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Abstract. We investigate the problem of algebraic manipulation detec-
tion (AMD) over a communication channel that partially leaks infor-
mation to an adversary. We assume the adversary is computationally
unbounded and there is no shared key or correlated randomness between
the sender and the receiver. We introduce leakage-resilient (LR)-AMD
codes to detect algebraic manipulation in this model.
We consider two leakage models. The first model, called linear leakage,
requires the adversary’s uncertainty (entropy) about the message (or
encoding randomness) to be a constant fraction of its length. This model
can be seen as an extension of the original AMD study by Cramer et al. [2]
to when some leakage to the adversary is allowed. We study randomized
strong and deterministic weak constructions of linear (L)LR-AMD codes.
We derive lower and upper bounds on the redundancy of these codes and
show that known optimal (in rate) AMD code constructions can serve as
optimal LLR-AMD codes. In the second model, called block leakage, the
message consists of a sequence of blocks and at least one block remains
with uncertainty that is a constant fraction of the block length. We focus
on deterministic block (B)LR-AMD codes. We observe that designing
optimal such codes is more challenging: LLR-AMD constructions cannot
function optimally under block leakage. We thus introduce a new optimal
BLR-AMD code construction and prove its security in the model.
We show an application of LR-AMD codes to tampering detection over
wiretap channels. We next show how to compose our BLR-AMD con-
struction, with a few other keyless primitives, to provide both integrity
and confidentiality in transmission of messages/keys over such channels.
This is the best known solution in terms of randomness and code redun-
dancy. We discuss our results and suggest directions for future research.

1 Introduction

In a basic message authentication scenario, Alice wants to deliver a message to
Bob in the presence of Eve, who can arbitrarily manipulate the communication.
The goal is to enable Bob to detect adversarial manipulation with high proba-
bility. This objective is achieved by appending to the message a relatively short
authentication tag, calculated based on the message and a shared secret key
between the legitimate parties. In the computational setting, message authenti-
cation is also attained via public key cryptography using digital signatures. The



classical message authentication problem adopts the strong Dolev-Yao attacker
model [4], which possesses complete read and write access to the communica-
tion and modifies messages arbitrarily in real-time. Keyless detection of such a
powerful adversarial manipulation is impossible. When a less powerful adversary
is present however, alternative solutions to keyless manipulation detection may
exist. In this work, we consider a theoretical model of communication where
Alice is connected to Bob through a channel whose content can be manipulated
by an additive (algebraic) noise chosen by Eve. There is no shared key between
Alice and Bob and the adversary is computationally unbounded.

Detection of algebraic manipulation has already been studied by Cramer et
al. [2]. There, the authors assumed that the communication system keeps its
content “private” and designed algebraic manipulation detection (AMD) codes
to provide message integrity, only when the adversary cannot view the codeword.
This restrictive assumption, however, makes the adversary of an oblivious nature
since manipulation will be solely based on the public codebook knowledge. We
relax this assumption and study leakage-resilient (LR)-AMD codes for situations
where the adversary obtains partial information about the codeword.

1.1 Problem definition and results

An LR-AMD code is defined by a pair of encoding and decoding functions. When
a message is encoded, the codeword is “partially” leaked to Eve. She then uses
this to determine an arbitrary noise variable and adds it to the codeword. We
say that decoding fails if the manipulated codeword is decoded to a message
other than the original one. The LR-AMD code must satisfy correctness and
security. Correctness means in the absence of noise, decoder returns the original
message. Security means small decoding failure probability for a non-zero adver-
sarial noise. The optimality of a code construction on the other hand is measured
via effective tag length or asymptotic rate: The former is the code redundancy
and the latter is the asymptotic message length divided by the code length.

We define two classes of LR-AMD codes, namely linear (L)LR-AMD and
block (B)LR-AMD codes. LLR-AMD coding is an extension of AMD coding [2]
to when Eve’s uncertainty about the message (or code randomness) stays pro-
portional to the length. We consider deterministic weak LLR-AMD codes which
provide security guarantee for a randomly chosen message as well as randomized
strong LLR-AMD codes that provide security for any message. BLR-AMD codes
are for detecting algebraic manipulation in the block leakage scenario, where the
message is a sequence of blocks and Eve’s uncertainty for (at least) one block
stays proportional to its length. We only focus on deterministic weak BLR-AMD
codes. The leakage in LR-AMD codes is specified by leakage rate 0 ≤ α ≤ 1, i.e.,
the fraction of message/randomness that can be leaked in terms of min-entropy.

AMD codes vs. LLR-AMD codes. We show that optimal AMD code con-
structions work optimally as well under linear leakage. We first prove general
bounds on the failure probability of AMD codes when used in the linear leak-
age model. Applying these results to optimal AMD constructions suggests strong



LLR-AMD constructions with the asymptotic rate of 1 and weak LR-AMD codes
with the asymptotic rate of 1/(1+α). This implies upper bounds on the effective
tag lengths of weak and strong LLR-AMD code families. The more challenging
question is whether the bounds can be improved, especially for weak codes.
The answer is negative: We derive lower bound expressions on the effective tag
lengths of LLR-AMD code constructions, which are (almost) equal to the upper
bounds, thus implying the optimality of the code constructions.

BLR-AMD codes. It is impossible to accomplish deterministic LLR-AMD with
rate over 1/(1 + α), revealing that when α tends to 1 the maximum achievable
rate is bounded by 1/2. This leads us to a question whether there are reasonably
interesting leakage scenarios for which deterministic AMD with higher rates (less
redundancy) is possible. We consider the block-leakage model, described above,
and introduce an efficient systematic BLR-AMD code construction that that
achieves the asymptotic rate of 1. We note that this construction can be used as
a weak LLR-AMD code and also a strong LLR-AMD code by choosing part of
the message string to be used for encoding randomness.

Manipulation detection over wiretap channels. In the wiretap channel
[12], the sender sends a message to the receiver over the main channel, while the
eavesdropper receives a noisy version via a probabilistic wiretapping channel.
Wyner showed that transmission with perfect security is possible using random-
ized wiretap codes [12]. To protect against tampering however, one needs key-
less manipulation detection which is impossible if the adversary’s manipulation
power is unrestricted. We thus restrict the adversary to “algebraic manipula-
tion” over the wiretap channel. We consider a wiretap channel with noise-free
main channel and u-ary erasure/symmetric wiretapping component with sym-
bol erasure/corruption probability p. We show that the LLR-AMD codes detect
algebraic manipulation when p > 0.5, whereas the BLR-AMD code construction
protects against a wider range of p. Finally we consider the case that symbols
are binary and manipulation is general. We will use the following construction.
Alice encodes her message using a BLR-AMD code, passes it to a Manchester
encoder, and transmits the resulting codeword over the channel bit-by-bit via
on-off keying. We will argue that the combination of Manchester coding and
on-off keying restrict the manipulation of the adversary to algebraic ones, which
can be detected with high probability by our BLR-AMD code construction. The
above construction can be composed with wiretap codes to provide both privacy
and manipulation detection in secret key/message transport.

1.2 Discussion and related work

Error correcting codes. Shannon’s seminal work [11] provides the first formal
treatment of reliable message transmission when the communication channel is
corrupted by probabilistic noise. The adversarial channel model was later pro-
posed by Hamming [9] as an alternative to Shannon’s model. Existence and
construction of error correcting codes over oblivious adversarial channels (cor-



rupting up to a p-fraction of bits) has been studied in [8, 10]. Our goal in this
paper is detection of errors in adversarial channels.

Deterministic vs. randomized coding. We study both randomized and de-
terministic LR-AMD codes. Randomized coding is interesting as it allows us to
detect algebraic manipulation of any messages, as opposed to a random message.
But nevertheless, the study of deterministic code constructions is crucial because
generating “true” randomness can be hard, e.g., for low-cost devices. When true
randomness is not available but the input message itself is a (random) secret key
deterministic LR-AMD coding becomes interesting.

Communication channel model. The application of LR-AMD codes to tam-
pering detection over wiretap channels suites for instance a scenario where a
covert adversary tries not to use high-energy jamming/overshadowing attacks
to avoid the risk of being detected. This adversary rathers annihilate, amplify,
and/or flip communication symbols using same energy signals. When binary
modulation is used, this is translated as the four bitwise tampering functions:
keep, flip, set-to-0, and set-to-1. Binary modulation is popular in many commu-
nication systems such as fiber optics.

Integrity codes. We show an interesting application the BLR-AMD codes for
message integrity over tamperable wiretap channels. Similar problem has been
addressed by integrity codes [1]. We mention the main advantages of our ap-
proach over the solution in [1]. The construction of an integrity code consists of
on-off keying and unidirectional coding. The authors realize that on-off keying
does not prevent all 1-to-0 errors if the adversary knows the modulator carrier.
They resolve this by encoding bit “1” to a long random (e.g., 48-bit [1, Section
4]) string. This solution however requires a lot of local secret randomness (per
transmitted bit) and causes a huge bandwidth waste by drastically decreasing
the transmission rate. Our approach alternatively benefits from the BLR-AMD
code construction that detects 1-to-0 conversions made by bit-flipping: It does
not need randomness and more importantly is much more efficient in rate.

Non-malleable codes. Dziembowski el al. [6] introduced non-malleable (NM)
codes which relax the definition of error correction and detection: non-malleability
requires manipulation to result either in the original message or in an unrelated
variable. NM codes have found application in algorithmic tamper-proof secu-
rity [7]. Authors of [6] built an NM code construction for bitwise manipulation
which takes advantage of AMD codes. This sparks the idea of using LR-AMD
codes to build NM codes for leakage scenarios.

2 Notations and Preliminaries

We use calligraphic X and bold X letters to denote sets and their sizes, and
use uppercase X and lowercase x letters to denote random variables and their
realizations over sets. Xn indicates a sequence of length n and Xi represents its
i-th element. We use PrX(E) to show the probability of E over distribution X,



and use Ex(Y ) to indicate the expectation of Y over choices of x. Logarithms are
by default to base 2. The following definitions are used throughout the paper.

Definition 1 (Min-entropy). For a random variable X ∈ X with distribution
PX , its min-entropy is obtained as H∞(X) = − log maxx PX(x).

Definition 2 (Conditional min-entropy). Given random variables X ∈ X
and Y ∈ Y with joint distribution PXY , the (average) conditional min-entropy
of X given Y is obtained as H̃∞(X|Y ) = − log(Ey

(
maxx PX|Y (x|y))

)
.

Definition 3 (Weak source). A random variable X over the set X of size
X is called a β-weak source if it holds H∞(X) ≥ β log X. The source is called
β-weak conditioned on the random variable Z if it holds H̃∞(X|Z) ≥ β log X.

3 LR-AMD Codes: Definitions

A leakage-resilient algebraic manipulation detection (LR-AMD) code is specified
by a pair of encoding/decoding functions Enc : M → X and Dec : X →
M∪{⊥}, whereM is the message space, X is the additive group of the codeword
space, and ⊥ is the manipulation detection symbol. Figure 1 illustrates Alice
using this code to send Bob a message M over an algebraically manipulable
channel with leakage. Alice encodes X = Enc(M) and sends it. The channel
leaks information Z to Eve. Eve uses Z to choose ∆ ∈ X and replaces X with
Y = X + ∆. Bob receives Y and decodes it to M̂ = Dec(Y ). We say decoding
fails if M̂ /∈ {M,⊥}.

Fig. 1. Algebraic manipulation with leakage.

An LR-AMD code must satisfy correctness and security : The former means
decoding of encoding of a message should return the message itself, and the latter
requires negligible failure probability (when ∆ 6= 0). Depending on whether
security is for a random message or for all messages, we define weak and strong
LR-AMD codes, respectively. The random-message security for a weak LR-AMD
code lets the encoding function be deterministic. In this work, we only consider
“deterministic” weak LR-AMD codes. A strong LR-AMD code, however, must
be randomized to work for all messages. We define two classes of LR-AMD,
namely LLR-AMD and BLR-AMD, codes. Throughout, we let 0 ≤ α, ε ≤ 1 be
real values and M, R, and X be the message, randomness (if applicable), and
codeword spaces of sizes M = |M|, R = |R|, and X = |X |, respectively.



3.1 LLR-AMD codes

A linear (L)LR-AMD code guarantees security if the message/randomness min-
entropy is above a certain fraction of its length given the leakage information.

Definition 4 (Weak LLR-AMD code). The deterministic block code with
encoding function Enc : M → X and decoding function Dec : X → M ∪ {⊥}
is a (M,X, α, ε)-weak LLR-AMD code if ∀m : Dec(Enc(m)) = m, and for
any adversary Adv and variables M ∈ M and Z such that M is (1 − α)-weak
conditioned on Z, it holds:

Pr
M,Adv

(
Dec(Enc(M) +Adv(Z)) /∈ {M,⊥}

)
≤ ε. (1)

The code is systematic if Enc(M) = (M,Tag(M)) for Tag :M→ T , where M
and T are additive groups.

Definition 5 (Strong LLR-AMD Code). The randomized block code with
encoding function Enc : R×M→ X and decoding function Dec : X →M∪{⊥}
is a (M,X,R, α, ε)-strong LLR-AMD code if ∀m : Dec(Enc(m)) = m, and for
any adversary Adv and variables R ∈ R and Z such that R is (1 − α)-weak
conditioned on Z,

∀m : Pr
R,Adv

(
Dec(Enc(R;m) +Adv(Z)) /∈ {m,⊥}

)
≤ ε. (2)

The code is systematic if Enc(R;M) = (M,Tag(R;M)) for some function Tag :
R×M→ R× G, where M, R, and G are additive groups.

Remark 1. Definitions 4 and 5 restrict leakage in terms of leftover min-entropy.
This is a general form of that used by the leakage-resilient cryptography litera-
ture [5] which assumes leakage of a uniform source via a limited-length function.

For consistency with [2] when there is no leakage (α = 0), we drop α from
the notation and use (M,X, ε)-weak AMD and (M,X,R, ε)-strong AMD codes.

3.2 BLR-AMD codes

The block leakage model captures a scenario where the message is a sequence of
(equal-sized) blocks and the leakage information leaves (at least) one message
block with some leftover min-entropy proportional to its length. A BLR-AMD
code is a scheme that detects algebraic manipulation with the codeword in the
block leakage model. Here, we focus on deterministic weak BLR-AMD codes.

Definition 6 (BLR-AMD code). Let Enc : Ud → X and Dec : X → Ud∪{⊥}
denote a deterministic block code. For U = |U|, X = |X |, 0 ≤ α < 1 and 0 < ε ≤
1, the code is a (Ud,X, α, ε)-(weak)BLR-AMD code if for any adversary Adv,
message M ∈ Ud and leakage Z such that ∃o ∈ {1, . . . , d} : H̃∞ (Mo|Z, (Mj)j 6=o) ≥
(1− α) log U, the security property (1) holds.



An instance of block leakage is when the message is a uniform secret and the
adversary can observe Z = (f1(M1), . . . , fd(Md)), for d arbitrary functions f1

to fd, provided that the sum of function lengths stays ≤ αd log U. This follows
that at least one of the functions fo should be of length ≤ α log U, satisfying
the block leakage model. Another scenario where BLR-AMD codes can be used
is the tamperable wiretap channel, discussed in Section 5.

3.3 LR-AMD code optimality

It is of theoretical and practical significance to design LR-AMD code construc-
tions with flexible parameters, rather than a single code.

Definition 7 (LR-AMD code family). A class F of LR-AMD codes is called
an LR-AMD code family if for any integers κ, ν ∈ N and real 0 ≤ α ≤ 1, it
contains an LR-AMD code with message size M ≥ 2ν and failure probability
ε ≤ 2−κ for leakage rate α.

We use effective tag length [1] and asymptotic code rate to measure the optimality
of an LR-AMD code family in concrete and asymptotic ways, respectively.

Definition 8 (Effective tag length). For κ, ν ∈ N, 0 ≤ α ≤ 1, the effective
tag length of an LR-AMD code family F is $∗F (κ, ν, α) = minF∗ log X−ν where
F∗ ⊆ F has all codes with M ≥ 2ν and ε ≤ 2−κ for leakage rate α.

Definition 9 (Asymptotic rate). For 0 ≤ α ≤ 1, the asymptotic rate of an
LR-AMD code family F equals RateF (α) = limκ→∞maxν maxF∗

ν
log X where

F∗ ⊆ F has all codes with M ≥ 2ν and ε ≤ 2−κ for leakage rate α.

4 Optimal LR-AMD Constructions

4.1 LLR-AMD code constructions

This section aims to give optimal and efficient constructions of weak and strong
LLR-AMD code families. We show that there is no need for designing new codes
since an optimal AMD code construction (for no leakage) works almost optimally
when there is linear leakage. We show this by (1) proving general upper-bounds
on the failure probability of weak and strong AMD codes when used under linear
leakage, and (2) proving lower-bounds on the effective tag length (and failure
probability) of LLR-AMD code families. The former is shown below.

Theorem 1 (Appendix A). Any (M,X,R, ε)-strong AMD code is a (M,X,R,
α,Rαε)-strong LLR-AMD code, and any (M,X, ε)-weak AMD code is a
(M,X, α,Mαε)-weak LLR-AMD code.

We apply the above result to examples of optimal AMD code constructions.
Lemma 1 shows a strong AMD construction suggested by Cramer et al. [2].



Lemma 1. [2] Let F be a field of size q and characteristic p, and d be any
integer such that d + 2 is not divisible by p. The tag generation function fs :
F× Fd → F× F, such that

fs(r;m) = (r , rd+2 +

d∑
i=1

mir
i)

gives a family of systematic (qd, qd+2, q, d+1
q )-strong AMD codes with effective

tag length $∗s(κ, ν) ≤ 2κ+ 2 log(ν/κ+ 3) + 2 when p = 2. 1

Combining Theorem 1 and Lemma 1 gives us a family of (qd, qd+2, q, α, d+1
q1−α )-

strong LLR-AMD codes whose failure probability becomes arbitrarily small by
choosing q sufficiently large. The effective tag length of this family, when p = 2,
is upper bounded as

$∗s(κ, ν, α) ≤ 2

1− α
(κ+ log(ν/k + 3)) + 2.

Below, we provide an optimal weak AMD code construction, whose security
is proven in Appendix B.

Theorem 2 (Appendix B). Let F be a field of size q and characteristic p, d ∈
N, and t ∈ {2, 3} be such that t 6= p. The tag generation function fw : Fd → F,
such that

fw(m) =

d∑
i=1

(mi)
t

gives a family of systematic (qd, qd+1, 2
q )-weak AMD codes with the effective tag

length $∗w(κ, ν) ≤ κ+ 1 when p = 2.

Applying Theorem 1 to this construction results in a family of (qd, qd+1, α, 2
q1−αd

)-
weak LLR-AMD codes. The effective tag length of this code family is generally
upper bounded by $∗w(κ, ν, α) ≤ κ+αν+1

1−α , but becomes as low as κ
1−α + αν + 3

when 1/α tends from below to a natural number.
Compare the effective tag lengths of the two LLR-AMD constructions. For

the strong code, the tag length remains always logarithmic to ν (hence the
message length) regardless of leakage rate α. For the weak code however, the tag
length increases linearly with ν when α 6= 0, and thus it cannot be negligible to
the message length for arbitrarily small decoding failure. This can also be seen
comparing the decoding failure probabilities 1

q1−α and 1
q1−αd

for the strong and
weak LLR-AMD codes: Letting these terms tend to zero, the two constructions
achieve the asymptotic rates of 1 and (at most) 1/α, respectively. It is crucial to
know whether the above rates are the highest achievable. We obtain a positive
answer to this question by proving non-trivial (almost) tight lower bounds on
the effective tag lengths of weak and strong LLR-AMD code families.

1
We slightly modified the original code description [2] for consistency reasons. We used r and ν in
place of x and u, respectively, and let randomness r be part of the fs(., .) function’s output.



Theorem 3 (Appendix C). Any weak, resp. strong, LLR-AMD code family
F has an effective tag length lower bounded as

$∗F (κ, ν, α) ≥ max{ κ
1−α − 2 , κ+ αν − 2}, resp. $∗F (κ, ν, α) ≥ 2κ

1−α − 2. (3)

The effective tag lengths of the AMD constructions (Theorem 2 and Lemma
1) closely match the lower-bound expressions. This indicates the optimality of
those constructions under leakage. Again observe that unlike strong ones, weak
LLR-AMD codes cannot achieve more than 1/(1 + α) asymptotic rate under
linear leakage rate of α. We ask whether deterministic LR-AMD coding with
higher rate (less redundancy) is possible for other leakage scenarios. This is
addressed for the block leakage model in the following section.

4.2 BLR-AMD code construction

Theorem 4 introduces a novel deterministic BLR-AMD construction that is op-
timal as it achieves the asymptotic rate of 1. The construction can be also used
as weak and strong LLR-AMD codes. The reason the code stays secure under
block leakage is that its tag generation function is nonlinear to all message blocks,
and leftover min-entropy even in one message block suffices to protect against
algebraic manipulation. This is in contrast with strong LLR-AMD codes (e.g.,
Lemma 1) which relies only on the min-entropy of the encoding randomness.

Theorem 4 (Appendix D). For positive integers q and (odd) d, Fq+1 be a
field of size q+1 with primitive element τ , and G be a d×d non-singular matrix
over Zq such that
- each column of G consists of distinct entries, i.e., ∀j, i, i′ 6= i : gi,j 6= gi′,j;
- entries of G (as integers) are at most ψd for constant ψ, i.e., ∀i, j : gi,j ≤ ψd.
The tag generation function fblr : Zdq → Fq+1, such that

fblr(m) =

d∑
i=1

τ
∑d
j=1 gi,jmj mod q ∈ Fq+1,

gives a systematic (qd, (q + 1)qd, α, ψd
q1−α )-BLR-AMD code.

Remark 2. There are possible ways to construct the matrix G in Theorem 4, e.g.,
using non-singular circulant matrices [3]. In Appendix H, we give one example
of constructing G with ψ = 3 when q is prime.

The effective tag length of the above construction for Fq+1 of characteristic 2 is

$∗blr(κ, ν, α) ≤ κ+ log(ψν/κ+ 3)

1− α
+ 3.



4.3 Comparing the three constructions

Figure 2 graphs the effective tag lengths of the three LR-AMD constructions
defined by fs(.; .), fw(.), and fblr(.) with respect to message length parameter
27 ≤ ν ≤ 220, letting leakage rate α = 0.49 < 0.5 and security parameter
κ = 128. For the strong LLR-AMD and the weak BLR-AMD constructions, the
tag length stays almost constant (around 520 and 260 bits, respectively). This
promises the asymptotic rate of 1 when ν tends to infinity. Of course fs(.; .) bears
around two times redundancy of fblr(.) since it carries the encoding randomness.
The minimum possible tag length of the weak LLR-AMD construction, however,
grows linearly with ν, leading to an asymptotic rate of 0.66.

10
3

10
4

10
5

10
610

2

10
3

10
4

10
5

10
6

Message length parameter ν

E
ff

ec
tiv

e 
ta

g 
le

nt
h 

 ϖ

 

 

f
s

f
w

f
blr

Fig. 2. Comparing the redundancies in the LR-AMD constructions (α = 0.49).

5 Wiretap Channels: Manipulation Detection

Consider a special case of Figure 1 when leakage is through a probabilistic wire-
tapping channel. For a passive wiretapper, Wyner [12] proved that keyless pri-
vate communication is possible with a slight noise over the wiretapping channel.
Keyless manipulation detection however is trivially impossible if the adversary’s
manipulation power is not restricted. We first study “algebraic” manipulation
detection over wiretap channel and next show how coding and modulation can
be combined to detect “unrestricted” manipulation over this channel.

5.1 Algebraic manipulation

We consider symmetric and erasure u-ary wiretap channels, defined as follows.

Definition 10 (SWC/EWC). A (u, p)-symmetric wiretap channel (SWC) trans-
mits codeword as a sequence of elements of set Fu of size u, such that its wiretap-
ping component, SCu,p, either transmits a symbol correctly with probability 1−p
or corrupts it, i.e., converts to it any other symbol with probability p/(u− 1).
A (u, p)-erasure wiretap channel (EWC) is defined similarly, expect the wiretap-
ping component, ECu,p, erases (converts to Λ) symbols instead of corrupting.



When u = 2, the definitions lead to the common binary wiretap channels,
denoted by p-BEWC and p-BSWC. Observe that the wiretap channel is a special
case of linear leakage when leakage is probabilistic, so one may use LLR-AMD
codes for them. Applying the construction of Lemma 1 gives the following result.

Corollary 1. The construction of Lemma 1 detects algebraic manipulation of
any message over the (u, p)-EWC with p > 0.5, with failure probability

≤ min
0.5<β<p

(
d

q2β−1
+ q−

(p−β)2
p ln(u)

)
.

Here d and q are defined in Lemma 1. The proof of of this result is given as
part of the proof for Theorem 5 below. Informally, the upper-bound is calculated

as follows: Except with probability ≤ q−
(p−β)2
p ln(u) , the erasure channel erases β

fraction of symbols from the randomness R and the tag T = fs(R;m), where m
is the message. This implies the leftover min-entropy of 1 − α ≥ (2β − 1) log q
for R, and decoding failure of ≤ d

q2β−1 . Similarly, the following can be obtained
for the weak LLR-AMD construction of Theorem 2

Corollary 2. The construction Theorem 2 detects algebraic manipulation of a
uniform message over the (u, p)-EWC with p > d

d+1 , with failure probability

≤ min
d
d+1<β<p

(
2

q(d+1)β−d + q−
(d+1)(p−β)2

2p ln(u)

)
.

Observe that when p ≤ 0.5, the LLR-AMD code constructions provide no
security guarantees regardless of the value of u. This raises the question of the
possibility of tempering detection for p ≤ 0.5. We show a positive answer through
modeling the wiretap channel by block leakage, where only one message block
needs to have leftover uncertainty. Theorem 5 proves that the BLR-AMD code
construction of Theorem 4 detects algebraic manipulation over a wider range of
EWCs, i.e., when p > 0.5 or pp

−1

> u−1, which covers e.g., p > 0.25 for u = 28.

Theorem 5 (Appendix E). The BLR-AMD code construction of Theorem 4,
with q such that logu(q + 1) ∈ N, detects algebraic manipulation of uniform
message over the (u, p)-EWC with failure probability of at most

εblr1 = min
0.5<β<p

(
ψd

q2β−1
+ (q + 1)−

(p−β)2
p ln(u)

)
for p > 0.5, and (4)

εblr2 = min
ζ<β<p

(
ψd

qβ
+ (q + 1)−

(p−β)2
2p ln(u) + e

d

(q+1)ζ

)
for pp

−1

> u−1, (5)

where ζ = − logu(p) < p. 2

Proposition 1. Theorem 5 also holds for (u, p′)-SWC with p′ = (1−u−1)p and
p given in the theorem.

2
εblr2 can be made arbitrarily small, e.g., by choosing d ≈ q(β+ζ)/2 and q sufficiently large.



Proposition 1 holds since for the codewordX, the adversary’s view Z ′ = SCu,p′(X)
can be simulated from the erasure channel output Z = ECu,p(X) by letting
Z ′i = r for uniformly random r ∈ Fu when Zi = Λ, or Z ′i = Zi otherwise.

The construction of “optimal” AMD codes remains open for wiretap channels
that violate the condition on p and u in Theorem 5 and Proposition 1. This
includes p-BEWC with p < 0.5 and p-BSWC with p < 0.25.

5.2 Unrestricted manipulation

We show how the code can be used in practice to detect unrestricted manipula-
tion over tamperable erasure/symmetric wiretap channels. To send a message to
Bob, Alice (i) encodes it by the BLR-AMD construction, (ii) applies Manchester
coding, and (iii) transmits the resulting codeword bit by bit separately via on-off
keying. The construction does not require any sort of extra randomness (except
message/key) in the system. Manchester code is a simple binary error-detecting
code that appends to each bit its complement. On-off keying is a popular mod-
ulation technique used in digital data communication (esp. fiber optics) which
modulates the bit “1” by a carrier wave signal and the bit “0” by the absence of
signal. Although the adversary is unrestricted in manipulation, the bitwise na-
ture of the communication leaves her no choice other than tampering with each
individual bit using one of the four bitwise functions, i.e., keep, flip, set-to-0,
and set-to-1. Proposition 2 formalizes this result.

Proposition 2 (Appendix F.). Let Encmn/Decmn be the Manchester encod-
ing/decoding functions, and fblr be the BLR-AMD code of Theorem 4, where
q = 2v − 1 and Fq+1 = GF (2v). The code Encb(m) = Encmn(m, fblr(m)) 3 and

Decb(c) =

{
m̂, if Decmn(c) = (m̂, t̂) 6= ⊥, and t̂ = fblr(m̂)

⊥, else
, (6)

has code rate almost d
2(d+1) and detects manipulation of uniform message over

a p-BEWC (or p/2-BSWC) with p > 0.5 with failure probability at most εblr1
(as in Theorem 5), if the codeword is sent via on-off keying.

Remark 3. Proposition 2 adopts the plausible assumption that the use of on-off
keying prevents the adversary from applying the set-to-0 function, this is because
it is theoretically impossible to find a signal that converts both “1” and “0” bit
signals to “0”. For more details, refer to Appendix I.

5.3 Wiretap codes for active adversaries

We compose the construction of Proposition 2 with wiretap codes [12] for both
privacy and integrity of message/key transmission over wiretap channels.

3
For binary transmission, assume each message block mi ∈ Zq is mapped to its v-bit string
representation before being given to Manchester code (there would be no mapping to 1v string).



Definition 11. The code with functions Encw : {0, 1}t → {0, 1}k and Decw :
{0, 1}k → {0, 1}t is a (t, k, ε)-wiretap code over the p-BEWC (resp. p-BSWC)
if ∀m ∈ {0, 1}t : Decw(Encw(m)) = m and for uniform M ∈ {0, 1}t it holds
I(M ;Z)/t ≤ ε, where Z = BECp(Encw(M)) (resp. Z = BSCp(Encw(M))).

Proposition 3 (Appendix G). Let Encw/Decw denote a (t, k, ε)-wiretap code
over the p-BEWC (resp. p/2-BSWC), for p > 0.5, such that Encw(M) is uni-
form for uniform M . Let Encb/Decb be the code construction of Proposition 2
with v ≤ tε. The code Encwb(m) = Encb(Encw(m)) and

Decwb(c) =

{
Decw(Decb(c)), Decb(c) 6= ⊥
⊥, else

. (7)

is a (t, n, 2ε) wiretap code, with n = 2k(d+1)
d , which detects manipulation of M

over the p-BEWC (or p/2-BSWC) with failure probability at most εblr1 (as in
Theorem 5), if the codeword is sent via on-off keying.

Known results give (t, k, ε)-wiretap code constructions over p-BEWC (resp.
p-BSWC) with arbitrarily small ε > 0 and of rate arbitrarily close to 1−p (resp.
h(p) = −p log(p)− (1− p) log(1− p)) [12]. The above code construction achieves
rates arbitrarily close to (1− p)/2 (resp. h(p)/2) and provides both privacy and
integrity of transmissionwith arbitrarily small failure probability.

6 Conclusion

The AMD study in linear and block leakage models captures interesting sce-
narios of reliable communication in the presence of an adversary who receives
arbitrary but bounded leakage about the communication. We proved optimal
LLR-AMD and BLR-AMD constructions and showed an application of these
codes to manipulation detection over wiretap channels. This work raises a num-
ber of directions to future work. These include manipulation detection over more
general wiretap channels and finding applications of LR-AMD codes to other ar-
eas of cryptography. An example of the latter is adding robustness to non-perfect
secret sharing schemes, which is a subject of our ongoing work.
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A Proof of Theorem 1: LLR-AMD

We prove the theorem for strong AMD codes (similar proof can be given for
weak AMD codes). Let Enc/Dec denote a (M,X,R, ε)-strong AMD code. The
security property implies (when there is no leakage)

∀m : max
δ

Pr
R

(Dec(Enc(R;m) + δ) /∈ {m,⊥}) ≤ ε, (8)

where R is the uniform randomness of the encoder. For any m and δ, define
Rfail(m, δ) ⊆ R as the set of r values that lead to the verification failure,
by satisfying Dec(Enc(R;m) + δ) /∈ {m,⊥}. Since R is uniform, the proba-
bility that R ∈ Rfail(m, δ) equals to |Rfail(m, δ)|/R; thus, to write (8) as
∀m : maxδ |Rfail(m, δ)| ≤ εR. Let Z be any random variable such that
the randomness R is (1 − α)-weak conditioned on Z for 0 ≤ α ≤ 1, i.e.,
Ez
(
maxr Pr(R = r|Z = z) ≤ Rα−1

)
. For any message m, the probability of fail-

ure when Z is leaked to the adversary Adv is upper bounded as

Pr(Dec(Enc(R;m) +Adv(Z)) /∈ {m,⊥}) = Ez (Pr(Dec(Enc(R;m) +Adv(z)) /∈ {m,⊥}|Z = z))

≤ Ez
(

max
δ

Pr(R ∈ Rfail(m, δ) | Z = z)

)
≤ Ez

(
max
δ
|Rfail(m, δ)|max

r
Pr(R = r|Z = z)

)
= max

δ
|Rfail(m, δ)| Ez

(
max
r

Pr(R = r|Z = z)

)
≤ εRα

.



B Proof of Theorem 2: weak AMD

We shall show that for the uniform message M ∈ Fd and any (δm, δt) ∈ Fd × F
such that δm 6= 0, it holds PrM (fw(M + δm) = fw(M) + δt) ≤ 2

q . Since δm =

(δm,1, . . . , δm,d) 6= 0, there exists at least non-zero one element δm,o 6= 0 for
1 ≤ o ≤ d. This lets us write the term fw(M +δm)−fw(M)−δt as a polynomial

of degree t− 1 with respect to the variable Mo, i.e., Poly(Mo)
∆
=

fw(M + δm)− fw(M)− δt =

[
d∑
i=1

(Mi + δm,i)
t −M t

i

]
− δt =

t∑
j=1

(
t

j

)
δjm,oM

t−j
o + a0,

where a0 =
[∑d

i=1,i6=o (Mi + δm,i)
t −M t

i

]
− δt is the constant term. For any

values of (Mi)i 6=o, hence fixed a0, the polynomial Poly(Mo) evaluates to zero for
at most t − 1 ≤ 2 (out of q) values of Mo. The polynomial thus becomes zero
with probability at most (t−1)/q ≤ 2/q, implying the failure probability bound.

The effective tag length of this code family when p = 2 is obtained as follows.
For integers κ, ν ∈ N, let q = 2κ+1 and d = dν/ log qe so that both ε = 2/q ≤ 2−κ

and |Fd| = qd ≥ 2ν are satisfied. By restricting the source space Fd to only
M = 2ν elements the code range will also reduce to X = q2ν elements in Fd+1.
This leads to log X− ν = ν + log q − ν = κ+ 1.

C Proof of Theorem 3: tag length

The proof relies on the results of the following lemma.

Lemma 2. For any weak, resp. strong, LLR-AMD code the failure probability
is lower bounded as

ε ≥ max{
(

(1− e−1)
M− 1

X− 1

)1−α

, (1− e−1)MαM− 1

X− 1
}, (9)

resp. ε ≥
(

(1− e−1)
M− 1

X− 1

)(1−α)/2

. (10)

Proof. We start by the (M,X, α, ε)-weak LLR-AMD code. We shall show that
for any such code there exists a message distribution M ∈M, a leakage variable
Z with H̃∞(M |Z) ≥ (1 − α) log M, and an adversary whose success chance in
changing M is lower bounded by (9). We choose M to be uniform and Z to be an
α log M-bit string that represents answers to the adversary’s α log M questions
about the codeword. The variable Z is such that each bit Zi is defined by Zi =
Queryi(Z

i−1
1 ,M), where Queryi shows the i-th question. Let X = Enc(M) be

the codeword for M . The adversary can choose any non-zero adversarial noise
δ ∈ X/{0} to be added to the X. There are n = X − 1 values for δ, at least
t = M−1 of which lead to valid codewords X+δ. Let X+ be the set of such valid
δ values. If the adversary picks δ randomly, her success chance will be ≥ t/n.
We now describe the adversary’s strategy as follows. She first chooses a random
subset H0 ⊆ X/{0} of size k = n/t and runs the following algorithm.



H ← H0.
for

(
i = 1 to α logM

)
Partition H arbitrarily to H1 and H2 of (almost) equal sizes.
Set Zi ← whether |H1 ∩ X+| > 0.

if Zi = 1 (Yes) then H ← H1.
else H ← H2.
return δ that is randomly chosen from H.

The size of H at the end of the algorithm decreases to k/Mα. The adversary
succeeds with probability Mα/k if and only if H0 ∩ X+ is not empty, whose
probability is obtained as

Pr(|H0 ∩ X+| > 0) = 1− Pr(|H0 ∩ X+| = 0) = 1−
(
n−t
k

)(
n
k

)
= 1− (n− k)× · · · × (n− k − t)

n× · · · × (n− t) ≥ 1− (1− k/n)t = 1− (1− 1/t)t ≥ 1− e−1.

This concludes the adversary’s success probability is at least ε ≥ (1−e−1)Mα/k =
(1−e−1)MαM−1

X−1 , which is the second term of (9). For the first term, we use the
fact that the message size M is such that after α log M questions the adversary
cannot guess the correct message with probability more than ε, and this implies
M1−α ≥ 1/ε. We use this to write (noting that 0 ≤ α ≤ 1)

ε1/(1−α) ≥ (1− e−1)
M− 1

MT− 1
=⇒ ε ≥

(
(1− e−1)

M− 1

X− 1

)1−α

.

A similar argument can be used for the (M,X,R, α, ε)-strong LLR-AMD code:

For uniform randomness R and the variable Z such that H̃∞(R|Z) ≥ (1 −
α) log R, the adversary can use a similar strategy to Algorithm 1 with α log R

questions to achieve the success chance of ε ≥ (1− e−1)RαR(M−1)
X−1 , noting that

there are at least R(M − 1) valid δ values in H0. In a strong LLR-AMD code,
the adversary is assumed to know the message. So the randomness size R should
be large enough to satisfy R1−α ≥ 1/ε. Combining this with the above shows
the following for 0 ≤ α ≤ 1 which proves (10).

ε2/(1−α) ≥ (1− e−1)
M− 1

X− 1
=⇒ ε ≥

(
(1− e−1)

M− 1

X− 1

)(1−α)/2

.�

We use (9) to bound the effective tag length of weak AMD code families as

logX− ν ≥ log
X

M
= log

(
X

M− 1
× M− 1

M

)
≥ log

X− 1

M− 1
+ log(1−M−1)

≥ max{ 1

1− α log
1

ε
, log

1

ε
+ α logM}+ log(1− e−1) + log(1−M−1)

≥ max{ κ

1− α , κ+ αν} − 2.

Similarly, (10) is used to bound the effective tag length of strong code families

logX− ν ≥ 2

1− α log
1

ε
+ log(1− e−1) + log(1−M−1) ≥ 2κ

1− α − 2.



D Proof of Theorem 4: BLR-AMD

The code construction Encblr/Decblr is systematic, so we only need to show
the security property. Let the message M ∈ Zdq and Z follow the block leakage

model such that for some o ∈ {1, . . . , d} it holds that H̃∞(Mo|Z, (Mj)j 6=o) ≥
(1−α) log q. The decoding failure probability when Z is leaked to the adversary
Adv is upper bounded as

Pr
M

(Decblr(Encblr(M) +Adv(Z)) /∈ {M,⊥})

= Ez

(
Pr
M

(Decblr(Encblr(M) +Adv(z)) /∈ {M,⊥}|Z = z)

)
≤ Ez

(
max
δ

Pr
M

(Decblr(Encblr(M) + δ) /∈ {M,⊥}|Z = z)

)
(b)
= Ez

(
max

δm 6=0,δt
E(mj)j 6=o|Z=z

(
Pr
Mo

(fblr(M + δm) = fblr(M) + δt|Z = z, (Mj = mj)j 6=o)
))

.(11)

Equality (a) follows from the law of total probability and the systematic con-
struction of the BLR-AMD code. For fixed (Mj = mj)j 6=o ∈ Zd−1

q , δm ∈ Zdq ,
and δt ∈ Fq+1, we write the term fblr(M + δm)− fblr(M)− δt as

d∑
i=1

[
τ
∑
j gi,j(Mj+δm,j) − τ

∑
j gi,jMj

]
− δt =

d∑
i=1

[(
τ
∑
j gi,jδm,j − 1

)
τ
∑
j 6=o gi,jmj τ

gi,oMo

]

−δt =

d∑
i=1

[
aiY

gi,o
]

+ a0
4
= Pδ,(mj)j 6=o (Y ), (12)

letting a0 = −δt, Y = τMo , and ai be the coefficient of Y gi,o in the summation,

i.e., ai =
(
τ
∑
j gi,jδm,j − 1

)
τ
∑
j 6=o gi,jmj . Applying this to (11), we need to find

an upper-bound on

Ez

(
max

δm 6=0,δt
E(mj)j 6=o|Z=z

(
Pr
Mo

(Pδ,(mj)j 6=o(Y ) = 0|Z = z, (Mj = mj)j 6=o)
))

. (13)

The polynomial Pδ,(mj)j 6=o(Y ) is of degree at most maxi(gi,o) ≤ ψd over Fq+1.
Lemma 3 shows that the polynomial is non-constant since it has at least one
non-zero coefficient.

Lemma 3. For any choice of message blocks (Mj = mj)j 6=o, δm 6= 0, and δt,
the polynomial Pδ,(mj)j 6=o(Y ) has at least one non-zero coefficient.

Proof. We prove the claim by contradiction. Assume that all ai’s are zero, im-
plying (τ is a primitive element in Fq+1)

∀1 ≤ i ≤ d :
(
τ
∑
j gi,jδm,j − 1

)
τ
∑
j 6=o gi,jmj = 0 ∈ Fq+1 ⇒

d∑
j=1

gi,jδm,j = 0 ∈ Zq.

The above can be written as δm.G = 0 over Zq, which holds only if δm = 0 as
G is non-singular. This contradicts the adversarial assumption δm 6= 0. �



For any δ (such that δm 6= 0) and (Mj = mj)j 6=o, at most ψd values of Y (hence
Mo) make the polynomial evaluate to zero. Let Mo,fail(δ, (mj)j 6=o) of size at
most ψd be the set of such Mo values that lead to decoding failure, implying

Pδ,(mj)j 6=o(Y ) = 0⇐⇒Mo ∈Mo,fail(δ, (mj)j 6=o).

We prove security by upper-bounding the failure probability (13) as follows.

Ez

(
max

δm 6=0,δt
E(mj)j 6=o|Z=z

(
Pr
Mo

(Pδ,(mj)j 6=o (Y ) = 0|Z = z, (Mj = mj)j 6=o)
))

= Ez

(
max

δm 6=0,δt
E(mj)j 6=o|Z=z

(
Pr
Mo

(Mo ∈ Mo,fail(δ, (mj)j 6=o)|Z = z, (Mj = mj)j 6=o)
))

≤ Ez
(

max
δm 6=0,δt

E(mj)j 6=o|Z=z

(
|Mo,fail(δ, (mj)j 6=o)|max

mo
Pr
Mo

(Mo = mo|Z = z, (Mj = mj)j 6=o)
))

(a)

≤ ψdEz

(
max

δm 6=0,δt
E(mj)j 6=o|Z=z

(
max
mo

Pr
Mo

(Mo = mo|Z = z, (Mj = mj)j 6=o)
))

(b)
= ψdEz

(
E(mj)j 6=o|Z=z

(
max
mo

Pr
Mo

(Mo = mo|Z = z, (Mj = mj)j 6=o)
))

(c)
= ψdEz,(mj)j 6=o

(
max
mo

Pr
Mo

(Mo = mo|Z = z, (Mj = mj)j 6=o)
)

(d)

≤
ψd

q1−α
.

Inequality (a) holds since we have |Mo,fail(δ, (mj)j 6=o)| ≤ ψd, equality (b)
is attained by removing maxδ as the expression has become independent of
this parameter, equality (c) uses the law of total probability, and inequality (d)
follows the assumption that H̃∞(Mo|Z, (Mj)j 6=o) ≥ (1− α) log q.

E Proof of Theorem 5

For uniform message M ∈ Zdq , let T = fblr(M) ∈ Fq+1 denote the tag calculated
by the BLR-AMD code and X = (M,T ) = (X1, . . . , Xd+1) denote the codeword.
Let η = logu(q+1) ∈ N. For the purpose of u-ary transmission over (u, p)-EWC,
we replace each message block in the codeword by a sequence of η symbols
over Fu; hence, each codeword element Xi consists of η channel symbols. The
theorem provides two bounds, namely εblr1 (4) and εblr2 (5), on the BLR-AMD

detection failure probability under two different conditions of p > 0.5 and pp
−1

>
u−1, respectively. To prove the two bounds, we provide different approaches to
bounding the failure probability of the code.

Approach 1: Proving εblr1 in (4) for p > 0.5. Considering 0.5 < β < p, any
message block Mo for o ∈ {1, . . . , d}, and the tag T , we shall study two events: E1
that the channel leakage leaves (2β−1) log(q) bits of leftover min-entropy in Mo

and E2 that the BLR-AMD decoder detects adversarial tampering (assuming E1
holds). The failure probability will be then bounded as εblr1 ≤ Pr(E1) + Pr(E2).

Let ηo and ηt be the numbers of symbols erased from Mo and T , respectively.
We have from the chain rule of min-entropy

H̃∞(Mo|Z, (Mi)i6=o) ≥ H̃∞(Mo|(Mi)i 6=o)− (η − ηt) log(u) = (
ηo + ηt
η

− 1) log(q).



Noting that Pr(E1) = Pr(ηo + ηt < 2βη), we obtain this probability as

Pr(E1) =

b2βηc∑
i=0

(
2η

i

)
pi(1− p)2η−i ≤ e−

(p−β)2
2p

2η
= e
− (p−β)2

p
logu(q+1)

= (q + 1)
− (p−β)2
p ln(u) ,

where the inequality follows the Chernoff bound. When E1 holds, the leftover
min-entropy of Mo shows the uncertainty rate of 1−α ≥ 2β−1. From Theorem 4,

the BLR-AMD decoder fails with probability Pr(E2) ≤ ψd
q2β−1 . Proof is completed.

Approach 2: Proving εblr2 in (5) for pp
−1

> u−1. The condition on p implies
p > ζ for ζ = logu(1/p). Choosing ζ < β < p, we consider three events: E1 that
there is (at least) one message block Mo, o ∈ {1, . . . , d} that is completely erased,
E2 that at least βη symbols are erased from the tag T , and E3 that the BLR-
AMD decoder detects adversarial tampering (assuming that E1 and E2 hold).
The overall failure probability is bounded as εblr2 ≤ Pr(E1) + Pr(E2) + Pr(E3).

A message blockMi is completely erased with probability p′ ≥ pη = plogu(q+1) =

(q + 1)logu(p) = (q + 1)−ζ . This implies Pr(E1) = (1 − p′)d ≤ e−p
′d = e

− d

(q+1)ζ .
On the other hand, E2 holds except with probability

Pr(E2) =

bβηc∑
i=0

(
η

i

)
pi(1− p)2η−i ≤ e−

(p−β)2
2p

η
= (q + 1)

− (p−β)2
2p ln(u) .

Provided that E1 and E2 holdd, the leftover min-entropy of Mo is bounded as

H̃∞(Mo|Z, (Mi)i6=o) ≥ H̃∞(Mo|(Mi)i 6=o)− (1− β)η log(u) = β log(q),

which implies the uncertainty rate of 1−α ≥ β and BLR-AMD decoding failure
probability of Pr(E3) ≤ ψd

qβ
(from Theorem 4). This completes the proof.

F Proof of Proposition 2

The code rate is the product of the rates of the Manchester code, 0.5, and the

BLR-AMD code, which is almost d
d+1 (there is also a factor of log(q)

log(q+1) that is

close to 1). We moreover show that the failure probability of the code Encb/Decb
is precisely that of the BLR-AMD code over p-BEWC (or p/2-BSWC), which
equals εblr1 for p > 0.5. We show this by discussing that using on-off key-
ing and Manchester coding causes a bitwise manipulation adversary to be ei-
ther detected or behave like an additive (keep and flip) adversary, whose ma-
nipulation is detected by the BLR-AMD code from Theorem 5. For message
M , we denote the n-bit codeword X = Encb(M), where n = 2(d + 1)v, by
X = (X1, X2, . . . , Xn). The on-off keying transmission makes the adversary only
choose from keep, flip, and set-to-1 functions. Assume such an adversary wants
to tamper with the codeword and let TampA = (t1, t2, . . . , tn) be the sequence of
bit-manipulation functions over the set of keep, flip, and set-to-1. We claim that
Decmn(TampA(X)) ∈ {⊥, Decmn(TampS(X))}, where TampS = (t′1, t

′
2, . . . , t

′
n)

is an “additive” manipulation sequence such that ∀1 ≤ i ≤ n/2 : (t′2i−1, t
′
2i) =

(keep, keep), (t2i−1, t2i) ∈ {(keep, set-to-1), (set-to-1, keep), (set-to-1, set-to-1)}
(flip, flip), (t2i−1, t2i) ∈ (flip, set-to-1), (set-to-1, flip)}
(t2i−1, t2i), else

(14)



We consider the case where Decmn(TampA(X)) 6= ⊥ since otherwise we are
done with the proof. For every 1 ≤ i ≤ n/2, the pair of codeword bits (X2i−1, X2i)
are either 01 or 10. We prove the claim by showing in both of these cases
(t′2i−1(X2i−1), t′2i(X2i)) = (t2i−1(X2i−1), t2i(X2i)). We show the equality for
(X2i−1, X2i) = 01 and the other case can be argued similarly: The equality holds
trivially from (14) if the pair (t2i−1, t2i) does not include any set-to-1 function;
if not, the only valid options are (t2i−1, t2i) ∈ {(keep, set-to-1), (set-to-1, flip)}
for which the equality again holds.

G Proof of Proposition 3

For parameters d and v of the BLR-AMD code, let n = 2(d + 1)v and k = dv.
The codeword C = Encwb(M) is obtained by applying three encoding functions
sequentially. The first (wiretap) encoding gives X = Encw(M) ∈ {0, 1}k which is
uniform for the uniform message M ∈ {0, 1}t. The second (BLR-AMD) encoding
gives Y = (X, fblr(X)) ∈ {0, 1}n/2, and the third (Manchester) encoding results
in C = Encmn(Y ). The code rate is t/n = (td)/(2k(d + 1)). The detection
failure probability equals that of the code Encb/Decb and uniformity of X (see
Proposition 2). It remains to prove the privacy property of the code.

We prove privacy for p-BEWC (noting that it also works for p/2-BSWC).
Manchester encoder Encmn appends to each bit of Y its negation. If both a bit
and its negation are erased by p-BEWC (which occurs with probability p′ = p2),
Eve cannot discover the bit. This implies that Eve’s view Z = BECp(C) can be
built from Z ′ = BECp′(Y ), i.e., the view over the p′-BEC without Manchester
coding. We thus remove Manchester coding and assume that Eve’s view is Z ′ =
(Z ′1, Z

′
2), where Z ′1 = BECp′(X) and Z ′2 = BSCp′(fblr(X)). We conclude

I(M ;Z) = I(M ;Z′1, Z
′
2) = I(M ;Z′1) + I(M ;Z′2|Z′1) ≤ I(M ;Z′1) +H(Z′2)

≤ I(M ;Z′1) + (n/2− k) ≤ I(M ;Z′1) + v ⇒ I(M ;Z)/t ≤ ε+ v/t ≤ 2ε.

H Non-singular matrix construction

Let H be a d× d diagonal matrix over (field) Zq, where q is prime and d < 3q,
with entries Hi,i = i for 1 ≤ i ≤ d. The following algorithm converts H into a
non-singular matrix that has non-identical entries in each and every column. It
is easy to show that the value of s is always upper bounded by 2i and thus at
the end, all entries in resulting matrix are less or equal to 2d+ d = 3d.

G← H
for

(
j = 1 to d− 1

)
Add column j of G to its column j + 1.

s← 2
for

(
i = 2 to d

)
while

(
s equals any entry of G up to row i− 1

)
s← s+ 1

Add s times the first row of G to row i.
return G



I On-off keying

On-off keying is the simplest form of amplitude-shift keying (ASK) that trans-
mits the bit “1” as the presence a carrier wave signal and the bit “0” as the
absence of the signal. The carrier wave is usually a high frequency sinusoidal
signal that is trimmed for a relatively short time interval. To demodulate a re-
ceived signal, the signal energy is obtained and compered to a threshold value:
Below the threshold indicates “0“ and above it indicates “1”. We assume that
the carrier wave is fixed and public to all the parties (including Eve). Although
on-off keying is in essence a binary modulation, it can work with any under-
lying modulation scheme by letting “0” be the absence of signal and “1” be
transmitted as a publicly known (fixed) modulated signal. Manipulation of a
bit (transmitted by on-off keying) is by injecting an adversarial signal to the
channel. Assume that the carrier wave is one period of the sine signal. As illus-
trated in Table 1, there are appropriately-shaped signals to realize the keep, flip,
and set-to-1 functions. However, it is not possible to realize a (deterministic)
set-to-0 for a bit since there is no signal to annihilate the energy of both “0”
and “1” signals. Of course, the adversary could set a transmitted bit to 0 if she
knew it by either keeping or flipping the bit (this is not considered as set-to-0).
This property lets us replace, without loss of generality, the unlimited bitwise
manipulation adversary with an additive-and-set-to-1 adversary.

Transmission Tampering
bit abstraction signal bit abstraction signal

0

keep

flip

1

set-to-0 ×

set-to-1

Table 1. Bitwise manipulation for on-off keying.
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