
SCARE of Secret Ciphers with SPN Structures?

Matthieu Rivain1 and Thomas Roche2

1 CryptoExperts, France
matthieu.rivain@cryptoexperts.com

2 ANSSI, Fance
thomas.roche@ssi.gouv.fr

Abstract. Side-Channel Analysis (SCA) is commonly used to recover secret keys involved in the im-
plementation of publicly known cryptographic algorithms. On the other hand, Side-Channel Analysis
for Reverse Engineering (SCARE) considers an adversary who aims at recovering the secret design of
some cryptographic algorithm from its implementation. Most of previously published SCARE attacks
enable the recovery of some secret parts of a cipher design –e.g. the substitution box(es)– assuming that
the rest of the cipher is known. Moreover, these attacks are often based on idealized leakage assump-
tion where the adversary recovers noise-free side-channel information. In this paper, we address these
limitations and describe a generic SCARE attack that can recover the full secret design of any iterated
block cipher with common structure. Specifically we consider the family of Substitution-Permutation
Networks with either a classical structure (as the AES) or with a Feistel structure. Based on a simple
and usual assumption on the side-channel leakage we show how to recover all parts of the design of
such ciphers. We then relax our assumption and describe a practical SCARE attack that deals with
noisy side-channel leakages.

1 Introduction

Side-Channel Analysis for Reverse Engineering (SCARE) refers to a set of techniques that
exploit side-channel information to recover secret algorithms, software, or hardware designs.
One of the main application of SCARE is the recovery of symmetric ciphering algorithms of
private design, as often used in Pay-TV and GSM authentication protocols. The first SCARE
attack in this context was introduced by Novak [26], who showed how to recover one out
of two s-boxes from a secret instance of A3/A8 algorithm (used in GSM protocol). This
work was subsequently improved by Clavier [11] who described how to recover both s-boxes
altogether with the secret key used by the cipher. In parallel to these results, Daudigny et
al. [14] showed that simple secret modifications of the DES cipher could also be recovered
from side-channel observations. In a more recent work, Réal et al. [28] took a closer look
at Feistel schemes in a more general sense. They showed how an adversary that gets the
Hamming weight of some intermediate result can interpolate the round function of the cipher.
Eventually, a SCARE attack on stream ciphers was proposed by Guilley et al. [20]. They
showed how to retrieve the overall design when either the linear or the nonlinear part of the
cipher is known.

Our Contribution. In this paper, we introduce a SCARE attack that recovers the full
secret design of an iterated Substitution-Permutation Network (SPN for short), namely an

? A short version of this paper appears in the proceedings of ASIACRYPT 2013.

iterated cipher composed of substitution boxes (or s-boxes), linear layers and key additions.
As in [11, 26], our attack is based on the simple assumption that the side-channel leakage
enables the detection of colliding s-box computations. Specifically, the attacker is able to
select strips of side-channel traces where the s-box computations are located and decide on
collisions between the processed values from the observation of these traces. This assumption
has been the basis of various previously published side-channel key-recovery attacks (see for
instance [3–7, 12, 18, 25, 31, 32]). We first show how a perfect detection of colliding s-box
computations enables an efficient recovery of a secret cipher with classical SPN structure as
the one of the AES [15]. Roughly speaking, the collision detection mechanism allows us to
build simple linear equation systems involving the different unknowns of the cipher algorithm
(i.e. the s-box values, the linear layer coefficients, the secret round key coordinates). We then
extend our basic attack to relax as much as possible the constraints on the design, allowing
several different s-boxes, binary linear layers, and Feistel structures, in order to cover a wide
spectrum of usual block cipher designs. In the second part of this paper, we address the
practical aspects of our attack and relax the perfect detection assumption. We describe a
practical SCARE attack working in the presence of noise in the side-channel leakage and we
provide experimental results showing its practicability.

Related Work. In a recent independent work [13], Clavier et al. present a SCARE at-
tack against AES-like block ciphers. The authors consider a chosen-plaintext and known-
ciphertext scenario with perfect detection of colliding s-boxes. Under these assumptions,
they show how to efficiently recover the secret parameters of a modified AES. They fur-
ther address the case of protected implementations with common software countermeasures
against side-channel attacks. In comparison, our attack targets a wider class of SPN ciphers,
including modified AES ciphers as a particular case. Moreover, we extend our attack to deal
with noisy leakages, hence relaxing the perfect detection assumption. However, we do not
deal with the case of protected implementations (though we give a few insights about it in
Section 8).

Paper Organization. In the first section we describe the families of target algorithms: the
classical SPN and Feistel structures. Then we present our basic SCARE attack on classical
SPN ciphers in Section 3, followed by the attack extension to more general SPN structures
in Section 4 and to Feistel schemes in Section 5. The practical SCARE attack dealing with
noisy leakages is described in Section 6, and experimental results are presented in Section 7.
Finally, we give some discussions and perspectives in Section 8.

2 Substitution-Permutation Networks

We consider a block cipher E computing an `-bit ciphertext block c from an `-bit plaintext
block p through the repetition of a key-dependent permutation ρ, called round function. Each
round is parameterized by a different round key ki derived from the secret key k through
a key scheduling process. Let r denote the number of rounds, the ciphertext block is then

2

defined as

c = Ek(p) = ρkr ◦ ρkr−1 ◦ · · · ◦ ρk1(p) .

In an SPN block cipher, the round function is composed of linear permutations and
nonlinear substitutions, and the key is introduced by addition. The addition and linearity
are considered over the vectorial space F`2. Namely round keys are introduced by a simple
exclusive-or (xor), and linear permutations are homomorphic with respect to the xor op-
eration. Non-linear substitutions are applied on small blocks of bits which are replaced by
new blocks looked-up from a predefined table usually called s-box (for substitution-box). In
what we shall call a classical SPN structure, the different s-boxes and linear transformations
are bijective (e.g. the Advanced Encryption Standard [15]). In the presence of non-bijective
transformations, it is common to use a so-called Feistel scheme in order to make the round
function, and hence the overall cipher, invertible (e.g. the Data Encryption Standard [16]).
We present the two different structures hereafter.

2.1 Classical SPN Structure

In a classical SPN structure, the plaintext is considered as a n-dimensional vector of m-bit
coordinates: p = (p1, p2, . . . , pn), with ` = nm. The round function is composed of a key
addition layer σki , a nonlinear layer γ, and a linear layer λ, that is

ρki = λ ◦ γ ◦ σki .

The key addition layer is a simple xor-ing of the round key:

σk(p) = p⊕ k .

The nonlinear layer consists of the parallel application of an m×m s-box S:

γ(p) = (S(p1), S(p2), . . . , S(pn)) ,

And the linear layer is a linear transformation over (F2m)n:

λ(p) =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n

 ·

p1
p2
...
pn

 (1)

where the aij and the pj are considered as elements of F2m .

Remark 1. The final round sometimes skips the linear layer and an additional key addition
is often performed after the final nonlinear layer. The attack described in this paper works
as well for these variants.

3

Generalizations. The attack described in this paper is extended to deal with more general
SPN structures. In particular, the s-box may not be the same for each subpart of the state
and the linear transformations may be defined at the binary level i.e. over F2 rather than
over F2m . Namely, we consider the two following variants of the previous structures:

• Multiple s-boxes setting – In this variant, the nonlinear layer γ is defined as

γ(p) = (S1(p1), S2(p2), . . . , Sn(pn)) ,

where the Si’s are different bijective nonlinear functions defined over {0, 1}m.

• Binary linear layer setting – In this variant, λ is defined as a linear transformation
over F2. Namely the input state is considered as a vector over (F2)

` and is multiplied by
an ` × ` binary matrix. An interesting particular case of binary linear transformation is
the bit-permutation which is often used to get compact hardware implementations (see
for instance the block cipher PRESENT [8]).

2.2 Feistel Structure

In a Feistel scheme, the encrypted block is divided in two parts p and q of equal bit-length
`/2. The round function is then defined as

ρki : (p, q) 7→ (q, p⊕ fki(q)) ,

where f is a function from `/2 bits to `/2 bits called the Feistel function. The Feistel function
can take many forms; we will assume here that it is composed of a key addition followed by
a nonlinear layer both surrounded by linear layers. Namely it is defined as

fki = λ2 ◦ γ ◦ σki ◦ λ1 .

Note that f is not necessarily invertible since the overall invertibility of the cipher comes
from the Feistel structure.

The linear layers λ1 and λ2 are linear transformations from (F2m)n to (F2m)s and from
(F2m)s to (F2m)n respectively, for some s ≥ n. That is we have

λ1(q) =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

as,1 as,2 · · · as,n

 ·

q1
q2
...
qn

 and λ2(q) =


b1,1 b1,2 · · · b1,s
b2,1 b2,2 · · · b2,s

...
...

. . .
...

bn,1 bn,2 · · · bn,s

 ·

q1
q2
...
qt

 (2)

where the aij, bij and the qj are considered as elements of F2m . These functions are usually
called the linear extension and linear compression transformations when s > n. Although
not mandatory from a functional point of view, these functions are usually taken of full rank
for security reasons.

4

As for the classical SPN structure, the key addition layer is a simple xor-ing of the round
key (of size s×m bits):

σk(q) = q ⊕ k .

And the nonlinear layer consists of s parallel applications of an m×m s-box S, that is

γ(q) = (S(q1), S(q2), . . . , S(qs)) .

It is common for Feistel schemes to use non-injective m ×m′ s-boxes where m′ < m. Such
s-boxes can be seen as m × m s-boxes by padding their ouputs with arbitrary bits which
are simply discarded by the subsequent linear layer. So there is no loss of generality in only
considering m×m s-boxes.

3 Basic SCARE of Classical SPN Structures

3.1 Attacker Model

We present a generic SCARE attack in a known-plaintext scenario, and we show how its
complexity can be lowered in a chosen-plaintext scenario. Our attack does not require the
knowledge of the ciphertext but only exploits the side-channel leakage of the cipher execution.
Moreover, it is assumed that colliding s-box computations can be detected from the side-
channel leakage. Specifically, we assume that the attacker is able to

(i) identify the s-box computations in the side-channel leakage trace and extract the leakage
corresponding to each s-box computation,

(ii) decide whether two s-box computations y1 ← S(x1) and y2 ← S(x2) are such that
x1 = x2 or not from their respective leakages.

Remark 2. This assumption implicitly means that the cipher implementation processes the
s-box computations in a sequential way and that two s-box computations of the same in-
put at two different points in the execution produce identical side-channel leakages. These
constraints are further discussed in Section 8.

Under the above assumption, the attacker can identify r different groups of n s-box com-
putations, and hence recover the number r of rounds, the number n of s-boxes per round
and hence the s-box size m = `/n, where ` is the block size. We will therefore assume these
parameters to be known in our attack description.

In what follows, we first show how the above assumption enables the complete recovery
of a secret cipher with SPN structure as described in Section 2.1. In Section 6, we relax this
assumption and extend our attack to deal with noisy leakages which can lead to decision
errors in the collision detections.

5

3.2 Equivalent Representations

Several equivalent representations are possible for an SPN cipher such as considered here.
For instance one can change the s-box S for the s-box S ′ defined as

S ′(x) = S(x⊕ δ)

for some δ ∈ F2m , and replace every round key ki = (ki,1, ki,2, . . . , ki,n) by

k′i = (ki,1 ⊕ δ, ki,2 ⊕ δ, . . . , ki,n ⊕ δ) .

The two representations are clearly equivalent in a functional sense. Moreover, the ability of
detecting collisions in s-box computations does not make it possible to distinguish between
two different equivalent representations.

Another way to obtain equivalent representations is by changing the s-box S for the s-box
S ′ defined as

S ′(x) = α · S(x)

for some α ∈ F∗2m , and by replacing the linear layer λ defined in (1) by the linear layer λ′

obtained from the matrix (a′i,j)i,j whose coefficients satisfy

a′i,j =
ai,j
α

for every i and j.
In our attack, we fix the first round key coordinate k1,1 to 0 and we fix the coefficient a1,1

to 1, which is equivalent to fixing the variables δ and α. Note that a1,1 may equal 0 (which
is revealed by the attack), in which case we try fixing a1,2, then a1,3, and so on. We describe
hereafter the successive stages of the attack.

3.3 Stage 1: Recovering k1

Since we have fixed k1,1 = 0, we aim to recover the n − 1 remaining subkeys k1,2, k1,3, . . . ,
k1,n. Let I denote the set of indices i for which k1,i is known. At the beginning of the attack
I = {1}. Then for any collision between two s-box computations yi ← S(pi ⊕ k1,i) and
yj ← S(pj ⊕ k1,j) for some i ∈ I and j /∈ I, one deduces

k1,j = pj ⊕ pi ⊕ k1,i ,

and the index j is added to I. We expect to retrieve all subkeys with less than 2m/2 encryp-
tions.

3.4 Stage 2: Recovering λ, S and k2

Once k1 has been recovered, one knows the inputs of the s-box in the first round. Let us
define xi = S(i) for every i ∈ {0, 1, . . . , 2m−1}, so that recovering the s-box means recovering
the 2m unknowns x0, x1, . . . , x2m−1. The attack consists in constructing a set of equations

6

in the xi’s, the ai,j’s and the k2,i’s. Solving the obtained system hence amounts to recover λ,
S and k2.

The first step of this stage consists in collecting the leakages `β from s-box computations
µ← S(β) for every β ∈ F2m . We shall denote by B the obtained leakage basis {`β | β ∈ F2m}.
Such a basis can be constructed since k1 is known from the first stage, hence the inputs of the
s-box computations in the first round are known. This basis is then used to detect collisions
between s-box computations in the second round and s-box computations µ ← S(β). Let
wi be the ith s-box input before key addition in the second round (i.e. wi is the ith m-bit
output of the first round), in the encryption of some plaintext p. Then wi satisfies

wi = ai,1 xj1 ⊕ ai,2 xj2 ⊕ · · · ⊕ ai,n xjn ,

where jt = pt⊕k1,t is a known index. If the corresponding s-box computation yi ← S(wi⊕k2,i)
collides with some s-box computation µ← S(β) from B, then we get the following quadratic
equation:

ai,1 xj1 ⊕ ai,2 xj2 ⊕ · · · ⊕ ai,n xjn ⊕ k2,i = β .

Once several such equations have been collected, one can solve the system and recover
all the unknowns (i.e. the xi’s, the ai,j’s and the k2,i’s).

Solving the system. In order to solve the quadratic system obtained from all the collected
equations, one can use the linearization method. The monomial ai,j xu is replaced by a new
unknown yt for every triplet t ≡ (i, j, u) where 1 ≤ i, j ≤ n and 0 ≤ u ≤ 2m − 1. We get a
linear system with 2mn2 + n unknowns (the yt’s and the k2,i’s), which can be solved based
on 2mn2 + n independent equations. Since every encryption provides n new equations, the
required number of encryptions is 2mn+ 1.

However, using linearization is not mandatory and we show hereafter that the system
can be directly rewritten as a linear system. To do so, we consider the n equations obtained
for the different s-box computations at the same time. Let β1, β2, . . . , βn be the values such
that yi ← S(wi ⊕ k2,i) collides with µi ← S(βi). The obtained system for the n equations
can be written in matrix form as

A · x⊕ k2 = β ,

whereA = (ai,j)i,j, x = (xj1 , xj2 , . . . , xjn)T , k2 = (k2,1, k2,2, . . . , k2,n)T and β = (β1, β2, . . . , βn)T .
Since λ is invertible, we have

x⊕ A−1 · k2 = A−1 · β .

Let k′
2 = (k′2,1, k

′
2,2, . . . , k

′
2,n) denote the vector resulting from the product A−1 · k2 and let

a′i,j denote the coefficients of A−1. We obtained the n following equations:

xj1 ⊕ k′2,1 = a′1,1 β1 ⊕ a′1,2 β2 ⊕ · · · ⊕ a′1,n βn ,
xj2 ⊕ k′2,2 = a′2,1 β1 ⊕ a′2,2 β2 ⊕ · · · ⊕ a′2,n βn ,

...

xjn ⊕ k′2,n = a′n,1 β1 ⊕ a′n,2 β2 ⊕ · · · ⊕ a′n,n βn .

7

After collecting several such equations, we obtained a linear system with n2 + n + 2m

unknowns: the xi’s, the a′i,j’s and the k′2,i’s. This system can hence be solved based on
n2 + n + 2m independent equations. Since every encryption provides n new equations, the
required number of encryptions is at least n + 1 + 2m/n. Once all the a′i,j’s and the k′2,i’s
have been recovered, we can inverse the matrix A−1 to get λ and then compute k2 = A · k′

2.

Degrees of freedom. As explained in Section 3.2, we must fix the value of a1,1 in order
to fix a representation among the equivalence class of the cipher. For the above system, this
amounts to fixing the value of a′1,1. We hence add the equation a′1,1 = 1 to the system. Here
again, a′1,1 may equal 0 in which case the solving fails and the attacker must try again by
fixing a′1,2 and so on. Another degree of freedom exists that is not recovered by solving the
above system: one can add a fixed offset δ to every s-box output and to every coordinate
of k′

2 (which amounts to add A · (δ, δ, . . . , δ) to k2). Clearly, such a modification would not
change the collected equations. In order to set this degree of freedom, we can fix one of the
s-box output, say x0 to 0. To summarize, additionally to the collected n-equation groups
from each encryption, we add the equations a′1,1 = 1 and x0 = 0 in order to obtain a full
rank system.

Note that fixing x0 = 0 may induce a non-equivalent representation of the cipher. Indeed,
the recovered cipher is equivalent to the real cipher but a fixed offset δ is xor-ed to each s-
box outputs in the last round. As a consequence the resulting ciphertexts are xor-ed with
the constant value A · (δ, δ, . . . , δ). Note that in the case where a key-addition is performed
after the nonlinear layer in the last round (see Remark 1) then its recovery absorbs this
offset as for the other rounds (and hence δ is just an additional degree of freedom in the
equivalence class of the cipher). Otherwise, one must recover the offset δ in order to correct
the ciphertext values and get an equivalent representation of the cipher. This can be easily
done by comparing a real ciphertext with the one obtained from the recovered cipher.

Chosen plaintexts attack. To optimize the attack, one shall select the plaintexts in order
to make every unknown of the system appear with the least possible number of requested
encryptions. The a′i,j’s and the k′2,i’s all appear in each group of n equations resulting from
a single encryption. On the other hand such a group of equations only involves n out of
2m unknowns xi’s. The best approach is hence to make n different xi’s appear for each
encryption request. To do so, one can simply ask for the encryption of the plaintext

(i · n+ 0, i · n+ 1, . . . , i · n+ n− 1)⊕ (k1,1, k1,2, . . . , k1,n) ,

for i = 0, 1, . . . , d2m/ne− 1. The s-box inputs in the first round of the corresponding encryp-
tions then equal (0, 1, 2, . . . , n − 1), (n, n + 1, . . . , 2n − 1), and so on. Every possible s-box
value thus appears in the system after d2m/ne encryptions. Afterwards, one just needs the
encryption of n+ 1 additional plaintexts to get a full rank linear system in the n2 + n+ 2m

unknowns.

8

3.5 Stage 3: Recovering k3, k4, . . . , kr

Once the two first stages have been completed, it only remains to recover the last round keys
k3, k4, . . . , kr. This is simply done by detecting a collision between two s-box computations
yi ← S(pj,i ⊕ kj,i) and µj,i ← S(βj,i), giving kj,i = pj,i ⊕ βj,i, for every s-box index i ∈
{1, 2, . . . , n} and every round index j ∈ {1, 2, . . . , r}.

4 Extensions to More General SPN Structures

In this section, we extend the previous attack to take into account the possible generalizations
described in Section 2.1. We shall only detail the generalization of the two first stages since
the third one keeps pretty similar.

4.1 Multiple S-Boxes Setting

In the multiple s-boxes setting, the nonlinear layer γ is defined as:

γ(p) = (S1(p1), S2(p2), . . . , Sn(pn)) ,

where S1, S2, · · · , Sn are n different s-boxes.
In this setting, our basic assumption is that the attacker is able to detect if two s-box

computations y1 ← Si(x1) and y2 ← Si(x2) collide, for a given s-box Si. Since two s-boxes
Si and Sj are different for different indices i 6= j, we consider that one cannot detect if two
s-box computations y1 ← Si(x1) and y2 ← Sj(x2) are such that x1 = x2 or not. Indeed the
underlying side-channel leakages are likely to be different even if we have x1 = x2.

Equivalent representations. As for the single s-box setting, the cipher has several equiv-
alent representations. In particular, for every (δ1, δ2, . . . , δn) ∈ (F2m)n, replacing γ by the
layer γ′ defined as

γ′(p) = (S1(p1 ⊕ δ1), S2(p2 ⊕ δ2), . . . , Sn(pn ⊕ δn)) , (3)

and replacing every round key ki = (ki,1, ki,2, . . . , ki,n) by

k′i = (ki,1 ⊕ δ1, ki,2 ⊕ δ2, . . . , ki,n ⊕ δn) (4)

does not change the cipher in a functional sense. And here again, the ability of detecting
collisions in s-box computations does not make it possible to distinguish between two different
equivalent representations.

The other way to obtain equivalent representations is by changing the nonlinear layer γ
for the nonlinear layer γ′ defined as

γ′(p) = (α1 · S1(p1), α2 · S2(p2), . . . , αn · Sn(pn))

for some (α1, α2, . . . , αn) ∈ (F∗2m)n, and by replacing the linear layer λ defined in (1) by the
linear layer λ′ obtained from the matrix (a′i,j)i,j whose coefficients satisfy

a′i,j =
ai,j
αj

for every i and j.

9

Generalized attack. To deal with equivalent representations in the multiple s-box setting,
one can set the first round key k1 to (0, 0, . . . , 0), and hence skip the first stage of the attack.
For the second stage (recovery of γ, λ and k2), the procedure is quite similar to that in the
single s-box setting. However, each s-box Si leads to its own set of 2m unknowns xi,0 = Si(0),
xi,1 = Si(1), . . . , xi,2m−1 = Si(2

m − 1). We must hence solve a system with n× 2m + n2 + n
unknowns. To construct this system, the attacker build a leakage basis Bi for each s-box
Si. Namely, he collects the leakage `i,β from the s-box computation µ ← Si(β) for every
i ∈ {1, 2, . . . , n} and for every β ∈ F2m to get the n leakage basis Bi = {`i,β | β ∈ F2m}.

When the attacker detects a collision between the ith s-box computation of the second
round and the element `i,β from Bi for every i, he obtains the following quadratic equation:

ai,1 x1,p1 ⊕ ai,2 x2,p2 ⊕ · · · ⊕ ai,n xn,pn ⊕ k2,i = β ,

where (p1, p2, . . . , pn) is the input plaintext.
Here again, the obtained quadratic system can be linearized. Doing so, the number of

unknowns increases up to 2mn2 + n. The linearized system can hence be solved based on
2mn2 + n independent equations. Since every encryption provides n new equations, the ex-
pected number of required encryptions is 2mn + 1. Note that there is no increase of the
number of unknowns compared to the linearized system in the single s-box setting (see Sec-
tion 3.4) since the outputs of the s-box Sj are multiplied by the coefficients of a unique
column of the matrix, namely (a1,j, a2,j, . . . , an,j)

T .
Here again, the system can be directly rewritten as a linear system in order to avoid

the increase of unknowns. If the ith s-box computation in the second round collides with
µi ← Si(βi) from the leakage basis Bi, we get the n following equations:

x1,p1 ⊕ k′2,1 = a′1,1 β1 ⊕ a′1,2 β2 ⊕ · · · ⊕ a′1,n βn ,
x2,p2 ⊕ k′2,2 = a′2,1 β1 ⊕ a′2,2 β2 ⊕ · · · ⊕ a′2,n βn ,

...

xn,pn ⊕ k′2,n = a′n,1 β1 ⊕ a′n,2 β2 ⊕ · · · ⊕ a′n,n βn ,

where the a′i,j’s are the coefficients of the inverse matrix A−1 and (k′2,1, k
′
2,2, · · · , k′2,n) =

A−1 · (k2,1, k2,2, · · · , k2,n)T .
From these equations, we obtain n independent linear systems: one per row of A−1 or

equivalently one per s-box Si. Each system has 2m + n+ 1 unknowns: the xi,j’s for 0 ≤ j ≤
2m − 1, the a′i,j’s for 1 ≤ j ≤ n and k′2,i (for a given row index i).

Degrees of freedom. As for the basic attack, each subsystem has additional degrees of free-
dom. The first one corresponds to the second equivalence relation described above. Namely
one can multiply Si by a non-zero value αi and the ith column of A by α−1i (which amounts
multiplying the ith row of A−1 by αi). This degree of freedom is fixed by setting a′1,i to
1. Once again, if a′1,i equals 0, we get an inconsistent system, then we try again by fixing
a′1,i = 1 and so on. Then, each of the n s-boxes has its own additional degree of freedom.
One can indeed xor an offset δi to each output of Si and to k′2,i for every i. These degrees

10

of freedom are fixed by setting k′2,i = 0 for every i. Such statement results in a xor-ing of
the constant A · (δ1, δ2, . . . , δn) to the ciphertexts, which is easily corrected once the overall
cipher has been recovered.

Chosen-plaintext attack. For a chosen plaintext attack, we shall request the encryption
of the 2m plaintexts (j, j, . . . , j) for 0 ≤ j ≤ 2m−1 in order to make appear all the unknowns
(xi,j)j in every subsystem. Then the equations arising from the encryption of n+1 additional
(random) plaintexts yield a full rank system for every i.

4.2 Binary Linear Layer Setting

In the binary linear layer setting, the linear layer λ is defined over F2, namely the matrix A
is a full rank `× ` binary matrix.

Equivalent representations. Let Ai,j be the m×m binary sub-matrices of A such that

A =


A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n
...

...
. . .

...
An,1 An,2 · · · An,n

 . (5)

An equivalent representation of the cipher can be obtained by replacing S with ψ ◦S and
every sub-matrix Ai,j with Ai,j ·M−1

ψ where ψ is a bijective linear transformation over Fm2
and Mψ is the corresponding m×m full-rank binary matrix.

Generalized attack. The first step of the attack keeps unchanged and the second stage also
starts by constructing a leakage basis {`β} for every possible s-box computation µ ← S(β)
with β ∈ F2m .

Each unknown xi is then split in m binary unknowns xi,1, xi,2, . . . , xi,m corresponding to
the m unknown bits of S(i). A collision detection between the ith s-box computation in the
second round and the element `β from the leakage basis B, leads to the following equation:

Ai,1 · xj1 ⊕ Ai,2 · xj2 ⊕ · · · ⊕ Ai,n · xjn ⊕ k2,i = β ,

where jt = pt⊕k1,t is a known index. Each equation as above yields m binary linear equations
in the xi,j’s, the binary coefficients of the Ai,j’s and the bits of k2. We hence get n groups of m
binary equations per encryption, that is a total of ` binary linear equations per encryption.

Once several such equations have been collected, one can solve the system and recover all
the m2m + `2 + ` binary unknowns (i.e. the xi,j’s, the binary coefficients of the Ai,j’s and the
bits of k2). In the exact same way as for the basic attack, this equation system may be solved
by linearization of the quadratic monomials or by rewriting the equation system as a linear
one and recovering the inverse of A. For the first solution, the number of binary unknowns is of
2m`2 + `. The equation system can hence be solved based on 2m`2 + ` independent equations.

11

Since every encryption provides ` new equations, the required number of encryptions is
2m`+1. In the second solution, the system can be solved with only m2m+`2 +` independent
equations, which requires 2m/n+ `+ 1 encryptions.

Degrees of freedom. Here again, additional degrees of freedom must be taken into account.
On the one hand, due to the equivalent representation presented above, composing the s-box
with a linear transformation ψ over Fm2 is canceled out by multiplying M−1

ψ to each sub-
matrix Ai,j. To remove this degree of freedom, one just need to fix the value of say A′1,1 (the
top left m × m sub-matrix of A′ = A−1). We arbitrary choose to set A′1,1 to the identity
matrix. If the matrix A′1,1 was actually singular, this would lead to an inconsistent system.
One would then try fixing A′1,2 to the identity matrix, and so on until the system can be
solved. As in the basic attack, one more degree of freedom must be considered. Indeed, one
can xor an offset δ to the output of the s-box and to k2,0 without affecting the system of
collected equations. This degree of freedom can be removed by adding the equation k2,0 = 0
to the system. This shall lead to the recovery of the unknown cipher up to the xor of a
constant to the ciphertexts (specifically A · (δ, δ, . . . , δ)), which can be easily retrieved at the
end of the attack.

4.3 Multiple S-Boxes and Binary Linear Layer Setting

We now address the combination of the two previous generalized settings i.e. when the cipher
has both multiple s-boxes and a binary linear layer. The following generalized attack is a
natural combination of the two previous generalized attacks.

Equivalent representations. As for the multiple s-box setting, we can obtain an equivalent
representation of the cipher by replacing γ with γ′ as defined in (3) and replacing every round
key ki with k′i as defined in (4), for some (δ1, δ2, . . . , δn) ∈ (F2m)n. On the other hand, and
as in the binary linear layer setting, we can also obtain an equivalent representation of the
cipher by replacing each s-box Si with ψi ◦ Si and every sub-matrix Ai,j as defined in (5) by
Ai,j ·M−1

ψi
, for some bijective linear transformations ψi : Fm2 → Fm2 and corresponding m×m

full-rank binary matrices Mψi .

Generalized attack. In the combined generalized setting, each s-box Si leads to its own
set of 2m unknowns xi,0 = Si(0), xi,1 = Si(1), . . . , xi,2m1 = Si(2

m1), each of them split into
m binary unknowns xi,j,1, xi,j,2, . . . , xi,j,m representing the m bits of xi,j.

As in the multiple s-box setting, the attack starts by fixing k1 to (0, 0, . . . , 0) in order to
fix the first degree of freedom in the class of equivalence of the cipher, and by constructing a
basis Bi = {`i,β | β ∈ F2m} for every s-box Si. When the attacker detects a collision between
the ith s-box computation of the second round and the element `i,β from Bi for every i, he
obtains the following quadratic equation:

Ai,1 · x1,p1 ⊕ Ai,2 · x2,p2 ⊕ · · · ⊕ Ai,n · xn,pn ⊕ k2,i = β ,

12

where (p1, p2, . . . , pn) is the input plaintext. Each equation as above yields m binary linear
equations in the xi,j,t’s, the binary coefficients of the Ai,j’s and the bits of k2. We hence get
n groups of m binary equations per encryption, that is a total of ` binary linear equations
per encryption.

Once several such equations have been collected, one can solve the system and recover
all the `2m + `2 + ` binary unknowns (i.e. the xi,j,t’s, the binary coefficients of the Ai,j’s and
the bits of k2). As previously, this can be done either by linearization of the system of by
rewriting the system as a linear one (and recovering the inverse of A.). In the latter case,
one get n independent linear systems (one per s-box Si) of m2m +m`+m binary unknowns.

Degrees of freedom. To fix a representation in the equivalence class of the cipher, one
sub-matrix A′i,j per subsystem, say A′i,1, must be set to the identity matrix. As previously,
if A′i,1 is actually singular, one gets an inconsistent subsystem, and one can then try again
with A′i,2, and so on. Then we have n additional degrees of freedom (one per s-box) as in
the multiple s-box setting, which can be fixed by setting k2 to (0, 0, . . . , 0). As previously
detailed, fixing these degrees enable the recovery of the cipher up to some constant xor-ed
to the ciphertext and which can be easily retrieved at the end of the attack.

5 Extension to Feistel Schemes

In this section, we extend our SCARE attack to the generic structure of Feistel schemes
described in Section 2.2. Due to the potentially non-invertible Feistel function, the attack is
slightly more tricky but it follows the same steps as for the classical SPN structure.

Here again the attacker is assumed to know the block size ` = 2nm and, by identify-
ing the s-box computations from leakage trace, he can also retrieve the number s of s-box
computations per round. But due to the unknown extension/compression linear layers, the
attacker is not able to directly recover the dimension m of the s-box. This is not a big issue
in practice as one could just guess the value of m and mount the attack until it succeeds.
Note that the possible values are limited to divisors of ` in a reasonable range (most often
between 4 and 8).

5.1 Equivalent Representations

As for the classical SPN structure, several equivalent representations are possible for a Feistel
scheme. For instance one can replace the s-box S for the s-box S ′ defined as

S ′(x) = S(α1 · (x⊕ δ))

for some δ ∈ F2m and α1 ∈ F∗2m , replace the linear layer λ1 defined in (2) by the linear layer
λ′1 obtained from the matrix (a′i,j)i,j whose coefficients satisfy

a′i,j =
ai,j
α1

13

for every i and j, and replace every round key ki = (ki,1, ki,2, . . . , ki,n) by

k′i =
(ki,1 ⊕ δ

α1

,
ki,2 ⊕ δ
α1

, . . . ,
ki,n ⊕ δ
α1

)
.

The two representations are clearly equivalent in a functional sense. Moreover, the ability
to detect collisions in s-box computations does not make it possible to distinguish between
these two different equivalent representations.

Another way to obtain equivalent representations is by changing the s-box S for the s-box
S ′ defined as

S ′(x) = α2 · S(x)

for some α2 ∈ F∗2m , and by replacing the linear layer λ2 defined in (2) by the linear layer λ′2
obtained from the matrix (b′i,j)i,j whose coefficients satisfy

b′i,j =
bi,j
α2

for every i and j.

As for the attack against classical SPN structure, we fix the first round key coordinate k1,1
to 0 and we fix the coefficients a1,1 and b1,1 to 1, which is equivalent to fixing the variables δ,
α1 and α2. Note that a1,1 (resp. b1,1) may equal 0 (which is revealed by the attack), in which
case we try fixing a1,2 (resp. b1,2), then a1,3 (resp. b1,3), and so on. We describe hereafter the
successive steps of the attack.

5.2 Stage 1: Recovering λ1 and k1

Let λ1(q) = (w1, w2, · · · , ws) denote the output of the linear extension layer in the processing
of the first round function fk1 . For every i ≤ s, wi satisfies

wi = ai,1q1 ⊕ ai,2q2 ⊕ · · · ⊕ ai,nqn ,

where q = (q1, · · · , qn) denotes the right part of the plaintext. Then for any collision between
two s-box computations yi ← S(wi⊕k1,i) and y′j ← S(w′j⊕k1,j), where wi and w′j may come
from different executions, we have wi ⊕ k1,i = w′j ⊕ k1,j, that is

ai,1 q1 ⊕ ai,2 q2 ⊕ · · · ⊕ ai,n qn ⊕ k1,i = aj,1 q
′
1 ⊕ aj,2 q′2 ⊕ · · · ⊕ aj,n q′n ⊕ k1,j .

Once several such equations have been collected, we get a linear system with ns+ s− 2
unknowns (i.e. the ai,j’s and the k1,i’s, except a1,1 and k1,1). This system can hence be solved
based on ns+ s− 2 independent equations. Since every encryption is expected to provide s
new equations, the expected required number of encryptions is n+ 1.

14

5.3 Stage 2: Recovering λ2, S and k2

Once λ1 and k1 have been recovered, one knows the inputs of the s-box in the first round.
Recovering the s-box means recovering the 2m unknowns x0, x1, . . . , x2m−1, where xi = S(i)
for every i. The attack consists in constructing a set of equations in the xi’s, the bi,j’s and
the k2,i’s. Solving the obtained system hence amounts to recover λ2, S and k2.

As for the classical SPN structure, the first step of this stage consists in collecting the
leakage `β from the s-box computation µ ← S(β) for every β ∈ F2m . We shall denote by
B the obtained leakage basis {`β | β ∈ F2m}. The basis is then used to detect collisions
between s-box computations in the second round and s-box computations µ← S(β). Let vj
be the jth m-bit coordinate in output of the first Feistel function in the encryption of some
plaintext (p, q). Then vj satisfies

vj = bj,1 xt1 ⊕ bj,2 xt2 ⊕ · · · ⊕ bj,s xts ,

where ti = ai,1q1⊕ai,2q2⊕· · ·⊕ai,nqn⊕k1,i is a known index. Then let wi be the ith output of
the linear extension layer in the processing of the second round function fk2 in the encryption
of (p, q). We have

wi = ai,1(v1 ⊕ p1)⊕ ai,2(v2 ⊕ p2)⊕ · · · ⊕ ai,n(vn ⊕ pn) .

If the corresponding s-box computation yi ← S(wi ⊕ k2,i) collides with some s-box compu-
tation µ← S(β) from B, then we get the following equation

ai,1(v1 ⊕ p1)⊕ ai,2(v2 ⊕ p2)⊕ · · · ⊕ ai,n(vn ⊕ pn) = β ,

that is
n⊕
j=1

ai,j

(s⊕
u=1

bj,u xtu

)
= ωi ⊕ k2,i , (6)

where ωi = β ⊕
⊕n

j=1 ai,j pj. Note that the ai,j’s are also known, hence the above equation
is quadratic. Once several such equations have been collected, one can solve the system and
recover all the unknowns (i.e. the xi’s, the bi,j’s and the k2,i’s).

Solving the system. A straightforward approach to solve this quadratic system is to
use linearization. The monomial bi,j xu is replaced by a new unknown yt for every triplet
t ≡ (i, j, u) ∈ [1;n]× [1; s]× [0; 2m− 1]. We get a linear system with 2mns+ s unknowns (the
yt and the k2,i), which can be solved based on 2mns+ s independent equations. Since every
encryption provides s new equations, the required number of encryptions is 2mn+ 1.

Like in the classical SPN case, we can get a simpler system by inverting the linear part.
However, the linear part of the Feistel scheme may not be bijective in which case we can
only partly invert it. We describe hereafter a chosen-plaintext approach to do so. Our attack
further assumes that the extended dimension s is less that twice the original dimension n
(i.e. s < 2n).

15

Chosen-plaintext attack. Let β1, β2, . . . , βs be the s values such that yi ← S(wi ⊕ k2,i)
collides with µi ← S(βi), and let ω1, ω2, . . . , ωs be the s values such that ωi = βi⊕

⊕n
j=1 ai,jpj.

The obtained system for the s equations can be written in matrix form as

A ·B · x⊕ k2 = ω , (7)

where A = (ai,j)i,j, B = (bi,j)i,j, x = (xt1 , xt2 , . . . , xts)
T , k2 = (k2,1, k2,2, . . . , k2,s)

T and
ω = (ω1, ω2, . . . , ωs)

T .
Since A is a full rank s× n matrix with s ≥ n, it admits a n× s left inverse A−1 (which

is known at this stage of the attack), we thus have

B · x⊕ k̃2 = ω̃ ,

where k̃2 = A−1 · k2 and ω̃ = A−1 · ω are vectors of size n.
In order to get rid of B in the left part of the formula, the attacker chooses plaintexts so

that s−n s-box outputs, say xtn+1 , xtn+2 , · · · , xts , take constant (unknown) values. To do so,
the attacker fixes the corresponding s-box inputs to arbitrary constant values by selecting
plaintexts with right part q lying in a (2n − s)-dimensional vectorial subspace (F2m)n. Let
B̃ denote the truncated matrix composed of the n first columns of B. Likewise, let x̃ be
the truncated vector composed of the n first coordinates of x. Eventually, let z the fixed
but unknown vector of size n defined such that zi = bi,n+1 xtn+1 ⊕ · · · ⊕ bi,sxts . With these
notations we now have

B̃ · x̃⊕ z ⊕ k̃2 = ω̃ .

Since B is a full rank matrix, the truncated square matrix B̃ is also of full rank and hence
invertible. The above equation can then be rewritten as

x̃⊕ k̃2
′
= B̃−1 · ω̃ ,

where k̃2
′
= B̃−1 · (m⊕ k̃2) is a constant unknown vector.

We hence obtain a linear system with 2m + n + n2 unknowns. Since each encryption
provides n new equations, the expected number of encryption to get a full-rank system is
2m/n+ n+ 1. In order to fix a representation among the equivalence class of the cipher (see
Section 5.1) and remove the corresponding degree of freedom, one can set one coefficient of
B̃−1 to 1. Once again, if this coefficient is actually 0, one get an unsolvable system, and one
must try again with another coefficient.

Once the above system has been solved and all the xi’s have been recovered, the original
quadratic system (see (7)) becomes a linear system with n (s − n) + n unknowns (namely
the bi,j’s with j > n and the k2,i’s). The expected number of encryptions to get a solvable
system is then of s−n+ 1. Eventually, the recovery of the next round keys follows the exact
same approach as in the classical SPN case.

5.4 Generalized Feistel Structures

Note that the Feistel structure described in Section 2.2 can be generalized as the classical
SPN structure by considering either multiple s-boxes, or binary linear layers (or both). The
extensions of our attack described in Section 4 to deal with these settings can be simply
transposed to the attack against the Feistel structure, so we do not give further details here.

16

6 SCARE in the Presence of Noisy Leakage

So far, we have considered an idealized model in which the attacker is able to detect a collision
between two s-box computations from their respective leakages with a 100% confidence. As
a matter of facts, the proposed SCARE attack does not tolerate any false-positive error in
the collision detections. In this section, we relax this assumption and describe a practical
SCARE attack in the presence of noise in the side-channel leakage. As for the basic attack,
the principle is to exploit equations arising from collisions in s-box computations. We explain
hereafter how to collect sound equations with high confidence in the presence of noisy leakage.

We only focus on secret ciphers with classical SPN structures (as described in Section
2.1), but the proposed techniques naturally extend to the attack generalizations proposed in
the previous sections.

6.1 Stage 1: Recovering k1

In our SCARE attack, the first stage exactly corresponds to the usual scenario of linear
collision attacks that aim at recovering key bytes differences k1,i⊕k1,j by detecting collisions
between s-box computations in the first round from the side-channel leakage [4, 5, 18,25].

In a linear collision attack, the attacker is assumed to possess the leakage traces corre-
sponding to the encryption of N random plaintexts ((pt)t≤N). Let `t,i denote the leakage
associated to ith s-box computation in the encryption of pt. The principle is to compute the
mean leakage ¯̀

i,x of the set {`t,i ; pt,i = x} for every i and x, in order to average the leak-
age noise and detect collisions more easily. As explained in Section 3.3, detecting a collision
between ¯̀

i,x and ¯̀
j,y implies the equality of the two s-box inputs x ⊕ k1,i and y ⊕ k1,j and

provides the linear equation k1,i⊕k1,j = x⊕y. In [4], Bogdanov points out that the equation
system arising from the key byte differences is overdetermined and that the redundant infor-
mation could be used to tolerate some erroneous equations. In [18], Gérard and Standaert
further show that solving such an equation system can be written as a LDPC3 code decoding
problem for which an efficient algorithm is known. We suggest to use their method for the
first stage of our practical SCARE attack, whose principle is recalled in Appendix A.

6.2 Stage 2: Recovering λ, S and k2

As for the attack without collision errors, the second stage is the main task. To deal with the
leakage noise, we make the well admitted Gaussian noise assumption. Namely, we assume
that the leakage corresponding to an s-box computation µ ← S(β) follows a multivariate
Gaussian distribution with mean mβ and covariance matrix Σβ, denoted N (mβ, Σβ).

Building leakage templates. The first step of the second stage consists in estimating the
leakage parameters. Namely, for each β ∈ F2m we estimate the mean mβ and the covariance
matrix Σβ of the leakage from the s-box computation µ ← S(β). The leakage basis of the

noise-free attack is then replaced by a leakage template basis B = {(m̂β, Σ̂β)β | β ∈ F2m}
3 Low Density Parity Check

17

where m̂β and Σ̂β denote the estimated values for the leakage parameters. The estimation
is obtained from the leakages used in the first stage, and possibly more, until the estimated
means converge.

Our convergence criterion is based on the Hotelling T 2-test which is the natural extension
of the Student T -test for multinormal distributions (see for instance [22]). Let d denote the
dimension of the distribution N (mβ, Σβ) i.e. the number of points in an s-box leakage trace,
and let F−1(d1,d2)

denote the quantile function of the Fisher’s F -distribution with parameters

(d1, d2) (i.e. F(d1,d2) is the distribution CDF). For some confidence parameter α ∈ [0; 1] and
some estimation quality parameter q ∈ [0; 1], our convergence criterion is satisfied when we
have:

Rα

(σ̂2
β

det(Ŝ)

)1/d
≤ q where Rα :=

d

N − d
F−1(d,N−d)(α) and σ̂2

β := det(Σ̂β) .

The rationale of this definition is detailed in Appendix B.

Based on this criterion, the template basis is built iteratively: we first collect N leakage
samples for every s-box input value β. Based on these samples, we estimate the distribution
parameters (m̂β, Σ̂β) for every β, as well as the interclass covariance matrix Ŝ. Then if

we have maxβ Rα(σ̂2
β/ det(Ŝ))1/d ≤ q for some chosen confidence α and estimation quality

parameter q we stop. Otherwise we continue with twice more samples (namely we collect
N more leakage samples and set N to 2N), and so on until we get a satisfying estimation
quality. In practice, we shall use α = 99% and q = 0.5.

Remark 3. A possible variant for building the template basis is to make the identical noise
assumption which considers that Σβ is equal to some constant matrix Σ for every β. This

enables a better estimation Σ̂ based on all leakage samples.

Collecting equations. Once the template basis has been built, we collect several groups of
n equations of the form x⊕k′

2 = A−1 ·β, as in the basic attack (see Section 3.4). Due to the
noise, we cannot determine the value of β with a 100% confidence. To deal with this issue we
use averaging. Namely, the encryption of the same plaintext p is requested several – say N –
times and we compute the average leakage for each s-box computation in the second round.
Let `i denote the average leakage for the ith s-box, and let β∗i denote the corresponding
(unknown) s-box input. The average leakage `i follows a distribution N (mβ∗i

, 1
N
Σβ∗i

). Then
we must recover the n corresponding values β∗1 , β∗2 , . . . , β∗n in order to get a group of
equations. The problem is hence to determine to which distribution N (mβ,

1
N
Σβ) belongs

each leakage `i based on the template basis. For such a purpose, we use a maximum likelihood
approach, namely we follow the classical approach of template attacks [10]. Given the leakage
observation `i, the probability that the ith s-box input value β∗i equals some value β satisfies

Pr[β∗i = β | `i] =
φβ(`i)∑

β′∈F2m
φβ′(`i)

,

18

where φβ denotes the pdf of N (mβ,
1
N
Σβ) satisfying

φβ(`) ∝ exp
(
− N

2
(`−mβ)T ·Σ−1β · (`−mβ)

)
.

The likelihood of the candidate β for β∗i based on the estimations (m̂β)β and (Σ̂β)β is hence
defined as

L(β | `i) :=
exp

(
− N

2
(`i − m̂β)T · Σ̂−1β · (`i − m̂β)

)∑
β′∈F2m

exp
(
− N

2
(`i − m̂β′)T · Σ̂−1β′ · (`i − m̂β′)

) . (8)

The corresponding likelihood for a vector β = (β1, β2, . . . , βn) given the average leakage
vector ` = (`1, `2, . . . , `n) can then be defined as L(β | `) :=

∏
i L(βi | `i). Note that the most

likely candidate argmaxβ L(β | `) is also the one whose coordinates are the most likely i.e.
equal to argmaxβi L(βi | `i) for every i.

In practice, we shall select the most likely value of β as the good one with a confidence
Lβ. However we not only want to select the best candidate, we further want its likelihood
to be high (i.e. close to 1) in order to have a high confidence in the selected candidate.
Getting a vector β with high likelihood may however be far more difficult than getting a
single coordinate βi with high likelihood since for the vector one needs all coordinates to
have high likelihood. Indeed, the probability of having a high likelihood for the vector β
is the probability of having a high likelihood for all coordinates βi which is exponentially
smaller in n.

To deal with this issue, our approach is to restrict the number of equations of the form
x⊕ k′

2 = A−1 ·β that are needed to succeed the attack. For such a purpose, we first solve a
subsytem (i.e. with less unknowns) for which we require less equations than in the original
attack, and then we recover the remaining unknowns based on simpler forms of equations.

Solving a subsystem. We first solve a subsystem involving the a′i,j’s, the k2,i’s and a
restricted number of xi’s. To do so we select a set of s values β, say S = {0, 1, . . . , s − 1},
and we only request the device for the encryption of plaintexts from the set

Ps := {(p1, p2, . . . , pn) | ∀i : 0 ≤ pi ⊕ k1,i ≤ s− 1} .

These plaintexts are such that all s-box inputs in the first encryption rounds are in S. We
hence obtained a linear system as described in Section 3.4 but with n2 +n+s−2 unknowns:
the a′i,j’s (but a′1,1 which is set to 1), the k′2,i’s, and the xi’s for i ∈ S (but x0 which is set 0).
Such a system can be solved based on t = n+ 1 + d(s− 2)/ne good groups of equations. The
value of s must hence be selected to ensure that the plaintext subspace Ps is large enough
to get t good groups with high confidence, while making t the smallest possible.

In order to increase our chances to actually come up with t groups of correct equation,
one direction would be to select a larger set of say q groups of equations (instead of only
taking the t best) and test all combinations of t groups among them. The complexity of the
resulting attack will however increase dramatically with q.

19

So, let us assume that we have a computing power of 2k, meaning that we can try to solve
2k linear systems, and that we can get the leakage measurement from T encryptions. Then
our approach is to request N times for the encryption of T/N different plaintexts in Ps. For
each of the T/N plaintexts, we compute the more likely candidate β for the s-box inputs
in the second round, based on the N -averaged leakages. We thus obtained T/N groups of
n equations with a corresponding confidence (i.e. the likelihood of the best candidate β).
Then we select the q groups for which we get the highest confidence in the best candidate
β, where q is such that

(
q
t

)
≈ 2k (that is q = c0t 2k/t for some c0 ∈ [e−1; 1]), and we try

to solve each system arising from t of these q groups. In order to make sure that a found
solution is the good one, we make the system over determined. This can be done without
increasing the number t of needed equation groups. Namely, we take s ≤ n + 2 in order
to get t = n + 1 + d(s − 2)/ne = n + 2. We thus obtain systems of n2 + 2n equations
with n2 + n + s − 2 unknowns. Obtaining a bad system that has a solution roughly occurs

with probability pe ≈
(

1
2m

)n−s+2
. So we take s to make this probability small, typically

s = n + 2 − 32/m giving pe ≈ 2−32. For instance, for n = 16 and taking s = 14, we then
have to select t = 18 good groups of equations from |Ps| ≈ 261 possible encryptions (which
is quite enough). Another direction in increasing our chances of success would be to select
the optimal averaging level.

Selecting the averaging level. We now explain how to select the averaging level N in
order to optimize the success probability of the attack. Increasing the averaging level is
good on the one hand to lower the noise and get better confidence in the recovered s-box
inputs. On the other hand, the lower N , the greater the number T/N of different equation
groups among which we can select the q best ones. To select a good tradeoff, we adopt the
approach of [29] which estimates the success probability of an attack based on estimated
leakage parameters. Namely we assume that the estimated paremeters (mβ)β, and (Σβ)β are
the real leakage parameters and we simulate the attack accordingly. To simulate an attack,
we fill two lists Succ and Fail by repeating the following steps:

1: β∗ ←$ (F2m)n

2: for i = 1 to n do `i ←$ N (m̂β∗i
, 1
N
Σ̂β∗i

)
3: Lmax ←

∏
i maxβ L(β | `i)

4: if argmaxβL(β | `i) = β∗i for every i
5: then add Lmax to Succ
6: else add Lmax to Fail

After iterating the above steps T/N times, one checks whether the q maximum values of
Succ∪ Fail include at least t value from Succ or not. In the affirmative, the simulated attack
succeeded, otherwise it failed. Once the attack simulation has been performed several times,
we obtain an estimation for the success probability of the attack.

Compared to a real attack experiment, the obtained success probability is affected by two
differences: the actual leakage distributions N (mβ∗i

, 1
N
Σβ∗i

) are replaced by the estimated dis-

tributions N (m̂β∗i
, 1
N
Σ̂β∗i

) and the distribution of the vector β∗ of s-box inputs in the second
round is replaced by the uniform distribution although it is not the case in practice since

20

the plaintexts are randomly drawn from Ps instead of {0, 1}`. However for good estimations
of the leakage parameters, we expect to get a good estimation of the trade-off of choice for
averaging.

Recovering remaining unknowns. For the remaining unknowns xs, xs+1, . . . , x2m−1 we
will here again use an iterative approach that recovers them one by one. For the sake of
clarity, we assume that the linear layer is such that the matrix A has a column j0 with no
zero coefficients. Then our approach is to take a random plaintext p in Ps and to set its j0th
coordinates to s ⊕ k1,j0 so that the j0th s-box inputs equals s. By definition, the ith s-box
input in the second round satisfies

β∗i = ai,1 xt1 ⊕ ai,2 xt2 ⊕ · · · ⊕ ai,n xtn ⊕ k2,i ,

where tj ≤ s− 1 for every j 6= j0 and tj0 = s. This can be rewritten

β∗i = ai,j xs ⊕ k2,i ⊕
⊕
j 6=j0

ai,j xtj . (9)

Since we know the values of the ai,j’s, the k2,i’s and the xtj ’s for tj ≤ s − 1, recovering xs
amounts to recovering β∗i . And as we cannot recover β∗i with a 100% success probability, we
use a maximum likelihood approach.

Specifically, the likelihood of each candidate value ω ∈ F2m for xs is initialized to 0
if ω ∈ {x0, x1, . . . , xs−1} (indeed xs /∈ {x0, x1, . . . , xs−1} as the s-box is bijective) and to
(2m − s)−1 otherwise. Then the leakage `i resulting from each s-box computation is used to
update the likelihood of each candidate for xs. Namely, the likelihood L(ω) of the candidate
ω is multiplied by the likelihood of the candidate βωi for the ith s-box input, where βωi =
ai,j ω ⊕ k2,i ⊕

⊕
j 6=j0 ai,j xtj according to (9). Doing so for every s-box, L(ω) is updated by

L(ω)← L(ω)×
n∏
i=1

L(βωi | `i) ,

where L(· | `i) is computed as in (8) with N = 1 (since we do not use averaging here).
Eventually, the likelihood vector is normalized, that is all the coordinates are divided by∑

ω L(ω). We iterate this process for several encryptions until one likelihood value L(ω) get
close enough to 1. Then we deduce xs = ω, and start again with xs+1, and so on until x2m−1.
Note that we can stop once x2m−2 since a single value remains for x2m−1.

6.3 Stage 3: Recovering k3, k4, . . . , kr

Eventually, the last round keys can be recovered one by one by performing any classical
side-channel key recovery attack (since we now know the design of the cipher). We suggest
to use a maximum likelihood approach based on the template basis.4

4 Such technique is well known and pretty similar to that used in the previous section so we do not detail it here.

21

7 Experiments

We report hereafter the results of various simulations of the practical SCARE attack de-
scribed in the previous section. Each simulated attack aims at recovering a secret cipher
with classical SPN structure (such as described in Section 2.1). We consider two different
settings for the cipher dimensions:

• the (128,8)-setting: 128-bit message block and 8-bit s-boxes, as in the AES block
cipher [15] (i.e. ` = 128, n = 16, m = 8),

• the (64,4)-setting: 64-bit message block and 4-bit s-boxes, as in the LED [21] and
PRESENT [8] lightweight block ciphers (i.e. ` = 64, n = 16, m = 4).

For each attack experiment, a random secret cipher is picked up. Namely, we randomly
generate a full-rank n× n matrix over F2m , a bijective m-bit s-box, and several `-bit round
keys. The attack succeed if it recovers an equivalent representation of the generated cipher.

In order to evaluate our attack under a realistic leakage model, we have profiled the leak-
age of an 8-bit s-box computation on an AVR chip.5 The side-channel leakage was captured
by the means of an electromagnetic probe and a digital oscilloscope with a sampling rate
of 1G sample per second. To infer a leakage model from the measurements we made the
Gaussian and independent noise assumptions. We therefore estimated the mean leakage for
every s-box input value and the mean leakage for every s-box output value based on 100000
leakage traces. We then selected three leakage points for the input and three leakage points
for the output. We thus obtained 256 means (m1,β,m2,β,m3,β)β for the 256 possible input
values β ∈ {0, 1, . . . , 255} and the 256 means (m4,µ,m5,µ,m6,µ)µ for the 256 possible output
values µ ∈ {0, 1, . . . , 255}. Afterwards we estimated the noise covariance matrix Σ for the
selected points (i.e. the matrix of covariances between the 6 points after subtracting the
means). A preview of the obtained parameters can be found in Appendix C. In particular
we get a multivariate SNR6 of 0.033 and univariate SNRs7 of 0.13, 0.033, 0.099, 0.058, 0.047,
and 0.051, for the different leakage points. These inferred parameters provide us with a leak-
age model for our attack simulations. Namely, for a given cipher with s-box S, the leakage
associated to the s-box computation with input β is randomly drawn from the multivariate
Gaussian distribution N (mβ, Σ) with mean satisfying

mβ = (m1,β,m2,β,m3,β,m4,S(β),m5,S(β),m6,S(β)) .

Stage 1. For the recovering of k1, we implemented the Gérard and Standaert method based
on the normalized Euclidean distance (see Appendix A for details). For the (128,8)-setting,
we obtained a 100% success rate using a few thousands of leakage traces while for the (64,4)-
setting a few hundreds were sufficient. We did not try to optimize this stage of the attack
(in particular we did not use the Bayesian extension proposed in [18]) as it requires a very
small amount of leakage traces compared to the next stage.

5 ATMega 32A, 8-bit architecture, 8Mz.
6 The multivariate SNR is defined as the ratio of the interclass generalized variance (i.e. the determinant of the leak-

age means covariance matrix) over the intraclass generalized variance (i.e. the determinant of the noise covariance
matrix) to the power 1/d (where d is the dimension equal to 6 in our case).

7 The univariate SNR is defined as the variance of the means over the variance of the noise.

22

13 14 15 16 17 18

0.2

0.4

0.6

0.8

1.0

Fig. 1. Stage 2.1 for the (128,8)-setting: success rate
over an increasing number of leakage traces (in
log2-scale) for a computing power of 2k with k ∈
{0, 1, 8, 32}.

11 12 13 14

0.2

0.4

0.6

0.8

1.0

Fig. 2. Stage 2.1 for the (64,4)-setting: success rate of
stage 2.1 over an increasing number of leakage traces
(in log2-scale) for a computing power of 2k with k ∈
{0, 1, 8, 32}.

Stage 2.1. For this stage (recovery of λ, k2, S(0), S(1), . . . , S(s− 1)) we fixed the number
s of s-box outputs in the system to 14 for the (128,8)-setting and to 10 for the (64,4)-setting
(according to the suggested formula s = n+2−32/m). For both settings, we chose a precision
quality parameter q = 0.5 for the building of the template basis and we simulated the attack
for a computing power of 2k with k ∈ {0, 8, 16, 32} (i.e. 2k systems among the likeliest ones
are tested). The obtained success rates are plotted in Figure 1 for the (128,8)-setting and in
Figure 2 for the (64,4)-setting. Each curve represents a different computing power. Naturally
the leftmost curves (i.e. the most successful) correspond to the 232 computing power and
the rightmost ones to the 20 computing power. As one can see, with a reasonable computing
power, a 100% success rate is reached with less than 216 leakage traces for the (128,8)-setting,
and with less than 213 leakage traces for the (64,4)-setting.

13.5 14.0 14.5 15.0

0.2

0.4

0.6

0.8

1.0

Fig. 3. Stage 2.1 for the (128,8)-setting: success rate
over an increasing number of leakage measurements
(in log2-scale) for a estimation quality q = 0.1.

11.5 12.0 12.5 13.0

0.2

0.4

0.6

0.8

1.0

Fig. 4. Stage 2.1 for the (64,4)-setting: success rate
over an increasing number of leakage measurements
(in log2-scale) for a estimation quality q = 0.1.

23

For the (128,8)-setting the precision quality q = 0.5 makes our means estimations to
converge after 1024 leakage samples per value β ∈ F256. Since 16 samples are provided per
leakage trace (one for each s-box in the first round), this makes a data complexity of 214

leakage traces for building the template basis. As we need around 216 leakage traces to get a
100% success rate in stage 2.1 we might get a better overall attack complexity by improving
the estimation precision a little bit. In order to see the kind of improvement we could get from
a better estimation, we also performed attack simulations for a precision quality q = 0.1,
implying an increase of the data complexity to 217 leakage traces for the template basis. The
obtained success rates are given in Figure 3. We get a 100% success rate with between 214

and 214.5 leakage traces for all computing powers except for k = 0 which requires 215 traces.
For the (64,4)-setting, the estimated means converge after 2048 samples per value β ∈

F16, making a data complexity of 2048 for template basis. Here again we also performed
attack simulations for a precision quality of q = 0.1 (see results in Figure 4). We get a data
complexity of 213 leakage traces for the template basis and around 212.5 leakage traces for the
system solving. This precision therefore seems to give the best tradeoff for the (64,4)-setting.

0.2 0.4 0.6 0.8 1.0

5000

10 000

15 000

Fig. 5. Number of leakage traces to get a 90% success rate
over an increasing SNR in [0.1; 1] for the (128,8)-setting
(green curve) and the (64,4)-setting (red curve).

In order to observe the impact of the SNR on the data complexity we performed attack
simulation for which we weighted the noise covariance matrix in order to get some desired
multivariate SNR between 0.1 and 1. For both settings, we fixed the estimation quality to
q = 0.5 and the computed power to 216. Figure 5 plot the required number of leakage traces
to obtain a 90% success rate with respect to the multivariate SNR. We observe a strong
impact of the SNR on the attack efficiency. In particular for an SNR close to 1 our attack
only requires a few thousands of traces.

Stage 2.2 and 3. The recovery of the remaining s-box outputs based on the maximum
likelihood approach is very efficient. Taking a lower bound of 0.999 on the likelihood to
decide that a candidate is the good one, the attack stops after 640 leakage traces on average

24

and reaches a 97% success rate for the (128,8)-setting (a tighter likelihood bound would yield
a 100% success rate). For the (64,4)-setting, it stops after 10 leakage traces on average and
reaches a 100% success rate. The high efficiency of the attack for the (64,4)-setting comes
from the fact that it only has to recover 6 remaining s-box outputs. Therefore the likelihoods
quickly converge.

We did not implement attack simulation for the third step but we would clearly get
comparable figures than for stage 2.2, i.e. negligible data requirements compared to stage
2.1 which is clearly the bottleneck of our attack.

8 Discussions and Perspectives

In this paper we have described a generic SCARE attack against a wide class of SPN block
ciphers. The attacker model defined in Section 3.1 assumes that colliding s-box computations
can be detected from the side-channel leakage. We have first investigated the case of perfect
collision detection and then we have extended our attack to deal with noisy leakages.

About the attacker model. As mentioned in Section 3.1 (Remark 2), our attacker model
implicitly means that the cipher implementation processes the s-box computations in a
sequential way, which is therefore more suited for software implementations. This makes sense
for secret ciphers which are rarely implemented at the hardware level. Note that it is also
common to use a sequential approach for the s-box computations in light-weight hardware
implementations of block ciphers, and our attack naturally applies to this context. Our model
further implicitly assumes that two s-box computations with the same input at two different
points in the execution produce identical side-channel leakages (or identically distributed in
the noisy context). Although this assumption seems fair in practice, it might not always be
satisfied. It was for instance observed in [18,30] that for some software implementations the
side-channel leakage of an s-box computation may vary according to the s-box index and the
target register. For such implementations, it might not be possible to detect collisions between
two s-box computations at different indices. This issue can be addressed by considering each
s-box index independently, which amounts to deal with the multiple s-boxes setting studied
in Section 4.1 (except that we need to recover a single s-box). In this context, one only
detects collisions between s-box computations at the same index. Note that our attack still
assumes that s-box computations at a given index leak identically in the successive rounds.

Countermeasures to our attack. Our work shows that under a practically relevant as-
sumption, it is possible to retrieve the complete secret design of a block cipher with a
common SPN structure. This clearly emphasizes that the secrecy of the design is not suffi-
cient to prevent side-channel attacks, and that one should include countermeasures to the
implementation of secret ciphers as well. A typical choice for block cipher implementations
in software is to use masking with table recomputation for the s-box (see for instance [1,24]).
As studied by Roche and Lomné in [30], such a countermeasure only prevents collision detec-
tions between different cipher executions but it still allows the detection of intra-execution

25

collisions. In a variant of their attack against AES-like secret ciphers, Clavier et al. take this
constraint into account in order to bypass the masking countermeasure with table recom-
putation [13]. Our attack in the idealized leakage model (perfect collision detection) could
also be extended to work with this constraint. It would be more tricky in the presence of
noise as averaging would not be an option anymore, but our attack could still be generalized
using a similar approach as [30]. In order to thwart our attack, one should therefore favor
masking schemes enabling the use of different masks for the different s-box computations
(see for instance [9,27]), so that intra-execution collisions would not be detectable anymore.
Another common software countermeasure is operation shuffling (see for instance [23]). This
countermeasure has a direct impact on our attack as it randomizes the indices of the s-box
computations from one execution to another. As shown by Clavier et al. [13], such a coun-
termeasure can be simply bypassed in the idealized leakage model. However, it seems more
complicated to deal with in a noisy leakage model especially if combined with masking. We
therefore suggest to use such a combination of countermeasure against our attack.

Perspectives. Our work opens several interesting issues for further research. First, our
attack could probably be improved by using better/optimal approaches to solve the set of
noisy equations arising in Stage 2.1 (see Section 6.2). One could for instance follow the ap-
proach of [17, 19] by rewriting the system as a decoding problem. Our attack could also be
improved by considering a known ciphertext scenario (as e.g. done in [13]). On the other
hand, our attack was only validated by simulations (although from a practically inferred
leakage model). It would be interesting to mount the attack against a real implementation
of a secret SPN cipher e.g. on a smart card, to check how the different steps work in prac-
tice. Another interesting direction would be to investigate extensions of our attack against
protected implementations in order to determine to what extent an implementation should
be protected in practice.

Acknowledgements

This work has been financially supported by the French national FUI12 project MARSHAL+
(Mechanisms Against Reverse-Engineering for Secure Hardware and Algorithms). We would
like to thank Victor Lomné for providing the microcontroller side-channel traces and the
anonymous reviewers for their useful comments.

References

1. Mehdi-Laurent Akkar and C. Giraud. An Implementation of DES and AES, Secure against Some Attacks. In
Ç.K. Koç, D. Naccache, and C. Paar, editors, Cryptographic Hardware and Embedded Systems – CHES 2001,
volume 2162 of Lecture Notes in Computer Science, pages 309–318. Springer, 2001.

2. Amir Bennatan and David Burshtein. Design and Analysis of Nonbinary LDPC Codes for Arbitrary Discrete-
Memoryless Channels. IEEE Transactions on Information Theory, 52(2):549–583, 2006.

3. Alex Biryukov and Dmitry Khovratovich. Two New Techniques of Side-Channel Cryptanalysis. In Pascal Paillier
and Ingrid Verbauwhede, editors, Cryptographic Hardware and Embedded Systems, 9th International Workshop
– CHES 2007, volume 4727 of Lecture Notes in Computer Science, pages 195–208. Springer, 2007.

26

4. Andrey Bogdanov. Improved Side-Channel Collision Attacks on AES. In Carlisle M. Adams, Ali Miri, and
Michael J. Wiener, editors, Selected Areas in Cryptography, 14th International Workshop – SAC 2007, volume
4876 of Lecture Notes in Computer Science, pages 84–95. Springer, 2007.

5. Andrey Bogdanov. Multiple-Differential Side-Channel Collision Attacks on AES. In Elisabeth Oswald and Pankaj
Rohatgi, editors, Cryptographic Hardware and Embedded Systems, 10th International Workshop – CHES 2008,
volume 5154 of Lecture Notes in Computer Science, pages 30–44. Springer, 2008.

6. Andrey Bogdanov and Ilya Kizhvatov. Beyond the Limits of DPA: Combined Side-Channel Collision Attacks.
IEEE Trans. Computers, 61(8):1153–1164, 2012.

7. Andrey Bogdanov, Ilya Kizhvatov, and Andrei Pyshkin. Algebraic Methods in Side-Channel Collision Attacks
and Practical Collision Detection. In Dipanwita Roy Chowdhury, Vincent Rijmen, and Abhijit Das, editors,
Progress in Cryptology, 9th International Conference on Cryptology in India – INDOCRYPT 2008, volume 5365
of Lecture Notes in Computer Science, pages 251–265. Springer, 2008.

8. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann, Matthew J. B. Robshaw,
Yannick Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, Cryptographic Hardware and Embedded Systems, 9th International Workshop – CHES
2007, volume 4727 of Lecture Notes in Computer Science, pages 450–466. Springer, 2007.

9. Claude Carlet, Louis Goubin, Emmanuel Prouff, Michaël Quisquater, and Matthieu Rivain. Higher-Order Mask-
ing Schemes for S-Boxes. In Anne Canteaut, editor, Fast Software Encryption, 19th International Workshop –
FSE 2012, volume 7549 of Lecture Notes in Computer Science, pages 366–384. Springer, 2012.

10. S. Chari, J.R. Rao, and P. Rohatgi. Template Attacks. In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems, 4th International Workshop – CHES 2002, volume
2523 of Lecture Notes in Computer Science, pages 13–29. Springer, 2002.

11. Christophe Clavier. An Improved SCARE Cryptanalysis Against a Secret A3/A8 GSM Algorithm. In
Patrick Drew McDaniel and Shyam K. Gupta, editors, Information Systems Security, Third International Con-
ference – ICISS 2007, volume 4812 of Lecture Notes in Computer Science, pages 143–155. Springer, 2007.

12. Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène Roussellet, and Vincent Verneuil. Improved Collision-
Correlation Power Analysis on First Order Protected AES. In Bart Preneel and Tsuyoshi Takagi, editors,
Cryptographic Hardware and Embedded Systems, 13th International Workshop – CHES 2011, volume 6917 of
Lecture Notes in Computer Science, pages 49–62. Springer, 2011.

13. Christophe Clavier, Quentin Isorez, and Antoine Wurcker. Complete SCARE of AES-like Block Ciphers by
Chosen Plaintext Collision Power Analysis. To Appear in INDOCRYPT 2013, 2013.

14. Rémy Daudigny, Hervé Ledig, Frédéric Muller, and Frédéric Valette. SCARE of the DES. In John Ioannidis,
Angelos D. Keromytis, and Moti Yung, editors, Applied Cryptography and Network Security, Third International
Conference – ACNS 2005, volume 3531 of Lecture Notes in Computer Science, pages 393–406, 2005.

15. FIPS PUB 197. Advanced Encryption Standard. National Bureau of Standards, November 2001.
16. FIPS PUB 46. The Data Encryption Standard. National Bureau of Standards, January 1977.
17. R. Fourquet, Pierre Loidreau, and Cédric Tavernier. Finding good linear approximations of block ciphers and its

application to cryptanalysis of reduced round DES. In the 6th international workshop on Coding and Cryptography
(WCC 2009), Ullensvang, Norvège, May 2009.

18. Benôıt Gérard and François-Xavier Standaert. Unified and Optimized Linear Collision Attacks and Their Appli-
cation in a Non-profiled Setting. In Emmanuel Prouff and Patrick Schaumont, editors, Cryptographic Hardware
and Embedded Systems, 14th International Workshop – CHES 2012, volume 7428 of Lecture Notes in Computer
Science, pages 175–192. Springer, 2012.

19. Benôıt Gérard and François-Xavier Standaert. Unified and optimized linear collision attacks and their application
in a non-profiled setting: extended version. J. Cryptographic Engineering, 3(1):45–58, 2013.

20. Sylvain Guilley, Laurent Sauvage, Julien Micolod, Denis Réal, and Frédéric Valette. Defeating Any Secret Cryp-
tography with SCARE Attacks. In Michel Abdalla and Paulo S. L. M. Barreto, editors, Progress in Cryptology,
First International Conference on Cryptology and Information Security in Latin America – LATINCRYPT 2010,
volume 6212 of Lecture Notes in Computer Science, pages 273–293. Springer, 2010.

21. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The LED Block Cipher. In Bart Preneel
and Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded Systems, 13th International Workshop –
CHES 2011, volume 6917 of Lecture Notes in Computer Science, pages 326–341. Springer, 2011.

22. W. Härdle and L. Simar. Applied Multivariate Statistical Analysis. Springer Verlag, 2003.
23. P. Herbst, E. Oswald, and S. Mangard. An AES Smart Card Implementation Resistant to Power Analysis

Attacks. In J. Zhou, M. Yung, and F. Bao, editors, Applied Cryptography and Network Security – ANCS 2006,
volume 3989, pages 239–252, 2006.

27

24. T.S. Messerges. Securing the AES Finalists against Power Analysis Attacks. In B. Schneier, editor, Fast Software
Encryption – FSE 2000, volume 1978 of Lecture Notes in Computer Science, pages 150–164. Springer, 2000.

25. Amir Moradi, Oliver Mischke, and Thomas Eisenbarth. Correlation-Enhanced Power Analysis Collision Attack.
In Stefan Mangard and François-Xavier Standaert, editors, Cryptographic Hardware and Embedded Systems,
12th International Workshop – CHES 2010, volume 6225 of Lecture Notes in Computer Science, pages 125–139.
Springer, 2010.

26. Roman Novak. Side-Channel Attack on Substitution Blocks. In Jianying Zhou, Moti Yung, and Yongfei Han,
editors, ACNS, volume 2846 of Lecture Notes in Computer Science, pages 307–318. Springer, 2003.

27. Emmanuel Prouff and Matthieu Rivain. A Generic Method for Secure SBox Implementation. In Sehun Kim, Moti
Yung, and Hyung-Woo Lee, editors, WISA, volume 4867 of Lecture Notes in Computer Science, pages 227–244.
Springer, 2008.

28. Denis Réal, Vivien Dubois, Anne-Marie Guilloux, Frédéric Valette, and M’hamed Drissi. SCARE of an Unknown
Hardware Feistel Implementation. In Gilles Grimaud and François-Xavier Standaert, editors, Smart Card Re-
search and Advanced Applications, 8th International Conference – CARDIS 2008, volume 5189 of Lecture Notes
in Computer Science, pages 218–227. Springer, 2008.

29. Matthieu Rivain. On the Exact Success Rate of Side Channel Analysis in the Gaussian Model. In Roberto Maria
Avanzi, Liam Keliher, and Francesco Sica, editors, Selected Areas in Cryptography, 15th International Workshop
– SAC 2008, volume 5381 of Lecture Notes in Computer Science, pages 165–183. Springer, 2009.

30. Thomas Roche and Victor Lomné. Collision-correlation attack against some 1st-order boolean masking schemes in
the context of secure devices. In Emmanuel Prouff, editor, COSADE, volume 7864 of Lecture Notes in Computer
Science, pages 114–136. Springer, 2013.

31. Kai Schramm, Gregor Leander, Patrick Felke, and Christof Paar. A Collision-Attack on AES (Combining Side
Channel and Differential-Attack). In M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware and Em-
bedded Systems – CHES 2004, volume 3156, pages 163–175, 2004.

32. Kai Schramm, Thomas Wollinger, and Christof Paar. A New Class of Collision Attacks and its Application to
DES. In T. Johansson, editor, Fast Software Encryption – FSE 2003, volume 2887, pages 206–222, 2003.

A Linear Collision Attacks with LDPC Decoding

We recall hereafter the basic principle of linear collision attacks using LDPC decoding [18].
Let {si,j,δ}i,j,δ denote a set of confidence scores to the presence of collision between x⊕ k1,i
and x ⊕ δ ⊕ k1,j for each pair of s-box indices (i, j) and every possible inputs differences δ.
In other words, si,j,δ is the score of confidence in the equation k1,i ⊕ k1,j = δ. The authors
of [18] then argue that finding the likeliest equation system from the set of scores {si,j,δ}i,j,δ
amounts to soft-decode in a LDPC code of length n(n−1)

2
and dimension n − 1, i.e. to find

the closest codeword (k1,i ⊕ k1,j)i<j. To that aim they use the following efficient decoding
algorithm from [2] (Alg. 2 in [18]).

Algorithm 1 LDPCSoftDecoding procedure
Input: The set of normalized scores {si,j,δ}i,j,δ
Output: The likeliest consistent system S
1: for 1 ≤ i < j ≤ n, δ ∈ F2m

2: do Pi,j(δ)← si,j,δ
3: while(argmaxδP1,2(δ), · · · , argmaxδPn−1,n(δ)) is not a codeword
4: for 1 ≤ i < j ≤ n, δ ∈ F2m

5: do Pi,j(δ)← Pi,j(δ) ·
∏
u/∈{i,j}

∑
α∈F2n

Pi,u(α)× Pj,u(α⊕ δ)
6: return (argmaxδP1,2(δ), · · · , argmaxδPn−1,n(δ))

In order to associate a sound confidence score to each collision, two approaches are
investigated in [18], namely the use of the Euclidean distance (as proposed in [4, 5]) and

28

the Pearson correlation coefficient (as proposed in [25]). For each techniques, a Bayesian
extension is proposed to get scores with proper meaning for the LDPC decoding algorithm
(i.e. scores corresponding to estimated probabilities).

For our simulation we use the normalised Euclidean distance [18]. Namely, the srcore
si,j,δ for the equation k1,i ⊕ k1,j = δ is defined as

si,j,δ =
max
i,j,x6=y

‖¯̀i,x − ¯̀
j,y‖ − max

x⊕y=δ
‖¯̀i,x − ¯̀

j,y‖∑
δ

(
max
i,j,x6=y

‖¯̀i,x − ¯̀
j,y‖ − max

x⊕y=δ
‖¯̀i,x − ¯̀

j,y‖
) ,

where ‖ · ‖ denotes the Euclidean norm.

B Convergence Criterion for Leakage Templates

Our convergence criterion is based on the Hotelling T 2-test which is the natural extension
of the Student T -test for multinormal distributions (see for instance [22]). Let d denote the
dimension of the distribution N (mβ, Σβ) i.e. the number of points in an s-box leakage trace,
and let F−1(d1,d2)

denote the quantile function of the Fisher’s F -distribution with parameters

(d1, d2) (i.e. F(d1,d2) is the distribution CDF). Then for any α ∈ [0; 1), the sample mean m̂β

based on N leakage samples satisfies

(mβ − m̂β)T Σ̂−1β (mβ − m̂β) ≤ Rα :=
d

N − d
F−1(d,N−d)(α) ,

with confidence α. Namely, we have a probability at least α that the estimation m̂β satisfies
the above inequality. Note that the left term is a kind of distance between the real mean and
its estimation weighted by Σ̂−1β . On the other hand, the upper bound Rα is independent of
the noise. It results that for a given Rα, the stronger the noise, the worst the estimation. To
get a more meaningful bound, we multiply both side of the inequality by the dth root of the
generalized variance σ̂2

β = det(Σ̂β) to get

(mβ − m̂β)T N̂−1β (mβ − m̂β) ≤ (σ̂2
β)1/dRα , (10)

where N̂β = det(Σ̂β)−1/dΣ̂β is the normalized form of the covariance matrix (i.e. it has
determinant equal to 1). Here a variation of the noise level (in terms of linear increasing
or decreasing of the covariance matrix coefficients) does not affect the weighted distance
between the means anymore, but it directly affects the upper bound on the distance. That is
why we shall define the estimation error as ε = (σ̂2

β)1/dRα. In practice, we want the estimation
error to be substantially lower than the interclass variance that is the variance between the
leakage means. Specifically, we want ε to be smaller than det(Ŝ)1/d where Ŝ denotes the
covariance matrix of the estimated means (m̂β)β. In our experiment we observe that taking

a ratio Rα(σ̂2
β/ det(Ŝ))1/d lower than 0.5 is a good choice.

29

Note that the ratio of the interclass generalized variance (i.e. the determinant of the leak-
age means covariance matrix) over the intraclass generalized variance (i.e. the determinant
of the noise covariance matrix) to the power 1/d is a sound definition for the multivariate
Signal-to-Noise Ratio (SNR). For this definition, our criterion is actually to have a multi-
variate SNR greater than Rα.

C Profiled Leakage Parameters from an AVR Chip

Figures 6–11 plot the mean values for the 6 selected leakage points from the s-box compu-
tation on the test AVR chip. We can observe from Figures 8–11 that the leakage on the
output is highly correlated to its Hamming weight. For profiled noise covariance matrix, we
obtained the following coefficients:

Σ =


36.7 −13.7 − 1.8 2.9 − 2.2 − 0.7
−13.7 30.7 0.6 0.7 − 0.5 − 0.1
−1.8 0.6 27.5 − 0.9 0.7 0.4
2.9 0.7 − 0.9 38.7 −27.0 − 5.4
−2.2 − 0.5 0.7 −27.0 37.2 3.9
−0.7 − 0.1 0.4 − 5.4 3.9 26.2


(where the highest values are bold). In particular, it is interesting to note that there is a
strong (negative) dependence between the noises in points 1 and 2 and between the noises
in points 4 and 5.

30

50 100 150 200 250

-6

-4

-2

2

4

6

Fig. 6. Mean leakage for the first point with respect to
the input s-box value from 0 to 255.

50 100 150 200 250

-3

-2

-1

1

2

Fig. 7. Mean leakage for the second point with respect
to the input s-box value from 0 to 255.

50 100 150 200 250

-4

-3

-2

-1

1

2

3

Fig. 8. Mean leakage for the third point with respect to
the input s-box value from 0 to 255.

50 100 150 200 250

-4

-2

2

4

Fig. 9. Mean leakage for the fourth point with respect
to the output s-box value from 0 to 255.

50 100 150 200 250

-4

-3

-2

-1

1

2

3

Fig. 10. Mean leakage for the fifth point with respect to
the output s-box value from 0 to 255.

50 100 150 200 250

-4

-2

2

4

Fig. 11. Mean leakage for the sixth point with respect
to the output s-box value from 0 to 255.

31

