
Privacy-Preserving Multi-Party Reconciliation
Secure in the Malicious Model (Extended version)

Georg Neugebauer1, Lucas Brutschy1, Ulrike Meyer1, and Susanne Wetzel2

1 Department of Computer Science, RWTH Aachen University
2 Department of Computer Science, Stevens Institute of Technology

Abstract. The problem of fair and privacy-preserving ordered set recon-
ciliation arises in a variety of applications like auctions, e-voting, and ap-
pointment reconciliation. While several multi-party protocols have been
proposed that solve this problem in the semi-honest model, there are no
multi-party protocols that are secure in the malicious model so far. In this
paper, we close this gap. Our newly proposed protocols are shown to be
secure in the malicious model based on a variety of novel non-interactive
zero-knowledge-proofs. We describe the implementation of our protocols
and evaluate their performance in comparison to protocols solving the
problem in the semi-honest case.

Keywords privacy-enhancing technologies, secure multi-party compu-
tation, cryptographic protocols, zero-knowledge proofs, malicious model

1 Introduction

In many applications, multiple parties need to jointly compute a function of
their individual inputs, while keeping the inputs to the function private from
each other. Secure multi-party computation solves this problem without the use
of a trusted third party (TTP). Seminal work in this area [2,34] shows that any
functionality that can be modeled as a Boolean or arithmetic circuit can be
computed in private. As these early generic solutions exhibit a high complexity
for the computation of some functionality, a second line of research focuses on
developing protocols that can compute only speci�c functionality but in a very
e�cient way. Today, both approaches coexist and results arguing in favor devel-
oping special purpose protocols [9,13] as well as such arguing in favor of generic
approaches have been published recently [12,20].

One such speci�c functionality is the reconciliation of ordered sets �rst in-
troduced in [26,27] for the two-party case and generalized to multiple parties in
[29,30]. As shown in [25], reconciliation of appointments, some types of electronic
auctions, and certain e-voting schemes can be reduced to solving this problem.
For example, when reconciling an appointment between multiple parties, each
party can be considered to have a private input set of possible dates and order
these dates according to its individual preferences. A privacy-preserving recon-
ciliation protocol uses these ordered input sets to determine a date which is a fair

choice given the preferences expressed by each party, without revealing anything
else about the ordered inputs to the other parties or even to a TTP.

The protocols proposed in [26,27,29,30] are shown to be secure only in the
semi-honest model, that is, under the assumption that all parties follow the
prescribed actions of the protocol while trying to extract as much information
as possible from their view of the protocol run. In [24] the problem of malicious
attackers, i.e. attackers that may deviate from the protocol, is solved for the
two-party case. To the best of our knowledge, however, there are currently no
multi-party ordered set reconciliation protocols which are secure in the malicious
model. This is mainly due to the fact that a straightforward generalization of
the two-party protocols is already highly ine�cient for the semi-honest case [30].
The semi-honest multi-party protocols introduced in [30] therefore substantially
di�er in their design from the two-party protocols suggested in [26].

In this paper we propose multi-party protocols solving the reconciliation on
ordered sets problem that are provably secure in the malicious model. Our con-
structions are based on the semantically secure, additively homomorphic Pail-
lier cryptosystem [33] and a series of non-interactive zero-knowledge proofs to
provide veri�able set operations. Here, we propose a new homomorphic linear
equations proof which enables more e�cient veri�able set operations than the
ones previously proposed in [22]. In addition, we describe our implementation of
the newly proposed protocols and evaluate their performance in comparison to
the most e�cient currently known semi-honest protocols proposed in [29].

2 Preliminaries

Adversary Models. In secure multi-party computation two adversary models
are commonly used: the semi-honest and the malicious model. Both models as-
sume the existence of pairwise encrypted and authenticated channels between
the participating parties, such that external attackers do not have to be consid-
ered. A semi-honest adversary is an insider attacker that tries to infer as much
(secret) information as possible from its view of a protocol run, but strictly
follows the prescribed actions of the protocol.

A malicious adversary is an insider attacker that can almost arbitrarily devi-
ate from the protocol. The only actions it cannot take, are the ones that cannot
be prevented, namely: refusal to participate in the protocol, manipulation of own
input, and protocol abortion. To prove that a protocol is privacy-preserving in
the malicious model the simulation paradigm is used, which compares the real-
world execution of the protocol to an ideal-world execution. In the ideal world,
all parties provide their inputs to a trusted third party, which computes the cor-
rect output and provides the results to each party. In the real world, in addition
to the protocol's correct output, the adversary learns all messages exchanged
between the parties and all randomness generated during the execution of the
protocol. One shows that it is possible to construct a simulator which, given the
ideal output, can generate a transcript that is identical to that of the real pro-
tocol execution. If such a transcript can be generated using only the knowledge

of the ideal execution, the protocol is privacy-preserving in the malicious model.
For a formal de�nition see [6,17].

De�nition 1 (Ordered sets and ranking functions [29]). Let D be a set
called the domain. (S,<) ∈ 2D × 2D×D is called ordered set if < is a strict
total order on S. As a shorthand, we write {x1 > ... > xk} for the ordered set
({x1..., xk} , {(xj , xi) |1 ≤ i < j ≤ k }). The ranking function rankS : S → N is
de�ned by rankS (xi) = k − i+ 1.

De�nition 2 (Composition schemes [29]). Let (S1, <1) , ..., (Sn, <n) be or-
dered sets. The ordered set

(
S1 ∩ ... ∩ Sn,≤{S1,..,Sn}

)
is the combined ordered set

of (S1, <1) , ..., (Sn, <n) w.r.t. f if ≤{S1,..,Sn} is the order induced by the function
f : (S1 ∩ ... ∩ Sn)→ R. The function f is called the composition scheme.

De�nition 3 (Privacy-preserving reconciliation on ordered sets [29]).
A multi-party reconciliation protocol on ordered sets for an order composition
scheme f (MPROSf) is a multi-party protocol between n parties P1, ..., Pn each
with an input (Si, <i) of size k drawn from the same domain D. Upon completion
of the protocol, each party learns (X, t) with:

X = arg max
x∈(S1∩...∩Sn)

f(x) t = max
x∈(S1∩...∩Sn)

f(x)

where arg maxx∈Df(x) = {x|∀y ∈ D : f(y) ≤ f(x)}

A reconciliation protocol on ordered sets is said to be privacy-preserving in the
semi-honest (the malicious) model i� no semi-honest (malicious) party learns
anything about the inputs and preferences of the other parties, except what can
be deduced from the output (X, t) of the protocol and his own private input set.

Note that the output of a reconciliation protocol includes both the set of com-
mon elements with maximum rank in the combined preference order and the
corresponding maximum order under the composition scheme f . In this paper,
we consider two composition schemes proposed in [26] that take the preferences
of each party equally into account.

De�nition 4 (MR). The minimum of ranks composition scheme (MR) is de-
�ned by the function f(x) = min {rankS1(x), ..., rankSn(x)} .

De�nition 5 (SR). The sum of ranks composition scheme (SR) is de�ned by
the function f(x) = rankS1(x) + ...+ rankSn(x).

The Paillier Cryptosystem. In this paper, we make use of the probabilistic
public-key cryptosystem proposed by Paillier [33]. The cryptosystem is addi-
tively homomorphic and semantically secure under computational assumptions.
Let Epk(·) be the encryption function with public key pk. In an additively ho-
momorphic cryptosystem, there is an operation +h such that Epk(a + b) =
Epk(a)+hEpk(b) and +h can be computed e�ciently given only Epk(a), Epk(b),

and pk. We denote the homomorphic summation by
∑̃
. Furthermore, there are

several threshold variants [11,15] of the Paillier cryptosystem which make it a
very popular choice in secure multi-party computation protocols. Formally, a
(t, n)-threshold cryptosystem is a cryptosystem with a public key pk and n pri-
vate key shares sk1, ..., skn. Using a private key share, a party can compute
a partial decryption of a ciphertext. To successfully recover the plaintext of a
given ciphertext, t of the n key shares are required to compute and combine t
decryption shares to obtain the plaintext.

Encryption. Epk (m)
def
= gmrN mod N2 for any plaintext m ∈ Z∗N , where r ∈

Z∗N is selected uniformly at random.
Homomorphic addition. For two ciphertexts α, β ∈ ZN2 , the homomorphic

operation +h is given by α+h β
def
= α · β mod N2, where α, β ∈ ZN2 .

Homomorphic scalar multiplication. For a ciphertext α ∈ ZN2 and a scalar

s ∈ Z∗N , the scalar multiplication is de�ned by s×h α
def
= αs mod N2.

Threshold decryption. To perform a threshold decryption, each party Pi com-
putes the partial decryption ci = c2∆ski mod N2 where ∆ = n! and ski
denotes the private key share of party Pi. Given t partial decryptions, one
can recover the plaintext by computing the Lagrange interpolation on the
exponents [15].

Rerandomization. To mask a given ciphertext α with a new random value, we
multiply it with an additional random factor. Formally, the rerandomization

operation [·]R is de�ned as [α]R
def
= α ·RN mod N2.

Privacy-Preserving Multiset Operations. Our protocols make use of the
privacy-preserving operations on multisets, i.e., sets in which elements may occur
more than once, introduced by Kissner et al. [22]. In these operations a private
input multiset Si = {si,1, ..., si,k} of party Pi is encoded by the polynomial

fi(x) =
∏k
j=1 (x− si,j). The coe�cients of this polynomial are encrypted with

an additively homomorphic cryptosystem. There exists a recent alternative line
of work for multiset operations based on secret sharing [4,10].

Union. For an encrypted polynomial φ and a plaintext polynomial g, represent-
ing the two sets F and G of arbitrary size, a polynomial representation of the
union F∪G can be computed by homomorphic polynomial multiplication: φ×hg.
The product contains all roots of f and g with the corresponding summed up
multiplicity. Furthermore, from the decryption of φ×h g one cannot learn more
information than from F ∪G, as proven in Theorem 1 of [22].

Intersection. For two encrypted polynomials φ, γ representing two sets F and G
of equal size, the intersection can be computed by the term φ ×h s +h γ ×h r.
Here, s and r are random polynomials of degree deg(φ). The roots of the result
polynomial are those common to φ and γ (with minimum multiplicity) and thus
represent the elements of F ∩ G. Again, from the decryption of the resulting
polynomial, one cannot learn more than from F ∩G (Theorem 3 in [22]).

Set Reduction. For an encrypted polynomial γ representing a multiset G one

can compute the element reduction Rdt (G) by the term
∑̃t

i=0γ
(i) ×h Fi ×h ri.

Here, each ri is chosen uniformly at random and independently from the set of
polynomials of degree deg(γ(i)) and each Fi is a �xed polynomial of degree i such
that, i.e., gcd (F0, ..., Ft) = 1. The result Rdt(G) contains all elements a ∈ G with
multiplicity max{b − t, 0}, if an element a has multiplicity b in G. Again, see
[22] for an in-depth discussion of correctness and security.

Privacy-Preserving Reconciliation. The multi-party protocols for privacy-
preserving reconciliation on ordered sets proposed in [29] are based on the
privacy-preserving set operations introduced above.

In particular, the protocol for the minimum of ranks composition scheme
works as follows. Let Si = {si,1 > ... > si,k} be the input set of party Pi. Then,
the protocol operates in rounds. In round 1 ≤ l ≤ k of the protocol, the parties
compute

⋂n
i=1{si,1, . . . , si,l}. If the resulting set is empty the parties continue

with round l + 1. If the resulting set is non-empty, the resulting set contains
the common elements of all parties with the maximum minimum of ranks value
k − l + 1. The protocol for the sum of ranks composition scheme computes

Rdt

(
renc (S1) ∪ ... ∪ renc (Sn)

)
∩
(
S1 ∩ ... ∩ Sn

)
.

Here, renc (Si) denotes an encoding of the multiset Si in which each element
occurs with the multitude indicated by its rank. I.e., the highest ranked element
sik occurs k times while the lowest ranked element s1 occurs only once. The
details of the protocols as well as the proof of correctness and security in the
semi-honest model can be found in [29]. We detail how our newly proposed
protocols di�er from these protocols in Section 4.

Zero-Knowledge Proofs of Knowledge. Suppose a prover P has knowledge
of an x such that (y, x) ∈ R for some relation R and a public value y. He wants to
convince a veri�er V of this knowledge without revealing anything but this fact.
A protocol that realizes this functionality is called a zero-knowledge proof of
knowledge (ZKPK) protocol. Any ZKPK protocol must satisfy three properties:
First, it must be correct, i.e., if the prover knows x, then the prover can convince
the veri�er that he knows x. Second, it must be sound, i.e., without knowledge
of x, a prover can not convince the veri�er. Third, it must satisfy the property of
zero-knowledgeness, i.e., the veri�er learns nothing but the fact that P knows an
x such that (y, x) ∈ R. For a more formal de�nition of these properties, see [17].

A well known form of ZKPK protocols are Σ-Protocols, which are interactive
two-party protocols in which the veri�er generates a random challenge. These
protocols can be generalized to multiple parties by executing them with each
veri�er separately, requiring the prover to react to the multiple challenges gen-
erated by the veri�ers, which is somewhat ine�cient. The so-called Fiat-Shamir
heuristic [14] solves this problem by replacing the challenge generated by the
veri�er by the result of a hash function. The resulting protocols are known as

non-interactive ZKPK protocols. The security of Fiat-Shamir-based proof pro-
tocols is given in the random oracle model [1].

Proof of Plaintext Knowledge. In a proof of plaintext knowledge for the Paillier
cryptosystem, a prover tries to prove to the veri�er that he knows m, r such
that y = gm · rN mod N2 for a known ciphertext y. Interactive variants of the
plaintext knowledge proof for the Paillier cryptosystem were proposed in [7,8].

Proof of Correct Multiplication. Suppose two parties know the three ciphertexts
α, β, γ. In the proof of correct multiplication, the prover shows that he knows
the plaintext m of γ and that m ∗h α = β. Interactive variants of the correct
multiplication proof for the Paillier cryptosystem were proposed in [7,8].

Proof of a Subset Relation Using Veri�able Shu�es. Consider a set of plaintext
values D. In our setting, the prover selects a subset S of k distinct elements
from D in an unknown order and sends encryptions in a veri�able manner to the
other parties. More formally, we need a veri�able shu�e protocol [18,19,28,32].
In our setting, we use a protocol proposed by Nguyen et al. [32], since it can be
applied directly in the Paillier cryptosystem, can be made non-interactive using
the Fiat-Shamir heuristic and runs in linear time in the size of domain D.

Veri�able Threshold Decryption. In order to prove that a party correctly com-
puted the partial decryption in a threshold decryption scheme for the Paillier
cryptosystem, we use an adaption of techniques by Fouque et al. [15].

3 Novel ZK-Proofs

We provide novel non-interactive ZK-Proofs that allow us to specify new proto-
cols for veri�able set union, intersection, and reduction operations. In particular,
we convert the interactive proof for plaintext knowledge and correct multiplica-
tion [7,8] into non-interactive ZKPK. We present a new ZKPK for homomorphic
linear equations and show how this can be used to construct ZKPK for veri�able
set operations. We show that these new ZKPKs are more e�cient than the ones
previously proposed in [22].

Proof of Plaintext Knowledge. Algorithm 4 in the Appendix shows how to
turn the interactive ZKPK proposed in [8] into a non-interactive proof using the
strong variant of the Fiat-Shamir heuristic. I. e., we hash the commitment t and
the statement y to be proven [3] and not only the commitment t. We also show
correctness, special soundness, and special honest-veri�er zero-knowledge for the
given proof in the Appendix.

Proof of Correct Multiplication. Algorithm 5 in the Appendix shows how
to turn the interactive ZKPK proposed in [8] into a non-interactive proof. Com-
mitment t2 and responses m′′ and r′′2 are constructed in the same way as in
Algorithm 4. The detailed proofs for correctness, special soundness, and special
honest-veri�er zero-knowledge are given in the Appendix.

Proof of a Homomorphic Linear Equation. Assume the following linear
equation, where α1, ..., αp, β are Paillier ciphertexts and m1...mp are Paillier
plaintexts m1 ∗h α1 +h ... +h mp ∗h αp = β. It is possible to construct a proof
for the correctness of a homomorphic linear equation, where the scalar factors
are only known to the veri�er in encrypted form. For an equation with p linear
factors we perform p plaintext knowledge proofs in parallel, together with an
additional constraint that the given equation holds, similar to the construction
proving correct multiplication.

Algorithm 1 lists the steps required to construct and verify the correspond-
ing proof. αi range over the ciphertext factors involved in the computation, β
is the result of the equation, mi are the secret scalar factors used in the multi-
plications, ri the secret randomization factors used for encrypting those to γi,
and pidPi is a random value assigned to each party. We use a single challenge,
but p + 1 commitments and 2p + 1 responses in our proof. The construction
and reconstruction of the commitments follow the same principle as given in the
plaintext knowledge and correct multiplication proof.

Correctness: We show that the commitments t′R, t
′
i, i ∈ {1, ..., p} match the

original commitments t′R, ti, and thus h(pidP , g, α1, ..., αp, β, t
′
R, t
′
1, ..., t

′
p) = c.

The plaintext knowledge commitments are constructed in the same way as in
Algorithm 4, and thus the correctness argument for those commitments also
holds in this protocol. In addition, the equation commitment t′R is equal to tR :

t′R = βc
[
α1 ∗h m′1 +h ...+h αp ∗h m′p

]
R′′

=

(
p∏
i=1

αmi
i ·R

N

)c
·
p∏
i=1

α
m′

i−cmi

i ·
(
R′ ·R−c

)N
=

(
p∏
i=1

α
m′

i
i

)
·R′N = tR

Thus, the reconstructed challenge is equal to the transmitted c, and the veri�-
cation succeeds.

Soundness: If we can extract the private values mi, ri, i ∈ {1, ..., p}, and R from
two protocol transcripts with the same commitment but di�erent challenges,
then it follows that mi, ri, and R must have been used to generate the two
responses, and thus, the prover must know mi, ri, and R, compare [7].

We can construct an extractor in the following way: Given two transcripts(
c1,m

′′
11, ...,m

′′
1p, r

′′
11, ..., r

′′
1p, R

′′
1

)
and

(
c2,m

′′
21, ...,m

′′
2p, r

′′
21, ..., r

′′
2p, R

′′
2

)
for the same

commitments, we can extract the private values as follows. Let σ, s be de�ned
by σ (c2 − c1) = 1 + sN . σ and s exist under the assumption that c2 − c1 is
coprime to N (which is true if c2 − c1 is less than p and q). Extract mi, ri by

Algorithm 1 Construction and veri�cation of a linear equation proof

Speci�cation:

ZKPK

{
m1, ...,mp

r1, ..., rp, R

∣∣∣∣ [α1 ∗h m1 +h ...+h αp ∗h mp]R = β
∧

∧p
i=1 γi = E(mi, ri)

}
Construction:

(1) Select random m′i, r
′
i ∈ Z∗N for i ∈ {1, .., p} and R′ ∈ Z∗N

(2) Compute equation commitment tR =
[
α1 ∗h m′1 +h ...+h αp ∗h m′p

]
R′

(3) Compute plaintext knowledge commitments ti = E(m′i, r
′
i)

(4) Get a challenge c = h(pidP , g, α1, ..., αp, γ1, ..., γp, β, tR, t1, ..., tp)
(5) For i ∈ {1, ..., p}, compute responses m′′i = m′i − cmi mod N

and r′′i = r′i · r−c
i mod N

(6) Compute R′′ = R′ ·R−c

(7) Send (c,m′′1 , ...,m
′′
p , r
′′
1 , ..., r

′′
p , R

′′)

Veri�cation:

(1) Reconstruct equation commitment
t′R = βc

[
α1 ∗h m′′1 +h ...+h αp ∗h m′′p

]
R′′

(2) For i ∈ {1, ..., p}, reconstruct plaintext commitments t′i = gm
′′
i r′′Ni γc

i

(3) Verify h(pidP , g, α1, ..., αp, β, t
′
R, t
′
1, ..., t

′
p) = c

computing mi = (m′′1i −m′′2i)σ and ri =
(
r′′1i
r′′2i

)σ
y−s mod N2. We can see that

mi, ri are extracted correctly by following the proof idea of [7,8]. Since both
transcripts are valid, and the commitments ti, tR, i ∈ {1, ..., p} in both cases
are the same, we also have equal reconstructed commitments t′i: g

m′′
1ir′′N1i y

c1 =

gm
′′
2ir′′N2i y

c2 (mod N2). By transformation and exponentiation by σ, we obtain

g(m
′′
1i−m

′′
2i)σ

(
r′′1i
r′′2i

)σN
= yσ(c2−c1) (mod N2).

The right side is by de�nition of σ simply y1+sN . Using the form of y we get

g(m
′′
1i−m

′′
2i)σ

((
r′′1i
r′′2i

)σ
· y−s

)N
= gmrN (mod N2).

Thus, we have mi = (m′′1i −m′′2i)σ and ri =
(
r′′1i
r′′2i

)σ
· y−s mod N2.

Similarly, we extract R from two responses R′′1 , R
′′
2 with the same randomness

and di�erent challenges c1, c2 by �nding σ, s such that σ (c2 − c1) = 1+ sN , and
computing

R =

(
R′′1
R′′2

)σ
· β−s mod N2

Protocol Challenges Commitments Responses

Several multiplication proofs
Kissner et al. [22] (k + 1)2 2k2 + 4k + 2 3k2 + 6k + 3

Several linear equation proofs
Our new approach 2k + 1 k2 + 4k + 1 2k2 + 6k + 3

Table 1. Number of challenges, commitments, and responses for a veri�able polynomial
multiplication where each input set consists of k elements

Honest-Veri�er Zero-Knowledge: Here, the transcript of this proof protocol
is simply the proof

(
c,m′′1 , ...,m

′′
p , r
′′
1 , ..., r

′′
p , R

′′). A simulator can generate an
accepting transcript in the following way. Again, select all values randomly
(c,m′′1 , ...,m

′′
p , r
′′
1 , ..., r

′′
p , R

′′), and compute the corresponding commitments t′i =

gm
′′
i r′′Ni γci and t′R = βc

[
α1 ∗h m′1 +h ...+h αp ∗h m′p

]
R′′ . Then, let the random

oracle return c for the input pidP , g, α1, ..., αp, γ1, ..., γp, β, tR, t1, ..., tp.

Complexity: The proof consists of a hash, p random Paillier plaintexts (with
random components) and an additional random value of size b. For p linear
factors, we need to perform p binary exponentiations with a Paillier modulus N
of size b, thus we have the computation complexities O

(
p · b3

)
.

Next, we show how to construct proofs for computations on polynomials.
Basically, the following proofs are based on parallel execution of several linear
homomorphic equation proofs, but using a common challenge for all protocols.
This is commonly referred to as And-Composition of proofs [5].

Proof of Correct Polynomial Operations. We start with the construction of
proofs for the correct multiplication of polynomials. For a polynomial f let E(f)
denote the coe�cient-wise encryption of f and let the corresponding Greek letter
φ denote the tuple of the encrypted coe�cients. Assume we want to prove that
ψ = f ∗h γ for some f and that φ = E(f). To construct a corresponding proof,
we consider the homomorphic polynomial multiplication using the standard long
multiplication of polynomials with homomorphic operations. In this expanded
form, we get a set of deg(ψ) + 1 = deg(f) + deg(γ) + 1 homomorphic linear
constraints. We can denote this proof in general as listed below.

ZKPK

{(
f0, ..., fdeg(f)

) ∣∣∣∣∣
∧deg(ψ)
i=0

(∑̃i

j=0γj ∗h fi−j
)
= ψi

∧
∧deg(φ)
i=0 φi = E (fi)

}
Here, a coe�cient fj of a polynomial f is considered to be zero if j > deg(f) or j <
0. This enables veri�able set union. The security and correctness of the proof
directly follows from the correctness and security of the used sub-protocols for
plaintext knowledge, correct multiplication and homomorphic linear equations.
This approach can be extended to arbitrary linear expressions of polynomials:

φ1 ∗h f1 +h ...+h φs ∗h fs = ψ

The construction is completely analogous to the construction above, only that
we have s as many multiplications in each linear homomorphic constraint.

Veri�able Set Operations. We can construct veri�able set intersection, union,
and reduction operations based on veri�able polynomial multiplication. Note
that the e�ciency of each of these operations depends on the e�ciency of the
veri�able polynomial multiplication. Table 1 compares our new veri�able poly-
nomial multiplication to the approach previously proposed by Kissner et al. [22].

This previous approach is based on proving the correctness of all involved
homomorphic multiplications. This requires the prover to sent all intermediate
results to the veri�er and provide one proof per homomorphic multiplication.
Our generalization of the multiplication proof to arbitrary linear expressions
enables more e�cient ZKPK on polynomials.

4 MPROS Secure in the Malicious Model

In this section, we propose two new protocols for MPROSMR and MPROSSR

and prove their security in the malicious model. Previous multi-party protocols
[29,30,31] only provide security in the semi-honest model.

4.1 A Malicious Model Protocol for MPROSMR

We �rst present a malicious model protocol forMPROSMR. We use the following
core techniques to inhibit malicious behavior: Encryptions of all chosen random
polynomials, the secret input sets, and all intermediate computation results are
broadcasted to all other parties together with zero-knowledge proofs proving the
correctness of the computations involving those secret values.

Protocol Description: The formal protocol description is shown in Algorithm 2.
Encrypted values are denoted by lower case Greek letters, e.g., δi,j denotes the
encrypted value of di,j . The protocol starts with the distribution of the input
sets. Each party computes a shu�e of the domain, such that the �rst k elements
represent its input set and proves the correctness of the shu�e. When all en-
crypted shu�es have been distributed, the parties verify the proofs of all other
parties. Whenever a proof veri�cation fails, the protocol is aborted.

In Step 2 and 3, all parties compute the set intersection of the polynomials
φi,k−t, verify the corresponding proofs ΠINTERSECT,i and decrypt the result π.
In Step 4, the result is tested for emptiness. Based on the outcome, one of two
actions is performed: If the result is non-empty, we have found the correct result
and terminate the protocol. If the result is empty, we repeat the set intersection
with a decreased threshold value t. For this purpose, each party adds the next
highest ranked element di,k−t to its current polynomial φi,k−t using a simple set
union operation, resulting in the polynomial φi,k−t+1 for the next round. After
the veri�cation of the set union operation, the protocol returns to Step 2.

Algorithm 2 Malicious model protocol for MPROSMR

Setting: Parties P1, ..., Pn with ordered input sets, chosen from common domain D,
Si = {di,1 > ... > di,k} , i ∈ {1, ..., n}. Each party Pi holds a key share for a
(n, n)-threshold decryption scheme.

1. Initial Polynomial

(a) Each party Pi (i = 1, ..., n)

i. Computes an encrypted shu�e (δi,1, ..., δi,k, ...) of the domain D
where the �rst k elements denote the input set elements.

ii. Broadcasts the shu�e and correctness proof ΠSHUFFLE,i (see Section 2)

(b) Each party Pi (i ∈ {1, ..., n}) for j ∈ {1, .., n}
i. If j 6= i, veri�es ΠSHUFFLE,j

ii. Chooses random polynomial ri,j,1 of degree 1
iii. Computes and commits to ρi,j,1 = E1 (ri,j,1)

2. Set Intersection (Initially t = k − 1. Let φi,1 =
(
E(1), δ−1

i,1

)
)

(a) Each party Pi (i = 1, ..., n).

i. Opens the commitment to ρi,j,k−t

ii. Computes and broadcasts γi =
[∑̃n

j=0 (φj,k−t ∗h ri,j,k−t)
]
r

iii. Broadcasts a proof ΠINTERSECT,i that γi is correctly computed

(b) Each party Pi (i = 1, ..., n)

i. For j ∈ {1, .., n} \ {i} veri�es ΠINTERSECT,j

ii. Calculates π =
∑n

i=1 γi

3. Decryption : All parties perform a malicious model threshold decryption of π and
obtain the result polynomial p.

4. Emptiness Test / Set Union

(a) Each party Pi (i = 1, ..., n)

i. Computes the set of elements of Si which are roots of p:
R = {d ∈ Si : (X − d)|p.}

ii. If R 6= ∅, terminates the protocol with result (R, t+ 1)
iii. If R = ∅ and t = 0, terminates the protocol with (∅, 0)
iv. Computes and broadcasts φi,k−t+1 = [φi,k−t ∗h (x− di,k−t)]r
v. Broadcasts a proof ΠUNION,i that φi,k−t+1 is correctly computed

(b) Each party Pi (i ∈ {1, ..., n}) for j ∈ {1, .., n}
i. If j 6= i, veri�es ΠUNION,j

ii. Chooses random polynomial ri,j,k−t+1 of degree k − t+ 1 and commit to
ρi,j,k−t+1 = E1 (ri,j,k−t+1)

(c) Proceed with Step 2 using t− 1

ΠSHUFFLE,i = ZKPK

{
d1, .., dk

∣∣∣∣∣{d1, .., dk} ⊆ D ∧
k∧

i=1

δi = E (di)

}

ΠINTERSECT,i = ZKPK

{
ri,1, ..., ri,n, R

∣∣∣∣∣ γi =
[∑̃n

j=0 (φj ∗h ri,j)
]
R

∧
∧n

l=0 ρi,j = E1(rij)

}

ΠUNION,i,t = ZKPK

{
di,k−t, φi,k−t, R

∣∣∣∣ φi,k−t+1 = [φi,k−t ∗h (x− di,k−t)]R
∧ δi,k−t = E (di,k−t)

}

Table 2. The proofs used in Algorithm 2

Correctness: We compute the function Rdt(S1 ∩ ... ∩ Sn) as the semi-honest
variants discussed in [29,30,31]. Assuming that the zero-knowledge proofs of
knowledge are di�cult to forge, each party is forced to perform the same com-
putations as in the semi-honest variant of the protocol. Therefore the correctness
results from [29] also apply to our malicious model variant.

Security in the Malicious Model

Setting: The ZK proof protocols are based on Σ-Protocols that have been con-
verted into non-interactive protocols using the Fiat-Shamir heuristic. Since the
veri�er does not interact in the proof generation, it is su�cient to show special
honest-veri�er zero-knowledge for these protocols, see [17] for more details. We
show the security of the protocol against at most n−1 attackers. This is achieved
with the help of a broadcast of the ZKPK proofs to all n− 1 other parties.

ZK-Proofs: Our protocol uses several types of proofs, all of which are listed
in Table 2. The proofs for proving the correct set intersection ΠINTERSECT,i

and the proof for correct set union ΠUNION,i,t directly follow from the proofs
outlined in Section 3. Note that each union proofΠUNION,i,t requires a successful
proof veri�cation ΠUNION,i,t+1 with the previously used threshold value t + 1.
Furthermore, we require each party to prove that its chosen subset is part of the
domain using a veri�able shu�e and compute a veri�able decryption as described
in Section 2.

Solving the 0-Polynomial Problem: Malicious attackers can manipulate the pro-
tocol by inserting 0-polynomials in the protocol, i.e., polynomials where all co-
e�cients are set to zero. Other parties can not detect these polynomials, as they
only receive encrypted versions and by the semantic security of the cryptosystem
it is infeasible to check if it encrypts a zero or not. We solve the problem in the
following manner: The �rst coe�cient of polynomials that are chosen by a party
is always assumed to be a known encryption of 1 (E1), compare Step 1.b.iii. and
4.b.ii. in Algorithm 2. Since all such computations are reblinded before they are
sent to the other parties, this does not reduce the security of the protocol.

Algorithm 3 Simulation Algorithm for MPROSMR

1. For each simulated honest party Pi ∈ Φ
(a) Generate an ordered set of random values Ri of size k
(b) Follow Step 1a) according to the protocol, using Ri as input

2. For each malicious party Pi ∈ Γ , extract from the received proof ΠSHUFFLE,i the
private ordered set Si

3. Send the extracted ordered sets {Si|Pi ∈ Γ} to TTP
Each honest party Pi ∈ Φ sends its set Si to TTP

4. TTP computes and sends the following results to SIM and the honest players

A = argmax
x∈(S1∩...∩Sn)

{
min

1≤i≤n
ranki(x)

}

m = max
x∈(S1∩...∩Sn)

{
min

1≤i≤n
ranki(x)

}
5. For t = k − 1, ...,m follow the protocol (Steps 1b - 4) for each simulated honest

party Pi ∈ Φ with input Ri and each malicious party Pi ∈ Γ with input Si

6. For t = m− 1 and each simulated honest party Pi ∈ Φ and every Pj ∈ (Φ ∪ Γ)
(a) Select random polynomial s of size (k − (m− 1)− |A|)
(b) Compute polynomial p =

∏
a∈A(x− a) · s

(c) Select the remaining polynomials ri,j (of the honest parties) such that∑n
i=1 fi,m−1

(∑n
j=1 ri,j,m−1

)
= p. See [22], Lemma 2 for a proof that these

ri,j exist. Commit to the random polynomials ri,j,m−1.

7. Follow and complete the protocol for each party

Simulation Proof

Theorem 4.11 Assuming that the additively homomorphic, threshold cryptosys-
tem E(·) is semantically secure and the speci�ed zero-knowledge proofs and proofs
of correct decryption cannot be forged, then in the MPROSMR protocol in Algo-
rithm 2, for any coalition Γ of at most n− 1 colluding players, there is a player
(or group of players) SIM operating in the ideal model, such that the views of the
players in the ideal model are computationally indistinguishable from the views
of the honest players and Γ in the real model.

We give the algorithm for a simulator SIM in the ideal world that represents
one or more honest participants and executes the above protocol with the set of
potentially malicious and colluding parties P1, ..., Pl. In addition, the simulator
performs the ideal world protocol with the trusted third party TTP. The sim-
ulator SIM acts as a translator between the real world protocol and the ideal
world protocol and acts as the honest parties Pl+1, ..., Pn in the protocol with
the malicious parties. The intuition of the simulation proof is as follows:

If we can generate all protocol messages from only the interaction with the
trusted third party, which, in the ideal world, does not leak any information

about the private inputs of parties Pl+1, ..., Pn, then the exchanged protocol
messages can not contain more information, than the information provided in
the ideal world, i. e., the output of an MPROS protocol, compare De�nition 3.
We give the simulator the power to extract values from zero-knowledge proofs
which is a common approach in malicious model security proofs [6,17].

The algorithm for the simulator is given in Algorithm 3. The simulator starts
by constructing random inputs to the real-world protocol, i.e., selecting a random
ordered set of size k and constructing and sending the corresponding encryptions
and proofs (Step 1). The random inputs are used in place of the real inputs of
the honest parties, which ensures that no information is leaked in the �rst step.

After receiving the encryptions and the proofs from the malicious parties,
the simulator then uses the extractors given in the soundness proofs of the zero-
knowledge proof protocols to extract the private sets from the provided proofs
(Step 2). This makes it possible to perform the ideal-world protocol with the
TTP and the honest parties (Steps 3 and 4). After receiving the result of the
protocol from the TTP, the simulator proceeds with the protocol execution in
the real model until threshold value t = m − 1 (Step 5). Then, it inserts a
polynomial representation of the result into the real-world protocol execution by
choosing the random polynomials ri,j,m−1 accordingly (Step 6).

Under the assumption of a semantically secure threshold cryptosystem, the
views of the players in the ideal model given by the simulator are computationally
indistinguishable from the views in the real model. The protocol output is given
by De�nition 3 and is the same for the ideal and the real model (Step 6). ut

Complexity Analysis. Let n denote the number of parties, k the number
of inputs, b the bit size of the modulus, and D the domain of inputs. For the
protocol, we have the computation complexity O

((
|D|+ k3 · n

)
· n · b3

)
for each

party. The computations in the malicious model protocol are O(n) more complex
compared to [29], because we have to verify n− 1 proofs in each step.

The shu�e proof veri�cation (which depends on the size of the domain D),
increases the complexity by a factor of O

(
|D| · n · b3

)
for n−1 such veri�cations.

The communication of the protocol is tightly coupled with the computation,
since each computation needs to be proven by a corresponding proof sent over
the network. The size of all messages exchanged over the network is therefore
bound by O

((
|D|+ k3 · n

)
· n · b

)
. Compared to the semi-honest variants [29],

the communication complexity is increased due to the additional transmission
of ZK-proofs.

4.2 A Malicious Model Protocol for MPROSSR

Similar to the minimum of ranks protocol, a malicious model protocol for or-
dered set reconciliation with the sum of ranks composition scheme can be con-
structed. The most important di�erence between the construction of the sum of
ranks protocol and the minimum of ranks protocol is that the former also uses
set reduction. To compute a set reduction, we need a sum of polynomial mul-
tiplications which can be proven secure using the usual zero-knowledge proof

Problem Model Comp./Comm. Complexity

MPROSMR
Semi-honest, standard model, [29]

O
(
k3 · n · b3

)
O
(
k2 · n · b

)
Malicious, random oracle model, Section 4

O
((
|D|+ k3 · n

)
· n · b3

)
O
((
|D|+ k3 · n

)
· n · b

)
MPROSSR

Semi-honest, standard model, [29]
O
(
k6 · n4 · b3

)
O
(
k3 · n3 · b

)
Malicious, random oracle model, Section 4

O
((
|D|+ k5 · n4

)
· k · n · b3

)
O
((
|D|+ k5 · n4

)
· k · n · b

)
Table 3. Overview of MPROS protocols proposed in this paper or previous work

construction described in Section 3. Otherwise, the protocol is similar to the
semi-honest constructions of Neugebauer et al. [29,30,31].

Using the techniques from this paper, a protocol for the sum of ranks com-
position scheme with computation complexity O

((
|D|+ n4 · k5

)
· n · k · b3

)
and

O
((
|D|+ n4 · k5

)
· n · k · b

)
communication complexity can be constructed. We

omit the formal protocol description due to space restrictions. However, we im-
plemented and evaluated both malicious model variants, i. e., MPROSMR and
MPROSSR. Table 3 summarizes the results in theory. All four protocols are
polynomial-time bounded with respect to the number of parties n and inputs k.

5 Implementation & Evaluation

We implemented and evaluated our newly proposed protocols as well as the
two protocols proposed in [29]. In the following we describe our implementation,
provide a description of our test setup, and then present a selection of test results.

Implementation. Our core implementation is written in Java version 1.7.0.
We used the GNU Multiple Precision Arithmetic Library (GMP) version 5.0.5
[16] to e�ciently compute expensive arithmetic operations such as modular ex-
ponentiation. Therefore, we wrote a native C++ library and used it with the
Java Native Interface (JNI) [21].

We implemented the Paillier cryptosystem as the additively homomorphic
cryptosystem used for secure computation. Secure channels are established via
SSL, threshold key shares are predistributed, and communication is asynchronous.
We implemented our ZK-framework for the Paillier cryptosystem, both MPROS
protocols presented in [29] as well as our malicious model variants of MPROSMR

and MPROSSR, see Section 4. We evaluate the performance of all four MPROS
protocols denoted as MR, MR-zk, SR, and SR-zk with respect to computation
and communication overhead. Therefore, we measure the runtime and count the
number of bytes transmitted for each party.

Whenever possible, we used parallelization by simultaneous computation in
threads � depending on the number of available CPU cores. Our protocols

n = 5, b=1024, |D| = 200

T
im

e
(s

ec
)

Number of inputs

D
at

a
(M

B
)

n = 5, b=1024, |D| = 200 k = 5, b=1024, |D| = 200

T
im

e
(s

ec
)

Number of parties

D
at

a
(M

B
)

k = 5, b=1024, |D| = 200

Fig. 1. Comparison of MR-zk and MR for n = 5 and k = 5

require each party to verify n−1 proofs in each step of the protocol. Each of the
n− 1 proofs is of the same size and requires the same amount of computation to
be veri�ed. This allows linear speed-up of the computation by parallelized proof
veri�cation. Due to our choice to use non-interactive zero-knowledge proofs, we
can even precompute zero-knowledge proofs of upcoming protocol steps. These
optimizations signi�cantly improve the practical e�ciency.

Test Environment. We chose a desktop-based test environment. The setup
consists of 10 identical systems each with a 2.93 GHz i7 CPU 870 and 16 GB
RAM running a 64-bit Linux with kernel version 3.2.0. All systems are connected
via secure channels using TLS. Keys are distributed at start-up. The adjustable
parameters for each run are the number of parties n, the number of inputs k, the
size of the input domain |D|, and the keysize in number of bits b. We tested all
four implemented MPROS protocols with up to 10 parties and varied the number
of inputs. We tested for a keysize of 1024 and 2048 bit. The inputs of each party
were randomly generated with one common input among all parties. In order to
enforce the worst case behavior, the common input was �xed as the input with
the least preference for each party. The overall runtime and the number of bytes
transmitted are averaged over three independent MPROS protocol runs.

Test Results. In Figure 1 and Figure 2, we present our results for a reasonable
keysize of b = 1024 bit varying the number of parties or the number of inputs for
n = 5 and k = 5. The impact of the keysize is roughly quadratic in the number
of bits O(b2) and the impact of the domain is linear in the size of the domain
O(|D|). As expected from theory, the runtime for the malicious model variants
MR-zk, and SR-zk is higher than for the semi-honest variants MR, and SR. For
an input domain D of 200 elements and up to 20 inputs k, we have a runtime of
up to 4 minutes for MR-zk and up to 12 seconds for MR. Also, the amount of
data transmitted is higher for the malicious model variants with, e. g., 2.5MB for
MR-zk compared to 0.5MB for MR in case of 20 inputs. Both protocols MR and
MR-zk show linear behavior with respect to the number of parties n due to the
parallelized proof veri�cation. Figure 2 shows the results for the sum of ranks
composition scheme. We see that we obtain similar results as for the minimum

n = 5, b=1024, |D| = 200

T
im

e
(m

in
)

Number of inputs

D
at

a
(M

B
)

n = 5, b=1024, |D| = 200 k = 5, b=1024, |D| = 200

T
im

e
(m

in
)

Number of parties

D
at

a
(M

B
)

k = 5, b=1024, |D| = 200

Fig. 2. Comparison for SR-zk and SR for n = 5 and k = 5

of ranks composition scheme. However, the runtime and data transmitted is
in general higher. E. g., the computation time for SR-zk is in the range of 150
minutes for ten inputs with �ve parties compared to 25 minutes for SR. As a
conclusion, the notion of a stronger security model comes at the price of slower
protocols and the need to transmit more data. The protocol MR-zk (SR-zk) is
roughly twenty (ten) times slower than MR (SR) and the transmitted data is
ten (two) times higher than in case of MR (SR).

6 Conclusion

We designed and implemented the �rst multi-party protocols for ordered set rec-
onciliation which are provably secure in the malicious model. Our security proofs
are based on a novel framework for secure computation on Paillier-encrypted
polynomials which is resistant against malicious attackers. Our theoretical anal-
ysis of the asymptotic complexity of our new protocols is con�rmed by the practi-
cal evaluation of our implementation. As part of future work, we will investigate
if we can further increase the performance of our protocols by using the recently
developed set operations techniques [4,10].

References

1. M. Bellare and P. Rogaway. Random oracles are practical. In Computer and
Communications Security - CCS 1993, pages 62�73. ACM, 1993.

2. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In ACM Symposium on The-
ory of Computing - STOC 1988, pages 1�10. ACM, 1988.

3. D. Bernhard, O. Pereira, and B. Warinschi. How not to prove yourself: Pitfalls of
the �at-shamir heuristic and applications to helios. In Advances in Cryptology �
ASIACRYPT 2012, LNCS, pages 626�643. Springer, 2012.

4. Marina Blanton and Everaldo Aguiar. Private and oblivious set and multiset
operations. In ASIACCS, pages 40�41, 2012.

5. J. Camenisch and M. Stadler. Proof systems for general statements about discrete
logarithms. Technical report, ETH Zürich, 1997.

6. R. Canetti. Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology, pages 143�202, September.

7. R. Cramer, I. Damgård, and J. B. Nielsen. Multiparty computation from threshold
homomorphic encryption. Cryptology ePrint Archive, 2000/055, 2000.

8. R. Cramer, I. Damgård, and J. B. Nielsen. Multiparty computation from threshold
homomorphic encryption. In EUROCRYPT 2001, pages 280�300. Springer, 2001.

9. Emiliano De Cristofaro and Gene Tsudik. On the performance of certain pri-
vate set intersection protocols (And some remarks on the recent paper by
Huang et al. in NDSS'12). Cryptology ePrint Archive, Report 2012/054, 2012.
http://eprint.iacr.org/.

10. Many D., Burkhart M., and Dimitropoulos X. Fast Private Set Operations with
SEPIA. Technical report, Communication Systems Group, ETH Zurich, 2012.

11. I. Damgård and M. J. Jurik. A generalisation, a simpli�cation and some applica-
tions of Paillier's probabilistic public-key system. In Public Key Cryptography -
PKC 2001, pages 119�136. Springer, 2001.

12. Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In CRYPTO, pages 643�
662, 2012.

13. Emiliano De Cristofaro and Gene Tsudik. Experimenting with fast private set in-
tersection. In Stefan Katzenbeisser, Edgar Weippl, L.Jean Camp, Melanie Volka-
mer, Mike Reiter, and Xinwen Zhang, editors, Trust and Trustworthy Computing,
volume 7344 of Lecture Notes in Computer Science, pages 55�73. Springer Berlin
Heidelberg, 2012.

14. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identi�cation
and signature problems. In CRYPTO'86, pages 186�194. Springer, 1986.

15. P. Fouque and D. Pointcheval. Threshold cryptosystems secure against chosen-
ciphertext attacks. In ASIACRYPT, pages 351�368. Springer, 2001.

16. GNU Multiple Precision Arithmetic Library, 2012. http://gmplib.org/.
17. O. Goldreich. Foundations of cryptography: Basic applications, volume 2. Cam-

bridge University Press, 2004.
18. J. Groth. A veri�able secret shu�e of homomorphic encryptions. Journal of

Cryptology, 23(4):546�579, 2002.
19. J. Groth and Y. Ishai. Sub-linear zero-knowledge argument for correctness of a

shu�e. In EUROCRYPT 2008, pages 379�396. Springer, 2008.
20. Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled

circuits better than custom protocols. In Network and Distributed System Security
Symposium, 2012.

21. JNI: Java Native Interface for integration of code written in other languages, 2012.
http://java.sun.com/docs/books/jni/.

22. L. Kissner and D. Song. Privacy-preserving set operations. In Advances in Cryp-
tology - CRYPTO 2005, LNCS, pages 241�257. Springer-Verlag, 2005.

23. J. Loftus, A. May, N. P. Smart, and F. Vercauteren. On cca-secure somewhat
homomorphic encryption. In Proceedings of the 18th international conference on
Selected Areas in Cryptography, SAC'11, pages 55�72, Berlin. Springer.

24. D. Mayer and S. Wetzel. Veri�able Private Equality Test: Enabling Unbiased 2-
party Reconciliation on Ordered Sets in the Malicious Model. In ASIACCS, 7th
Symposium on Information, Computer and Communications Security. ACM, 2012.

25. D. A. Mayer, G. Neugebauer, U. Meyer, and S. Wetzel. Enabling fair and privacy-
preserving applications using reconciliation protocols on ordered sets. In IEEE
Sarno� Symposium 2011, pages 1 � 6. IEEE, 2011.

26. U. Meyer and S. Wetzel. Distributed privacy-preserving policy reconciliation. In
ICC 2007, pages 1342�1349. IEEE, 2007.

27. U. Meyer, S. Wetzel, and S. Ioannidis. New advances on privacy-preserving policy
reconciliation. Cryptology ePrint Archive, 2010/064, 2010.

28. C. A. Ne�. A veri�able secret shu�e and its application to e-voting. In Computer
and Communications Security - CCS 2001, pages 116�125. ACM, 2001.

29. G. Neugebauer, L. Brutschy, U. Meyer, and S. Wetzel. Design and Implementation
of Privacy-Preserving Reconciliation Protocols. In The 6th International Workshop
on Privacy and Anonymity in the Information Society (PAIS), ACM, 2013. To
appear, preprint at http://itsec.rwth-aachen.de/publications/pais_preprint.pdf.

30. G. Neugebauer, U. Meyer, and S. Wetzel. Fair and Privacy-Preserving Multi-Party
Protocols for Reconciling Ordered Input Sets. In ISC 2010, LNCS, 2010.

31. G. Neugebauer, U. Meyer, and S. Wetzel. Fair and Privacy-Preserving Multi-Party
Protocols for Reconciling Ordered Input Sets (Extended Version). Cryptology
ePrint Archive, Report 2010/512, 2011.

32. L. Nguyen, R. Safavi-Naini, and K. Kurosawa. Veri�able shu�es: A formal model
and a paillier-based e�cient construction with provable security. In Applied Cryp-
tography and Network Security - ACNS 2004, pages 61�75. Springer, 2004.

33. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In EUROCRYPT 1999, pages 223�238. Springer, 1999.

34. A. C. Yao. Protocols for secure computations. In Symposium on Foundations of
Computer Science - SFCS 1982, pages 160�164. IEEE, 1982.

A Appendix

A.1 Proof of Plaintext Knowledge

Algorithm 4 illustrates the ZKPK. The proof generation consists of computing
the commitments, the challenge, and the responses, and the proof veri�cation
consists of reconstructing the commitment t from the received challenge and
the responses, and �nally verifying that the challenge was correctly generated
for this particular commitment. The protocols assume that each party Pi has
a random pidPi

assigned to it, that is used as a hash argument to prevent the
reuse of the proof by other parties.

Correctness: We can see that the reconstructed commitment t′ matches the
original commitment t, and therefore h(pidPi

, g, y, t′) = c:

t′ = gm
′′
r′′Nyc = gm

′′
·
(
r′ · r−c

)N · (gmrN)c
= gm

′′+cm · r′N · r−cN+cN = gm
′
r′N = t (mod N2)

Special Soundness: We show special soundness for the interactive proof, i. e., in
Step (3) of the protocol the challenge is computed by the veri�er as a randomly
chosen value c ∈ Z∗n. Special soundness for the non-interactive variant is achieved
by instantiation of the strong Fiat-Shamir heuristic similar to the constructions
in [23].

Given two transcripts (c1,m
′′
1 , r
′′
1) and (c2,m

′′
2 , r
′′
2) for the same commit-

ment, we can extract the values of m and r as follows. Let σ, s be de�ned by
σ (c2 − c1) = 1+ sN . σ and s exist under the assumption that c2− c1 is coprime

Algorithm 4 Construction and veri�cation of a plaintext knowledge proof

Speci�cation: ZKPK {(m, r)|y = E(m, r)}
Construction:

(1) Select random m′, r′ ∈ Z∗N
(2) Compute commitment t = gm

′
r′N mod N2

(3) Obtain a challenge c = h(pidPi
, g, y, t)

(4) Compute responses m′′ = m′ − cm mod N and r′′ = r′ · r−c mod N2

(5) Send (c,m′′, r′′)

Veri�cation:

(1) Compute t′ = gm
′′
r′′Nyc mod N2

(2) Verify h(pidPi
, g, y, t′)

?
= c

to N (which is true if c2 − c1 is less than p and q). Extract m, r by computing

m = (m′′1−m′′2)σ and r =
(
r′′1
r′′2

)σ
y−s mod N2. We can see thatm, r are extracted

correctly by following the proof idea of [7,8]. Since both transcripts are valid, and
the commitment t in both cases is the same, we also have equal reconstructed
commitments t′1, t

′
2: g

m′′
1 r′′N1 yc1 = gm

′′
2 r′′N2 yc2 (mod N2). By transformation and

exponentiation by σ, we obtain

g(m
′′
1−m

′′
2)σ

(
r′′1
r′′2

)σN
= yσ(c2−c1) (mod N2).

The right side is by de�nition of σ simply y1+sN . Using the form of y we get

g(m
′′
1−m

′′
2)σ

((
r′′1
r′′2

)σ
· y−s

)N
= gmrN (mod N2).

Thus, we have m = (m′′1 −m′′2)σ and r =
(
r′′1
r′′2

)σ
· y−s mod N2.

Special Honest-Veri�er Zero-Knowledge: The veri�er learns the following tran-
script (c,m′′, r′′). It is su�cient to show special honest-veri�er zero-knowledge
as the veri�er V can not manipulate the challenge c. A simulator can easily
generate such an accepting transcript in the following fashion:

1. Select random m′′ ∈ Z∗N , r′′ ∈ Z∗N2 , and random challenge c.

2. Compute t = gm
′′
r′′Nyc mod N2.

3. Make the random oracle output c for input pidP , g, y, t.

The transcript (c,m′′, r′′) is accepting and randomly distributed, and thus it
is computationally indistinguishable from the transcript of a real protocol run.
Note that the simulator can control the output of the hash function since we are
proving the properties in the random oracle model.

Algorithm 5 Construction and veri�cation of multiplication proof

Speci�cation: ZKPK{(m, r1, r2)|αmrN1 = β ∧ γ = E(m, r2)}
Construction:

(1) Select random m′, r′1, r
′
2 ∈ Z∗N2

Compute commitments t1 = αm′
r′N1 mod N2 and t2 = E(m′, r′2)

(2) Obtain a challenge c = h(pidPi
, g, α, β, γ, t1, t2)

(3) Compute responses m′′ = m′ − cm mod N ,
as well as r′′2 = r′2 · r−c

2 mod N and r′′1 = r′1 · r−c
1

(4) Send (c,m′′, r′′1 , r
′′
2)

Veri�cation:

(1) Compute t′1 = βcαm′′
r′′N1 mod N2 and t′2 = gm

′′
r′′N2 γc mod N2

(2) Verify h(pidPi
, g, α, β, γ, t′1, t

′
2) = c

A.2 Proof of Correct Multiplication

Algorithm 5 illustrates the ZKPK. The additional commitment t1 and response
r′′1 are used to prove knowledge of the randomization factor r1 which is used to
compute β = m · α.

Correctness: We have t2 = t′2, following the completeness argument for Algo-
rithm 4. For t1 and t

′
1, the same can be veri�ed by inspection:

t′1 = βcαm
′′
1 r′N1

=
(
αmrN1

)c
αm

′′ (
r′1 · r−c1

)N
= αm

′′+cmrcN−cN1 r′N1

= αm
′
r′N1

= t1 (mod N2)

Thus, the hash function returns the original challenge c and the veri�cation
succeeds.

Special Soundness: First, we extract m, r2 in the same way as in the plaintext
knowledge proof. Similarly, we can extract r1 from two responses r′′1,1, r

′′
1,2 with

the same commitment and di�erent challenges c1, c2 by �nding σ, s such that
σ (c2 − c1) = 1 + sN , and computing

r1 =

(
r′′1,1
r′′1,2

)σ
· β−s mod N2

with the same reasoning as given for the plaintext knowledge proof.

Special Honest-Veri�er Zero-Knowledge: The veri�er learns the following tran-
script (c,m′′, r′′1 , r

′′
2). A simulator can generate an accepting transcript in the

following way:

1. Select random m′′, r′′1 , r
′′
2 and challenge c

2. Compute t1 = βcαm
′′
r′′N1 mod N2 and t2 = gm

′′
r′′N2 γc mod N2

3. Make the random oracle output c for pidP , g, α, β, γ, t1, t2

Both transcripts are computationally indistinguishable (based on the semantic
security of the cryptosystem), therefore he does not learn anything secret.

