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ABSTRACT
We revisit the problem of privacy-preserving range search and sort
queries on encrypted data in the face of an untrusted data store.
Our new protocol RASP has several advantages over existing work.
First, RASP strengthens privacy by ensuring forward security: af-
ter a query for range [a,b], any new record added to the data store is
indistinguishable from random, even if the new record falls within
range [a,b]. We are able to accomplish this using only traditional
hash and block cipher operations, abstaining from expensive asym-
metric cryptography and bilinear pairings. Consequently, RASP is
highly practical, even for large database sizes. Additionally, we
require only cloud storage and not a computational cloud like re-
lated works, which can reduce monetary costs significantly. At the
heart of RASP, we develop a new update-oblivious bucket-based
data structure. We allow for data to be added to buckets without
leaking into which bucket it has been added. As long as a bucket is
not explicitly queried, the data store does not learn anything about
bucket contents. Furthermore, no information is leaked about data
additions following a query. Besides formally proving RASP’s pri-
vacy, we also present a practical evaluation of RASP on Amazon
Dynamo, demonstrating its efficiency and real world applicability.

1. INTRODUCTION
Outsourcing data to cloud stores has become a popular strategy

for businesses, as cloud properties like scalability and flexibility al-
low for significant costs savings. However, cloud infrastructures
cannot always be completely trusted, due to, for example, hacker
and insider attacks [16, 32]. While encryption of outsourced data
protects against many privacy threats in cloud scenarios, it renders
subsequent operations on data (i.e., data analysis) extremely dif-
ficult. Although fully homomorphic encryption (FHE) offers an
elegant solution to perform operations and data analysis on en-
crypted data, today’s techniques are still impractical and their use
can negate any cloud cost advantages.

In this paper, we address the problem of performing privacy-
preserving range search and sort queries on encrypted outsourced
data with a particular focus on practicality. We envision a sce-
nario where a set of users upload a large number of encrypted data
records to an untrusted cloud store. From time to time, a surveyor
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wants to perform data analysis operations. Specifically, the sur-
veyor queries for all the records in a certain range of values (“cate-
gories”). Alternatively, the surveyor may query for the topm sorted
records, i.e., the m smallest records following some order.

Although the individual data records are encrypted, an untrusted
cloud could still infer information about them by observing multi-
ple range and sort operations. For example, the cloud could learn
access patterns and correlate them. Consequently, also the analy-
sis operations (“queries”) need to be privacy protected. The crucial
challenge here is practicality, i.e., high efficiency in terms of band-
width and memory requirements as well as user/surveyor/cloud com-
putations.
Related Work: Besides FHE, another approach that could ap-
ply here is performing range or sort queries on top of an Oblivi-
ous RAM [15]. However, with n the total number of outsourced
records in the cloud, ORAM worst-case communication complex-
ity is poly-logarithmic in n [26, 31]. Thus, for large n (such as
n=230 records or more), this overhead becomes unacceptably ex-
pensive for sorting and range search. Along the same lines, search-
able encryption techniques [8, 9, 11, 13, 14, 20, 27, 30] would ei-
ther require computational and communication complexities linear
in n or non-trivial extensions to perform updates to stored data in
a privacy-preserving fashion. Other techniques such as Order Pre-
serving Encryption (OPE) [6] are highly efficient, but provide weak
privacy. Finally, recent work on range search [7, 22, 25, 33] offers
insufficient “selective” privacy and, being based on bilinear pair-
ings, becomes impractical for, e.g., embedded devices or smart-
phones and large n as targeted in this paper. None of the above
related works support multiple users. Note that we discuss related
work in detail at the end of the paper (Section 6).
Our contributions. We present RASP (“Range And Sort Pri-
vacy”), an original scheme for privacy-preserving range and sort
queries on encrypted data. At the core of RASP, we introduce a
new privacy-preserving bucket data structure LL similar to bucket
sort. Each individual bucket in LL can grow dynamically in size,
and we will use the buckets to represent the categories that (en-
crypted) records can belong to. As with standard bucket sort, we
assume that the number D of possible different buckets for records
remains small compared to n (D�n). The merit of LL is to be an
update-oblivious data type: it hides into which bucket a new record
is added. RASP uses LL for range search, where it hides bucket
contents until the surveyor explicitly queries for them. RASP also
naturally extends to support m-sort queries. While RASP targets
practicality and offers weaker privacy properties than, e.g., ORAM,
it provides stronger, forward-secure privacy compared to related
work on range search [7, 22, 25, 33]. Moreover, RASP only re-
lies on efficient computations such as hashing and symmetric en-
cryption, in contrast to expensive pairing-based related work. The



technical highlights of this paper are:

• LL, a dynamic data structure that provably hides any infor-
mation about a newly added data record until this data record
is explicitly read. (Section 4)

• RASP, a protocol employing LL for range search and sort
queries on encrypted data in the cloud with support for multi-
ple users. Compared to related work on range search, RASP
offers stronger, forward-secure privacy. We formally prove
that the cloud cannot learn any information about records
added until the surveyor queries them. Details about queries
are hidden, and only the overlap between queries is leaked.
RASP is efficient and scales well. The users’ and surveyor’s,
computational and communication complexities are constant
in the total number of records. In contrast to related work,
RASP seamlessly integrates into cheap storage-only, no com-
putation cloud services such as Amazon S3 or Dynamo and
allows for multiple different users that do not trust each other
(Section 5).

• An implementation and evaluation of LL and RASP in Ama-
zon’s DynamoDB cloud. The source code is available for
download [3].

2. SCENARIOS AND APPLICATIONS
General scenario: To motivate our work, we use an example sce-
nario throughout this paper. Assume a set of users U that continu-
ously upload data records to a cloud store. Each record comprises:
(1) a category I of some domain D with an order relation, e.g.,
D = {1, ... , D} ⊂ N and “≤", and (2) some payload data M .
For the sake of range search and sort queries in this paper, M is
not particularly interesting, and we focus only on indices I . After
some time, users have uploaded a total of n records to the cloud,
where n can become very large, while D is comparatively small,
e.g., n= 230 and D = 1024. Periodically, a surveyor queries the
uploaded records for those records whose indices match a certain
range in D. The set of records that match this range has size m.
Alternatively, the surveyor wants to retrieve the first m records ac-
cording to their sorted indices.
Possible Applications: One can imagine various real world appli-
cation scenarios that fall within the general setup above. For ex-
ample, imagine a set of banks (“users”) that upload financial trans-
actions, i.e., the amount of each transaction together with details
such as sender, receiver, and date. At times, to detect fraudulent
behavior and money laundering, the police queries for all transac-
tions within some suspicious range or the m highest transactions
of a certain time period. Alternatively, imagine a set of physicians
that upload patient records, comprising the patient’s personal infor-
mation and, say, the patient’s blood pressure. Once in a while, for
further analysis, a health insurance wants to retrieve details about
all patients with blood pressure in a critical range or the top m pa-
tients with high blood pressure. In both application scenarios, the
stored data is sensitive, and the underlying cloud store should not
learn details about either stored data or queries performed. This im-
plies encrypting uploaded data by the users and “oblivious queries”
by the surveyor.

As related work [7, 22, 25, 33], this paper focuses on “append-
only” storage scenarios, i.e., we do not address removal of records.
Such data access schemes with data being frequently uploaded and
queried rarely allows for especially cheap services. For example,
Amazon’s “Glacier” offers this model of access and is significantly
cheaper than regular S3 or Dynamo storage.

3. PROBLEM STATEMENT
Trust Model: We only assume that the surveyor is trusted by the
users. The cloud server is untrusted and assumed to be fully mali-
cious. The individual users do not communicate or share data with
each other, only with the surveyor. In this way, the problem can be
seen as a two-party protocol between each user and the surveyor.

3.1 Range and Sort Queries
We now formalize privacy-preserving range andm-sort schemes.

We start by introducing the functionality that each scheme should
support. The main idea is that users respectively encrypt and up-
load their records to the store, while the surveyor performs range
search and sort operations.

DEFINITION 1 (RANGE SEARCH AND m-SORT SCHEME Π).
Let I,0≤ I ≤D−1, denote a category within domain D and M
a plaintext (“payload”). A Range and m-Sort search scheme Π
comprises the following algorithms.

• KeyGen(s): This algorithm uses security parameter s to
generate secret key SK and the set of user keys {Seedi}1≤i≤|U|.

• Encrypt(I,M,Seedi): encrypts M at category I using user
key Seedi. The algorithm outputs ciphertext C.

• Decrypt(C,SK,i): This algorithm decrypts a ciphertext C,
such that Decrypt( Encrypt(I,M,Seedi),SK,i) =M , where
SK and Seedi were generated from KeyGen(s).

• PrepareRangeQuery(a,b,SK): uses secret key SK and a pair
a,b∈N with a≤b to generate a range query token T R.

• RangeQuery(T R,{C1, ... ,Cn}): using range search token
T R=PrepareRangeQuery(a,b,SK) and a set of ciphertexts
Ci, a response SR = {Ci|Ci = Encrypt(Ii,Mi,Seedj)∀j,
1≤j≤|U| and Ii∈ [a,b]} is computed.

• PrepareSortQuery(m,SK): with secret key SK and length
m,1≤m≤n, outputs a sort query token T S .

• SortQuery(T S ,{C1, ... ,Cn}): using sort query token T S
and ciphertexts Ci, outputs a sequence SS =< C′1,C

′
2, ... ,

C′m > with C′i ∈ {C1,...,Cn} as response. Here, ciphertext
C′i = Encrypt(Ii,Mi,Seedi) denotes the ciphertext on the
ith position according to the order of the underlying indices
I . More formally: (1) for C′1: there is no Cj,1≤j≤n such
that Ij < I1, (2) for any pair C′i,C

′
i+1: either Ii = Ii+1, or

Ii < Ii+1 and there are a total i ciphertexts Cj,1≤j≤i with
Ij<Ii+1, (3) for any pair C′i,C

′
j :C′i 6=C′j .

So, the surveyor executes KeyGen and receives SK and user
keys Seed. Each user i is sent distinct user key Seedi that they
can use to execute Encrypt for encryption and upload of data. The
surveyor can eventually perform range and sort queries. The idea
is that the surveyor only prepares the range and sort queries, while
the cloud performs the actual querying. In cloud settings, the main
computational burden lies in RangeQuery and SortQuery, while
PrepareRangeQuery and PrepareSortQuery are lightweight.

3.2 Privacy
Overview: We will now present RASP’s notion of privacy. In-
formally, our goal is to leak as little information as possible about
the outsourced data records and the queries to the cloud. While
the IND-CPA encryption of records already provides a viable first
step, the challenge is to restrict leakage of query access patterns.



For example, the cloud should not learn any additional informa-
tion about records that are not part of a query result – besides
that these records are obviously not in the queried range or among
the top m records. Typically, ORAM based solutions would of-
fer strong protection. However, focusing on efficiency, we dismiss
ORAM, because its poly-logarithmic worst-case communication
complexity [26, 31] quickly becomes expensive with large n such
as n = 230. Additionally, as ORAM does not allow multiple dis-
trustful users (even as few as two), a straightforward extension to
range search and sort is vulnerable to collusions.

RASP targets privacy that is slightly weaker than ORAM’s pri-
vacy, but still stronger than privacy provided by related work on
range search. We call this privacy forward-secure. Intuitively, the
cloud (now called adversary A) should not learn any details about
a new record R that is added to the store, i.e., A should not learn
anything about R’s category I (and payload M ). Only when the
surveyor executes a range search or sort query willA learn whether
R matches this query or not. Our goal is that any two records R,
R′ that do not match a query will remain computationally indis-
tinguishable for A. We formalize our privacy goal. Targeting a
standard simulation-based privacy definition, the idea is that, given
a well specified privacy-leakage, a polynomial-time simulator can
generate a transcript of RASP which is computationally indistin-
guishable from the output of the actual protocol. If this is true, then
A cannot learn any information beyond the defined leakage.
In summary, forward-secure privacy allows A to only learn: (1)
the operation pattern, i.e., which operation (range or sort) is per-
formed, (2) the data access pattern, i.e., which records are accessed
during an operation, and (3) the enumeration pattern, i.e., which
records are returned. As we will discuss later in Section 3.3 this
forward-secure privacy is actually stronger than the privacy offered
by related work on range search [7, 22, 25, 33].

We focus on key-value “(k, v)” based cloud stores/databases
such as Amazon Dynamo DB or S3 in this paper, so we assume
that each record is uniquely addressable by an address k in the
store. We refer to the keys in the key-value paradigm as addresses
to avoid the confusion with cryptographic keys.

3.2.1 Formal Definitions
Following Curtmola et al. [13], we formalize privacy by quanti-

fying the information leakage of a scheme Π.

DEFINITION 2 (OPERATION). For a range andm-sort scheme
Π, an operation op is defined as either (Encrypt,I,M,Seedi) or
(RangeQuery,a,b,SK) or (SortQuery,m,SK). For ease of expo-
sition, we introduce the following functions on operations:

• Type : op→{Encrypt,RangeQuery,SortQuery} which ex-
tracts the operation type from an operation.

• Execute : (op,K)→ (K= (k1,...,kt),C= (c1,...,ct)) which
executes op using key K and returns the result. Depending
on the operation, K is either Seedi or SK. The set K con-
tains the sequence of addresses accessed on the cloud, and
C contains the data, i.e., records at those addresses after the
operation.

• Categories : (c1,...,ct)→{I1,...,It}⊂Dt which extracts the
categories Ii out of a sequence of records ci.

Note that knowledge of SK and Seedi suffices to compute T R
and T S .

DEFINITION 3 (HISTORY). The q-query history H is the se-
quence of operations H= (o1,...,oq), where oi= (Encrypt,I,M),
oi=(RangeQuery,a,b) or oi=(SortQuery,m).

DEFINITION 4 (OPERATION PATTERN). An operation pattern
β(H) induced by a q-query history H is defined as the sequence
β(H)=(Type(o1),...,Type(oq)).

The operation pattern is a mild leakage, only telling the adver-
sary whether we are doing range search or sort queries – see our
detailed discussion below.

DEFINITION 5 (QUERY PATTERN). Let π be a random per-
mutation of integers {1, ... ,D}. The query pattern of a q-query
history is the q-length sequence σ(H) defined as follows: first,
consider the case that Type(oi) = RangeQuery or Type(oi) =
SortQuery. Let Execute(oi,K) = ((k1, ... , kt), (c1, ... , ct)) and
Categories(c1, ... , ct) = {I1, ... , It}. Then, σ(H)[i] is the set of
tuples ((π(I1),χ(I1)),...(π(It),χ(It))), where χ(I)=(e1,...,em)
returns the indices such that ∀j < i : oej = (Encrypt,Ij ,Mj). If
Type(oi)=Encrypt, then σ(H)[i] is ⊥.

That is, σ(H) reveals which previous Encrypt operations are being
queried as part of the current range search or sort query operation i
(as in related work) and the pattern of categories that are accessed
for that operation. For any two range queries, σ(H) will tell which
categories they have in common. Due to random permutation π
and the fact that σ(H)[i] is an unordered set, no information about
the ordering of the categories is leaked beyond what can be inferred
by the overlap. Note that this leakage is also relatively small: all
existing schemes other than Oblivious RAM leak the intersection
of the results of two queries. We are, in effect, trading forward se-
curity for leakage of the “width” of the query, i.e., the number of
categories that fall within the requested range. While coming with
many privacy disadvantages compared to RASP, this is the only
leakage that OPE avoids; see also our discussion in Section 3.3.

DEFINITION 6 (SORT LEAKAGE). The sort leakage from a
q-query history H is the q-length sequence γ(H) defined as fol-
lows: if oi is a sort query, i.e., Type(oi)=SortQuery with Execute(oi,
K) = ((k1,...,kt),(c1,...,ct)) and Categories(c1,...,ct) = {I1,...,
It}, then γ(H)[i] is the tuple (m,(π(I1),...,π(It))). If Type(oi)=
Encrypt or Type(oi)=RangeSearch, then γ(H)[i] is ⊥.

This means that the sort leaks the t categories which contain the
first m records, including their order, as well as m itself.

DEFINITION 7 (TRACE). The trace induced by a q-query his-
tory H is the tuple τ(H)=(σ(H),β(H),γ(H)).

DEFINITION 8 (FORWARD-SECURE PRIVACY). Let Π be a
Range Search and m−Sort Scheme implementing Execute for op-
erations Encrypt,RangeQuery,SortQuery and therewith generat-
ing trace τ . Let s ∈ N be the security parameter, A be an adver-
sary, and S be a simulator. Consider the following two experiments
RealΠA(s) and SimΠ

A(s):

RealΠA(s)

K=(SK,{Seedi}1≤i≤|U|)←KeyGen(1s)
for 1≤ i≤q

(stA,oi)←A(stA,(K1,C1),
...,(Ki−1,Ci−1),1s)

(Ki,Ci)←Execute(oi,K)
let K∗=(K1,...,Kq)
let C∗=(C1,...,Cq)
output v=(K∗,C∗) and stA



SimΠ
A,S(s)

for 1≤ i≤q
(stA,oi)←A(stA,(K1,C1),

...,(Ki−1,Ci−1),1s)
(Ki,Ci,stS)←S(stS ,τ(o1,...,oi),1

s)
let K∗=(K1,...,Kq)
let C∗=(C1,...,Cq)
output v=(K∗,C∗) and stA

Scheme Π is forward-secure privacy-preserving, iff for all PPT
adversaries A, there exists a PPT simulator S, such that for all
PPT distinguishers D,

|Pr[D(v,stA)=1:(v,stA)←RealΠA(s)]−

Pr[D(v,stA)=1:(v,stA)←SimΠ
A,S(s)]|≤negl(s).

3.2.2 Discussion
Our definition captures an adaptive adversary which generates

the history one operation at a time, seeing the results of the previous
operations. This allows for an adversary which changes his strategy
depending on what the simulator has output after i< q operations.
Consequently, the simulator calculates one step of the simulation at
a time based on a partial trace generated from an adaptive history.

Definition 8 is generic in that it allows us to bound the informa-
tion leaked by any protocol which uses a cloud store. If there exists
a simulator, given only the trace, which can produce a sequence
of “accesses” that is indistinguishable from a real execution of the
protocol, then no information other than the trace can be leaked.

Note that schemes secure under the above definitions leak only
the trace τ(H). Trivially, leaking patterns allows the adversary to
derive additional information, e.g., the complement of a query. This
leakage is problem inherent to all related work [7, 22, 25, 33]. We
refer to Islam et al. [19] for a detailed discussion on implications
of range search queries. Again, we stress that our goal is practi-
cality, and additionally protecting patterns would require expensive
ORAM-like mechanisms. From a privacy perspective, we place our
definition between weaker related work [7, 22, 25, 33] and stronger
ORAM [15]. Yet, as we will see later, RASP offers better efficiency
than both.

We consider fully malicious adversaries that only target privacy,
but not integrity. While important, attacks against the integrity of
range search or sort results are out of scope of this work. One
can envision extensions to RASP verifying returned data, e.g., us-
ing previously computed signatures, but these deserve their own
research.

3.3 Forward-Secure privacy vs. privacy of
related work

We stress that forward-secure privacy, Definition 8, is stronger
than privacy models of previous work on range search [7, 22, 25,
33]. These schemes offer only selective security. That is, a query
for a specific range [a,b] implies thatA from then on will be able to
automatically determine whether new records added in future will
also be within [a,b] or not – a major disadvantage. In contrast, our
privacy definition guarantees that even a record R ∈ [a,b] added
after the range query for [a, b] is indistinguishable from random
until [a,b] is queried again. Moreover, the work by Shi et al. [25]
is Match Revealing (selective-MR). This means that, if a record
matches, its category is leaked to A, too. In contrast, the work by
Boneh and Waters [7] and Lu [22] is Match Concealing (selective-
MC). Definition 8 never leaks the category to A, and therefore is
Match Concealing. Additionally, Lu [22] requires that the adver-
sary must not know the distribution of records’ categories. As the
ciphertexts are stored in aB-tree, visible to the store, knowledge of

the category distribution is enough to reveal all ciphertexts, cf. Lu
[22], §9. This is a rather significant drawback, as there are many
useful situations where the adversary may either partially or fully
know the plaintext distribution.

Besides the query width, Definition 8 offers improved privacy
over Order Preserving Encryption (IND-OPE). In IND-OPE,A im-
mediately learns the order of records. After a range query, A can
determine for any record added in the future whether it is in the
(encrypted) range or not. Also, A learns for any record whether
it is smaller or larger than a range’s (encrypted) endpoint. In con-
trast, Definition 8 only leaks membership to an encrypted range of
encrypted records for those records queried at the time of the query,
but not for updates (therefore called “update-oblivious”).

Targeting practicality, Definition 8 is weaker than the one of
ORAM. In contrast to ORAM, Definition 8 does not protect access
patterns. That is, A can observe that subsequent queries access
the same records. However, as noted before, in addition to its in-
efficiency ORAM is vulnerable to collusion attacks as it does not
support multiple users.

4. UPDATE-OBLIVIOUS LINKED LISTS
For its range and sort queries, RASP relies on a new kind of

data type that we call update-oblivious add-enumerate data type.
Its purpose is to allow a Writer to add values to buckets (the cat-
egories). Also, a Reader can enumerate all values of a bucket.
The sole privacy goal is to hide from an adversary storing all data
which bucket a new value is added to by the Writer at the least
until this specific bucket is enumerated by the Reader. We will
now start by describing the operations and privacy properties that
update-oblivious add-enumerate data types support. Then, we will
introduce an original data type LL, a sequence of linked lists that
supports update-oblivious operations, and we will prove its privacy
properties.

An add-enumerate data type comprises a sequence ofD buckets,
dynamic data structures indexed by I,1 ≤ I ≤D. This data type
supports adding values to the individual buckets and enumerating
individual buckets, i.e., enumerating all values that have been pre-
viously added to one of the buckets. Again, we assume a key-value
based underlying cloud store. Each “value” v added is uniquely
addressable by an address k in the store. More formally, an add-
enumerate data type supports two algorithms:

• Add(I,v) : On input bucket I,1≤ I ≤D, and value v ∈ {0,
1}∗, this algorithm adds v to I and outputs address k ∈ {0,
1}∗. We call the pair (k,v) valid.

• Enumerate(I) : This algorithm returns the set {(k,v)|v ∈
I∧(k,v) is valid}.

4.1 Update-Oblivious Privacy
Again, we use a simulation-based privacy definition for update-

oblivious data types. Similarly to Definition 8,A can learn (1) the
operation pattern (which operation is performed on the data type),
(2) the data access pattern (which data in the individual data struc-
tures is accessed during an operation), and (3) the enumeration pat-
tern (which values are returned as part of an Enumerate). However,
the enumeration pattern will not reveal the indices of values enu-
merated never before. Being clear from the context, we reuse the
notions of histories and operations defined previously in the con-
text of add-enumerate data types, with a new definition of Trace to
quantify information leakage.

DEFINITION 9 (OPERATION). An operation op is either (Add,
I,v) or (Enumerate,I,⊥).



DEFINITION 10 (ENUMERATION PATTERN). An enumeration
pattern induced by a q-query history H is the q×q binary matrix
σ(H), where for 1≤ i,j≤ q the entry in the ith row and jth column
is 1, iff i≤ j Type(oj) =Enumerate and Ii = Ij . Otherwise, this
entry is 0.

If Type(oi) =Add, then the ith row of this matrix contains ones
in the columns corresponding to an enumerate that happens after
this add. Therewith, the enumeration pattern reveals which cate-
gory an add corresponds to only after an enumerate occurs for that
same category. If the result of an add is never queried, i.e., no
enumerate occurs after for that category, then the entire row in the
matrix will contain only zeroes, and the category of the add is not
leaked.

DEFINITION 11 (ACCESS PATTERN). Let π be a random per-
mutation of the integers {1,...,D}. The access pattern of a q-query
history is q-length sequence γ(H), such that, if oi is an Enumerate
on category j, then γ(H)[i]=π(j). Otherwise, γ(H)[i]=0.

That is, access pattern γ will reveal when two enumerates are on the
same category. We stress that this is also revealed as part of the enu-
meration pattern, and so is not additional leakage, but we include
this separate notation for clarity and ease of exposition in our proof.

DEFINITION 12 (TRACE). The trace induced by a q-query his-
tory H is the tuple τ(H)=(σ(H),β(H),γ(H)).

DEFINITION 13 (ADAPTIVE UPDATE-OBLIVIOUS). We define
adaptive update-oblivious (“update-oblivious”) privacy using the
same generic simulation-based experiments as above (Definition 8),
but include the new Definition 12 of trace for this data structure.

4.2 The Data Type LL

We present a new add-enumerate data type LL which implements
the sequence of D buckets as linked lists on top of any key-value
based store.

Overview: The main rationale of LL is that Reader and Writer syn-
chronize their access to the same bucket/linked list I using an array
of flags. If the Writer wants to update linked list I by adding a
new value v, he verifies whether the Reader has enumerated I af-
ter the last add by checking the flag for this list. If the Reader has
enumerated I , then the Writer does not simply append v to I , but
creates a new chain for I , adds v to this chain, and updates the flag.
The Writer will continue adding values to this new chain, until the
Reader enumerates I again. Then, the Writer will create another
new chain etc. On the other hand, the Reader checks a flag to un-
derstand whether the Writer has created a new chain for I , thereby
knowing how many chains of I contain values. The security ratio-
nale for starting a new chain for I after an enumeration of I is that
A cannot determine category I for a newly added value by linking
to a previous enumerate of I .

Details: Reader and Writer share a secret key κ that, for simplicity,
has been exchanged in advance. LL comprises a total of D linked
lists which are indexed by I,1≤I≤D. In the underlying key-value
store, the head of linked list I , the start of the first chain of I , can
be accessed using address hκ(I,1), where h is a pseudo-random
function, and “,” is an unambiguous pairing of inputs.

Writer and reader synchronize using an encrypted array of flags
∆ = (δ1,...,δD), δi∈{0,1}. They can save and retrieve Encκ(∆),
where Enc denotes encryption, in the underlying key-value store
using address hκ(“delta”). Initially, all flags δi are set to 0.

For each linked list I , the Writer stores a local counter γWriter
i .

All counters are initialized to 1. The purpose of these counters is

Algorithm 1: LL-Add(I,v,κ)

Input : Pair (I,v), secret key
κ, local sequences of next list pointers Ψ=(ψ1,...,ψD) and
counters ΓWriter =(γWriter

1 ,...,γWriter
D ),security parameter s

Output: Address k, ciphertext e of new record
1 C :=Get(hκ(“delta”)); // C=Encκ(∆)
2 ∆=(δ1,...,δD) :=Decκ(C);
3 if δI =1 then
4 γWriter

I :=γWriter
I +1;

5 ψI :=hκ(I,γWriter
I );

6 δI :=0;
7 Put(hκ(“delta”),Encκ(∆)=Encκ(δ1,...,δD));
8 end
9 k :=ψI ;

10 ψI
$←{0,1}s;

11 new Record e;
12 e.value :=Encκ(v); e.ψ :=Encκ(ψI);
13 Put(k,e);
14 return (k,e);

Algorithm 2: LL-Enumerate(I,κ)

Input : Category
I , secret key κ, local counters ΓReader =(γReader

1 ,...,γReader
D )

Output: Set of ciphertexts S={ci|ci∈I}
1 S :=∅;
2 C :=Get(hκ(“delta”)); // C=Encκ(∆)
3 ∆=(δ1,...,δD) :=Decκ(C);
4 for i :=1 to γReader

I −1 do
5 start :=hκ(I,i);
6 S :=S∪LL−Retrieve(start,κ);

7 if δI =0 then
8 start :=hκ(I,γReader

I );
9 S :=S∪Retrieve(start,κ);

10 δI :=1;
11 Put(hκ(“delta”),Encκ(∆)=Encκ(δ1,...,δD));
12 γReader

I :=γReader
I +1;

13 return (S);

to keep track of the number of chains that have been created per
linked list. Each time the Writer starts a new chain for a linked
list I , he increases γWriter

I by one. Along the same lines, the Reader
also keeps a local sequence of counters γReader

i , initialized to 1. Each
time the Reader sees that the flag for a specific linked list I has been
changed, i.e., the Writer has created a new chain for I , the Reader
will increase γReader

I by one. Moreover, the Writer locally stores for
each linked list I a next pointer ψI . This next pointer represents
the address in the underlying key-value store for the next value v to
be added to linked list I . Initially, each ψI is set to hκ(I,1), i.e.,
the start of the first chain of list I .

Add: In case the Writer wants to add a new value v to linked list I ,
he executes Algorithm 1. First, he downloads and decrypts the δi.
Note that we use the standard key-value semantic Get and Put to
access data in the underlying store. If δI = 1, then the Reader has
accessed list I since the last add, and the Writer creates a new chain
for I . The Writer increases counter γWriter

I , sets next pointer ψI to
the start of the new chain hκ(I,γWriter

I ), resets flag δI , and uploads
a new encryption of all flags ∆. In any case, the Writer uploads
an encrypted version of v using the current address that ψI points
at. Together with the encryption of v, the Writer also uploads a
randomly chosen encrypted new next pointer ψI . For convenience,
we call the combination of an encrypted value v and encrypted next
pointer ψI a record.



Algorithm 3: LL-Retrieve(ψ,κ)

Input : Chain start pointer ψ, secret key κ
Output: Set of ciphertexts S

1 S :=∅;
2 Record e :=Get(ψ);
3 while e 6=⊥ do
4 S :=S∪e.value;
5 ψ :=Decκ(e.ψ);
6 e :=Get(ψ);

7 return S;

Enumerate: In case the Reader wants to retrieve all (encrypted)
values of linked list I , he executes Algorithm 2. First, the Reader
downloads and decrypts the δi. If δI = 1, then the Writer has not
updated I since the last enumerate. Consequently, the Reader will
retrieve all values of all the current (γReader

I − 1) chains of list I .
Otherwise, if δI = 0, then the Writer has started a new chain for
I since the last enumerate. So, the Reader will retrieve all records
of the previous (γReader

I − 1) chains of I , then retrieve all records
of chain γReader

I , set flag δI , encrypt and upload all flags ∆, and
finally increase counter γReader

I . Note that the Reader retrieves all
values of a chain by using Algorithm 3. There, D is the decryption
algorithm for encryptions Enc. Using ∆ for synchronization be-
tween Writer and Reader, the Writer will avoid putting a new value
into the underlying store using an address that the Reader has pre-
viously already queried for as part of an enumerate. In this case,
the Writer will start a new chain and notify the Reader that a new
chain is available.

4.3 Privacy Analysis
For our proof, we use the notion of IND$-CPA encryption from

Rogaway [24]. Informally, this definition means that an encryption
scheme (Enc,Dec) is indistinguishable from an oracle which pro-
duces random strings of the same length as a ciphertext. This can be
implemented, e.g., by a PRP (like AES) in CBC- or Counter-mode.

THEOREM 1. If h is a pseudo-random function, and Enc is an
IND$-CPA encryption, then LL is update-oblivious.

PROOF. We describe a PPT simulator LS such that for all PPT
adversaries A, the outputs of RealLLA (s) and SimLL

A,LS(s) are in-
distinguishable. Consider the simulator LS that, given a partial
trace of a history H , τ(o1,...,oi), outputs v= (Ki,Ci) as follows.
LS keeps as state, a vector B of length D which contains the most
recent contents of each bucket (from the simulator’s perspective).
B is initialized to all empty sequences, and LS will update B for
each Enumerate which reveals additional bucket records. Addi-
tionally, LS manages list k which holds the addresses of add oper-
ations and an associative array c which maps addresses to values. c
represents the simulator’s view of the store’s memory. If c is evalu-
ated on an address which is empty, it returns⊥. If i is the operation
LS is simulating and
1) β(o1, ..., oi)[i] = Add: LS sets k[i] and c[k[i]] to uniformly
random strings and outputs Ki={k[i]} and Ci={c[k[j]]}.
2) β(o1,...,oi)[i] =Enumerate: LS creates the sequence K′ such
that it contains, in order, every record k[x] where σ(H)[x,i] = 1.
LS then sets Bγ(H)[i] to Bγ(H)[i] concatenated with K′ and a uni-
formly random string. This can be viewed as the simulator return-
ing all the records from the previous enumerate on the same bucket,
plus any additional records that have been added to the bucket since
then and finally adding a random empty address on the end (repre-
senting the end of a list). LS then returns Ki = Bγ(H)[i] and Ci
equal to c evaluated on every address in Ki.

Since the outputs of h and Enc are indistinguishable from ran-
dom, simulator LS can put random strings in Ki and Ci during
adds. Because of the enumeration pattern leakage, LS can also
guarantee the correct pattern in Ki during enumerates by a simple
check of β(H). Future enumerates will also return, as a prefix, pre-
vious enumerates which guarantees consistency. LS simulates the
end of a linked list by appending a random address and a ⊥ value
to each enumerate.

One small detail remains: vector ∆. Since it is completely down-
loaded and reencrypted for each query, in effect it acts like a “triv-
ial” Oblivious RAM. This access is easily simulated by writing a
single random string for vector ∆, which will be indistinguishable
from the encrypted vector under IND$-CPA encryption.

Resiliency to Collusion Attacks: Since every user has their own
key, independent of the other users, it is simple to see that users
cannot collude with each other or with the cloud server to learn
anything beyond their own data.

Extensions to Mitigate Consistency Attacks: Contrary to previ-
ous work on range search [7, 22, 25, 33], we allow different entities
to access data: the Reader and the Writer. As the two entities syn-
chronize using ∆, a fully malicious adversary could mount attacks
by desynchronization, such as sending outdated versions of ∆.

So far, our definitions of update-oblivious and of data type LL
above have implicitly required read-after-write consistency. Yet,
although the Reader has read bucket I and set δI := 1, A could
send an old version of Enc(∆) with δI = 0 to the Writer during
Add. Consequently, the Writer would not create a new chain, but
add a new record at an address already read by the Reader – violat-
ing update-obliviousness.

Thus, we now show how we can easily extend our system to cope
even with adversariesA mounting consistency attacks. Inspired by
Li et al. [21], we augment ∆ by two additional global counters, one
for the Reader, one for the Writer. Both counters will be encrypted
as part of ∆. For each Enumerate, the Reader increases its counter.
For each Add, the Writer increases its counter. Both parties keep
local copies of counters, compare to ∆’s counters upon receipt,
and therewith verify the freshness of ∆. Even in the face of fully
malicious A mounting consistency attacks on the (augmented) ∆,
this approach achieves Fork Consistency, the strongest consistency
possible in the absence of a third trusted party [21]. In short, after
such an attack, Surveyor and User will be in different “worlds”: no
change performed to the data will ever be seen by the Surveyor.
The surveyor remains at the state of the old, not-updated data set,
however with full privacy guarantees. For more details on this tech-
nique, we refer to Li et al. [21]. Note that in scenarios similar to
related work with only one entity to read and write to the store, LL
would not synchronize ∆, making consistency attacks impossible.

Generalization: The update-oblivious property can be extended
to other data types. Let a monotonically-expanding data type S
be any data type supporting two general operations Add(S,E) and
Enumerate(S,param) such that i < j ⇒ Enumerate(Si, param)
⊆ Enumerate(Sj,param). We postulate that any monotonic data
type can be made update-oblivious. Hash Tables, Trees, Graphs are
examples of data types that can be restricted to be monotonically-
expanding, if deletions are not allowed. Such expanding types
make sense in applications where data is continuously added to an
application data store. For example, an update-oblivious Hash Ta-
ble that stores key-value pairs can be constructed using our bucket
data type LL. The user hashes the key into a bucket id I , then
invokes LL-Add(I,v,κ). Graphs (and trees) can be viewed as a
collection of edges. The Add adds edges to the collection, while



Algorithm 4: KeyGen(s) – generate keys for surveyor and
users

Input: Security parameter s
Output: Surveyor’s secret key SK, set of user keys {Seedi}1≤i≤|U|

1 SK $←{0,1}s;
2 for i :=1 to |U| do
3 Seedi :=hSK(i);

4 return SK,{Seedi}1≤i≤|U|;

Algorithm 5: Encrypt(I,M, Seedi) – user Ui encrypts and
uploads to cloud.

Input: Category I , data M , user Ui’s key Seedi
Output: Ciphertext C that is uploaded to cloud

1 κ :=Seedi;
2 (k,C) :=LL-Add(I,M,κ);
3 return C;

Enumerate lists edges (or properties of edges). Our bucket data
type LL can be used to implement the same update-obliviousness
for expanding graphs, trees, and other dynamic data types.

5. RASP
Overview: The main rationale behind RASP is to arrange up-

loaded data with category I using an update-oblivious add-enumer-
ate data type such as LL that offers buckets. In RASP, each indi-
vidual bucket represents a category I within domain D of uploaded
data M . With n�D, we achieve low query complexity similar to
bucket sort. Uploading new data into a bucket is realized by using
Add in LL. Similarly, range search queries and actual bucket sorts
can be realized using Enumerate. Our goal with this approach is to
reduce the complexity for range search and sort queries over related
work. RASP’s query complexity depends only on D and U which
we assume to be small, but the complexity is independent of n as in
related work. To support multiple users U , we use an LL data type
per user. Users share pairwise different keys with the surveyor.

5.1 RASP Details
We now present RASP’s details, following the notation intro-

duced in Section 3.1. The system is initialized with KeyGen, pro-
ducing key material for users and the surveyor. Each time, a userUi
wants to upload data to the cloud, he first uses Encrypt and uploads
the resulting ciphertext into the cloud’s key-value store. For a range
query, the surveyor executes algorithms PrepareRangeQuery and
RangeQuery intertwined. Similarly, for a sort query, he executes
algorithms PrepareSortQuery and SortQuery intertwined. In the
algorithms below, Enc and Dec are IND$-CPA encryption and de-
cryption (see Section 4.3) such as AES-CBC with random IVs, and
h is a pseudo-random function such as HMAC [4] using proper
input padding.

KeyGen(k) As shown in Algorithm 4, the system is initialized by
generating a secret key SK for the surveyor as well as individual
user keys Seedi. A key Seedi is then sent to user Ui, and the sur-
veyor receives SK. Note that knowledge of SK is sufficient for the
surveyor to compute users keys Seedi himself.

Encrypt(I,M,Seedi) Algorithm 5 is executed by userUi that wants
to add data M to bucket I in the key-value store. Ui simply runs
LL-Add to add data M to category/bucket I in LL. Note that LL-
Add uploads encrypted data to the key-value store.

Decrypt(C,SK, i) Algorithm 6 is run by the surveyor. The sur-
veyor computes Seedi using his secret key SK and decrypts the

Algorithm 6: Decrypt(C,SK,i) – surveyor decrypts ciphertext
Input: Ciphertext C, surveyor secret key SK, user ID i
Output: Data M

1 Seedi :=hSK(i);
2 M :=DecSeedi (C);
3 return M ;

Algorithm 7: PrepareRangeQuery(a, b, SK) and
RangeQuery(T R, {C1, ... , Cn}) – surveyor prepares and
executes range query from a to b with cloud
Input: Surveyor: Indices

a and b, surveyor’s secret key SK, Cloud: pairs (ki,Ci)
Output: Set of ciphertext SR={Ci}

1 SR :=∅;
2 for i :=1 to |U| do
3 for j :=a to b do
4 Seedi :=hSK(i);
5 SR :=SR∪LL-Enumerate(πSeedi (j),Seedi);

6 return SR;

Algorithm 8: PrepareSortQuery(m,SK) and SortQuery(T S ,
{C1,...,Cn})
Input: Surveyor: Position in sorted data

P , window length m, secret key SK, Cloud: pairs (ki,Ci)
Output: Set of ciphertext SS={Ci}

1 for i :=1 to |U| do
2 Seedi :=hSK(i);

3 SS :=∅; i :=1; pos :=1;
4 while m>0 and pos≤D do
5 S′ :=LL-Enumerate-UpTo(pos,Seedi,m);
6 m :=m−|S′|;
7 SS :=SS∪S′;
8 if i= |U| then
9 i :=1;

10 pos :=pos+1;

11 else
12 i := i+1;

13 return SS ;

ciphertext.

PrepareRangeQuery(a,b,SK) and RangeQuery(T R,{C1,...,Cn})
For ease of understanding, we present PrepareRangeQuery and
RangeQuery together in Algorithm 7. As you will see, token T R
of PrepareRangeQuery is the sequence of addresses ki required to
download ciphertexts Ci from the key-value store. The surveyor
iterates over all possible users to generate their keys Seedi and re-
trieve all data for buckets j ∈ [a, b]. The surveyor permutes his
access to buckets j by using permutations πSeedi which are random
permutations over integers {a, ... ,b}. To retrieve all data of user
Ui in bucket π(j)Seedi , the surveyor uses LL-Enumerate(πSeedi(j),
Seedi). The rationale behind using πSeedi to enumerate buckets is
not to always access, first, bucket a, then bucket a+1, then a+2
etc. until bucket b, but to access buckets in a random order. Note
that LL-Enumerate internally uses addresses to access data in the
key-value store, representing T R.

PrepareSortQuery(m, SK) and SortQuery(T S , {C1, ... , Cn})
Similar to range search, we consolidate PrepareSortQuery and
SortQuery together in Algorithm 8. Again, the surveyor starts by
computing all possible user keys Seedi. Now, the surveyor iterates



over all possible buckets and therein over all possible users, starting
with the lowest bucket. To retrieve data from individual buckets,
the surveyor uses Algorithm LL-Enumerate-UpTo(i, Seedj , m).
This is a slight variation of the standard LL-Enumerate(i,Seedj),
cf. Algorithm 2. We do not give details for LL-Enumerate-UpTo,
because the only difference is the additional parameter m. This pa-
rameter specifies that algorithm LL-Enumerate will stop retrieving
ciphertexts after finding m ciphertexts (if available) while iterating
over the chains of category i, regardless whether there might be
more ciphertexts in the chains. Following the definition of m-sort
in Section 3.1, the search token T S in RASP is the sequence of
addresses for the key-value store.

Note During range search and sort queries, when the surveyor
performs multiple Enumerate sequentially for the same user, it is
not necessary to download and upload ∆ multiple times, but only
once. The same ∆ can be used for all categories/buckets of a single
user, so this saves a factor ofD in computation and communication
complexity without affecting privacy. We apply this optimization
in our evaluation in Section 5.3.

5.2 Privacy Analysis

THEOREM 2. If LL is update-oblivious, then RASP is forward-
secure privacy-preserving.

PROOF. We describe a PPT simulator S such that for all PPT
adversaries A, the outputs of RealRASP

A (s) and SimRASP
A,S (s) are

indistinguishable. We construct a simulator S that uses data type
LL. Given a partial trace of a history H , τ(o1, ... ,oi), S outputs
v=(Ki,Ci) as follows:

Using the trace information, S will translate the encrypt, range
search, and sort operations in H into LL’s Add and Enumerate op-
erations which can be passed to LS. S keeps, as state, sequences
b, and g, and a matrix s, representing the operation pattern, ac-
cess pattern, and enumeration pattern respectively, which will be
created and passed to LS as its trace. Generally speaking, encrypt
operations will be translated into Adds in a one-to-one manner, and
both range searches and sort queries will be translated into one or
more Enumerate operations. Therefore, S will also have a counter
x which keeps track of what location in the simulated trace it is at
(initially set to 1). If oi is the operation S is simulating, and
1) β(H)[i] = Encrypt: S sets b[x] to Add, increments x, and re-
turns LS(b,s,g).
2) β(H)[i] = RangeSearch: Parse σ(H)[i] as {(b1,t1), ... , (bn,
tn)}, where bs are permuted bucket IDs and ts are indices of re-
lated Encrypt operations. σ(H)[i] is an unordered set, so S orders
it numerically by b` from lowest to highest. S sets Ki := ∅ and
Ci = ∅. ∀b`, S sets b[x] to Enumerate, sets g[x] to b`, ∀u ∈ t`
sets s[x,u] to 1, appends LS(b,s,g) to Ki and Ci, and increments
x. This creates a series of enumerate operations in the trace for LS
which is linked to all the correct add operations through σ(H). S
returns Ki and Ci.
3) β(H)[i] = SortQuery: Parse γ(H)[i] as (m, (b1, ... , bn)). S
proceeds as for RangeSearch, but instead of ordering the enumer-
ates by the random permutation π, it orders them according to the
leakage from γ(H) (i.e., in the order of the underlying categories).
S, according to the algorithms for range search and sorting, em-

ulates a number of add and enumerate queries which are to be done
by the update-oblivious linked list data structure. Since we can
translate every encrypt, range search or sort operation directly into
one or more add or enumerate operations, S returns exactly the out-
put of simulator LS. Therefore, if the linked list data structure is
secure and can be simulated by simulator LS, the output of S is
indistinguishable from the output of the real protocol.

Multi-user privacy: As mentioned in Section 3, one goal is to
obtain security against malicious user collusion, so colluding users
cannot obtain any information beyond the sum of what they could
obtain individually. This is relatively straightforward in RASP, be-
cause users do not share any information or relationship beyond
their common trust of the surveyor. Each user writes all of their data
to locations generated pseudorandomly with a seed known only to
them and to the surveyor. Therefore, if the address space is large
enough, there will be a negligible probability that malicious users
can guess any of the addresses used by other users, effectively seg-
menting each user into their own pseudorandom subset of the ad-
dress space that is unknown to other users.

5.3 Evaluation
We have implemented RASP in Java, and the source code is

available for download [3]. As RASP does not require any compu-
tation on the store, our implementation uses the standard Amazon
Dynamo DB cloud as the underlying key-value store. Dynamo DB
charges based on the required Get/Put operations per second which
is essentially an estimation of the load expected on the database.
For our tests, we configured a database supporting 3000 Get and
1000 Puts per second and read-after-write consistency. Such a
database would cost ≈$680 per month [2]. As encryption Enc, we
use 128 Bit AES in CBC-mode and HMAC with SHA-1 as hash
function h. As we are only interested in the additional overhead
of RASP compared to a non-privacy preserving protocol, we did
not encrypt and upload a real payload d (e.g., patient data) as part
of records, but only a random string of length 160 Bit. In the real
world, this could be an address for a larger file in the cloud. For
the user and surveyor part of RASP, we have used a laptop with
2.4 GHz i7 CPU and 8 GByte RAM.

As RASP’s query performance does not depend on n, we have
measured timings for Encrypt (Algorithm 5, including upload),
Range Queries, and Sort Queries on a Dynamo data store with a
fixed number of n= 225 records. We have set the number of users
|U| to 100 and varied D = {64,256,1024}, and m from .01% to
.4% of n for range queries. For m-sort, we varied m from 32 to
512. Data is distributed into buckets according to a Gaussian dis-
tribution to better represent a real world scenario. In practice, the
most interesting pieces of data are usually in the tail of the distri-
bution, and most data is distributed normally. However, this choice
does not significantly effect the running time of our scheme as it de-
pends only on m and D. The uneven values of m for range search
are the result of querying ranges separated by one bucket when
D = 64 (the smallest unit of change that would be evenly divisi-
ble for all values of D). Since the data is Gaussian, increasing the
range by one bucket increases m by an uneven amount. To model
interleaving client and surveyor operations (and force creating new
chains), we distributed queries exponentially with n

100
average ar-

rival rate. However, we measured timings only after adding all n
records, representing worst case queries. We have run each sample
point 20 times, and relative standard deviation was low at <5%.

Figure 1 sums up our evaluation and presents timings in ms per
record. All timings are dominated by network latency. In Dy-
namo, a single Get takes 31 ms, and a Put takes 39 ms. In con-
trast, (Java Bouncy Castle) AES encryption (≈14 µs) and HMAC
evaluation (≈ 6 µs) are comparably fast on our setup. In com-
parison, a typical Type-A 512 bit pairing [10] required by related
work [7, 22, 25, 33] is 3 orders of magnitude more expensive and
takes ≈ 8 ms, an exponentiation takes ≈ 11 ms. We stress that,
in contrast to other work [22], our evaluation does not rely on (ex-
pensive) cryptographic hardware acceleration running on the user,
surveyor, or cloud store. We established a baseline (≈0.21 ms) by
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Figure 1: RASP evaluation results

testing the amount of time it takes to retrieve a record from Dynamo
without any encryption or secure data structure. This was done
using Dynamo’s built-in range search capability and represents a
lower bound for any range search algorithm. A single Encrypt of a
single user in RASP takes ≈64 ms in our configurations.

Times for single Get, Put, and Encrypt are significantly higher
compared to Range and Sort queries for the surveyor per record,
although the same operations (encryption, hash, network access)
are required. This is due to the fact that during, e.g., a range
query, RASP allows the surveyor to enumerate multiple LL-buckets
in parallel with Dynamo. Dynamo allows to issue multiple Get-
requests from multiple threads in parallel, reducing the total re-
sponse time significantly. We estimate the single record upload
time in related work, e.g., Lu [22] to≈589ms for D=256 (2+6·
logD exponentiations + 1 Put) which is notably higher than RASP.

Timings for range queries, Fig. 1a, and sort queries, Fig. 1b, in-
crease slightly with D, as ∆ becomes larger and needs to be down-
loaded/uploaded and decrypted/encrypted by the surveyor. Simi-
larly, with increasing |U|, more ∆ need to be downloaded and pro-
cessed. Sort is more expensive than range search, because access to
buckets cannot be parallelized: to find the first m records, buckets
need to be accessed sequentially. However, sort has an additional
security property that is not present with range search. If the end of
a sort query lands in a bucket which contains entries for more than
one user, not all of the users’ data will be revealed (only enough
to satisfy the sort query). In exchange for this additional privacy,
sort queries are significantly more expensive. If this additional pri-
vacy is not needed, one can accomplish the same thing by issuing
sequential range queries for each bucket until enough results are re-
turned to satisfy the m-sort. This will achieve similar performance
per record to the much faster range sort.

To put RASP’s range search into perspective, we determined the
performance for Lu [22] by using JPBC [10] to find a cost for one
pairing on our hardware and then multiplying by the number of
pairings needed per query in their scheme. We then divided by the
number of records returned to get an amortized query computation
cost per record and finally added the baseline communication cost
as outlined above. Note that our comparison is for RASP with 100
users and related work with just a single user. When related work
is modified for multiple users, the straightforward way which al-
lows for the same cross-user privacy guarantees as RASP (making
a separate index for each user) imposes over a 20 times slowdown.
We compare against our scheme with 100 users to show that we can
scale to a multi-user setting with minimal performance degradation.

In comparison with Lu [22], range search with RASP is several
times faster when D or m are small, but also comes very close to
the optimal baseline when m is larger, see Fig. 1a. Additionally,

RASP is faster at adding records by an order of magnitude. As
the costs for exponentiation and pairing based related work is non-
negligible even on our powerful hardware, we conclude that its use
in scenarios with embedded devices, smartphones, and large n is
limited. On the server side, RASP does not require any compu-
tation to be performed at the store and so can be run on a cloud
storage service without any costly computational resources.

6. RELATED WORK AND SUMMARY
ORAM Privacy-preserving range search and sort queries could

be realized based on, for example, ORAM [15] protocols. The idea
would be to simply encrypt all records, store them in an ORAM
(e.g., in sorted order), and let the surveyor perform the range search
on the ORAM. This results in strong privacy, because plaintexts can
be encrypted using an IND-CPA cipher, and ORAM does not leak
any information about accesses and therewith queries. The draw-
back of ORAM is that its worst-case communication complexity
remains high for this application, despite recent results that reduce
it to poly(logn) [26, 31]. We do not include “ObliviStore” [28] in
our comparison, because, fundamentally, it is only an implementa-
tion of the

√
n complexity ORAM by Stefanov et al. [29]. While

also targeting practicality, it requires either trusted hardware on the
data store or a private cloud for the user and is therefore difficult to
compare to our setup. Currently, Wang et al. [34] are using ORAM
to develop general oblivious data structures. While they are able
to reduce complexity for, e.g., a search tree down to O(logn) with
O(logn) client memory, this is still more than RASP, cf. Table 1.
Similarly, Stefanov et al. [30] use Oblivious RAM techniques to
support forward-secure keyword search, but it also maintains com-
plexity which is polylogarithmic in the size of the database.
OPE Alternatively, using OPE [6, 23], ciphertexts retain the or-
der of their underlying plaintexts, making range search and sorting
straightforward. However, OPE gives weak privacy, as the relation-
ship between ciphertexts is immediately visible to the cloud.
Searchable Encryption Recently, searchable encryption has re-
ceived a lot of attention, e.g., [8, 11, 13, 14, 20, 27, 30] and deriva-
tives; see Bösch et al. [9] for an overview. Searchable encryption
can be extended in a straightforward way to perform range search.
For example, each data record could be encrypted with the cate-
gory it belongs to. Such constructions would have the (prohibitive)
drawback of being linear in n. Any more efficient approach, e.g.,
enumerating over categories as RASP, would need to solve the
(non-trivial) problem of being forward-secure. One might apply
RASP to allow for such privacy, resulting in a protocol comparable
to RASP. Similarly, it is non-trivial to extend searchable encryption
schemes to allow for sort in a privacy-preserving, yet practical way



and, consequently, deserves its own research.
In this context, we stress that the approach by Goh [14] using a

PRF is fundamentally different from the one by RASP: Goh [14]
uses a PRF to enumerate keywords in per-file Bloom filters for key-
word search. In contrast, we use PRFs to generate pointers to the
start of linked lists achieving update-obliviousness.
Range Search Some related work focuses especially on privacy-
preserving range search. For example, Hacigümüs et al. [17] and
Hore et al. [18] encrypt records and put ciphertexts in a set of per-
muted categories. While this hides into which category a record is
added, the cloud automatically learns the relationship between ci-
phertexts and can determine which ciphertexts are in the same cate-
gory. Other works [7, 22, 25, 33] overcome this drawback and hide
membership to a category until this particular category is queried
– still, the cloud will be able to determine for any ciphertext added
after the query whether it is belonging to the previously queried
category or not. While [7, 22, 33] are selective match concealing
(selective-MC), [25] is selective match revealing (selective-MR),
i.e., the cloud will learn the category of a record that matches a
range query. Moreover, these schemes make use of computation-
ally expensive bilinear pairings. Similarly, recent work by Wand
et al. [33] uses asymmetric cryptography to overcome a certain pri-
vacy leakage in multi-dimensional range search. However, based
on R-trees, its range search worst-case complexity is in O(n).

Generally, the notion of forward security for range search dif-
fers from forward-security for symmetric encryption techniques by
Bellare and Yee [5], i.e., perfect forward secrecy. Our notion of
forward security is similar to the one by Stefanov et al. [30] for
searchable encryption mechanisms.

Comparison.
As RASP offers not only range search, but also sort capabilities

together with stronger (forward-secure) privacy than related range
search schemes or OPE, it is difficult to compare its performance.
Still, to put things into perspective, we sum up RASP’s asymptotic
performance and contrast it to related work in tables 1 and 2.

We stress that related work has not been designed for use in
multi-user scenarios. While related work could be extended to
multiple users, e.g., using different keys for each user in OPE or
separate ORAMs for each user, this increases complexities signif-
icantly or would require a significant redesign. A straightforward
extension adds a factor of |U| in tables 1 and 2, which renders such
approaches overly costly.
Computation and Communication Tables 1 and 2 show the com-
putational complexities to add a new record to the store for the
user (for both range search and sort), for the surveyor to perform
the query, and for the cloud during a query. The computational
complexities comprise record encryption and decryption (for m
records) operations. The communication complexities denote the
communication between surveyor and cloud during a range or sort
query. Security factor s in the communication complexities indi-
cates that symmetric key ciphertexts are exchanged, and s′ indi-
cates asymmetric key ciphertexts. In each table, we compare to an
ideal solution, representing a lower bound for each complexity.

ORAM provides a regular RAM interface, so any operation can
be done by simply using the same “ideal” algorithm that would
be used on unencrypted data. The overall cost of this operation
will then be the same as the ideal, but with a poly-logarithmic
overhead specific to the ORAM implementation. For example, In
the case of an Insert, an ideal solution would be using an interval
tree [12]. OPE and an Ideal solution all require (a factor of) logD
communication complexity, because the m records in the D cate-

gories/buckets need to be addressed.
Note: It is important to point out that, while related work on

range search [7, 22, 25] or OPE [23] has better asymptotic com-
plexities than RASP (logD vs. D), RASP is linear in D only due
to synchronization array ∆. In practice, bit array ∆ is very small,
especially compared to a single patient record. For example, with
D= 8192 categories, |∆|= 1 KByte resulting in only 64 AES op-
erations. In all practical scenarios as targeted in this paper (n�D)
the linear number of AES operations will outperform logD expo-
nentiations and pairing operations.

Refering to our evaluation in Section 5.3, we indicate that RASP’s
constants are very low, using only symmetric cryptography, i.e.,
hash functions and block ciphers. Also, RASP does not require any
expensive O(n) computation on the cloud side that the surveyor
would have to pay for [1], but only a cheap key-value based storage
cloud such as Amazon Dynamo [2].

For m-sort, a scheme based on OPE [23] would just parse the
OPE tree and send the m records. Again, ORAM-based sorting
mechanisms with O(m) accesses to the ORAM (assuming records
are already sorted, e.g., in an interval tree) become quickly too ex-
pensive. In contrast to related work, RASP is close to an Ideal solu-
tion, besides the additional factor of |U|·D which is small in prac-
tice, cf. Section 5.3. Note that recent range search schemes [7, 22,
25, 33] do not support m-sort queries in a straightforward way, so
we cannot include them in Table 2. While extending range search
schemes to support sorting in an efficient, yet secure (e.g., forward-
secure) way might be possible, it is far from straightforward.
Privacy RASP’s forward-secure privacy notion is stronger than re-
lated work’s selective match concealing or selective match reveal-
ing [25] or IND-OCPA as discussed in Section 3.3. Yet, RASP
offers weaker privacy than ideal IND-CPA and indistinguishable
query patterns.
Storage Finally, we briefly summarize storage requirements. Being
tree based, OPE by Popa et al. [23] requires an additional O(logn)
storage overhead per ciphertext. Similarly, recent ORAMs are tree
based and, with n nodes in the tree, require an overhead factor of
either O(logn) [26] or O(s′) [31] per ciphertext. Here, s′ is an ad-
ditional security parameter. While the work by Stefanov et al. [31]
has superior computational worst-case complexity than Shi et al.
[26], O(log2 n) compared to O(log3 n), a drawback is its large
memory requirement of O(s′ · log2n · s). In contrast, RASP fea-
tures only O(s) ciphertext overhead and O(D · logn+ s) (for D
counters and SK) memory requirements.

7. CONCLUSION
RASP addresses privacy-preserving range search and sort on out-

sourced, encrypted data. RASP offers stronger privacy than related
work as well as support for multiple, non-trusted users. RASP
builds on top of LL, a new dynamic data structure (of independent
interest) for privacy-preserving add/enumerate operations. Both,
RASP and LL seamlessly integrate into cheap, real world storage-
only cloud services such as S3 or DynamoDB. Abstaining from
pairings and exponentiations, our protocols target practicality. Our
performance evaluations show that, even without hardware accel-
eration support, RASP offers substantially better performance than
recent logD range search techniques for realistic settings, in addi-
tion to requiring only storage capabilities and not cloud computa-
tion (a significant cost savings).
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