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Abstract

Boldyreva et al. introduced the notion of multiple forking (MF) as an extension of (gen-
eral) forking to accommodate nested oracle replay attacks. The primary objective of a (mul-
tiple) forking algorithm is to separate out the oracle replay attack from the actual simulation
of protocol to the adversary, and this is achieved through the intermediary of a so-called
wrapper algorithm. Multiple forking has turned out to be a useful tool in the security argu-
ment of several cryptographic protocols. However, a reduction employing the MF Algorithm
incurs a significant degradation of O

(
q2n
)
, where q denotes the upper bound on the under-

lying random oracle calls and n, the number of forkings.

In this work we take a closer look at the reasons for the degradation with a tighter se-
curity bound in mind. We nail down the exact set of conditions for the success of the MF
Algorithm. A careful analysis of the protocols (and corresponding security argument) em-
ploying multiple forking allow us to relax the overly restrictive conditions of the original MF
Algorithm. To achieve this, we club two consecutive invocations of the underlying wrapper
into a single logical unit of wrapper Z . We then use Z to formulate the notion of “depen-
dence” and “independence” among different rounds of the wrapper in the MF Algorithm.
The (in)dependence conditions lead to a general framework for multiple forking and signif-
icantly better bound for the MF Algorithm. Leveraging (in)dependence to the full reduces
the degradation from O

(
q2n
)

to O (qn). By implication, the cost of a forking involving two
random oracles (augmented forking) matches that involving a single random oracle (ele-
mentary forking).

Finally, we study the effect of these observations on the security of the existing schemes.
We conclude that by careful design of the protocol (and the wrapper in the security reduc-
tion) it is possible to harness our observations to the full extent.

Keywords: Oracle Replay Attack, Forking Lemma, Multiple-Forking Lemma, Provable Se-
curity, Tightness.
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1 Introduction

The machinery of oracle replay attack of Pointcheval and Stern [PS00] plays a pivotal role in
the security argument of a large class1 of signature schemes [ElG85, Sch91, Oka93]. In the
elementary version of replay attack2, the simulator runs the adversary twice on related inputs
in order to solve the underlying hard problem. The probability of success of the replay attack
is then bounded by the Forking Lemma [PS00]. Bellare and Neven [BN06], however, observed
that the “Forking Lemma is something purely probabilistic, not about signatures” and proposed
a more abstract version called the General Forking (GF) Lemma. The concept of general forking
is formulated in terms of randomised algorithms and its outputs, leaving out the notions of
signature scheme as well as random oracles [BR93] altogether. The claimed advantage is to
allow for more modular and easy to verify proof of cryptographic schemes that apply the notion
of forking in their security argument.

Multiple forking. The concept of forking was further generalised by Boldyreva et al. leading
to the Multiple Forking (MF) Algorithm [BPW12]. The immediate motivation behind this new
abstraction was to argue the security of a proxy signature scheme that uses more than one hash
function (modelled as random oracles). The MF Algorithm allows one to mount the so-called
nested replay attacks by rewinding the adversary several times on related inputs. In particular, a
nested oracle replay attack involves multiple augmented forkings3. The MF Algorithm retains the
modularity advantage of GF Algorithm and has been applied in several other security arguments
[GG09, CMW12, CKK13] in a more-or-less black-box fashion. Note that the generalisation of
forking due to Bagherzhandi et al. [BCJ08] is different from that in [BPW12].

• • •

• • • ∗

• • •

• • •

• ? • ∗

• • •

Figure 1: Elementary forking (top) vs. augmented forking (bottom): Elementary forking is successful if the target
indices (∗) for the two rounds match. Augmented forking involves two random oracles and, hence, to be successful,
the additional target indices (?) also should match.

The modularity of the (General/Multiple) Forking Lemma allows one to abstract out the
probabilistic analysis of the rewinding process from the actual simulation in the security ar-
gument. The gap between the abstract and the concrete is, then, bridged using the so-called
“wrapper” algorithm. While the GF/MF Algorithm takes care of the replay attack, it is the
wrapper that handles the simulation of the protocol environment to the actual adversary. The
reduction consists of invoking the appropriate forking algorithm (on the associated wrapper)
and utilising its outputs to solve the underlying hard problem. So the design of the wrapper
is central to any security argument involving GF/MF Algorithm. In fact, the design depends

1To be precise, the signature schemes obtained from three-round identification schemes (Σ-protocols) through
the Fiat-Shamir transformation [FS87].

2We will use the terms forking and oracle replay attack interchangeably.
3We clearly distinguish “augmented” forking from “elementary” forking: the former involves replay of two ran-

dom oracles whereas the latter, only one random oracle. Henceforth, whenever we refer to multiple forkings, we
are implicitly referring to multiple “augmented” forking.
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on the actual protocol and the security model used–see, e.g., [BN06, BPW12] for the concrete
design of the wrappers in their respective contexts.

Role of the wrapper. Let’s now take a simplistic4 look at how the GF Algorithm (given in
Appendix A), together with the wrapper Y , is used to launch the elementary replay attack.
The input to Y consists of some external randomness (s1, . . . , sq) and the internal coins (ρ) for
adversary; the output, whereas, consists of an index I.

Consider the first invocation of Y (on s1, . . . , sq; ρ) within the GF Algorithm: Y simulates
the protocol environment to the actual adversary A having access to ρ. Y responds to the
random oracle queries of A using s1, . . . , sq. At the end of the simulation, Y outputs an index
I that refers to the target query5; if the adversary did not make the target query, I is set to 0
(indicating failure). Next, the GF Algorithm invokes Y on an input that is related to the first
invocation (s1, . . . , sI−1, s

′
I , . . . , s

′
q; ρ). The behaviour of A remains identical to the first round

of simulation, right up to the I th random oracle query, at which point it diverges (assuming
s′I 6= sI). This is tantamount to forking A at the index I. The forking is successful, if the target
index for the second round of simulation is the same as that for the first, i.e., I ′ = I. One can
clearly see how the wrapper acts as an intermediary between the abstract GF Algorithm and the
adversary in the concrete setting of the reduction.

While the role of wrapper remains the same in the MF Algorithm, there are a few significant
changes in its actual structure. The wrapper now simulates two random oracles and hence its
output contains a pair of indices (I, J) with J < I. The two indices are usually associated to
the target queries made to the two random oracles involved in the augmented replay attack. For
reductions employing the MF Algorithm, the design of the wrapper becomes a bit more involved
because of the additional index in its output. In particular, the relative “order” among the two
target oracle calls must be taken into consideration in the design of the wrapper. (We’ll later see
how neglecting the order of the indices, or even worse, using the MF Algorithm as a black-box
may lead the reductions to fail.) As the name suggests, the MF Algorithm allows the possibility
of more than one forking–this adds another level of complexity in the overall structure.

The cost of multiple forking. The Forking Lemma gives us a lower bound on the probability
of success of the forking algorithm in terms of the success probability of the associated wrapper
(and hence, the underlying adversary). Roughly speaking, the cost of forking can be measured
in terms of the degradation incurred in the forking process. Let q denote the upper bound on
the number of random oracle queries, then the cost of general forking is roughly O (q) (and
evidence suggests that the bound is more or less optimal [Seu12]). As for multiple forking, the
cost according to the MF Lemma (see Lemma 8 in Appendix B), is roughly O

(
q2n
)
, where q

is the sum of the upper bound on the queries to the random oracles involved and n is, loosely
speaking, the number of forking (so the wrapper is called n+ 1 times).6 Consequently, the cost
of single augmented forking is O

(
q2
)

(even though there is only one forking involved). As we
see, the bound is quite loose and naturally, the protocols employing the MF Lemma for their se-
curity suffer from this bound. This is indicated in the concluding statement of [BPW12] where
the authors mention that the concrete security bound of their scheme is not particularly tight
and they leave the possibility of a tighter reduction as an open question. In fact, for all security
reductions that employ the MF Lemma [BPW12, GG09, CMW12, CKK13], the degradation pri-
marily stems from the loose lower bound of the lemma. Hence, it’s important to ask whether

4For the time being, let’s not consider the input string x or the side-output σ.
5The random oracle query that is used by A to produce its desired output is termed the target query and the

index of this query is the target index.
6 To be precise, if acc denotes the probability with which the wrapper is successful for one round, then the cost of

general forking is O (q/acc) and that of multiple forking is O
(
q2n/accn

)
. We ignore the acc factor in the discussion

here.
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and to what extent it is possible to improve upon this bound. Investigating these questions in
the concrete context of cryptographic protocols forms the focal point of this work.

1.1 Our Contribution

Multiple forking is a further generalisation of general forking and once formulated, this ab-
stract notion has been applied in the analysis of concrete cryptographic protocols essentially
in a black-box way. Here we undertake a journey from the concrete to the abstract. This has
two (complementary) parts. We take a critical look at the various conditions that decide the
success of the MF Algorithm as well as revisit the concrete security arguments employing the
MF Lemma. This study allows us to come up with a better abstraction of multiple forking.

By the very nature of the rewinding mechanism, the wrapper algorithm is always invoked in
pairs. Based on this simple observation, we club two consecutive invocations of the wrapper into
a single logical unit of wrapper Z . Intuitively, wrapper Z can be viewed as one invocation of the
GF Algorithm of [BN06]. Utilizing the extra level of modularity provided byZ , we nail down the
exact conditions for the success of multiple forking. This, coupled with our investigation of the
actual security arguments employing MF Lemma allow us to formulate two crucial observations:
called, respectively, the “independence” condition (OI) and the “dependence” condition (OD).
OI is formulated by a careful abstraction of the exact requirements in the security reductions.
In short, it allows the relaxation of success condition related to the index I across the logical
wrapper Z . OD, on the other hand, has its root in the notion of hash function dependence,
which is actually observed in the cryptographic protocols.

A general framework. Based on the above observations, we propose a general framework
for the application of the MF Algorithm, which we call the General Multiple-Forking (GMF)
Algorithm, and an associated GMF Lemma. Our framework captures the original MF as well
as the observations OI and OD (separately and together) leading to four different versions of
the lemma. We prove the new versions of the lemma. Naturally, the analysis becomes more
involved as we incorporate the above two conditions–the most involved case occurs when one
captures both the observations OI and OD (O{I,D}, in short). We draw from existing techniques
[BN06, BPW12] as well as introduce some new optimisations to significantly improve upon the
existing bound. To be exact, the degradation reduces from O

(
q2n
)

to O (qn) when both the
observations are incorporated in the analysis (see Table 2 for a summary). Thus, informally, we
have:

Main Result (see Lemma 2). By carefully designing the protocol, multiple forking can be carried
out with a success probability of Ω(εn+1/qn).

Corollary (see Claim 1, Remark 4). A single augmented forking can be launched as efficiently as
an elementary forking.

Recall that the GF Algorithm of [BN06] captures a single elementary forking with a degra-
dation of O (q). Our MF Algorithm with O{I,D}, according to the above corollary, seems to be
the best possible generalisation of general forking.

Effect on cryptographic schemes. Finally, we study the applicability of the observations on
the security of the existing schemes that employ multiple forking [BPW12, GG09, CMW12]. We
conclude that by careful design of the protocol (or, for that matter, by easily modifying existing
protocols) it is possible to harness both the observations to the full extent. Thus, we end up
with tighter security arguments for the protocols and under the same (hardness) assumptions
(see Table 1). In addition, the notion of random-oracle dependence may be of independent
interest as it is handy in certain situations other than multiple forking [YZ13, YADV+12].
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On a related note, we also emphasise on the importance of the proper design of the wrapper
algorithm taking into account the intricacies of the actual security argument.

Protocol
Degradation

Before After

[BPW12] O
(
q10/ε5

)
O
(
q5/ε5

)
[GG09] O

(
q6/ε3

)
O
(
q3/ε3

)
[CMW12] O

(
q10/ε5

)
O
(
q5/ε5

)
Table 1: Comparison of the security degradation for protocols before and after our result. q
denotes the upper bound on the respective hash oracle queries; ε is the advantage that the
adversary has in the respective protocols.

Notations. We adopt the notations commonly used in the literature. s U←− S denotes picking
an element s uniformly at random from the set S. In general, {s1, . . . , sn}

U←− S denotes picking
elements s1, . . . , sn independently and uniformly at random from the set S. In a similar manner,
s

$←− S and {s1, . . . , sn}
$←− S denote random sampling, but with some underlying probability

distribution on S. (y1, . . . , yn)
$←− A(x1, . . . , xm) denotes a probabilistic algorithm A which

takes as input (x1, . . . , xm) to produce output (y1, . . . , yn). Sometimes the internal coins ρ of
this algorithm is given explicitly as an input. This is distinguished from the normal input using
a semi-colon, e.g., y ← A(x; ρ).

Next, we introduce some notations pertaining to random oracles. The symbol < is used to
order the random oracle calls; e.g., H(x) < G(y) indicates that the random oracle call H(x)
precedes the random oracle call G(y). More generally, H < G indicates that the target H-
oracle call precedes the target G-oracle call. The convention applies to hash functions as well.
The symbol, on the other hand, ≺ is used to indicate random oracle dependence; e.g. H ≺ G
indicates that the random oracle G is dependent on the random oracle H. In the discussion
involving the forking algorithms, Qij denotes the jth random oracle query in round i of simulation.

Organisation of the paper. We take a closer look at the MF Algorithm in §2. In §3, we give an
improved analysis of the MF Algorithm, while in §4, we apply the improvements to some of the
existing schemes. Finally, we end with the concluding remarks in §5. As for the appendix, we
begin with the GF Algorithm and the original MF Algorithm in Appendix A and B respectively.
We give the deferred analyses of MF Algorithm with OI and OD (separately) in Appendix C. The
construction of the schemes referred in the paper is given in Appendix D. We conclude with a
section dedicated to the detailed security argument of the (modified) GG-IBS.

2 Multiple-Forking: A Closer Look

We begin with a critical look at the MF Algorithm and the associated lemma. A slightly revised
version of the algorithm is given below (the original algorithm of [BPW12] is reproduced in
Appendix B).

The Multiple-Forking Algorithm. Fix q ∈ Z+ and a set S such that |S| ≥ 2. Let Y be a
randomised algorithm that on input a string x and elements s1, . . . , sq ∈ S returns a triple
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(I, J, σ) consisting of two integers 0 ≤ J < I ≤ q and a string σ. Let n ≥ 1 be an odd integer.
The MF AlgorithmMY ,n associated to Y and n is defined in Algorithm 1.

Algorithm 1MY ,n(x)

Pick coins ρ for Y at random

{s0
1, . . . , s

0
q}

U←− S;
(I0, J0, σ0)← Y (x, s0

1, . . . , s
0
q ; ρ) //round 0

{s1
I0
, . . . , s1

q}
U←− S;

(I1, J1, σ1)← Y (x, s0
1, . . . , s

1
I0−1, s

1
I0
, . . . , s1

q ; ρ) //round 1

if ((I0 = 0) ∨ (J0 = 0)) then return (0,⊥) //Condition ¬B
if
(
(I1, J1) 6= (I0, J0) ∨ (s1

I0
= s0

I0
)
)

then return (0,⊥) //Condition ¬C0

k := 2
while (k < n) do
{skJ0 , . . . , s

k
q}

U←− S;
(Ik, Jk, σk)← Y (x, s0

1, . . . , s
0
J0−1, s

k
J0
, . . . , skq ; ρ) //round k

{sk+1
Ik

, . . . , sk+1
q } U←− S;

(Ik+1, Jk+1, σk+1)← Y (x, s0
1, . . . , s

0
J0−1, s

k
J0
, . . . , skIk−1, s

k+1
Ik

, . . . , sk+1
q ; ρ) //round k+1

if
(

(Ik+1, Jk+1) 6= (Ik, Jk) ∨ (sk+1
Ik

= skIk)
)

then return (0,⊥) //Condition ¬Ck

if
(
(Ik, Jk) 6= (I0, J0) ∨ ∨`:=0,2,...,k−2 (skJ0 = s`J0)

)
then return (0,⊥) //Condition ¬Dk

k := k + 2
end while
return (1, {σ0, . . . , σn})

Note that we have introduced some conceptual changes in the MF Algorithm of [BPW12].
Before delving into the structure of the algorithm and ways to improve upon the bound on its
probability of success, we briefly comment on a subtle (but minor in effect) logical flaw that we
have fixed in the original version of [BPW12].

Remark 1. For the convenience of the readers we have boxed the modification in Algorithm 1.
The original algorithm checked for (skJ0 = sk−1

J0
). However, this is not sufficient for some of

the reduction algorithms that use the originalMY ,n. For example, consider the application of
MY ,5 in the security argument of the [CMW12] protocol. At the end of the simulation, the
MF Algorithm outputs six “cheating” transcripts {(vi1, ci1, si1), (vi1, c

i
2, s

i
2)}, for i := 1, 2, 3, and the

reduction, subsequently, finds the solution to the DLP by computing(
z1w1 − z2w2

z1 − z2
− z1w1 − z3w3

z1 − z3

)/(w1 − w3

z1 − z3
− w1 − w2

z1 − z2

)
mod p (1)

where wi = (si1 − si2)/(ci2 − ci1) and where z1 := s0
J0

, z2 := s2
J0

and z3 := s4
J0

in the original
MY ,5. Thus, for a correct solution of the discrete-log problem (DLP), the reduction requires to
compute (z1 − z2)−1 and (z1 − z3)−1. [CMW12] asserts “[a]ccording to the probing strategy
z1, z2, z3 are all distinct”. However, as per the original proposition,MY ,5 of [BPW12] will only
ensure that z2 6= z1 and z3 6= z2 but not necessarily z1 6= z3. Hence, the probing strategy does not
guarantee that all the zis are distinct and the reduction may fail even though the MF Algorithm
returns success. Clearly, the fault lies in the condition ¬Dk within the while loop of original
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MF Algorithm, which checks for equality only with the round just preceding it and comes into
the picture for MY ,n for n ≥ 5. A simple fix is to introduce pairwise check for equality, i.e.,
by changing the proposition from (skJ0 = sk−1

J0
) to (∨l:=0,2,...,k−2 s

k
J0

= s`J0). The change has a
(small) bearing on the security bound given in the original MF Lemma due to an increase in the
number of (inequality) checks from n to (n+ 1)(n+ 3)/8. This is captured in the revised version
given below.

Lemma 1 (Revised Multiple-Forking Lemma). Let GI be a randomised algorithm that takes no
input and returns a string. Let

mfrk := Pr
[
(b = 1) | x $←− GI ; (b, {σ0, . . . , σn})

$←−MY ,n(x)
]

and

acc := Pr
[
(I ≥ 1) ∧ (J ≥ 1) | x $←− GI ; {s1, . . . , sq}

U←− S; (I, J, σ)
$←− Y (x, s1, . . . , sq)

]
then

mfrk ≥ acc ·
(

accn

q2n
− (n+ 1)(n+ 3)

8|S|

)
. (2)

2.1 Tightness: An Intuitive Picture

Each run of MY ,n consists of n + 1 runs of the corresponding wrapper Y (called round 0 to
round n), for some odd n. Informally speaking, MY ,n is successful provided Y is successful
in each of the n + 1 rounds and some additional conditions are satisfied. We call these set of
conditions A0 := {B,C0, . . . ,Cn−1,D2, . . . ,Dn−1} where

B : (I0 ≥ 1) ∧ (J0 ≥ 1)

Ck : (Ik+1, Jk+1) = (Ik, Jk) ∧ (sk+1
Ik
6= skIk) (for k = 0, 2, . . . , n− 1)

Dk : (Ik, Jk) = (I0, J0) ∧ (∧l:=0,2,...,k−2 s
k
J0 6= s`J0) (for k = 2, 4, . . . , n− 1)

Let E be the event that all the conditions in A0 are satisfied, i.e.,

E : B ∧
(
C0 ∧ C2 ∧ · · · ∧ Cn−1

)
∧
(
D2 ∧ D4 ∧ · · · ∧ Dn−1

)
. (3)

What the MF Lemma then gives us is, essentially, a lower bound of the probability of this event.

The logical wrapper Z . A simple but crucial observation at this point is that the wrapper
algorithm Y is always invoked in pairs (that’s the reason for n being odd in the description of
MY ,n). Note that, the conditions Ck and Dk above also pertain to a pair of invocations. This
brings us to the conceptual change introduced in the revised version given in Algorithm 1. Two
consecutive invocations of Y (i.e., round k and round k+1, for even k ≥ 0) have been clubbed
together so that it can be visualised (see Figure 2) as the invocation of a single logical unit Z
such that ((Ik, Jk, σk), (Ik+1, Jk+1, σk+1)) ← Z

(
x, Sk, Sk+1; ρ

)
(for even k). Here, Sk and Sk+1

denote the external random coins for the rounds k and k + 1 of Y , i.e.,

Sk := (s0
1, . . . , s

0
J0−1, s

k
J0 , . . . , s

k
q ) and Sk+1 := (s0

1, . . . , s
0
J0−1, s

k
J0 , . . . , s

k
Ik−1, s

k+1
Ik

, . . . , sk+1
q ).

Accordingly, the MF Algorithm constitutes of m = (n + 1)/2 rounds of invocation of Z .
Intuitively, a single invocation of Z is similar to the GF Algorithm [BN06] as the objective of
both is to launch the “elementary” oracle replay attack. The notion of wrapper Z , along with
the necessary restructuring of the MF Algorithm–especially, the conditions–provide us the right
handle for an improved analysis of its probability of success (mfrk).
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· · //round 0

· Q0
I0

· · //round 1

· · //round 2

· Q0
J0

Q2
I0

· · //round 3

·
...

Figure 2: The logical wrapper Z . One such logical wrapper (for round 0 and round 1) has been
highlighted.

Among the set of conditions A0, B is relatively easy to deal with as it is checked only at the
beginning and contributes a factor of acc in the final expression for mfrk. So let’s look at the
effect of the other (more involved) conditions. Consider the event

Ck : (Ik+1, Jk+1) = (Ik, Jk) ∧ (sk+1
I0
6= skI0).

Clearly, the check for equality (Ik+1, Jk+1) = (Ik, Jk) is predominant in the final expression for
mfrk (the equality holds only with a probability of 1/q2). On the other hand, (sk+1

I0
6= skI0) is

almost always true7. It’s a similar case for the event Dk: (Ik, Jk) = (I0, J0) holds only with a
probability of 1/q2. Hence, the probability of the events C and D is dominated respectively by

∧k:=0,2,...,n−1 (Ik+1, Jk+1) = (Ik, Jk) and ∧k:=2,4,...,n−1 (Ik, Jk) = (I0, J0). (4)

Consequently, the degradation for the MF Algorithm stems, predominantly, from what we term
as the “core” event8

F0 : (In, Jn) = (In−1, Jn−1) = · · · = (I0, J0) (5)

formed by combining the two expressions in (4). Each of the n checks for equality in the
condition contributes (roughly speaking) a factor of O

(
q2
)
, resulting in an overall degradation

of O
(
q2n
)
. That’s the intuitive reason of the (loose) lower bound one gets for mfrk. Naturally,

any reduction employingMY ,n also loses tightness by a factor of O
(
q2n
)
.

2.2 Road-map to a Better Analysis

By now it should be evident that in order to achieve a better bound for mfrk, one needs to
revisit the conditions associated with the number of checks involved in the success event F0. For
a better understanding of the exact role of these conditions, we revisit the concrete protocols
and their security argument that employ the MF Lemma [BPW12, GG09, CMW12]. Based on
a careful analysis of these protocols and their security arguments, we formulate the following
two observations–called, respectively, the independence and the dependence conditions.

Observation 1 (Independence condition, OI). It is not necessary for the I indices across the logical
wrapper Z to be the same, i.e., Ik need not be equal to Ik−2, Ik−4, . . . , I0 for k = 2, 4, . . . , n− 1.

7It holds with a probability of (1− (1/|S|)) and for any reasonable security level, |S| � 1.
8Note that the event F0 corresponds to the first term of (C.3) in the analysis of the MF Algorithm given in

[BPW12].
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Observation 2 (Dependence condition, OD). It is possible to design protocols, in particular, define
hash functions used in the protocol, such that, for the kth invocation of the logical wrapper Z ,
(Ik+1 = Ik) implies (with very high probability) that (Jk+1 = Jk).9

Remark 2. The concrete motivation for the above two observations will become clear when we
revisit the actual security argument of the existing schemes in §4. OI is based on a precise anal-
ysis of what is actually required from the process of (multiple) forking in the security argument
of [BPW12, GG09, CMW12]. In particular, all known applications of MF Algorithm satisfies OI.
OD finds its root in the more concrete notion of hash function dependence. Intuitively, if a pro-
tocol uses two hash functions H1 and H2 in such a way that the input to H2 is a function of the
output of H1, then we say that the H2-call is dependent on the H1-call. The BPW proxy signature
scheme of [BPW12] is one example where such dependence exists (see §4.1 for further details).
As in the case of OI, we’ll show that either OD is naturally satisfied [CMW12] or one can easily
modify existing construction [GG09] to suit the condition (see §4.4 and §4.3.1 resp.). The
abstraction is required in the context of MF Algorithm due to the absence of the notion of hash
function (or random oracles, which model the hash functions in the actual security argument).
A formal definition of the notion of index dependence, keeping in mind the observation OD, is
given below.

Definition 1 (Index Dependence). Let ((I, J), (I ′, J ′)) be the two pair of indices that are part
of the output of the wrapper Z (associated with two rounds of Y ). The index J is said to be
η-dependent on the index I (denoted by J ≺ I) if Pr [J ′ 6= J | I ′ = I] ≤ η.

In other words, (I ′ = I) =⇒ (J ′ = J) with probability at least (1 − η). A little more
specifically, J is said to be fully-dependent on I if η = 0, i.e. (I ′ = I) =⇒ (J ′ = J). But for
most applications, it suffices that J be η-dependent on I for some η which is negligible10 in the
security parameter κ.

Consequences. Let’s look at the consequences of the observations one by one. Based on OI,
the condition in (4) can be relaxed to: ∧k:=0,2,...,n−1(Ik+1, Jk+1) = (Ik, Jk) and ∧k:=2,4,...,n−1(Jk =
J0), and, by implication, the “core” event in (5) is relaxed to

F1 : ∧k=0,2,...,n−1

(
(Ik+1, Jk+1) = (Ik, Jk)

)
∧ (Jn−1 = Jn−3 = · · · = J0). (6)

Hence, the number of overall checks (in the “core” event) is reduced from 2n to (2 · (n+ 1)/2 +
(n − 1)/2) = (3n + 1)/2 and the complexity of launching the nested oracle replay attack is
brought down to O

(
q(3n+1)/2

)
. A similar analysis shows that based on only OD (and, assuming

η to be negligible in κ), the “core” event in (5) relaxes to

F2 : (In = In−1 = · · · = I1 = I0) ∧ (Jn−1 = Jn−3 = · · · = J0) (7)

In this case the number of overall checks is reduced from 2n to (3n − 1)/2 and the complexity
to O

(
q(3n−1)/2

)
. The interesting point is that OI and OD can be employed in conjunction. This

leads to the “core” event being further simplified to

F3 : (In = In−1) ∧ · · · ∧ (I1 = I0) ∧ (Jn−1 = Jn−3 = · · · = J0). (8)

Observe that the number of checks is now reduced to n and the complexity to O (qn). Hence,
the complexity of launching the nested oracle replay attack is reduced from O

(
q2n
)

to O (qn),
but, without losing the modularity of the MF Algorithm.

9Assume, without loss of generality, that among the two indices, J always precedes I in a particular run of the
wrapper.

10A function f : R 7→ R is negligible if for any n > 0, we have |f(x)| < 1/kn for sufficiently large x [BF01].
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2.3 A General Multiple-Forking Algorithm

As we just observed, depending on whether (or not) the observations OI and OD are taken into
account, we end up with four different sets of “core” conditions F0 through F3. The “non-core”
conditions, though, remain the same for all the four cases. The resulting set of “full” conditions,
A0 through A3, (along with the associated degradation) are given in Table 2. In order to capture
this extra level of abstraction, we describe a general framework of the MF Algorithm that has,
in addition to the algorithm Y , an associated (ordered) set of conditions A. Note that we have
assumed full-dependence in formulating the table.

MF Set of Conditions Degradation

Original A0 =


B : (I0 ≥ 1) ∧ (J0 ≥ 1)

Ck : (Ik+1, Jk+1) = (Ik, Jk) ∧ (sk+1
Ik
6= skIk)

Dk : (Ik, Jk) = (I0, J0) ∧ (∧`:=0,2,...,k−2 s
k
J0
6= s`J0)

O
(
q2n
)

with OI A1 =


B : (I0 ≥ 1) ∧ (J0 ≥ 1)

Ck : (Ik+1, Jk+1) = (Ik, Jk) ∧ (sk+1
Ik
6= skIk)

Dk : (Jk = J0) ∧ (Ik ≥ 1) ∧ (∧`:=0,2,...,k−2 s
k
J0
6= s`J0)

O
(
q(3n+1)/2

)

with OD A2 =


B : (1 ≤ J0 < I0 ≤ q)
Ck : (Ik+1 = Ik) ∧ (sk+1

Ik
6= skIk)

Dk : (Ik, Jk) = (I0, J0) ∧ (∧`:=0,2,...,k−2 s
k
J0
6= s`J0)

O
(
q(3n−1)/2

)

with O{I,D} A3 =


B : (1 ≤ J0 < I0 ≤ q)
Ck : (Ik+1 = Ik) ∧ (sk+1

Ik
6= skIk)

Dk : (Jk = J0) ∧ (Jk < Ik ≤ q) ∧ (∧`:=0,2,...,k−2 s
k
J0
6= s`J0)

O (qn)

Table 2: The set of conditions is A := {B,C,D}where C denotes C0,C2, . . . ,Cn−1 and D denotes
D2,D4, . . . ,Dn−1. Also, note that we have ignored the (common) εn factor in the degradation
and assumed full-dependence.

The General Multiple-Forking Algorithm Fix q ∈ Z+ and a set S such that |S| ≥ 2. Let
Y be a randomised algorithm that on input a string x and elements s1, . . . , sq ∈ S returns a
triple (I, J, σ) consisting of two integers 0 ≤ J < I ≤ q and a string σ. Let n ≥ 1 be an
odd integer. In addition, let A denote the set of conditions, and be of the form {B,C,D} with
C := C0,C2, . . . ,Cn−1 and D := D2,D4, . . . ,Dn−1. The General MF Algorithm NA,Y ,n associated
to A, Y and n is defined as Algorithm 2 below.
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Algorithm 2 NA,Y ,n(x)

Pick coins ρ for Y at random

{s0
1, . . . , s

0
q}

U←− S;
(I0, J0, σ0)← Y (x, s0

1, . . . , s
0
q ; ρ) //round 0

{s1
I0
, . . . , s1

q}
U←− S;

(I1, J1, σ1)← Y (x, s0
1, . . . , s

1
I0−1, s

1
I0
, . . . , s1

q ; ρ) //round 1

if ¬(B ∧ C0) then return (0,⊥)

k := 2
while (k < n) do
{skJ0 , . . . , s

k
q}

U←− S;
(Ik, Jk, σk)← Y (x, s0

1, . . . , s
0
J0−1, s

k
J0
, . . . , skq ; ρ) //round k

{sk+1
Ik

, . . . , sk+1
q } U←− S;

(Ik+1, Jk+1, σk+1)← Y (x, s0
1, . . . , s

0
J0−1, s

k
J0
, . . . , skIk−1, s

k+1
Ik

, . . . , sk+1
q ; ρ) //round k+1

if ¬(Ck ∧ Dk) then return (0,⊥)

k := k + 2
end while
return (1, {σ0, . . . , σn})

Remark 3 (On usage). We use the set of conditions A2 and A3 only in the case of i) full-
dependence; or ii) η-dependence with negligible η. For η-dependence, in general, we use the
set of conditions A0 and A1 respectively (e.g., see Lemma 2 and its proof).

3 Harnessing (In)Dependence

We have seen in the previous section that the most effective way of launching the nested replay
attack is by exploiting both OI and OD. As expected, the analysis of this case turns out to
be the most involved and in a sense subsumes the analysis of the other two set of conditions
(A1 and A2). Hence in this section we focus on analysing NA3,Y ,n

with η-dependence. The
analysis of NA1,Y ,n

and NA2,Y ,n
with η-dependence is deferred to Appendix C (see Lemma 9

and Lemma 10).

3.1 Multiple-Forking with Index (In)Dependence

The probability of success of the MF Algorithm with both OI and OD is bounded by Lemma 2
given below. The details of some of the steps in the probability analysis is given in Ap-
pendix C.1.

Lemma 2 (Multiple-Forking Lemma with Index (In)Dependence). Let GI be a randomised algo-
rithm that takes no input and returns a string. Let

mfrk3 := Pr
[
(b = 1) | x $←− GI ; (b, {σ0, . . . , σn})

$←− NA1,Y ,n(x)
]

and

acc := Pr
[
(1 ≤ J < I ≤ q) | x $←− GI ; {s1, . . . , sq}

U←− S; (I, J, σ)
$←− Y (x, s1, . . . , sq)

]
.
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On the assumption that J is η-dependent on I,

mfrk3 ≥ frk

(
frk(n−1)/2

q(n−1)/2
− (n− 1)(n+ 1)

8|S|

)
where frk ≥ acc

(
acc
q

(1− η)− 1

|S|

)
(9)

The main hurdle in proving the bounds lies in exploiting the leverage offered by OI and OD,
in the probability analysis. As it turns out, OD is much harder to integrate. We have to appeal
to the underlying sets (i.e. the source of randomness) of the GMF Algorithm. On the other
hand, the analysis of OI is in some sense similar to the analysis of the original MF Algorithm in
[BPW12]. Naturally, the simultaneous analysis of OI and OD is a “hybrid” of the above two. The
subtle change in the accepting condition to (1 ≤ J < I ≤ q) from (I ≥ 1)∧ (J ≥ 1) in Lemma 1
is also crucial in establishing the bounds (see Claim 3 below). The following two inequalities
are also used.

Lemma 3 (Jensen’s inequality). Let f be a convex function and X be a real-valued random vari-
able. Then

Ex [f(X)] ≥ f(Ex [X]).

Lemma 4 (Hölder’s inequality11). Let q ∈ Z+, 1 ≤ n < ∞ and x1, . . . , xq ≥ 0 be real numbers.
Then

q∑
k:=1

xnk ≥
1

qn−1

(
q∑

k:=1

xk

)n
.

Conventions. Before moving on to the proof, we fix some conventions with regard to the
coins involved in the GMF Algorithm. The internal coins for the algorithm Y is denoted by ρ.
We assume that ρ is drawn from a set R (not to be confused with the set of real numbers). On
the other hand, the external randomness for Y is denoted by S := {s1, . . . , sq} (with the round
indicated in the superscript, e.g. S0). For convenience, we use the convention in Table 3 to split
up S. Hence, {S(i−), S(i+)} indicates S split up into two at the index i, whereas {S(j−), S(ji), S(i+)}

Symbol Denotes Domain

S(i−) s1, . . . , si−1 |S|i−1

S(ji) sj , . . . , si−1 |S|i−j

S(i+) si, . . . , sq |S|q−i+1

Table 3: Shorthand for external randomness.

indicates S split into three, at indices j and i respectively. Finally, T(2) denotes the set from
which coins (both internal and external) are drawn for Z and T(n) denotes the set of coins for
the GMF Algorithm12.

11Although, the result is a corollary to a more general Hölder’s inequality (see [Lemma C.3][BPW12]), another
way to proving the bound is by viewing it an optimisation problem. Let f(x1, . . . , xq) :=

∑q
k:=1 x

n
k be the objective

function under the set of constraints: i)
∑q

k=1 xk = x; and ii) (0 ≤ xk ≤ 1) for k ∈ {1, . . . , q}. Then f attains a
minima of xn/qn−1 at the point (x/q, . . . , x/q), thus, establishing Lemma 4.

12With regard to the coins, it is apparent that the source of coins for a single invocation of Y is the set R × Sq. As
for two invocations of Y (single invocation of Z ), it can be worked out that the coins are drawn from the set

T(2) := R ×
q⋃

i=2

Si−1 × S(q−i+1)∗2.

13



Proof. For a fixed string x, let

mfrk3(x) := Pr
[
(b = 1) | (b, {σ0, . . . , σn})

$←− NA1,Y ,n(x)
]

and

acc(x) := Pr
[
(1 ≤ J < I ≤ q) | {s1, . . . , sq}

U←− S; (I, J, σ)
$←− Y (x, s1, . . . , sq)

]
.

Let A1 := {B,C0,C2, . . . ,Cn−1,D2,D4, . . . ,Dn−1}. For ease of notation, we further break the
event Ck (resp. Dk) into two subevents Ck,c and Ck,s (resp. Dk,c and Dk,s) as shown below.

Ck,c : (Ik+1 = Ik) Ck,s : (sk+1
Ik
6= skIk)

Dk,c : (Jk = J0) ∧ (Jk < Ik ≤ q) Dk,s : (∧`:=0,2,...,k−2 s
k
J0 6= s`J0) (10)

The GMF Algorithm is successful in the event E : B∧
(
C0 ∧ C2 ∧ · · · ∧ Cn−1

)
∧
(
D2 ∧ D4 ∧ · · · ∧ Dn−1

)
.

In other words, with the probabilities calculated over the coin tosses of the GMF Algorithm, it
follows that mfrk3(x) = Pr [E]. The task of bounding this probability is accomplished through
three claims (Claim 1 through Claim 3). The object at the centre of Claim 1 is the logical unit
Z . It turns out that with index dependence, the behaviour of Z is similar to the GF Algorithm
[BN06]. The aim of Claim 1 is to bound the probability of success of Z , denoted by frk(x), in
terms of acc(x). The bound on frk(x) is, then, used in Claim 2 and Claim 3 to bound mfrk3(x).

We start with the analysis of a single invocation of Z . Without loss of generality, let’s
consider the first two rounds of the GMF Algorithm.

Claim 1. frk(x) ≥ acc(x)

(
acc(x)

q
(1− η(x))− 1

|S|

)
.

Argument. With the probability taken over the coin tosses over the two rounds (which we de-
note by T(2)), it follows that

frk(x) = Pr [B ∧ C0] = Pr
[
B ∧ C0,c ∧ C0,s

]
(using subevents given in (10))

≥ Pr [(J1 = J0) ∧ (I1 = I0) ∧ (1 ≤ J0 < I0 ≤ q)]− Pr
[
(1 ≤ J0 < I0 ≤ q) ∧ (s0

I0 = s1
I0)
]

(11)

Let’s denote the two parts of the above expression by frkc(x) and frks(x) respectively. The
second part can be computed as follows:

frks(x) = Pr [1 ≤ J0 < I0 ≤ q] · Pr
[
s0
I0 = s1

I0

]
= acc(x)/|S|. (12)

The first part of (11), on the other hand, forms the “core” probability for the two rounds.
In order to analyse it, we define a random variable which captures single invocation of the
algorithm Y . Let Yi : R × Si−1 7→ [0, 1], for each i ∈ {2, . . . , q}, be defined by setting

Yi(ρ, S(i−)) = Pr
[
(I = i) ∧ (1 ≤ J < i)) | S(i+)

U←− S; (I, J, σ)← Y (x, {S(i−), S(i+)}; ρ)
]
.

By a simple extrapolation, the coins for the GMF Algorithm are drawn from

T(n) := R ×
q−1⋃
j=1

Sj−1 ×

(
q⋃

i=j+1

Si−j × S(q−i+1)∗2

)(n+1)/2

.
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Using Yi, frkc(x) can be rewritten as follows.

frkc(x) = Pr [(J1 = J0) | (I1 = I0) ∧ (1 ≤ J0 < I0 ≤ q)] Pr [(I1 = I0) ∧ (1 ≤ J0 < I0 ≤ q)]

= (1− η(x))

q∑
i=2

∑
ρ,S

(i−)

1

|R||S|i−1
Y 2
i (ρ, S(i−)) (see (28) in Appendix C.1 for details)

= (1− η(x))

q∑
i=2

Ex
[
Y 2
i

]
≥ 1

q

(
q∑
i=2

Ex [Yi]

)2

(by Jensen’s and Hölder’s inequality)

= (1− η(x))
1

q
acc(x)2 (by definition of Yi and acc(x)) (13)

By substituting (12) and (13) in (11), we get

frk(x) = Pr
T
(2)

[
(I1 = I0) ∧ (1 ≤ J0 < I0 ≤ q) ∧ (s0

I0 6= s1
I0)
]
≥ acc(x)

(
acc(x)

q
(1− η(x))− 1

|S|

)
(14)

establishing Claim 1.

The fundamental difference between the argument of Claim 1 and the proof of GF Algo-
rithm in [BN06] is the involvement of the additional index J . The only reason that the analysis
proceeds as in [BN06] is due to the assumption J ≺ I. Without this assumption, the argu-
ment for Claim 1 would require defining a random variable that takes both the indices into
consideration (this is indeed the case in the proof of Lemma 9).

Remark 4. In Claim 1, what we have effectively established is that on O{I,D}, single augmented
forking can be carried out as efficiently as an elementary forking.

The remaining two claims require a random variable Zj that captures a single invocation of
Z . Let Zj : R × Sj−1 7→ [0, 1], for 1 ≤ j ≤ q − 1, be defined by setting

Zj(ρ, S(j−)) = Pr
[
(J ′ = J = j) ∧ (I ′ = I) ∧ (j < I ≤ q) ∧ (s′I 6= sI)

]
given

(S(jI), (S(I+), S
′
(I+)))

U←− S and

((I, J, σ), (I ′, J ′, σ′))← Z (x, {S(j−), S(jI), S(I+)}, {S(j−), S(jI), S
′
(I+)}; ρ).

A crucial point is that the observation OI has been considered in the definition of Zj . Without
this assumption, the analysis would require a random variable that takes both the indices into
consideration (as we do later in the proof of Lemma 10 using a random variable Zi,j). Briefly,
our aim is to bound mfrk3(x) in terms of Zj (Claim 2) and then bound Zj in terms of frk(x)
(Claim 3).

Claim 2.

mfrk3(x) ≥ 1

q(n−1)/2

q−1∑
j=1

Ex [Zj ]

(n+1)/2

− (n− 1)(n+ 1)

8|S|

q−1∑
j=1

Ex [Zj ]

 (15)

Argument. The first step is to separate the “core” subevents out of the event E as shown below.

Pr [E] = Pr
[
B ∧

(
∧k=0,2,...,n−1 Ck

)
∧
(
∧k=2,4,...,n−1 Dk

)]
≥ Pr

[
B ∧ C0 ∧

(
∧k=2,4,...,n−1 Ck ∧ Dk,c

)]
− Pr

[
B ∧ C0 ∧

(
∨k=2,4,...,n−1¬Dk,s

) ]
(16)
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We denote the first part of (16) by mfrk3,c(x) and the second part by mfrk3,s(x) and analyse
them separately.

mfrk3,c(x) =

q−1∑
j=1

Pr
[
∧k=0,2,...,n−1 ((Jk+1 = Jk = j) ∧ (Ik+1 = Ik) ∧ (j < Ik ≤ q) ∧ (sk+1

Ik
6= skIk))

]
=

q−1∑
j=1

∑
ρ,S

(j−)

∏n−1
k=0,2 Zj(ρ, S(j−))

|R||S|j−1
(see (29) in Appendix C.1 for details)

=

q−1∑
j=1

Ex
[
Z

(n+1)/2
j

]
≥ 1

q(n−1)/2

q−1∑
j=1

Ex [Zj ]

(n+1)/2

(by Jensen’s and Hölder’s inequality)

(17)

Using a similar line of approach as above, it is possible to bound mfrk3,s too in terms of Zj (see
(31) in Appendix C.1 for the intermediate steps).

mfrk3,s(x) =
(n− 1)(n+ 1)

8|S|

q−1∑
j=1

Ex [Zj ]

 (18)

Substituting the value of mfrk3,c(x) from (17) and mfrk3,s(x) from (18) in (16) proves Claim 2.

What remains is to relate Claim 1 and Claim 2 by establishing

Claim 3.
∑q−1

j=1 Ex [Zj ] ≥ frk(x).

Argument. Recall that the bound given in Claim 1 for frk(x) is with the probability taken over
the set

T(2) := R ×
q⋃
i=2

Si−1 × S(q−i+1)∗2.

Let T(2,j>) denote the underlying set for the random variable Zj . From the definition of Zj , we
can infer that

T(2,j>) :=
(
R × Sj−1 ×

q⋃
i=j+1

Si−j × S(q−i+1)∗2) =
(
R ×

q⋃
i=j+1

Si−1 × S(q−i+1)∗2) and

Ex [Zj ] = Pr
T
(2,j>)

[
(J ′ = J = j) ∧ (I ′ = I) ∧ (j < I ≤ q) ∧ (s′I 6= sI)

]
. (19)

Notice that the set T(2,j>) is a subset of the set T(2). In fact, T(2) can be partitioned into the two
sets T(2,j<) and T(2,j>) where

T(2,j<) := R ×
j⋃
i=2

Si−1 × S(q−i+1)∗2.

At this point the subtle change in the definition of the acc(x) comes into play. The accepting
condition had been altered13 from (I ≥ 1) ∧ (J ≥ 1) in Lemma 1 to (1 ≤ J < I ≤ q) in
Lemma 2. By implication

Pr
T
(2,j<)

[
(J ′ = J = j) ∧ (I ′ = I) ∧ (j < I ≤ q) ∧ (s′I 6= sI)

]
= 0. (20)

13To be precise, we have taken into account the definition of Y while defining acc(x). Interestingly, [BPW12]
could also have incorporated this.

16



Intuitively speaking, (20) is a consequence of the fact that the definition of acc(x) prohibits a
successful Y from returning (I, J) such that I ≤ J . The fact that T(2,j>) ⊂ T(2), in conjunction
with (20) implies

Pr
T
(2,j>)

[
(J ′ = J = j) ∧ (I ′ = I) ∧ (j < I ≤ q) ∧ (s′I 6= sI)

]
≥

Pr
T
(2)

[
(J ′ = J = j) ∧ (I ′ = I) ∧ (j < I ≤ q) ∧ (s′I 6= sI)

]
. (21)

Finally, on taking the sum of Ex [Zj ] over the index j, we get

q−1∑
j=1

Ex [Zj ] ≥
q−1∑
j=1

Pr
T
(2)

[
(J ′ = J = j) ∧ (I ′ = I) ∧ (j < I ≤ q) ∧ (sI 6= s′I)

]
(using (21))

= Pr
T
(2)

[
(J ′ = J) ∧ (I ′ = I) ∧ (1 ≤ J < I ≤ q) ∧ (sI 6= s′I)

]
= frk(x) (22)

completing the argument.

On putting all the three claims together, we get

mfrk3(x) ≥ frk(x)(n+1)/2

q(n−1)/2
− (n− 1)(n+ 1)

8|S|
frk(x)

= frk(x) ·

(
frk(x)(n−1)/2

q(n−1)/2
− (n− 1)(n+ 1)

8|S|

)

Finally, taking the expectation over x $←− GI , yields

frk ≥ acc
(

acc
q

(1− η)− 1

|S|

)
and mfrk3 ≥ frk ·

(
frk(n−1)/2

q(n−1)/2
− (n− 1)(n+ 1)

8|S|

)

establishing Lemma 2. We conclude with the comment that on assuming |S| � 1, one gets
mfrk3 ≈ accn+1/qn.

4 Revisiting the Security Argument of Existing Protocols

We now take a closer look at the protocols that employ the MF Algorithm in their security
argument. Our primary objective is to examine the applicability of the observations OI and OD.
We also comment on the design of the corresponding wrappers. We use the proxy signature
scheme of Boldyreva et al. (BPW-PSS) [BPW12] to motivate the notion of (random oracle)
dependence and show how both OI and OD can be captured in the security argument. We
then suggest a small modification–coined “binding”–in the identity-based signature scheme of
Galindo and Garcia (GG-IBS) [GG09] to induce hash function dependence and briefly comment
on its security (a detailed argument is provided in Appendix E). The effect on zero-knowledge
protocol of Chow et al. (CMW-ZKP) [CMW12] is discussed in §4.4.

4.1 Random-Oracle Dependence

The notion of hash function (or, random-oracle) dependence can be best appreciated through
a concrete example. Consider the construction of BPW-PSS scheme (see Figure 5 of Ap-
pendix D.1). The protocol uses three hash functions: G, R and H. The hash functions are
called by the different algorithms in a certain order and here we’ll mainly focus on the gener-
ation of proxy signature. Observe that Delegation uses G for producing proxy certificates and
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R for generating proxy secret keys; H is used in Proxy Signing for computing proxy signatures.
The proxy signature is computed using the proxy secret key which, in turn, is computed using
the proxy certificate. Hence, to generate a proxy signature the hash function calls must follow
a logical order: G < R < H (here < denotes ‘followed by’).

Now let’s take a look at the structure of hash function calls:

c := G(0‖S‖Y ) r := R(S‖Y ‖c) h := H(0‖m̃‖S‖Y ‖V ‖r).

The critical point is to observe the binding between the hash functions. R takes as an input
c which is the output of G; H takes as an input r which is the output of R. Consequently, to
produce a proxy signature, one has to (except, with a negligible probability of guessing) call the
hash functions in the order: G < R < H (which is also the logical order). In other words, the
logical order has been explicitly imposed as the only viable order.

Next, consider the simulation of the protocol environment for the BPW-PSS where the hash
functions are modelled as random oracles. The aforesaid order among the hash functions nat-
urally translates into an order among the corresponding random oracles. Hence, to forge a
proxy signature, an adversary has to (except, with a negligible probability of guessing) make
the target random oracle queries in the order G < R < H. In other words, if K, J and I are
the indices that refer to the target G, R and H random oracle queries corresponding to the
forgery, then it follows that (1 ≤ K < J < I ≤ q). Now, consider a second round of simulation
of the adversary initiated by a forking at I (corresponding to the successful target H-query).
Suppose the adversary is successful in the second round and, in addition, the target H index for
the second round matches with the first (i.e., I ′ = I). It is not difficult to see that, due to the
binding between the random oracles, the R and G target indices for the two rounds also have
to (except, as we shall see, with probability denoted by ηb) match. The advantage with which
an adversary can forge a proxy signature on violating this condition is, in fact, (asymptotically)
negligible. Hence, (I ′ = I) implies (J ′ = J) and (K ′ = K). We say that the random oracle H
is “dependent” on the random oracles G and R (denoted by {G,R} ≺ H) over these two rounds
(in other words, within the wrapper of Z in the context of multiple forking). Using a similar
line of argument, one can establish that R is dependent on G (i.e. G ≺ R). On putting together
the two observations, in the case of BPW-PSS we get G ≺ R ≺ H. A little more formally, the
dependence among two random oracles is defined as follows.

Definition 2 (Random-Oracle Dependence). Consider the oracle replay attack in the context
of a cryptographic protocol that employs two hash functions H1 and H2 modelled as random
oracles. Let J [resp. I] denote the target H1-index [resp. H2-index] for the first round of
simulation of the protocol. Also, let J ′ [resp. I ′] denote the target H1-index [resp. H2-index] for
the second round of simulation that was initiated by a forking at I. Suppose that the adversary
was successful in both the rounds. The random oracle H2 is defined to be η-dependent on
the random oracle H1 on the target query (denoted by H1 ≺ H2) if the following criteria are
satisfied: i) (1 ≤ J < I ≤ q) or, in other words H1 < H2; and ii) Pr[(J ′ 6= J) | (I ′ = I)] ≤ η.14

The second criterion, in other words, requires (I ′ = I) =⇒ (J ′ = J) with probability at
least (1−η); for the criterion to hold with overwhelming probability, η should be negligible in κ.
A logical order among the “hash” functions in the protocol does not necessarily mean that there
is a dependence among them.15 Hence, one may need to impose explicit dependence among
the hash functions. A natural way to induce the dependence H1 ≺ H2 is through the binding
technique used in BPW-PSS: by making the input to H2 a function of H1’s output.

14Note that the second criterion is the concrete instance of index-dependence in Definition 1. The first criterion,
on the other hand, has been already absorbed in the corresponding definition of Y (see Condition B of A2 and A3).

15Dependence is induced by design in BPW-PSS and was not present in the original GG-IBS. On the other hand,
dependence for the CMW-ZKP follows from the logical order.
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Claim 4 (Binding induces dependence). Consider the hash functions (and the corresponding
random oracles) described in Definition 2. Let q1 denote the upper bound on the number of
queries to the random oracle H1. In addition, let R1 denote the range of H1. Binding H2 to H1 (by
making the input to H2 a function of H1’s output) induces a random-oracle dependence H1 ≺ H2

with ηb := q1(q1 − 1)/|R1|.

Argument. Suppose (I ′ = I) but (J ′ 6= J). It is not difficult to see that this can happen only in
the scenario illustrated in Figure 3. That is, i) the adversary made a query QJ∗ (to the random
oracle H1) that is different from QJ , the target H1-query for the round 0 of simulation; and ii) QJ∗
was also responded to with sJ (the simulator’s response to QJ). However, this is tantamount to

QI+1 · //round 0

· QJ QJ+1 QJ∗ QJ∗+1 QI

Q′I+1 · //round 1

sJ sJ

Figure 3: Violation of random-oracle dependence.

a collision on the random function corresponding to the oracle H1 and according to the birthday
bound, can happen with probability at most q1(q1 − 1)/|R1|.

Remark 5. The notion of random-oracle dependence can be naturally adapted for (interac-
tive) commitment-challenge rounds (through [FS87]) with the notion of target commitment-
challenge round in place of the notion of target random oracle query. This is demonstrated for
the CMW-ZKP scheme in coming section (§4.4).

4.2 The Boldyreva-Palacio-Warinschi Proxy Signature Scheme

We refer the reader to [BPW12] for the definition of proxy signature and the original security
argument of BPW-PSS (the construction is reproduced in Appendix D.1). The extremely tech-
nical and long security argument of [BPW12] consists of five reductions B through F , with
the associated wrappers Y ,Z ′,U ,V andW respectively16. The discrete-log problem is reduced
to breaking the scheme in each of them. The reductions C , D and F use the MF Algorithm,
whereas, the reductions B and E use the GF Algorithm. Some features of the relevant reduc-
tions C , D and F are summarised in Table 4.

Inherent dependence and wrapper design. We have already pointed out the inherent de-
pendence of the hash functions used in BPW-PSS. This inbuilt dependence among the hash
functions, along with a careful design of the wrappers, ensures that the MF Algorithm is ap-
plied properly. An integral part in the design of the wrappers is the explicit check for the logical
order among the target random oracle queries. If the order is violated, the wrapper sets a
flag and returns (0,⊥). For example, consider the reduction C and the associated wrapper Z ′
from [BPW12]. The check ensures that the indices J and I (that the wrapper returns) always
correspond to the target query for the random oracles R and H respectively. Moreover, due to
dependence, the adversary is bound (except with a negligible probability of guessing) to make
the target oracle queries in the logical order, i.e. R followed by H. These two factors ensure
that the reduction C will end up with a correct solution to the DLP whenever the MF Algorithm
is successful. The same strategy has been followed meticulously in the construction of D and

16We have renamed the wrapper Z in [BPW12] to Z ′ for avoiding confusion with the logical wrapper Z used in
the analysis.
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F as well. So the notion of index dependence is to some extent used implicitly in the security
argument of BPW-PSS.

However, when we come to the MF Algorithm that corresponds to this particular scheme,
neither the notion of index dependence nor that of independence between the logical wrapper
Z is considered in the analysis. This brings us to the improved security argument.

4.2.1 Improved Security Argument

The new security argument takes advantage of both the observations OI and OD. We have
already seen that OD is applicable due to the existing binding. As for OI, we again consider the
case of reduction C and its wrapper Z ′ due to their relative simplicity. A similar argument works
for reductions D and F as well.
Z ′ is designed to output index I (resp. J) corresponding to the target H (resp. R) query. C

uses the MF AlgorithmMZ′ ,3 to secure a set of four forgeries σ := (z, h, r) , σ̂ := (ẑ, ĥ, r̂) , σ̄ :=

(z̄, h̄, r̄) and σ̇ := (ż, ḣ, ṙ) with

z = v + (rα+ y + c logg pki)h z̄ = v̄ + (r̄α+ y + c logg pki)h̄

ẑ = v + (rα+ y + c logg pki)ĥ ż = v̄ + (r̄α+ y + c logg pki)ḣ. (23)

What we have now is a system of four congruences in four (effective) unknowns {α, (y +
c logg pki), v, v̄} with α being the solution to the DLP. The forgeries σ and σ̂ (resp. σ̄ and σ̇)
can be clubbed together as they constitute the output of the the logical wrapper Z that is asso-
ciated to wrapper Z ′ of MZ′ ,3. From the structure of the H query, it follows that the index I
corresponds to the unknown v. The process of solving for α starts by eliminating the unknown v
from each of Z s (i.e., v from (z, ẑ) and v̄ from (z̄, ż)). What is necessary at this point is that the
I indices must match within Z . The solution is not affected by the value of I in the second invo-
cation of Z . In other words, eliminating v from (z, ẑ) is not affected by the pair (z̄, ż) and vice
versa. Hence, from the point of view of the reduction, it doesn’t make any difference whether
we relax the condition to accommodate independence (the system of congruences one ends up
with is exactly the same as in (23)). In fact, the reduction is unlikely to achieve anything by
restricting the indices. Hence, the independence of the I indices is applicable.

Remark 6. The notion of independence can be better appreciated if we visualise the process of
multiple forking in terms of congruences and unknowns. At a high level, what the reduction
algorithm secures from the MF Algorithm is a set of n+ 1 congruences in n+ 1 unknowns (for
some odd n). One of these unknowns is the solution to the hard problem that the reduction
wants to solve. The MF Algorithm needs to ensure that the congruences are linearly indepen-
dent of each other with a certain non-negligible probability. The claim in OI can then be restated
as: even if the condition on the I indices is relaxed as in OI, we still end up with a system of
n+ 1 congruences in n+ 1 unknowns.

To sum it up, in order to harness both OI and OD, the only change in the security argument
of [BPW12] is to use the GMF Algorithm NA3,Y ,n

(with Lemma 2) instead of the original MF
Algorithm. The resulting changes are summarised in Table 4.

4.3 The Galindo-Garcia Identity-Based Signature

The original construction from [GG09] is reproduced in Figure 6 of Appendix D.2 and we refer
the reader to [BNN04] for the definition and security model of IBS schemes. Two hash functions
are used in the scheme: H and G (both map arbitrary length strings to the set Z∗p). The structure
of hash function calls is given below.

c := H(R‖id) d := G(id‖A‖m)
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Security Argument

Particulars

Reduction C D F

Oracles involved R and H G and H G and H

Original
Forking Algorithm MZ′ ,3 MU ,5 MW ,5

Degradation O
(
(qR + qH)6

)
O
(
(qG + qH)10

)
O
(
(qR + qH)10

)
Improved

Forking Algorithm NA3,Z′ ,3
NA3,U ,5

NA3,W ,5

Degradation O
(
(qR + qH)3

)
O
(
(qG + qH)5

)
O
(
(qR + qH)5

)
Table 4: Comparison of the original and improved security argument for BPW-PSS. qG, qR and
qH denote the upper bound on the respective hash oracle queries.

H is used to generate the user secret key which, in turn, is required to sign on a message (using
G). Hence H < G constitutes the logical order for the hash functions. However, no binding is in
place by construction. The absence of binding (and consequently, the absence of dependence) is
precisely the reason for the “incompleteness” of the original security argument that was pointed
out in [CKK13]. The incompleteness was addressed in [CKK13] by using the two-reduction
strategy– give separate reductions for each of the orders of the target H and G calls.

4.3.1 Modified Galindo-Garcia IBS

A better alternative to the two-reduction fix is to enforce the logical order on the adversary by
binding the G-oracle to the H-oracle.17 A modified GG-IBS with the aforesaid binding is given
in Appendix D.3. In short, the structure of the hash function call to G to something like the
following:

d := G(id‖A‖m‖c) where c := H(R‖id).

Once the binding is in place, the adversary (except with a negligible probability) is bound
to make the target queries in the logical order. In addition, through an argument similar to
that of BPW-PSS, one can show that OI is also applicable. Accordingly, the security argument
for the modified GG-IBS consists of two reductions R′1 and R′3. The core of these reductions
remains the same as in R1 and R3 respectively of [CKK13]. The only major change is the use
of GMF Algorithm NA3,Y ,n

(with Lemma 2) in R′3 instead of the original MF Algorithm in R3.
For the sake of completeness, we give a detailed description of R′3 (including the wrapper) in
Appendix E. The overall effect is summarised in Table 5.

4.4 The Chow-Ma-Weng ZKP for Simultaneous Discrete Logarithms

We confine ourselves to the basic protocol (n = 2) which is reproduced in Figure 8 of Ap-
pendix D.4. The argument can be easily extended for arbitrary values of n. There are two ob-
jects in consideration: the hash function H and the (interactive) commitment-challenge round18

17A noteworthy observation is that, binding the H-oracle to the G-oracle–i.e., setting up the dependence G ≺ H
instead of H ≺ G–in the GG-IBS allows more efficient reductions to DLP (using general forking). However, this
disturbs the logical order of the hash functions. In such a protocol, the PKG will have to issue user secret keys for
each message to be signed, rendering it impractical.

18The round of interaction can be replaced with a hash function (also denoted by C) to make the protocol non-
interactive [FS87].
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Scheme Security Argument

GG-IBS [CKK13]

Reduction R1 R2 R3

Forking Algorithm FY MY ,1 MY ,3

Degradation O (qGqε) O
(
(qH + qG)2

)
O
(
(qH + qG)6

)

Modified GG-IBS (Figure 6)

Reduction R′1 R′3

Forking Algorithm FY NA3,Y ,3

Degradation O (qGqε) O
(
(qH + qG)3

)
Table 5: Degradation for Galindo-Garcia IBS and its variant with binding. qG and qH denote the
upper bound on the respective hash oracle queries, whereas, qε denotes upper bound on the
extract queries. We have assumed η to be negligible.

which we denote by C. The soundness of the CMW-ZKP is based on the hardness of the DLP:
the reduction, denoted by B, uses the (original) MF AlgorithmMY ,5 to launch a nested replay
attack involving H and C.

Lemma 5 (Soundness, Lemma 4 in [CMW12]). In the random-oracle model (the hash function H
will be modelled as a random oracle), if there exists an adversary A that can ε-break the soundness
of the CMW protocol (i.e. V accepts but logg y1 6= logg y2), there exists an algorithm B which can
ε′-solve the DLP with

ε′ ≥ ε ·
(

ε6

(qH + qC)10
− 5

p

)
,

where qH is the number of random oracle query made by A and qC is the number of interactions
between A and B.19

The notion of binding/dependence for the CMW-ZKP is, interestingly (and contrary to
the previous two examples), between a random oracle (H) and an interactive commitment-
challenge round (C).

4.4.1 A Case for (In)Dependence

We now elaborate on the aspects of dependency and independence in the context of CMW
protocol (see Figure 8).

Condition OI. Recall that the commitment v is of the form (gzh)k, where z := H(y1, y2). By
construction, the prover has to compute the value of z before making the commitment and the
verifier returns the challenge c only after receiving the commitment. Hence the logical order
of H < C. However, it also results in a natural binding between C and H which leads to the
dependence H ≺ C.20 Next, we consider the simulation of the protocol, in particular, the first
invocation of Z . At the end of round 0, the adversary produces a cheating transcript (v1

1, c
1
1, s

1
1),

19We correct a small error in the original expression: the degradation should be by a factor of (qH + qC)10 instead
of (qH · qC)10.

20Let’s consider a resource constrained variant of the verifier which, instead of picking the challenge upon receiving
a commitment, picks all of the challenges beforehand. From the point of view of the prover, the change is purely
conceptual. However, the aforesaid logical order, and also the dependence induced by that logical order, no longer
holds.
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where v1
1 := (gz1h)k1 . Let (I0, J0) be the target indices with J0 corresponding to the H-oracle

output z1 and I0 to the commitment v1
1. round 1 involves forking the adversary at I0 and let’s

assume that, at the end of it, the adversary produces another cheating transcript. If we follow
the success conditions of the original MF Algorithm, then this particular forking is successful
with probability roughly 1/q2 because the cheating transcript has to be on the same commitment
v1

1 (i.e. I1 = I0) and, also, on the same H-oracle output z1 (i.e. J1 = J0).
However, it is easy to observe that, due to the natural binding discussed above, an adversary

cheating on the commitment v1
1 (at the end of round 1) has to (except, with a negligible proba-

bility of guessing) cheat using the H-oracle output of z1. In other words, the adversary commits
to z1 indirectly through v1

1. Hence, (I1 = I0) has to imply (J1 = J0) and, as a consequence
H ≺ C. The same argument holds for the other two invocations of Z as well.

Condition OD. The line of argument is basically similar to the one adopted for the BPW-PSS.
Consider the first invocation of Z in the simulation. For the reduction to successfully solve the
DLP, the adversary, over these two rounds, has to produce two cheating transcripts on the same
commitment (i.e. I1 = I0). This applies to the rounds round k and round k+1, for k = 2 and
k = 4 as well. However, it is not required that the I indices should match across these rounds
(i.e. (I4 = I2 = I0)). To see this, consider the effect of relaxing the condition on the simulation
which is shown in Figure 4.

· ·(v1
1, c

1
1, s

1
1) //round 0

· Q0
I0

: C(v1
1)

· ·(v1
1, c

1
2, s

1
2) //round 1

· ·(v2
1, c

2
1, s

2
1) //round 2

· Q0
J0

: H(y1, y2) Q2
I2

: C(v2
1)

· ·(v2
1, c

2
2, s

2
2) //round 3

· ·(v2
1, c

2
1, s

2
1) //round 4

· Q4
I4

: C(v3
1)

· ·(v3
1, c

3
2, s

3
2) //round 5

z2

z 1

z
3

c
2
1

c 2
2

c
1
1

c 1
2

c
3
1

c 3
2

Figure 4: A successful nested replay attack on a CMW-ZKP adversary using NA3,Y ,5
.

Even though the I indices across Z do not match (I0, I2 and I4), the set of cheating transcripts
that the reduction obtains is still of the form {(vi1, ci1, si1), (vi1, c

i
2, s

i
2)}, for i := 1, 2, 3. The tech-

nique used to solve the DLP in (1) still works. Hence, it suffices that I for the cheating transcripts
within the two rounds of a particular invocation of Z match, but not necessarily across the Z s.

4.4.2 Improved Argument

Before commenting on the improved argument, we would like to point out some issues with
the design of the wrapper. The authors have made the following observation:
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“The algorithm Y here is a wrapper that takes as explicit input the answers from
the random oracle H and the random challenges given by B, calls A and returns its
output together with two integers I, J . One of the integers is the index of A’s calls to
the random oracle H(·, ·) and the other is the index of the challenge corresponding
to the cheat given by A.”[emphasis added]

Notice that the correspondence between the indices (I, J) and the target H-oracle call and C-
round is not clearly spelt out. The reduction, however, proceeds to solve the DLP under the
(implicit) assumption that the wrapper returns a J (resp. I) which refers to the target H-oracle
query (resp. C round). If the correspondence is reversed, the reduction will end up computing
an incorrect solution to the DLP (see Remark 7). To avoid any ambiguity, we emphasise that
the wrapper should be explicitly designed to return I (resp. J) which refers to the target C-
round (resp. H-query). Now, the MF AlgorithmMY ,5 in the original security argument can be
replaced with the GMF Algorithm NA3,Y ,5

(with Lemma 2) resulting in the following lemma:

Lemma 6 (Soundness). In the random-oracle model, if there exists an adversary A that can ε-
break the soundness of the CMW protocol, there exists an algorithm B which can ε′-solve the DLP
with

ε′ = Ω

(
ε6

(qH + qC)5

)
,

where qH is the number of random oracle query made by A, while qC is the number of interactions
between A and B.

Remark 7 (On importance of proper wrapper-design). Consider the simulation of the “re-
source constrained” verifier that we had discussed in Footnote 20. Upon receiving the values
{s1, . . . , sq} as parameters, the wrapper is designed to fix {s1, . . . , sqc} as its random challenges
before proceeding with the actual simulation. This leads to the wrapper always returning a J
index that refers to the target C-round (and an I index that refers to the target H-query). The
“artificial” design of the wrapper has the same effect as that of an adversary for the CMW-ZKP
making the target calls in the wrong order. Hence, in spite of the simulation being faithful (from
the standpoint of the adversary) and the MF Algorithm returning success, the strategy adopted
for solving DLP will fail. Thus, it is not difficult to get the design of the wrapper wrong.

5 Conclusion

In this paper we have proposed a general framework for the application of the Multiple Forking
Lemma. The framework and the corresponding algorithm is derived based on a careful analysis
of the original Multiple Forking Lemma and its application in the security argument of various
schemes. We prove that our notions of (in)dependence significantly improve upon the bound
of the original Lemma. We also show that all known instances of the application of the origi-
nal Multiple Forking Lemma satisfy the notion of (in)dependence and hence benefit from our
improved bound. Whether the new bounds in the security arguments are optimal or can be
improved further will be an interesting open question from a theoretical perspective.
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A General Forking

We reproduce the GF Algorithm from [BN06] followed by the statement of the GF lemma. We
use slightly different notations to maintain uniformity.

Forking Algorithm. Fix q ∈ Z+ and a set S such that |S| ≥ 2. Let Y be a randomised algorithm
that on input a string x and elements s1, . . . , sq ∈ S returns a pair (I, σ) consisting of an integer
0 ≤ I ≤ q and a string σ. The forking algorithm FY associated to Y is defined as Algorithm 3
below.

Algorithm 3 FY (x)

Pick coins ρ for Y at random

{s0
1, . . . , s

0
q}

U←− S; (I0, σ0)← Y (x, s0
1, . . . , s

0
q ; ρ) //round 0

if (I0 = 0) then return (0,⊥,⊥)

{s1
I0
, . . . , s1

q}
U←− S; (I1, σ1)← Y (x, s0

1, . . . , s
1
I0−1, s

1
I0
, . . . , s1

q ; ρ) //round 1
if (I1 = I0 ∧ s1

I0
6= s0

I0
) then return (1, σ0, σ1)

else return (0,⊥,⊥)

Lemma 7 (General Forking Lemma [BN06]). Let GI be a randomised algorithm that takes no
input and returns a string. Let

gfrk := Pr
[
(b = 1) | x $←− GI ; (b, σ, σ)

$←− FY (x)
]

and

acc := Pr
[
I ≥ 1 | x $←− GI ; {s1, . . . , sq}

U←− S; (I, σ)
$←− Y (x, s1, . . . , sq)

]
,
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then

gfrk ≥ acc ·
(

acc
q
− 1

|S|

)
. (24)

B (Original) Multiple-Forking Algorithm

We describe the original Multiple-Forking Algorithm [BPW12] with some notational changes.
The success condition and the lemma that governs the success probability follows the algorithm.

The Multiple-Forking Algorithm Fix q ∈ Z+ and a set S such that |S| ≥ 2. Let Y be a
randomised algorithm that on input a string x and elements s1, . . . , sq ∈ S returns a triple
(I, J, σ) consisting of two integers 0 ≤ J < I ≤ q and a string σ. Let n ≥ 1 be an odd integer.
The MF AlgorithmMY ,n associated to Y and n is defined as Algorithm 4 below.

Algorithm 4MY ,n(x)

Pick coins ρ for Y at random

{s0
1, . . . , s

0
q}

U←− S;
(I0, J0, σ0)← Y (x, s0

1, . . . , s
0
q ; ρ) //round 0

if ((I0 = 0) ∨ (J0 = 0)) then return (0,⊥) //Condition ¬B

{s1
I0
, . . . , s1

q}
U←− S;

(I1, J1, σ1)← Y (x, s0
1, . . . , s

1
I0−1, s

1
I0
, . . . , s1

q ; ρ) //round 1

if
(
(I1, J1) 6= (I0, J0) ∨ (s1

I0
= s0

I0
)
)

then return (0,⊥) //Condition ¬C0

k := 2
while (k < n) do
{skJ0 , . . . , s

k
q}

U←− S;
(Ik, Jk, σk)← Y (x, s0

1, . . . , s
0
J0−1, s

k
J0
, . . . , skq ; ρ) //round k

if
(

(Ik, Jk) 6= (I0, J0) ∨ (skJ0 = sk−1
J0

)
)

then return (0,⊥) //Condition ¬Dk

{sk+1
Ik

, . . . , sk+1
q } U←− S;

(Ik+1, Jk+1, σk+1)← Y (x, s0
1, . . . , s

0
J0−1, s

k
J0
, . . . , skIk−1, s

k+1
Ik

, . . . , sk+1
q ; ρ) //round k+1

if
(

(Ik+1, Jk+1) 6= (I0, J0) ∨ (sk+1
I0

= skI0)
)

then return (0,⊥) //Condition ¬Ck

k := k + 2
end while
return (1, {σ0, . . . , σn})

The success condition. The success of the MF Algorithm is determined by the set of conditions
A0 := {B,C0, . . . ,Cn−1,C2, . . . ,Dn−1} where

B : (I0 ≥ 1) ∧ (J0 ≥ 1)

Ck : (Ik+1, Jk+1) = (Ik, Jk) ∧ (sk+1
Ik
6= skIk) (for k = 0, 2, . . . , n− 1)

Dk : (Ik, Jk) = (I0, J0) ∧ (skJ0 6= sk−1
J0

) (for k = 2, 4, . . . , n− 1) (25)

To be precise, the MF Algorithm is successful in the event E that all of the conditions in A0 are
satisfied, i.e.,

E : B ∧
(
C0 ∧ C2 ∧ · · · ∧ Cn−1

)
∧
(
D2 ∧ D4 ∧ · · · ∧ Dn−1

)
. (26)
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The probability of this event, which is denoted by mfrk, is bounded by the MF lemma given
below.

Lemma 8 ((Original) Multiple-Forking Lemma [BPW12]). Let GI be a randomised algorithm
that takes no input and returns a string. Let

mfrk := Pr
[
(b = 1) | x $←− GI ; (b, {σ0, . . . , σn})

$←−MY ,n(x)
]

and

acc := Pr
[
(I ≥ 1) ∧ (J ≥ 1) | x $←− GI ; {s1, . . . , sq}

U←− S; (I, J, σ)
$←− Y (x, s1, . . . , sq)

]
then

mfrk ≥ acc ·
(

accn

q2n
− n

|S|

)
. (27)

C Harnessing (In)Dependence

C.1 Detailed Steps for Lemma 2

Intermediate steps for (13)

frkc(x)

= Pr [(I1 = I0) ∧ (J1 = J0) ∧ (1 ≤ J0 < I0 ≤ q)]
= Pr [(J1 = J0) | (I1 = I0) ∧ (1 ≤ J0 < I0 ≤ q)] Pr [(I1 = I0) ∧ (1 ≤ J0 < I0 ≤ q)]
= (1− η) Pr [(I1 = I0) ∧ (1 ≤ J0 < I0 ≤ q)]

= (1− η)

q∑
i=2

Pr [(I1 = i) ∧ (1 ≤ J1 < i) | (I0 = i) ∧ (1 ≤ J0 < i)] · Pr
[
(I0 = i) ∧ (1 ≤ J0 < i)

]
= (1− η)

q∑
i=2

∑
ρ,S

(i−)

1

|R||S|j−1
Y 2
i (ρ, S(i−))

= (1− η)

q∑
i=2

Ex
[
Y 2
i

]
≥

q∑
i=2

Ex [Yi]
2 (by Jensen’s inequality)

≥ (1− η)

q

(
q∑
i=2

Ex [Yi]

)2

(by Hölder’s inequality)

=
(1− η)

q
acc(x)2 (by definition of Yi and acc(x)) (28)
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Intermediate steps for (17)

mfrk3,c(x)

= Pr
[
(1 ≤ J0 < I0 ≤ q) ∧ (I1 = I0) ∧ (s1

I0 6= s0
I0)∧(

∧k=2,4,...,n−1 (Ik+1 = Ik) ∧ (sk+1
Ik
6= skIk) ∧ (Jk = J0) ∧ (Jk < Ik ≤ q)

)]
= Pr

[
(1 ≤ J0 < I0 ≤ q) ∧ (I1 = I0) ∧ (J1 = J0) ∧ (s1

I0 6= s0
I0)∧(

∧k=2,4,...,n−1 (Ik+1 = Ik) ∧ (sk+1
Ik
6= skIk) ∧ (Jk+1 = Jk = J0) ∧ (Jk < Ik ≤ q)

)]
(since J ≺ I)

=

q−1∑
j=1

Pr
[
∧k=0,2,...,n−1 ((Jk+1 = Jk = j) ∧ (Ik+1 = Ik) ∧ (j < Ik ≤ q) ∧ (sk+1

Ik
6= skIk))

]
=

q−1∑
j=1

∑
ρ,S

(j−)

Pr
[
∧k=0,2,...,n−1 (Jk+1 = Jk = j) ∧ (Ik+1 = Ik) ∧ (j < Ik ≤ q) ∧ (sk+1

Ik
6= skIk)

]
|R||S|j−1

=

q−1∑
j=1

∑
ρ,S

(j−)

∏n−1
k=0,2 Pr

[
(Jk+1 = Jk = j) ∧ (Ik+1 = Ik) ∧ (j < Ik ≤ q) ∧ (sk+1

Ik
6= skIk) |

∧k−2
l=0,2 G`

]
|R||S|j−1

(29)

In the above expression, G` denotes the event

((J`+1 = J` = j) ∧ (I`+1, J`+1) = (I`, J`) ∧ (j < I` ≤ q) ∧ (s`+1
I`
6= s`I`).

Using the random variable Zj , the equation (17) can be rewritten as

mfrk3,c(x)

=

q−1∑
j=1

∑
ρ,S

(j−)

∏n−1
k=0,2 Zj(ρ, S(j−))

|R||S|j−1
=

q−1∑
j=1

 ∑
ρ,S

(j−)

Z
(n+1)/2
j (ρ, S(j−))

|R||S|j−1


=

q−1∑
j=1

Ex
[
Z

(n+1)/2
j

]
≥

q−1∑
j=1

Ex [Zj ]
(n+1)/2 (by Jensen’s inequality)

≥ 1

q(n−1)/2

q−1∑
j=1

Ex [Zj ]

(n+1)/2

(by Jensen’s and Hölder’s inequality) (30)

Intermediate steps for (18)

mfrk3,s(x) =

= Pr
[
(1 ≤ J0 < I0 ≤ q) ∧ (I1 = I0) ∧ (s1

I0 6= s0
I0)
]
· Pr

[(
∨k=2,4,...,n−1¬Dk,s

)]
=

(n− 1)(n+ 1)

8|S|
· Pr

[
(1 ≤ J0 < I0 ≤ q) ∧ (I1 = I0) ∧ (J1 = J0) ∧ (s1

I0 6= s0
I0)
]

=
(n− 1)(n+ 1)

8|S|

q−1∑
j=1

(J1 = J0 = j) ∧ (I1 = I0) ∧ (j < I0 ≤ q) ∧ (s1
I0 6= s0

I0)


=

(n− 1)(n+ 1)

8|S|

q−1∑
j=1

Ex [Zj ]

 (31)
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C.2 Multiple-Forking with Index Independence

Lemma 9 (Multiple-Forking Lemma with Index Independence). Let GI be a randomised algo-
rithm that takes no input and returns a string. Let

mfrk1 := Pr
[
(b = 1) | x $←− GI ; (b, {σ0, . . . , σn})

$←− NA1,Y ,n(x)
]

and

acc := Pr
[
(I ≥ 1) ∧ (J ≥ 1) | x $←− GI ; {s1, . . . , sq}

U←− S; (I, J, σ)
$←− Y (x, s1, . . . , sq)

]
then

mfrk1 ≥ acc ·
(

accn

q(3n+1)/2
− (n+ 1)(n+ 3)

8|S|

)
. (32)

Proof. The analysis, especially its logical flow, is quite similar to the original analysis. We stick
to the conventions adopted in §3.1. For a fixed string x, let

mfrk1(x) := Pr
[
(b = 1) | (b, {σ0, . . . , σn})

$←− NA1,Y ,n(x)
]

and

acc(x) := Pr
[
(I ≥ 1) ∧ (J ≥ 1) | {s1, . . . , sq}

U←− S; (I, J, σ)
$←− Y (x, s1, . . . , sq)

]
Let A1 := {B,C0,C2, . . . ,Cn−1,D2,D4, . . . ,Dn−1}. For ease of notation, we further break the
event Ck (resp. Dk) into two subevents Ck,c and Ck,s (resp. Dk,c and Dk,s) as follows:

Ck,c : (Ik+1, Jk+1) = (Ik, Jk) ∧ (Ik ≥ 1) Ck,s : (sk+1
Ik
6= skIk)

Dk,c : (Jk = J0) Dk,s : (∧`:=0,2,...,k−2 s
k
J0 6= s`J0) (33)

The GMF Algorithm is successful in the event E : B∧
(
C0 ∧ C2 ∧ · · · ∧ Cn−1

)
∧
(
D2 ∧ D4 ∧ · · · ∧ Dn−1

)
.

In other words, with the probabilities calculated over the randomness of the GMF Algorithm,
it follows that mfrk1(x) = Pr [E]. The first step in calculating the probability is to separate the
“core” subevents out of the event E. This is accomplished as follows.

Pr [E] = Pr
[
B ∧

(
∧k=0,2,...,n−1 Ck

)
∧
(
∧k=2,4,...,n−1 Dk

)]
= Pr

[
B ∧

(
∧k=0,2,...,n−1 Ck,c ∧ Ck,s

)
∧
(
∧k=2,4,...,n−1 Dk,c ∧ Dk,s

)]
(using (33))

≥Pr
[
B ∧

(
∧k=0,2,...,n−1 Ck,c

)
∧
(
∧k=2,4,...,n−1 Dk,c

)]
−

Pr
[
B ∧

((
∨k=0,2,...,n−1 Ck,s

)
∨
(
∨k=2,4,...,n−1 Dk,s

)) ]
(34)

It can be shown that the second part of (34) equals

(n+ 1)(n+ 3) · acc(x)

8|S|

by following the analysis in (18). As for the first part, it constitutes the “core” event for the
analysis, and is denoted by mfrk1,c(x). The event corresponding to mfrk1,c(x) is closely related
to the event given in (6). The next step is to show that

mfrk1,c(x) ≥ acc(x)n+1

q(3n+1)/2
. (35)
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The intermediate steps to achieving it are as follows:

mfrk1,c(x) = Pr
[
B ∧

(
∧k=0,2,...,n−1 Ck,c

)
∧
(
∧k=2,4,...,n−1 Dk,c

)]
= Pr

[
(I0 ≥ 1) ∧ (J0 ≥ 1) ∧

n−1∧
k=0,2

((Ik+1, Jk+1) = (Ik, Jk) ∧ (Ik ≥ 1)) ∧
n−1∧
k=2,4

(Jk = J0)
]

=

q∑
j=1

Pr
[
(I0 ≥ 1) ∧ (J0 = j) ∧

n−1∧
k=0,2

((Ik+1, Jk+1) = (Ik, Jk) ∧ (Ik ≥ 1)) ∧
n−1∧
k=2,4

(Jk = j)
]

=

q∑
j=1

∑
ρ,S

(j−)

∏n−1
k=0,2 Pr

[
(Ik+1, Jk+1) = (Ik, Jk) ∧ (Jk = j) ∧ (Ik ≥ 1) |

∧k−2
l=2,4 G`

]
|R||S|j−1

(36)

In the above expression, G` denotes the event (I`+1, J`+1) = (I`, J`) ∧ (J` = j) ∧ (I` ≥ 1). Let’s
focus on the probability part of (36).

Pr
[
(Ik+1, Jk+1) = (Ik, Jk) ∧ (Jk = j) ∧ (Ik ≥ 1)

]
=

q∑
i=1

Pr
[
(Ik+1, Jk+1) = (Ik, Jk) = (i, j)

]
=

q∑
i=1

∑
S
(ji)

Pr
[
(Ik+1, Jk+1) = (Ik, Jk) = (i, j)

]
|S|i−j

=

q∑
i=1

∑
S
(ji)

Pr
[
(Ik+1, Jk+1) = (i, j)

]
· Pr

[
(Ik, Jk) = (i, j)

]
|S|i−j

(37)

At this point, we define a random variable Yi,j,ρ,S
(j−)

which captures a single invocation of the
wrapper Y , but with the internal randomness ρ and the external randomness S(j−) being fixed.
Let Yi,j,ρ,S

(j−)
: Si−j 7→ [0, 1], for each i, j ∈ {1, . . . , q}, be defined by setting

Yi,j,ρ,S
(j−)

(S(ji)) := Pr
[
(I, J) = (i, j) | S(i+)

$←− Sq−i+1; (I, J, σ)← Y (x, S(j−), S(ji), S(i+); ρ)
]

Using the random variable Y , the equation (37) can be rewritten as

q∑
i=1

∑
S
(ji)

Y 2
i,j,ρ,S

(j−)
(S(ji))

|S|i−j

=

q∑
i=1

Ex
[
Y 2
i,j,ρ,S

(j−)

]
≥

q∑
i=1

Ex
[
Yi,j,ρ,S

(j−)

]2
(by Jensen’s inequality)

≥ 1

q

(
q∑
i=1

Ex
[
Yi,j,ρ,S

(j−)

])2

(by Hölder’s inequality) (38)

Next, we define a random variable Zj which captures one invocation of the logical wrapper Z .
Let Zj : R × Sj−1 7→ [0, 1], for each j ∈ {1, . . . , q}, be defined by setting

Zj(ρ, S(j−)) :=

q∑
i=1

Ex
[
Yi,j,ρ,S

(j−)

]
.

Hence, on representing (38) in terms of the random variable Zj , we get

Pr
[
(Ik+1, Jk+1) = (Ik, Jk) ∧ (Jk = j) ∧ (Ik ≥ 1)

]
≥ Zj(ρ, S(j−))

2/q
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Substituting the above expression, further, in (36) yields

q∑
j=1

∑
ρ,S

(j−)

∏n−1
k=0,2 Pr

[
(Ik+1, Jk+1) = (Ik, Jk) ∧ (Jk = j) ∧ (Ik ≥ 1)

]
|R||S|j−1

≥
q∑
j=1

∑
ρ,S

(j−)

(
Zj(ρ, S(j−))

2/q
)(n+1)/2

|R||S|j−1

=
1

q(n+1)/2

q∑
j=1

∑
ρ,S

(j−)

Zj(ρ, S(j−))
n+1

|R||S|j−1

=
1

q(n+1)/2

q∑
j=1

Ex
[
Zn+1
j

]
≥ 1

q(n+1)/2

q∑
j=1

Ex [Zj ]
n+1 (by Jensen’s inequality)

≥ 1

q(n+1)/2 · qn

 q∑
j=1

Ex [Zj ]

n+1

(by Hölder’s inequality)

=
1

q(3n+1)/2
acc(x)n+1.

That completes the analysis of the “core” event and establishes our initial claim in (35). On
combining the two parts of the equation (34), we get

mfrk1(x) ≥ acc(x)n+1

q(3n+1)/2
− (n+ 1)(n+ 3) · acc(x)

8|S|

= acc(x)

(
acc(x)n

q(3n+1)/2
− (n+ 1)(n+ 3)

8|S|

)
.

With expectation taken over x $←− GI ,

mfrk1 ≥ acc
(

accn

q(3n+1)/2
− (n+ 1)(n+ 3)

8|S|

)
.

hence, proving the lemma. We conclude with the comment that on assuming |S| � 1, one gets
mfrk2 ≈ accn+1/q(3n1)/2.

C.3 Multiple-Forking with Index Dependence

Lemma 10 (Multiple-Forking Lemma with Index Dependence). Let GI be a randomised algo-
rithm that takes no input and returns a string. Let

mfrk := Pr
[
(b = 1) | x $←− GI ; (b, {σ0, . . . , σn})

$←− NA0,Y ,n(x)
]

and

acc := Pr
[
(1 ≤ J < I ≤ q) | x $←− GI ; {s1, . . . , sq}

U←− S; (I, J, σ)
$←− Y (x, s1, . . . , sq)

]
On the assumption that J is η-dependent on I,

mfrk ≥ frk

(
frk(n−1)/2

qn
− (n− 1)(n+ 1)

8|S|

)
where frk ≥ acc

(
acc
q
− 1

|S|

)
(39)
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Proof. For a fixed string x, let

mfrk(x) := Pr
[
(b = 1) | (b, {σ0, . . . , σn})

$←− NA0,Y ,(
x)
]

and

acc(x) := Pr
[
(1 ≤ J < I ≤ q) | {s1, . . . , sq}

U←− S; (I, J, σ)
$←− Y (x, s1, . . . , sq)

]
.

Let A1 := {B,C0,C2, . . . ,Cn−1,D2,D4, . . . ,Dn−1}. For ease of notation, we further break the
event Ck (resp. Dk) into two subevents Ck,c and Ck,s (resp. Dk,c and Dk,s) as follows:

Ck,c : (Ik+1 = Ik) Ck,s : (sk+1
Ik
6= skIk)

Dk,c : (Ik, Jk) = (I0, J0) Dk,s : (∧`:=0,2,...,k−2 s
k
J0 6= s`J0) (40)

The GMF Algorithm is successful in the event E : B∧
(
C0 ∧ C2 ∧ · · · ∧ Cn−1

)
∧
(
D2 ∧ D4 ∧ · · · ∧ Dn−1

)
.

In other words, with the probability calculated over the randomness of the algorithm GMF Al-
gorithm, it follows that mfrk2(x) = Pr [E]. The task of bounding this probability is accomplished
through three claims (Claim 1, Claim 5 and Claim 6). We reuse the bound on frk(x) given in
Claim 1. In order to establish Claim 5 and Claim 6 we have to define a random variable Zi,j
that captures a single invocation of the logical wrapper Z . Let Zi,j : R × Sj−1 7→ [0, 1], for
1 ≤ j ≤ q − 1 and j < i ≤ q, be defined by setting

Zi,j(ρ, S(j−)) = Pr
[
(J ′ = J = j) ∧ (I ′ = I = i) ∧ (s′I 6= sI)

]
given

(S(ji), (S(i+), S
′
(i+)))

U←− S and

(I, J, σ), (I ′, J ′, σ′))← Z (x, {S(j−), S(ji), S(i+)}, {S(j−), S(ji), S
′
(i+)}; ρ).

Briefly, our aim is to bound mfrk2(x) in terms of Zi,j (Claim 5) and bound Zi,j in terms of frk(x)
(Claim 6).

Claim 5.

mfrk2(x) ≥ 1

qn−1

q−1∑
j=1

q∑
i=j+1

Ex [Zi,j ]

(n+1)/2

− (n− 1)(n+ 1)

8|S|

q−1∑
j=1

q∑
i=j+1

Ex [Zi,j ]

 (41)

Argument. The first step is to separate the “core” subevents out of the event E as shown below.

Pr [E] = Pr
[
B ∧

(
∧k=0,2,...,n−1 Ck

)
∧
(
∧k=2,4,...,n−1 Dk

)]
= Pr

[
B ∧ C0 ∧

(
∧k=2,4,...,n−1 Ck ∧ Dk,c ∧ Dk,s

)]
(using subevents given in (33))

= Pr
[
B ∧ C0 ∧

(
∧k=2,4,...,n−1 Ck ∧ Dk,c

)
∧
(
∧k=2,4,...,n−1 Dk,s

)]
≥ Pr

[
B ∧ C0 ∧

(
∧k=2,4,...,n−1 Ck ∧ Dk,c

)]
− Pr

[
B ∧ C0 ∧

(
∨k=2,4,...,n−1Dk,s

) ]
(42)

We denote the first part of (42) by mfrk2,c(x) and the second part by mfrk2,s(x) and analyse
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them separately.

mfrk2,c(x) = Pr
[
B ∧ C0 ∧

(
∧k=2,4,...,n−1 Ck ∧ Dk,c

)]
= Pr

[
B ∧

(
∧k=0,2,...,n−1 Ck

)
∧
(
∧k=2,4,...,n−1 Dk,c

)]
= Pr

[
(1 ≤ J0 < I0 ≤ q) ∧

(
∧k=0,2,...,n−1 (Ik+1 = Ik) ∧ (sk+1

Ik
6= skIk)

)
∧(

∧k=2,4,...,n−1 (Ik, Jk) = (I0, J0)
)]

= Pr
[
(1 ≤ J0 < I0 ≤ q) ∧

(
∧k=0,2,...,n−1 (Ik+1, Jk+1) = (Ik, Jk) ∧ (sk+1

Ik
6= skIk)

)
∧(

∧k=2,4,...,n−1 (Ik, Jk) = (I0, J0)
)]

(since J ≺ I)

=

q−1∑
j=1

q∑
i=j+1

Pr
[
∧k=0,2,...,n−1 (Ik+1, Jk+1) = (Ik, Jk) = (i, j) ∧ (sk+1

Ik
6= skIk))

]
=

q−1∑
j=1

q∑
i=j+1

∑
ρ,S

(j−)

Pr
[
∧k=0,2,...,n−1 (Ik+1, Jk+1) = (Ik, Jk) = (i, j) ∧ (sk+1

Ik
6= skIk)

]
|R||S|j−1

=

q−1∑
j=1

q∑
i=j+1

∑
ρ,S

(j−)

∏n−1
k=0,2 Pr

[
(Ik+1, Jk+1) = (Ik, Jk) = (i, j) ∧ (sk+1

Ik
6= skIk) |

∧k−2
l=0,2 G`

]
|R||S|j−1

(43)

In the above expression, G` denotes the event

(I`+1, J`+1) = (I`, J`) = (i, j) ∧ (s`+1
I`
6= s`I`).

Using the random variable Zi,j , (43) can be rewritten as

mfrk2,c(x) =

q−1∑
j=1

q∑
i=j+1

∑
ρ,S

(j−)

∏n−1
k=0,2 Zi,j(ρ, S(j−))

|R||S|j−1

=

q−1∑
j=1

q∑
i=j+1

∑
ρ,S

(j−)

Z
(n+1)/2
i,j (ρ, S(j−))

|R||S|j−1

=

q−1∑
j=1

q∑
i=j+1

Ex
[
Z

(n+1)/2
i,j

]
≥

q−1∑
j=1

q∑
i=j+1

Ex [Zi,j ]
(n+1)/2 (by Jensen’s inequality)

≥ 1

qn−1

q−1∑
j=1

q∑
i=j+1

Ex [Zi,j ]

(n+1)/2

(by Hölder’s inequality) (44)

Using a similar line of approach (as in (43) and (44)), it is possible to establish that

mfrk2,s(x) =
(n− 1)(n+ 1)

8|S|

q−1∑
j=1

q∑
i=j+1

Ex [Zi,j ]

 . (45)

Substituting the value of mfrk2,c(x) from (44) and mfrk2,s(x) from (45) in (42), yields the bound
in Claim 5.

What remains is to relate Claim 1 and Claim 5

Claim 6.
∑q−1

j=1

∑q
i=j+1 Ex [Zi,j ] ≥ frk(x).
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Argument. This argument makes use of the partitions of T(2) that we used in Claim 3. Let T(2,ji)

denote the underlying set for the random variable Zi,j . From the definition of Zi,j , we can infer
that

T(2,ji) :=
(
R × Sj−1 × Si−j × S(q−i+1)∗2) =

(
R × Si−1 × S(q−i+1)∗2) and

Ex [Zi,j ] = Pr
T
(2,ji)

[
(J ′ = J = j) ∧ (I ′ = I = i) ∧ (s′I 6= sI)

]
.

Notice that T(2,ji) is the subset of T(2). Let T̄(2,ji) denote T(2) \ T(2,ji). It follows by definition
that

Pr
T̄
(2,ji)

[
(J ′ = J = j) ∧ (I ′ = I = i) ∧ (s′I 6= sI)

]
= 0. (46)

The fact that T(2,ji) ⊂ T(2) and (46) implies

Pr
T
(2,ji)

[
(J ′ = J = j) ∧ (I ′ = I = i) ∧ (j < I ≤ q) ∧ (s′I 6= sI)

]
≥

Pr
T
(2)

[
(J ′ = J = j) ∧ (I ′ = I = i) ∧ (j < I ≤ q) ∧ (s′I 6= sI)

]
.

On taking the sum of Ex [Zi,j ] over the indices (i, j), we get

q−1∑
j=1

q∑
i=j+1

Ex [Zi,j ] ≥
q−1∑
j=1

q∑
i=j+1

Pr
T
(2)

[
(J ′ = J = j) ∧ (I ′ = I = i) ∧ (j < I ≤ q) ∧ (sI 6= s′I)

]
= Pr

T
(2)

[
(J ′ = J) ∧ (I ′ = I) ∧ (1 ≤ J < I ≤ q) ∧ (sI 6= s′I)

]
= frk(x)

completing the argument.

On putting all the three claims together, we get

mfrk2(x) ≥ 1

qn−1
frk(x)(n+1)/2 − (n− 1)(n+ 1)

8|S|
frk(x)

= frk(x) ·

(
frk(x)(n−1)/2

qn−1
− (n− 1)(n+ 1)

8|S|

)

Finally, taking the expectation over x $←− GI , yields

frk ≥ acc
(

acc
q

(1− η)− 1

|S|

)
and mfrk2 ≥ frk ·

(
frk(n−1)/2

qn−1
− (n− 1)(n+ 1)

8|S|

)

establishing Lemma 10. We conclude with the comment that on assuming |S| � 1, one gets
mfrk2 ≈ accn+1/q(3n−1)/2.

D Constructions

D.1 The Boldyreva-Palacio-Warinschi Proxy Signature Scheme

Let S = {Gs,Ks,Ss,Vs} denote the Schnorr signature scheme. The Triple-Schnorr proxy signa-
ture scheme B consists of the algorithms (G ,K,S ,V , (D,P ),Sp,Vp, I ), each of which is defined
below.
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Parameter Generation, G(κ): Run the Schnorr Parameter Generation algorithm Gs on κ to
obtain pps = (G, g, p,G). Return pp := (pps,H,R) as public parameters, where H and R
are two hash functions

H : {0, 1}∗ 7→ Zp and R : {0, 1}∗ 7→ Zp.

Key Generation, K(pp): Run the Schnorr Key Generation algorithm Ks on pps to obtain
((pps, X), (pps, x)). Return pk := (pp, X) as the public key and sk := (pp, x) as the secret
key. For convenience, we drop pp from the keys; thus, (X,x) serves as the key-pair.

Signing, S (m, sk): Return SG
s (1‖m, sk) as the signature on the message m.

Verification, V (m,σ, pk): Return VG
s (σ, 1‖m, pk).

Delegation, (D(pki, ski, j, pkj , M̃),P (pkj , skj , pki)): Let S be a shorthand for the string
(pki‖j‖pkj‖M̃). User i computes

cert := (Y, s)
$←− SG

s (ski, 0‖S)

and sends it to user j. User j, in turn, verifies cert and computes the proxy signing key
skp := (S, Y, t) where

t = r · skj + s with r := R(S‖Y ‖c) and c := G(0‖S‖Y ).

Proxy Signing, Sp(skp, m̃): Let r := R(S‖Y ‖c) and c := G(0‖S‖Y ). If m̃ is indeed from the
message space M̃ then return

σp :=
(
j, pkj , M̃, Y,SH

s (t, 0‖m̃‖S‖Y ‖r)
)

as the proxy signature on m̃ on behalf of user j by the user i. Else, return ⊥.

Proxy Verification, Vp(σp, m̃, pki): Let σp be of the form (j, pkj , M̃, Y, σ). Compute the stamp
S := (pki‖j‖pkj‖M̃). In addition, compute the proxy public key

pkp := pkrj · Y · pkci

where r := R(S‖Y ‖c) and c := G(0‖S‖Y ). Return VH
s (σ, 0‖m̃‖S, pkp)

Proxy Identification, I (σp): Let σp be of the form (j, pkj , M̃, Y, σ). Return j as the identity
of the proxy signer.

Figure 5: The BPW Proxy Signature Scheme. (We use M̃ in place of ω (used in [BPW12])
to maintain uniformity of notation.)

Remark 8. Self-delegation can be achieved by invoking the interactive algorithm (D,P ) on an
alternative key-pair of the designator (itself), in place of the key-pair of the proxy signer. For
example, a user i with an alternative key-pair (pk′i, sk

′
i) can delegate itself by invoking

(skp,⊥)
$←− (D(pki, ski, i, pk

′
i, M̃),P (pk′i, sk

′
i, pki)).
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D.2 The (Original) Galindo Garcia IBS

Set-up, G(κ): Invoke the group generator GDL (on 1κ) to obtain (G, g, p). Return z
U←− Zp

as the master secret key msk and (G, p, g, gz,H,G) as the master public key mpk, where H
and G are hash functions

H : {0, 1}∗ 7→ Zp and G : {0, 1}∗ 7→ Zp.

Key Extraction, E (id, msk, mpk): Select r U←− Zp and set R := gr. Return usk := (y,R) ∈
Zp ×G as the user secret key, where

y := r + zc and c := H(R‖id).

Signing, S (id,m, usk, mpk): Let usk = (y,R) and c = H(R‖id). Select a U←− Zp and set
A := ga. Return σ := (b, R,A) ∈ G × Zp ×G as the signature, where

b := a+ yd and d := G(id‖A‖m).

Verification, V (σ, id,m, mpk): Let σ = (b, R,A), c := H(R‖id) and d := G(id‖A‖m). The
signature is valid if

gb = A(R · (gz)c)d.

Figure 6: The (Original) Galindo-Garcia IBS.

D.3 The Modified Galindo Garcia IBS

The construction is same as in Figure 6 except for the structure of the hash functions. We
have introduced a binding between H and G (through d := G(m,A, c) where c := H(id, R)) to
induce a dependence of H ≺ G. The binding that we have introduced is more refined than the
one suggested in §4.3.1 (i.e., d := G(id‖A‖m‖c) where c := H(R‖id)).

Set-up, G(κ): Generate a group G = 〈g〉 of prime order p. Return z
U←− Zp as the master

secret key msk and (G, p, g, gz,H,G) as the master public key mpk, where H and G are hash
functions

H : {0, 1}∗ ×G 7→ Zp and G : {0, 1}∗ ×G × Zp 7→ Zp.

Key Extraction, E (id, msk, mpk): Select r U←− Zp and set R := gr. Return usk := (y,R) ∈
Zp ×G as the user secret key, where

y := r + zc and c := H(id, R).

Signing, S (id,m, usk, mpk): Let usk = (y,R) and c = H(id, R). Select a U←− Zp and set
A := ga. Return σ := (b, R,A) ∈ G × Zp ×G as the signature, where

b := a+ yd and d := G(m,A, c).
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Verification, V (σ, id,m, mpk): Let σ = (b, R,A), c := H(id, R) and d := G(m,A, c). The
signature is valid if

gb = A(R · (gz)c)d.

Figure 7: The Modified Galindo-Garcia IBS.

D.4 Chow-Ma-Weng Zero-Knowledge Argument

Chaum and Pederson devised a zero-knowledge protocol for proving the equality of two discrete
logarithms [CP93]. The protocol due to Chow et al. improves on that of Chaum and Pederson
by increasing efficiency and, also, by including provision for simultaneous checking of n ≥ 2
discrete logarithms.

Setting. Let G be a cyclic group of order a prime p. Let g, h ∈ G be two random generators
for G. In addition, let H : G2 7→ Z∗p be a cryptographic hash function.

Protocol. The objective of the prover P , after publishing y1 = gx and y2 = hx, is to convince
the verifier V that logg y1 = logh y2. This is accomplished through the following sequence
of steps:

(i) P picks k U←− Z∗p and sends the commitment v := (gzh)k to V , where z := H(y1, y2) .

(ii) Upon receiving v, V sends challenge c U←− Z∗p to P .

(iii) P sends the response s := k − cx mod p to V .

(iv) V accepts iff v = (gzh)s(yz1y2)c holds, where z := H(y1, y2).

Figure 8: The Chow-Ma-Weng argument for the statement logg y1 = logg y2.

E Security Argument for Modified Galindo-Garcia IBS

Theorem 1. Let A be an (ε, t, qε, qs, qH, qG)-adversary against the modified GG-IBS. If H and G are
modelled as random oracles, we can construct either

(i) Algorithm R′1 which ε1-breaks the DLP, where ε1 = O
(
ε2/(exp(1)qGqε)

)
or

(ii) Algorithm R′3 which ε3-breaks the DLP, where ε3 = O
(
ε4/(qH + qG)3

)
.

Here qε and qs denote the upper bound on the number of extract and signature queries, respectively,
that A can make; qH and qG denote the upper bound on the number of queries to the H-oracle and
G-oracle respectively.

Argument. A is successful if it produces a valid non-trivial forgery σ̂ = (b̂, R̂, Â) on (îd, m̂).
Consider the following complementary events in the case that A is successful.

E: A makes at least one signature query on îd and R̂ was returned by the simulator as
part of the output to a signature query on îd.

Ē: Either A does not make any signature queries on îd or R̂ was never returned by the
simulator as part of the output to a signature query on îd.
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In the event E we give a reduction R′1, whereas in the event Ē, we give R′3. Apart from the
need of a wrapper, R′1 is similar to the reduction R1 given in [CKK13]. R′3, on the other hand,
employs the GMF Algorithm NA3,Y ,3

(with Lemma 2), in place ofMY ,3. Hence, we confine the
security argument to the details of reduction R′3.

Remark 9. The dependence among the hash functions H and G (modelled as random oracles)
has been induced by the binding between them. The notion of independence, on the other
hand, can be argued in terms of the system of congruences as we have done for BPW-PSS and
CMW-ZKP.

E.1 Reduction R′3
Let ∆ := (G, p, g, gα) be the given DLP instance. The reduction involves invoking the GMF
Algorithm NA3,Y ,n

on the wrapper Y as shown in Algorithm 5. As a result, it obtains a set of
four congruences in four unknowns and solves for α. It can be verified that R′3 indeed returns
the correct solution to the DLP instance (see full version of [CKK13] for details). The design of
the wrapper Y follows.

Algorithm 5 Reduction R′3(∆)

Set mpk := ∆

(b, {σ0, σ1, σ2, σ3})
$←− NA3,Y ,3

(mpk)

if (b = 0) then return 0
Parse σi as (b̂i, ci, di).
return

(
(b̂0 − b̂1)(d2 − d3)− (b̂2 − b̂3)(d0 − d1)

)/
(c0 − c1)(d0 − d1)(d2 − d3)

The Wrapper

Suppose that q := qH +qG and S := Zp. Y takes as input the master public key mpk and s1, . . . , sq,
and returns a triple (I, J, σ) where J and I are integers that refer to the target H and G query
respectively and σ is the side-output. In order to track the index of the current random oracle
query, Y maintains a counter `, initially set to 1. It also maintains a table LH (resp. LG) to
manage the random oracle H (resp. G). Y initiates the simulation of the protocol environment
by passing mpk as the challenge master public key to the adversary A. The queries by A are
handled as per the following specifications.

(a) H-oracle Query. LH contains tuples of the form 〈id, R, c, `, y〉. Here, (id, R) is the query to
the H-oracle with c being the corresponding output. The index of the oracle call is stored in
the `-field. Finally, the y-field stores either (a component of) the secret key for id, or a ‘⊥’
in case the field is invalid. A fresh H-oracle query is handled as follows: i) return c := s`
as the output; and ii) add 〈id, R, c, `,⊥〉 to LH and increment ` by one.

(b) G-oracle Query. LG contains tuples of the form 〈m,A, c, d, `〉. Here, (m,A, c) is the query to
the G-oracle with d being the corresponding output. The index of the oracle call is stored
in the `-field. A fresh G-oracle query is handled as follows: i) return d := s` as the output;
and ii) add 〈m,A, c, d, `〉 to LG and increment ` by one.

(c) Signature and Extract Queries. Since the master secret key α is unknown to Y , it has to
carefully program the H-oracle in order to generate the user secret key usk. The signature
queries, on the other hand, are answered by first generating the usk (as in the extract
query), followed by invoking S .

Extract query. Oε(id):
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(i) If there exists a tuple 〈idi, Ri, ci, `i, yi〉 in LH such that (idi = id) ∧ (yi 6= ⊥), Y
returns usk := (yi, Ri) as the secret key.

(ii) Otherwise, Y chooses y U←− Zp, sets c := s` and R := (gα)−cgy. It then adds
〈id, R, c, `, y〉21 to LH and increments ` by one (an implicit H-oracle call). Finally,
it returns usk := (y,R) as the secret key.

Signature query. Os(id,m):

(i) If there exists a tuple 〈idi, Ri, ci, `i, yi〉 in LH such that (idi = id) ∧ (yi 6= ⊥),
then usk = (yi, Ri). Y now uses the knowledge of usk to run S and returns the
signature.

(ii) Otherwise, Y generates the usk as in step (ii) of Extract query and runs S to
return the signature.

The Output. At the end of the simulation, a successful adversary outputs a valid forgery σ̂ :=
(b̂, R̂, Â) on a (îd, m̂). Let 〈idj , Rj , cj , `j , yj〉 be the tuple in LH that corresponds to the target H-
query. Similarly, let 〈mi, Ai, ci, di, `i〉 be the tuple in LG that corresponds to the target G-query.
Y returns (li, `j , (b̂, cj , di)) as its own output. Note that the side-output σ consists of (b̂, cj , di).

E.1.1 Analysis.

Since there is no abort involved in the simulation of the protocol, we may conclude that the
accepting probability of Y is the same as the advantage of the adversary, i.e. acc = ε. The
probability of success of the reduction R′3 is computed by using Lemma 2 with q := qH + qG,
|S| := p and n = 3. Hence, we have ε3 = O

(
ε4/(qH + qG)3

)
.

21In the unlikely event of there already existing a tuple 〈idi, Ri, ci, `i,⊥〉 in LH with (idi = id)∧ (Ri = R)∧ (ci =
c), Y will simply increment ` and repeat step (ii).

40


	Introduction
	Our Contribution

	Multiple-Forking: A Closer Look
	Tightness: An Intuitive Picture
	Road-map to a Better Analysis
	A General Multiple-Forking Algorithm

	Harnessing (In)Dependence
	Multiple-Forking with Index (In)Dependence

	Revisiting the Security Argument of Existing Protocols
	Random-Oracle Dependence
	The Boldyreva-Palacio-Warinschi Proxy Signature Scheme
	Improved Security Argument

	The Galindo-Garcia Identity-Based Signature
	Modified Galindo-Garcia IBS

	The Chow-Ma-Weng ZKP for Simultaneous Discrete Logarithms
	A Case for (In)Dependence
	Improved Argument


	Conclusion
	General Forking
	(Original) Multiple-Forking Algorithm
	Harnessing (In)Dependence
	Detailed Steps for Lemma 2
	Multiple-Forking with Index Independence
	Multiple-Forking with Index Dependence

	Constructions
	The Boldyreva-Palacio-Warinschi Proxy Signature Scheme
	The (Original) Galindo Garcia IBS
	The Modified Galindo Garcia IBS
	Chow-Ma-Weng Zero-Knowledge Argument

	Security Argument for Modified Galindo-Garcia IBS
	Reduction [3][']R
	Analysis.



