18 rounds, we try to find a linear approximation with 19 rounds. The solver gives us
a 19-round linear approximation with one active S-box in the 1st, 4th, 5th, 8th, 9th, 12th, 13th, 16th
and 17th rounds, respectively. However, what we have found is only a lower bound for the number of
S-boxes, and one can never find such a linear approximation due to the limitation of degrees of freedom.
Our solution is fixing the positions of the active rounds and increasing the number of active S-boxes until
we find a valid linear approximation. We find that a linear approximation is probably valid when the
number of active S-boxes in each active round is two, i.e., the linear approximation we try to find is with
the form:

2− 0− 0− 2− 2− 0− 0− 2− 2− 0− 0− 2− 2− 0− 0− 2− 2− 0− 0.

In the second step, we give an algorithm to search for linear approximations with the above form.
An observation that is the design criteria of the algorithm will be given first.

Observation 1 In order to form the above 19-round linear approximation, the input masks of the T
functions of the two consecutive active rounds should be the same.

Proof. Denote Γ i
in and Γ i

out (i = 1, · · · , 6) as the input and output masks of T functions of the six-
round linear approximation with the form 0 − 0 − 2 − 2 − 0 − 0. Then Γ 3

in ⊕ Γ 1
out ⊕ Γ 2

in = Γ 4
in ⊕ Γ 5

out,

Γ 4
in ⊕ Γ 6

out ⊕ Γ 5
in = Γ 3

in ⊕ Γ 2
out. Since we have Γ j

in = Γ j
out = 0 for j = 1, 2, 5, 6, consequently, Γ 3

in = Γ 4
in. �

With Observation 1, we are now ready to introduce our Algorithm 1 which actually searches for the
suitable masks of the last 16 rounds in the above 19-round linear approximation. Now let Γ i

in and Γ i
out

(i = 1, · · · , 19) denote the input and output masks of T functions of rounds 1-19, respectively. Further
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let function B(Γ i
in, L

t(Γ i
out)) be the bias of the function T 6, where Lt is the transpose of the linear

transformation L of SMS4. Denote #(Γ ) as the number of non-zero bytes in mask Γ .
A time-memory tradeoff is used in Algorithm 1: the algorithm first searches the linear masks of rounds

4-11 and save them in a list L1; then the algorithm searches the linear masks of rounds 8-15, looking for
the compatible masks of rounds 8-11 in L1 and save the compatible ones in L2. Finally, we search the
linear masks of rounds 16-19 for each mask in L2.

The Γ j
in, Γ

j
out (j = 4, 5, 8, 9, 12, 13, 16, 17) output by Algorithm 1 will form a 16-round linear approx-

imation. By computing Γ 1
out := Γ 5

out ⊕ Γ 4
in and finding Γ 1

in which make the bias of round 1 to be highest,
one can trivially extend the 16-round linear approximation to a 19-round one. By choosing B1 = 0.0011
and B2 = 2−15 we found eight 16-round linear approximations with reasonable bias that can be extended
to useful 19 round approximations. The input and output masks (in hexadecimal) of the active T func-
tions of these approximations are given in Table 1. Our program, which is implemented in C++, runs
less than 2 days with a laptop. Note that one can further reduce the running time: Instead of steps 32
and 33, we put the resulting (Γ 9

in, Γ
8
out, Γ

9
out, Γ

12
in ) in a list L3 and parallelize the modified steps 17-33

with steps 1-16. Then find the matches of (Γ 9
in, Γ

8
out, Γ

9
out) in L1 and L3 with birthday paradox.

When extending backward to 19 rounds, we known that the number of active S-boxes in the first
round is 2. Since for each S-box, there are 5 linear masks that lead to the highest bias, a total number of
200 19-round linear approximations with the same bias can be found. One of these linear approximations
can be found in Table 2. In Table 2, the fourth and the fifth columns stand for the output and input
masks of the S-box layer, respectively; the sixth column indicates the bias of the round, the rest of the
columns give the masks of the intermediate values. We learn from [10] that the piling-up lemma [21]
works quite well for SMS4, so the bias of the linear approximation in Table 2 is about 2−62.27.

3.2 Linear Attacks on 23-round SMS4

We add four additional rounds to the bottom of the 19-round linear approximation in Table 2 and give
a linear attack on 23-round SMS4 (Fig. 2) using Matsui’s Algorithm 2, as well as the technique in [6].

Denote α = 0xae007d6b, β = 0x00233300, γ = 0xd3f00289, δ = 0x6bd3d389 and ζ = 0x16009f6b.
Since from the linear approximation, we have α · P0 ⊕ β · P1 ⊕ β · P2 ⊕ γ · P3 ⊕ δ ·X19 ⊕ ζ ·X20 = κ,

we need to guess the subkeys of the last four rounds and rank them.
We have X22 = T (C0 ⊕ C1 ⊕ C2 ⊕ rk22)⊕ C3,
X21 = T (X22 ⊕ C0 ⊕ C1 ⊕ rk21)⊕ C2 = T (T (C0 ⊕ C1 ⊕ C2 ⊕ rk22)⊕ C0 ⊕ C1 ⊕ C3 ⊕ rk21)⊕ C2,
X20 = T (X21⊕X22⊕C0⊕ rk20)⊕C1 = T (T (T (C0⊕C1⊕C2⊕ rk22)⊕C3⊕C0⊕C1⊕ rk21)⊕T (C0⊕

C1 ⊕ C2 ⊕ rk22)⊕ C0 ⊕ C2 ⊕ C3 ⊕ rk20)⊕ C1,
then δ ·X19 = δ · T (m2(X20 ⊕X21 ⊕X22 ⊕ rk19))⊕ δ ·C0 = δ · T (m2(T (T (T (C0 ⊕C1 ⊕C2 ⊕ rk22)⊕

C3⊕C0⊕C1⊕ rk21)⊕T (C0⊕C1⊕C2⊕ rk22)⊕C0⊕C2⊕C3⊕ rk20))⊕m2(T (T (C0⊕C1⊕C2⊕ rk22)⊕
C0 ⊕ C1 ⊕ C3 ⊕ rk21))⊕m2(T (C0 ⊕ C1 ⊕ C2 ⊕ rk22))⊕m2(C1 ⊕ C2 ⊕ C3 ⊕ rk19))⊕ δ · C0,

where m2(x) = 0xffff0000&x.
Further denote C0 = C0 ⊕ C1 ⊕ C2, C1 = C0 ⊕ C1 ⊕ C3, C2 = C0 ⊕ C2 ⊕ C3, C3 = C1 ⊕ C2 ⊕ C3.
In our attack, we aim to obtain a 8-bit advantage from the subkey bits we guessed. The reason is that

we guess the subkeys of four successive rounds, and we can deduce the main key once these subkeys are
known. The procedure of the attack is demonstrated as follows:

Distillation Phase.

1. Collect N = 4|ϵ|−2 = 2126.54 plaintext/ciphertext pairs.
2. Initialize 2112 counters t[0] · · · t[2112 − 1] to zero and regard them as a column vector t.
3. For each plaintext/ciphertext pair, calculate b = α · P0 ⊕ β · P1 ⊕ β · P2 ⊕ γ · P3 ⊕ δ · C0 ⊕ ζ · C1,

increase the counter t[C0||C1||C2||m2(C3)] by one if b = 0; otherwise, decrease it by one.

Analysis Phase.

4. Utilising the technique in [6], we define a conceptual 2112×2112 matrix M . The rows of M are indexed
by rk22||rk21||rk20||m2(rk19); the columns of M are indexed by C0||C1||C2||m2(C3). From [6], we know
that each row or column of M defines the complete matrix. As a result, only the first column of M
would be stored.

6 The bias of function T can be calculate by the pilling lemma [21].
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Algorithm 1: The Second Step for Finding the Linear Approximations

Input: Bound B1, B2, function B
Output: Γ j

in, Γ
j
out (j = 4, 5, 8, 9, 12, 13, 16, 17)

1 for all Γ 9
in with #(Γ 9

in) = 2 do
2 Γ 8

in := Γ 9
in

3 for all Γ 9
out with #(Lt(Γ 9

out)) = 2 do
4 if B(Γ 9

in, L
t(Γ 9

out)) ≥ B1 then
5 Γ 5

out := Γ 9
out ⊕ Γ 9

in

6 if #(Lt(Γ 5
out)) = 2 then

7 for all Γ 8
out with #(Lt(Γ 8

out)) = 2 do
8 if B(Γ 8

in, L
t(Γ 8

out)) ≥ B1 then
9 Γ 12

out := Γ 8
out ⊕ Γ 9

in

10 if #(Lt(Γ 12
out)) = 2 then

11 for all Γ 5
in with #(Γ 5

in) = 2 do
12 Γ 4

in := Γ 5
in

13 if B(Γ 5
in, L

t(Γ 5
out)) ≥ B1 then

14 Γ 4
out := Γ 8

out ⊕ Γ 5
in

15 if #(Lt(Γ 4
out)) = 2 and B(Γ 4

in, L
t(Γ 4

out)) ≥ B1 then
16 push the quadruple (Γ 9

in, Γ
8
out, Γ

9
out, Γ

4
in) into a list L1

17 for all Γ 8
in with #(Γ 8

in) = 2 do
18 Γ 9

in := Γ 8
in

19 for all Γ 8
out with #(Lt(Γ 8

out)) = 2 do
20 if B(Γ 8

in, L
t(Γ 8

out)) ≥ B1 then
21 Γ 12

out := Γ 8
out ⊕ Γ 9

in

22 if #(Lt(Γ 12
out)) = 2 then

23 for all Γ 9
out with #(Lt(Γ 9

out)) = 2 do
24 if B(Γ 9

in, L
t(Γ 9

out)) ≥ B1 then
25 Γ 5

out := Γ 9
out ⊕ Γ 9

in

26 if #(Lt(Γ 5
out)) = 2 then

27 for all Γ 12
in with #(Γ 12

in ) = 2 do
28 Γ 13

in := Γ 12
in

29 if B(Γ 12
in , Lt(Γ 12

out)) ≥ B1 then
30 Γ 13

out := Γ 9
out ⊕ Γ 12

in

31 if #(Lt(Γ 13
out)) = 2 and B(Γ 13

in , Lt(Γ 13
out)) ≥ B1 then

32 if (Γ 9
in, Γ

8
out, Γ

9
out) is in L1 then

33 push the quintuple (Γ 9
in, Γ

8
out, Γ

9
out, Γ

4
in, Γ

12
in ) into a list L2

34 for all the the quintuple in L2 do
35 Γ 16

out := Γ 12
out ⊕ Γ 13

in

36 if #(Lt(Γ 16
out)) = 2 then

37 for all Γ 16
in with #(Γ 16

in ) = 2 do
38 Γ 17

in := Γ 16
in

39 Γ 17
out := Γ 13

out ⊕ Γ 16
in

40 if (#(Lt(Γ 17
out)) = 2) and (2×B(Γ 16

in , Lt(Γ 16
out))×B(Γ 17

in , Lt(Γ 17
out)) ≥ B2) then

41 output Γ j
in, Γ

j
out (j = 4, 5, 8, 9, 12, 13, 16, 17)
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Table 1. Eight 16-round Linear Approximations

Round 4 5 8 9 12 13 16 17

input b800e200 b800e200 b8e20000 b8e20000 00e2e200 00e2e200 b800e200 b800e200
output d3d33189 16009f6b 6bd3d389 aee29f6b d331d389 ae007d6b d3d33189 16009f6b

input 00e200b8 00e200b8 e2e20000 e2e20000 e20000b8 e20000b8 00e200b8 00e200b8
output 009f6b16 d33189d3 007d6bae 31d389d3 e29f6bae d3d3896b 009f6b16 d33189d3

input b800e200 b800e200 00e2e200 00e2e200 b8e20000 b8e20000 b800e200 b800e200
output 16009f6b d3d33189 ae007d6b d331d389 aee29f6b 6bd3d389 16009f6b d3d33189

input 00b800e2 00b800e2 00b8e200 00b8e200 0000e2e2 0000e2e2 00b800e2 00b800e2
output 89d3d331 6b16009f 896bd3d3 6baee29f 89d331d3 6bae007d 89d3d331 6b16009f

input e200b800 e200b800 e20000e2 e20000e2 0000b8e2 0000b8e2 e200b800 e200b800
output 9f6b1600 3189d3d3 7d6bae00 d389d331 9f6baee2 d3896bd3 9f6b1600 3189d3d3

input 00e200b8 00e200b8 e20000b8 e20000b8 e2e20000 e2e20000 00e200b8 00e200b8
output d33189d3 009f6b16 d3d3896b e29f6bae 31d389d3 007d6bae d33189d3 009f6b16

input e200b800 e200b800 0000b8e2 0000b8e2 e20000e2 e20000e2 e200b800 e200b800
output 3189d3d3 9f6b1600 d3896bd3 9f6baee2 d389d331 7d6bae00 3189d3d3 9f6b1600

input 00b800e2 00b800e2 0000e2e2 0000e2e2 00b8e200 00b8e200 00b800e2 00b800e2
output 6b16009f 89d3d331 6bae007d 89d331d3 6baee29f 896bd3d3 6b16009f 89d3d331

Table 2. One of the 19-round Linear Approximations

Round i Xi S out S in bias Xi+1 Xi+2 Xi+3

1 0 0xae007d6b 0x004c6200 0x00233300 2−7 0x00233300 0x00233300 0xd3f00289

2 1 0 0 0 0 0xd3d33189 0xae007d6b

3 2 0 0 0 0xd3d33189 0xae007d6b 0

4 3 0xd3d33189 0xda00f400 0xb800e200 2−8.093 0xae007d6b 0 0

5 4 0x16009f6b 0x2e009600 0xb800e200 2−7.193 0xb800e200 0xb800e200 0xd3d33189

6 5 0 0 0 0 0x6bd3d389 0x16009f6b

7 6 0 0 0 0x6bd3d389 0x16009f6b 0

8 7 0x6bd3d389 0xf44c0000 0xb8e20000 2−8.093 0x16009f6b 0 0

9 8 0xaee29f6b 0xdaf40000 0xb8e20000 2−8.093 0xb8e20000 0xb8e20000 0x6bd3d389

10 9 0 0 0 0 0xd331d389 0xaee29f6b

11 10 0 0 0 0xd331d389 0xaee29f6b 0

12 11 0xd331d389 0x00b89600 0x00e2e200 2−8.42 0xaee29f6b 0 0

13 12 0xae007d6b 0x004c6200 0x00e2e200 2−8.093 0x00e2e200 0x00e2e200 0xd331d389

14 13 0 0 0 0 0xd3d33189 0xae007d6b

15 14 0 0 0 0xd3d33189 0xae007d6b 0

16 15 0xd3d33189 0xda00f400 0xb800e200 2−8.093 0xae007d6b 0 0

17 16 0x16009f6b 0x2e009600 0xb800e200 2−7.193 0xb800e200 0xb800e200 0xd3d33189

18 17 0 0 0 0 0x6bd3d389 0x16009f6b

19 18 0 0 0 0x6bd3d389 0x16009f6b 0

20 19 0x6bd3d389 (0xf44c0000) * 0x16009f6b 0 0

* We do not concern about this mask, as it is not within the linear approximation.
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Fig. 2. Linear Attack on 23-round SMS4

5. Compute g = δ · T (m2(T (T (T (C0 ⊕ rk22)⊕ C1 ⊕ rk21)⊕ T (C0 ⊕ rk22)⊕ C2 ⊕ rk20))⊕m2(T (T (C0 ⊕
rk22)⊕C1⊕ rk21))⊕m2(T (C0⊕ rk22))⊕m2(C3⊕ rk19))⊕ ζ ·T (T (T (C0⊕ rk22)⊕C1⊕ rk21)⊕T (C0⊕
rk22)⊕ C2 ⊕ rk20) and insert (−1)g to the corresponding row of the first column of M .

6. Using the technique in [6], efficiently compute M t = e with Fast Fourier Transform [7].

Search Phase.

7. Since we aim to get a 8-bit advantage, for each of the top 2104 absolute values in e, guess the remaining
16 bits of rk19, then we can get the main key by the key schedule and test the key by trial encryption.

The time complexity of Step 3 is about 2126.54 one-round encryptions, equivalent to 2122 23-round en-
cryptions, which is also the dominated complexity of the attack. The time complexity of Step 5 is about
2112 4-round encryptions. In Step 6, e is calculated by the technique in [6], which needs to carry out 3
Fast Fourier Transformations; the complexity is 3× 112× 2112 ≈ 2120.4 arithmetic operations. The time
complexity of Step 7 is 2120 encryptions. The memory complexity is about (126.54×2112+2112)/8 ≈ 2116

bytes, which is to store t and the first column of M .

Success Rate. By [28], the success rate PS = Φ(2
√
N |ϵ| − Φ−1(1 − 2−a−1)) = 86.74%. By the nov-

el result in [4], PS = Φ(2
√
N |ϵ| −

√
1 + N

2nΦ
−1(1− 2−a−1)) = 73.58%.

As shown in [4], the most deviations between the two models occur when adversary seeks a particularly
big advantage or the data complexity gets close to the whole codebook. The advantage a in our attack is
only 8, thus we try to reduce the data complexity in the next subsection.

3.3 Reducing the Data Complexity of the 23-round Attack by Multidimensional
Extension

As mentioned in Section 3.1, for each of the 16-round linear approximations in Table 1, we have 5 input
masks with the highest bias for each of the 2 active S-boxes in the first round when extending backward
to 19 rounds. For the 16-round linear approximation we used in the previous subsection, the input masks
of the 2 active S-boxes in the first round with the highest bias are given in Table 3.

In this subsection, we will use these 25 linear approximations simultaneously and mount an multidi-
mensional linear attack on SMS4. By studying the 25 linear approximations, we found that they could
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S-box1 S-box2

0x1f 0x33
0x23 0x4e
0x3c 0x8c
0x95 0xbf
0xa9 0xf1

Table 3. The Input Masks of the Two Active S-boxes in the First Round of the 19-round Approximation
with Highest Bias

be spanned by m = 6 linearly independent linear approximations, where m is the number of base ap-
proximations. Then we can apply the theory of multidimensional linear attack in [11,12,13] to attack
SMS4.

Denote binary vector k = (κ0, · · · , κ5), where κi (i = 0, · · · , 5) are the one-bit key information involved
in the 6 base linear approximations. Since the bias |ϵ| of each of the 19-round linear approximations is
2−62.27, the correlation is c = 2|ϵ| = 2−61.27. The capacity of the 25 linear approximations is Cp =
25× c2 = 2−117.9.

Here we use the same notations as the previous subsection except that β and γ are not a single value
any more, but have different values corresponding to the 25 linear approximations.

Note that in this attack, we also aim to get a 8-bit advantage, the attack procedure is as follows:

Distillation Phase.

1. Collect N = 2122.6 plaintext-ciphertext pairs.
2. Initialize 25×2112 counters t[i][0] · · · t[i][2112−1] to zero (i = 0, · · · , 24), regard t[i] as a column vector

ti.
3. For each plaintext-ciphertext pair and each of the 25 linear approximations, calculate b = α ·P0 ⊕ β ·

P1 ⊕ β · P2 ⊕ γ · P3 ⊕ δ ·C0 ⊕ ζ ·C1, increment the counter t[i][C0||C1||C2||m2(C3)] if b = 0; otherwise,
decrement it. For i = 0, · · · , 24.

Analysis Phase.

4. Define conceptual 2112×2112 matrices M i. The rows of M i are indexed by rk22||rk21||rk20||m2(rk19);
the columns of M i are indexed by C0||C1||C2||m2(C3). Only the first columns of M i would be stored.

5. For all the linear approximations, compute gi = δ · T (m2(T (T (T (C0 ⊕ rk22) ⊕ C1 ⊕ rk21) ⊕ T (C0 ⊕
rk22) ⊕ C2 ⊕ rk20)) ⊕ m2(T (T (C0 ⊕ rk22) ⊕ C1 ⊕ rk21)) ⊕ m2(T (C0 ⊕ rk22)) ⊕ m2(C3 ⊕ rk19)) ⊕ ζ ·
T (T (T (C0 ⊕ rk22) ⊕ C1 ⊕ rk21) ⊕ T (C0 ⊕ rk22) ⊕ C2 ⊕ rk20) and insert (−1)g

i

to the corresponding
row of the first column of M i.

6. Efficiently compute M iti = ei with Fast Fourier Transform.
7. Denote the set of 26 linear approximations spanned by the 6 base approximations as I, a binary

vector l ∈ V6 indicates the combination of the base approximations for each approximation in I.
Consequently, each of the 25 approximations corresponds to a specific value l. Index the ei (i =
0, · · · , 24) obtained in the previous step by el, for an l that indicates an approximation that is out
of the 25 ones we used, el = 0. Denote the j-th coordinate in el as elj , where j = 0, · · · , 2112 − 1.

For each j and each k, compute G(j, k) =
∑
l∈V6

(−1)l·k(
elj
N )× c. This step can be calculated using Fast

Walsh-Hadamard Transform [31]. Define G(j) = maxkG(j, k).

Search Phase.

8. For the j that result the top 2104 G(j), guess the rest 16 bits of rk19, then we can get the main key
by the key schedule and test the key by trial encryption.

The time complexity of Step 3 is about 25 × 2122.6/23 ≈ 2122.7 23-round encryptions. The time
complexity of Step 5 is about 25×2112 4-round encryptions. The complexity of Step 6 is 25×3×112×2112 ≈
2125 arithmetic operations, which is about 2120.5 encryptions. Step 7 needs about 2112 × 6 × 26 = 2120.6

arithmetic operations. The time complexity of Step 8 is 2120 encryptions. The memory complexity is
about 25× (122.6× 2112 + 2112)/8 ≈ 2120.6 bytes.

Since the advantage a = 8, according to [12], the success rate PS = Φ(
√
NCp − Φ−1(1− 2−m−a)) =

89.55%; if we evaluate the success rate by means of [4], it will be 88.71%.



12 Mingjie Liu and Jiazhe Chen

4 Conclusion

This paper improved the best previous linear cryptanalysis of block cipher SMS4, a summary of some
primary cryptanalytic results, as well as our results on SMS4 is given in Table 4. Note that, since the
attacks are neither applied to the full cipher nor practical, they do not harm the security of the full SMS4.

Table 4. Summary of the Attacks on SMS4

#Rounds Attack Type Data Time Source

13 Integral 216 2114 [18]
14 Rectangle 2107.89 287.69 [30]
16 Rectangle 2125 2116 [33]
16 Impossible Differential 2117.06 296.07 [30]
18 Rectangle 2124 2112.83 [17]
18 Boomerang 2120 2116.83 [17]
21 Differential 2118 2126.6 [33]
22 Linear 2118.4 2117 [10]
22 Linear 2117 2109.86 [17]
22 Multiple Linear 2112 2119.75† [19]
22 Differential 2118 2125.71 [17]
22 Differential 2117 2112.3 [34]
23 Multidimensional Linear 2126.6 2127.4 [5]
23 Differential 2118 2126.7 [29]
23 Linear 2126.54 2122 This paper
23 Multidimensional Linear 2122.6 2122.7 This paper

† The complexity is 2124.21 arithmetic operations in the original paper,
we convert it to the number of 22-round encryptions by assuming that
one arithmetic operation is equivalent to one-round SMS4 encryption,
which is quite overestimated. Hence it is reasonable.
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