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Abstract. We propose a general framework to develop fully homomorphic encryption schemes (FHE) without
using Gentry’s technique. Initially, a private-key cryptosystem is built over Zn (n being an RSA modulus).
An encryption of x ∈ Zn is a randomly chosen vector e such that Φ(e) = x where Φ is a secret multivariate
polynomial. This private-key cryptosystem is not homomorphic in the sense that the vector sum is not a
homomorphic operator. Non-linear homomorphic operators are then developed. The security relies on the
difficulty of solving systems of nonlinear equations (which is a NP-complete problem). While the security
of our scheme has not been reduced to a provably hard instance of this problem, its security is globally
investigated.

1 Introduction

The theoretical problem of constructing a fully homomorphic encryption scheme (FHE) supporting arbi-
trary functions f , was only recently solved by the breakthrough work of Gentry [3]. More recently, further
fully homomorphic schemes were presented [7],[8],[1],[4] following Gentry’s framework. The underlying
tool behind all these schemes is the use of Euclidean lattices, which have previously proved powerful for
devising many cryptographic primitives. A central aspect of Gentry’s fully homomorphic scheme (and
the subsequent schemes) is the ciphertext refreshing Recrypt operation. Even if many improvements have
been made, this operation remains very costly [6], [5].

In [2], authors have presented a general framework to develop FHE without using the Gentry’s tech-
nique. They first proposed a very simple private-key cryptosystem where a ciphertext is a vector e whose
components are in Zn, n being an RSA modulus chosen at random. Given a secret multivariate polyno-
mial Φ, an encryption of x ∈ Zn is a vector e chosen at random such that Φ(e) = x. In order to resist to
a CPA attacker, the number of monomials of Φ should not be polynomial (otherwise the cryptosystem
can be broken by solving a polynomial-size linear system). In order to get polynomial-time encryptions
and decryptions, Φ should be written in a compact form, e.g. a factored or semi-factored form. By con-
struction, the generic cryptosystem described above is not homomorphic in the sense that the vector sum
is not a homomorphic operator. This is a sine qua non condition for overcoming Gentry’s machinery.
Indeed, as a ciphertext e is a vector, it is always possible to write it as a linear combination of other
known ciphertexts. Thus, if the vector sum is a homomorphic operator, the cryptosystem is not secure
at all. So, in order to use the vector sum as a homomorphic operator, noise should be injected into the
encryptions as is done in all existing FHE. To overcome this, the authors propose developing ad hoc
nonlinear homomorphic operators. The public key contains these operators and public encryptions while
the secret key contains the multivariate polynomial Φ.

Our contribution. Our construction is strongly inspired by [2] where security was related to the
difficulty of solving nonlinear equations in Zn. While the underlying ideas are the same, the construction
proposed in this paper is simpler, more natural and more efficient. For concreteness, we consider the same
private-key cryptosystem (see Section 2) and the homomorphic operators are still built with operators Q
(see Section 4). Thus, the proof of Proposition 8 can be found (without any modification) in Appendix



C of [2]. This result provides a formal framework for the cryptanalysis by restricting the set of possible
attacks. The main modifications with respect to [2] are provided in the construction of the homomorphic
operators. The construction is no longer probabilistic1 and is much more natural, allowing us to prove
Lemma 2 and proposition 9. These results strongly suggest the non-existence of attacks by linearization
in a relaxed but natural setting. The security in a real life setting is discussed in Section 6.3. but we have
not provided formal results. The FHE presented in this paper is extremely simple, and potentially very
efficient compared to other existing FHE.

2 A basic private-key cryptosystem

Let m, δ ∈ N∗ and n be an RSA modulus. All the computations of this paper will be done in Zn.

– The set of all square m-by-m matrices over Zn is denoted by Zm×m
n .

– Throughout this paper, a vector
→
w =

w1

...
wm

 can be also denoted by w or (w1, ..., wm).

– Given a ∈ Zn and two vectors w and w′ of Zm
n :

• w.w′ = w1w
′
1 + ...+ wmw′

m denotes the inner product of these vectors.

• w × w′ = (w1w
′
1, ..., wmw′

m).

• wa = (w1a,w2..., wm).

– A vector b is said to be basic if b is a δ-vector, i.e. (b1, ..., bδ) ∈ Zδ
n and if

δ∏
i=1

bi = 1

Throughout this paper, basic vectors will be denoted with (small) capital letters.

– Let w1, ..., wt be t vectors of size m, (w1, ..., wt) denotes the concatenation of these vectors, i.e.
(w1, ..., wt) = (w11, ..., w1m, ..., wt1, ..., wtm).

– Given a vector w and a matrix S, |w|S = Sw. Note that |w|S could be denoted by |w| when S is
implicitly known.

First, we define a private-key cryptosystem where the plaintext space is Zn and where the secret key
contains ϑ randomly chosen invertible matrices Sz of Z2κδ×2κδ

n . For κ = 1, a valid encryption e of x is
composed of ϑ vectors c1, ..., cϑ defined by

cz = S−1
z (azxz,bz)

where az,bz are randomly chosen basic vectors and the xz are randomly chosen values satisfying x1 +
...+ xϑ = x. A decryption consists of evaluating a δ-degree multivariate polynomial Φ,

Φ(e) =
ϑ∑

z=1

δ∏
i=1

szi.cz = x

where szi denotes the i
th row of Sz. One should notice that the expanded representation of Φ is exponential-

size provided δ = Θ(λ): this is fundamental in the security analysis of the scheme. One can remark that the

1 except for the choice of the associated matrices used to build operators Q.



basic vectors bz are not useful yet. They can be regarded as a stock of randomness useful for homomorphic
operators to generate new encryptions. The role of the parameter ϑ will be explained in Section 6. We
let the reader see why the scheme cannot be semantically secure with ϑ = 1 (an attacker could easily
decide if an encryption encrypts 0 or not). The parameter κ is artificially introduced in order to provide
symmetry properties, which are fundamental in the proof of Proposition 8.

Definition 1. Let λ be a security parameter. The functions KeyGen1, Encrypt1, Decrypt1 are defined as
follows:

1. KeyGen1(λ). Let η, κ, δ, ϑ be positive integers indexed by λ. Let n be a η-bit RSA modulus chosen at
random and (Sz)z=1,...,ϑ be ϑ invertible matrices of Z2κδ×2κδ

n chosen at random. The ith row of Sz is

denoted by szi. For any l ∈ {1, ..., κ}, Φl :
(
Z2κδ
n

)θ → Zn denotes the δ-degree multivariate polynomial

defined by Φl(w1, ..., wϑ) =
∑ϑ

z=1

∏
i∈Il szi.wz with Il = {2(l − 1)δ + 1, ..., 2(l − 1)δ + δ}. Output

K = {(Sz)z=1,...,ϑ}

2. Encrypt1(K,x ∈ Zn). Randomly choose 2κϑ basic vectors2 (azl,bzl)(z,l)∈{1,...,ϑ}×{1,...,κ} and κϑ values
(xzl)(z,l)∈{1,...,ϑ}×{1,...,κ} belonging to Zn such that for all l = 1, ..., κ, x1l+ ...+xϑl = x. Let (cz)z=1,...,ϑ

be the ϑ vectors defined by:

|cz|Sz = (az1xz1,bz1,az2xz2,bz2, ...,azκxzκ,bzκ)

Output e = (c1, ..., cϑ).

3. Decrypt1(K, e ∈
(
Z2κδ
n

)ϑ
. Choose l ∈ {1, ..., κ} arbitrarily and output

x = Φl(e)

3 Operators Q

The operators Q are the main tool of this paper. The homomorphic operators only consist of applying a
polynomial number of such operators. Let κ,m ∈ N∗ and S, S′, S′′ be three invertible matrices of Zκm×κm

n .
The ith row of S, S′, S′′ is respectively denoted by si, s

′
i, s

′′
i . An operator Q inputs two vectors (or only

one, see Remark 1) w′, w′′ and outputs a vector w without revealing S, S′, S′′ such that each component
of |w|S is a two-degree polynomial defined over |w′|S′ and |w′′|S′′ .

Definition 2. (Operators Q). A κ-symmetric family of polynomials p1, ..., pκm : Zκm
n ×Zκm

n → Zκm
n with

respect to S, S′, S′′ is a family of 2-degree polynomials defined by

∀(i, l) ∈ {1, ...,m} × {0, ..., κ− 1}, pi+lm(w′, w′′) =

αi∑
j=1

aij

(
s′u′

ij+lm.w′
)(

s′′u′′
ij+lm.w′′

)
where αi ∈ N∗, aij ∈ Zn, u

′
ij , u

′′
ij ∈ {1, ...,m}.

The function QGen inputs S and a κ-symmetric family (with respect to S, S′, S′′) of polynomials
(pi)i=1,...,κm and outputs the expanded representation of the polynomials q1, ..., qκm defined by

(q1, . . . , qκm) = S−1 (p1, . . . , pκm)

The operator3 Q ← QGen(S, p1, ..., pκm) consists of evaluating the expanded representation of the polyno-
mials qi and outputting Q(w′, w′′) = (q1(w

′, w′′), ..., qκm(w′, w′′)).

2 Recall a basic vector is a δ-vector such that the product of its components is equal to 1.
3 also denoted by QGen(S, S′, S′′, (aij , u

′
ij , u

′′
ij)i=1,...,m;j=1,...,αi)



Remark 1. In the construction of our FHE, several operators Q are one-operand operators, i.e. they input
only one vector w′. The construction of such operators is exactly the same: it suffices to consider that
w′′ = w′ and S′′ = S′. The only difference is that the number of monomials of the polynomials pi(w

′)
and thus qi(w

′) is approximatively divided by 2 (the monomials w′
iw

′′
j and w′

jw
′′
i can be regrouped), i.e.

QGen outputs a number of monomial coefficients approximatively divided by 2.

Let Q ← QGen(S, S′, S′′, (aij , u
′
ij , u

′′
ij)i=1,...,m;j=1,...,αi) and w ← Q(w′, w′′). By denoting Sw (resp.

S′w′, S′′w′′) by |w| (resp. |w′|, |w′′|),

|w|i+lm
def
= ρi+lm(|w′|, |w′′|) =

αi∑
j=1

aij |w′|u′
ij+lm|w′′|u′′

ij+lm

It should be noticed that the polynomial ρi+lm (l > 0) can be deduced from the polynomial ρi (this
explains why it suffices to consider the case κ = 1 in our construction). Higher degree polynomials ρi
could be considered but this would lead to very costly operators Q: the running time of such operators
is exponential in the degree of ρi.

Given a matrix M ∈ Zκm×κm
n , we denote by M [1] the first m rows of M , M [2] the m next rows... and

M [κ] the m last rows of M . Given a permutation σ of {1, ..., κ}, we denote by Mσ the matrix obtained
by permuting the blocks M [1], ...,M [κ] according to σ. We easily check that

QGen(S, S′, S′′, (aij , u
′
ij , u

′′
ij)i=1,...,m;j=1,...,αi) = QGen(Sσ, S

′
σ, S

′′
σ, (aij , u

′
ij , u

′′
ij)i=1,...,m;j=1,...,αi)

These symmetry properties lead to privacy properties encapsulated in Proposition 8.

Proposition 1. Let (pi)i=1,...,κm be a κ-symmetric family of polynomials. The computation of Q ←
QGen(S, p1, ..., pκm) requires O(κ4m4) modular multiplications and the computation of w ← Q(w′, w′′)
requires O(κ3m3) modular multiplications.

Proof. (Sketch.) The number of monomials of each pi is O(κ2m2).
�

4 Homomorphic operators

In order to simplify notations, our construction will be presented for κ = 1: the extension to the general
case κ > 1 is straightforward according to Definition 2.

Throughout this section, S, S′, R will denote three arbitrary invertible matrices of Z2δ×2δ
n and w,w′ ∈

Z2δ
n will denote two vectors such that |w|S = (ax,b) and |w′|S′ = (a′x′,b′) where x, x′ ∈ Zn and a,b,a′,b′

are basic vectors.
All the matrices considered in this section belong to Z2δ×2δ

n .

4.1 Overview

Let e = (cz)z=1,...,ϑ and e′ = (c′z)z=1,...,ϑ be two encryptions of x and x′. We wish to develop a public
algorithm which computes a valid encryption e′′ = (c′′z)z=1,...,ϑ of x + x′ or xx′ only using operators
Q. Intuitively, the Q allow manipulating the components of |cz| = Szcz and |c′z| = Szc

′
z by computing

2-degree polynomials. By combining these operators, (almost) arbitrary polynomials can be computed.
Thanks to the constraints introduced in Encrypt1, it is possible to define the components of |c′′z | = Szc

′′
z as

polynomials of the components of |c1|, ..., |cϑ| and |c′1|, ..., |c′ϑ|: it follows that it is possible to implement
homomorphic operators by only applying operators Q. In the next section, we propose a construction
using O(ϑ3) operators Q. In order to simplify the presentation of our construction, several intermediate
operators will be considered.



4.2 Operator Rand

This simple operator is fundamental in the security analysis of our scheme (see proof of Lemma 2).

Definition 3. Let σ1, σ2 be two permutations of {1, ..., δ}. The procedure RandGen(R,S, σ1, σ2) outputs
the operator Q← QGen(R, p1, ..., p2δ) where (pi)i=1,...,2δ : Z2δ

n → Z2δ
n are the polynomials defined by

pi(w) =

{
(si.w)

(
sσ1(i)+δ.w

)
if i ∈ {1, ..., δ}

(si.w)
(
sσ2(i−δ)+δ.w

)
if i ∈ {δ + 1, ..., 2δ}

The operator Rand← RandGen(R,S, σ1, σ2) simply consists of applying Q, i.e. Rand(w) = Q(w).

Proposition 2. Let Rand← RandGen(R,S, σ1, σ2) and v ← Rand(w). It is ensured that

|v|R = (σ1(b)× ax, σ2(b)× b)

where σi(b) is the basic vector obtained by permutating the components of b according to σi.

Proof. By definition of operators Q.
�

4.3 Operator Substitute

The operator Substitute, for instance applied to the vector w, allows to progressively replace the basic
vectors a by a basic vector only depending on b.

|w|S =



a1x
a2

a3

a4

b1
b2
b3
b4


; |u1|U =



a1a2x
a3a4

b1b2
b3b4
b21
b22
b23
b24


; |v1|S =



b21a1a2x
b22a3a4

b23b1b2
b3b

3
4

b41
b42
b43
b44


; |u2|U =



b21b
2
2x

b23b
2
4

b41b
4
2

b43b
4
4

b81
b82
b83
b84


; |v2|S =



b101 b22x
b82b

2
3b

2
4

b83b
4
1b

4
2

b43b
12
4

b161
b162
b163
b164


Fig. 1. Simulation of the execution of Substitute(w) (with the toy parameter δ = 4) where the vector v2 is output. One
should notice that |v2|S = (cx,d) where c and d are basic vectors only depending on b.

Definition 4. Let S be an invertible matrix. The procedure SubstituteGen(S) consists of executing the
two following issues:

1. Generate the operators Q and Rand as follows:

– Choose at random an invertible matrix U .
– Rand← RandGen(S,U, Id, Id) (where Id is the identity).
– Q ← QGen(U, p1, ..., p2δ) where (pi)i=1,...,2δ : Z2δ

n → Z2δ
n are the polynomials defined by

pi(w) =

{
(s2i−1.w) (s2i.w) if i ∈ {1, ..., δ}
(si.w) (si.w) if i ∈ {δ + 1, ..., 2δ}



2. Output the operator Substitute← SubstituteGen(S) defined as follows:

Substitute(w) :

v0 ← w
for i = 1 to ⌈log2 δ⌉
ui ← Q(vi−1)
vi ← Rand(ui)

Output v⌈log2 δ⌉

Proposition 3. Let Substitute← SubstituteGen(S). The vector v ← Substitute(w) satisfies

|v|S = (cx,d)

where c and d are basic vectors only depending of b.

Proof. It suffices to check that at each step i, |vi|S = (cix,di) where ci,di are basic vectors. We conclude
by noticing that the basic vectors ci and di only depend of b (and not of a) provided i ≥ ⌈log2 δ⌉.

�

4.4 Operator Add

The operator Add is fundamental in the construction of both homomorphic operators. Roughly speaking,
it allows to add the hidden values x, x′ associated to the vectors w and w′.

Definition 5. Let a, a′ ∈ Zn. The procedure AddGen(R,S, S′, a, a′) consists of executing the two following
issues:

1. Generate the operators Q1,Q2,Q3 and Substitute defined as follows

– Randomly choose an invertible matrix U . Let (pi)i=1,...,2δ, (p
′
i)i=1,...,2δ, (p

′′
i )i=1,...,2δ be polynomials

Z2δ
n × Z2δ

n → Z2δ
n defined by

pi(w,w
′) =

{
(si.w)

(
s′i+δ.w

′) if i ∈ {1, ..., δ}
(si.w) (s

′
i.w

′) if i ∈ {δ + 1, ..., 2δ}

p′i(w,w
′) =

{
(si+δ.w) (s

′
i.w

′) if i ∈ {1, ..., δ}
(si.w) (s

′
i.w

′) if i ∈ {δ + 1, ..., 2δ}

p′′i (w,w
′) =


a (u1.w) (u1+δ.w

′) + a′ (u1+δ.w) (u1.w
′) if i = 1

(ui.w) (ui+δ.w
′) if i ∈ {2, ..., δ}

(ui.w) (ui.w
′) if i ∈ {δ + 1, ..., 2δ}

– Substitute← SubstituteGen(U)

– Q1 ← QGen(U, p1, ..., p2δ), Q2 ← QGen(U, p′1, ..., p
′
2δ) and Q3 ← QGen(R, p′′1, ..., p

′′
2δ)

2. Output the operator Add← AddGen(R,S, S′, a, a′) defined by:

Add(w,w′) :

(a) w1 ← Q1(w,w
′) and w′

1 ← Q2(w,w
′).

(b) w2 ← Substitute(w1) and w′
2 ← Substitute(w′

1).

(c) Output v ← Q3(w2, w
′
2)



Proposition 4. Let Add← AddGen(R,S, S′, a, a′). The vector v ← Add(w,w′) satisfies

|v|R = (c(ax+ a′x′),d)

where c, d are basic vectors.

Proof. By construction, |w1|S = (a× b′x,b× b′) and |w1|S = (a′ × bx′,b× b′). Consequently, thanks to
Substitute, |w2|U = (hx,g) and |w′

2|U = (hx′,g) where h and g are functions of b × b′. It follows that
|v|R = (h× g(ax+ a′x′),g× g).

�

4.5 Operator Mult

Definition 6. The procedure MultGen(R,S, S′) outputs the operators Q ← QGen(R, p1, ..., p2δ) defined
by

pi(w,w
′) = (si.w)

(
s′i.w

′)
The operator Mult← MultGen(R,S, S′) consists of applying Q, i.e. Mult(w,w′) = Q(w,w′).

Proposition 5. Let Mult← MultGen(R,S,S’). The vector v ← Mult(w,w′) satisfies

|v|R = (a× a′xx′,b× b′)

Proof. Straightforward.
�

4.6 Homomorphic operators

Let K = (Sz)z=1,...,ϑ ← KeyGen(λ) and e = (cz)z=1,...,ϑ, e
′ = (c′z)z=1,...,ϑ be two valid encryptions of x and

x′, i.e.

– |cz|Sz = (azxz,bz)
– |c′z|Sz = (a′

zx
′
z,b

′
z)

Each homomorphic operator can be represented by an Add/Mult circuit (see Fig. 2): ⊕ requires O(ϑ2)
operators Add while ⊙ requires O(ϑ2) operators Mult and O

(
ϑ3

)
operators Add.

Operator ⊕. This homomorphic operator can be built by only using operators Add (thus only operators
Q).

Definition 7. The procedure OplusGen(K) consists of executing the two following issues:

1. Generate the operators Addzz′ as follows:

– Let (σz)z=1,...,ϑ be ϑ arbitrary permutations of {1, ..., 2ϑ} s.t. σz(1) = 2z − 1.

– Randomly choose a family (azz′)z=1,...,ϑ;z′=1,....,2ϑ of elements of Zn such that
∑ϑ

z=1 azσ−1
z (z′) = 1

for all z′ = 1, ..., 2ϑ.
– Randomly choose a family (Rzz′)z=1,...,ϑ;z′=2,....,2ϑ−1 of invertible matrices.
– State Rz1 = Sz, Rz,2ϑ = Sz , bz1 = az1 and bzz′=2,...,2ϑ−1 = 1 for all z = 1, ..., ϑ.
– Addzz′ ← AddGen(Rzz′ , Rz,z′−1, S⌊σz(z′)+1

2
⌋, bz,z

′−1, azz′) for all z = 1, ..., ϑ and z′ = 2, ..., 2ϑ.



2. Output the operator ⊕ ← OplusGen(K) defined as follows:

e⊕ e′

for z = 1 to ϑ
w2z−1 ← cz and w2z ← c′z

for z = 1 to ϑ
c′′z ← wσz(1)

for z′ = 2 to 2ϑ
c′′z ← Addzz′

(
c′′z , wσz(z′)

)
Output (c′′1, ..., c

′′
ϑ)

Proposition 6. The operator ⊕ ← OplusGen(K) inputs two valid encryptions e, e′ of x and x′ and
outputs a valid encryption (c′′1, ..., c

′′
z) = e⊕ e′ of x+ x′ satisfying

|c′′z |S′′
z
= (a′′

zcoz(x1, ..., xϑ, x
′
1, ..., x

′
ϑ),b

′′
z)

where coz are linear combinations chosen at random4 in OplusGen(K) satisfying

ϑ∑
z=1

coz(x1, ..., xϑ, x
′
1, ..., x

′
ϑ) = x+ x′

Proof. (Sketch) Our construction ensures that |c′′z |S′′
z
= (a′′

zcoz(x1, ..., xϑ, x
′
1, ..., x

′
ϑ),b

′′
z). The equalities∑ϑ

z=1 azσ−1
z (z′) = 1 for all z′ = 1, ..., 2ϑ ensures that

∑ϑ
z=1 coz(x1, ..., xϑ, x

′
1, ..., x

′
ϑ) = x+ x′.

�

Operator ⊙. This homomorphic operator can be built by only using operators Add andMult (see Fig. 2).
The operators Mult allow to build ϑ2 vectors hiding the products xix

′
j . The encryption e⊙ e′ is obtained

by summing these products with ϑ(ϑ2 − 1) operators Add.

Definition 8. The procedure OdotGen(K) consists of executing the two following issues:

1. Generate the operators Multzz′ and Addzz′ defined as follows:
– Let (σz)z=1,...,ϑ be ϑ arbitrary bijections from {1, ..., ϑ2} into {1, ..., ϑ}2 such that σz(1) = (z, 1).

– Randomly choose a family (azz′)z=1,...,ϑ;z′=1,....,ϑ2 of elements of Zn such that
∑ϑ

z=1 azσ−1
z (z′z′′) = 1

for all (z′, z′′) ∈ {1, ..., ϑ}2.
– Randomly choose a family (Tzz′)(z,z′)∈{1,...,ϑ}2 of invertible matrices
– Multzz′ ← MultGen(Tzz′ , Sz, Sz′)
– Randomly choose a family (Rzz′)z=1,...,ϑ;z′=2,....,ϑ2−1 of invertible matrices
– State Rz1 = Tz1, Rzϑ2 = Sz, bz1 = az1 and bzz′=2,...,ϑ2 = 1 for all z = 1, ..., ϑ.
– Addzz′ ← AddGen(Rzz′ , Rz,z′−1, Tσz(z′), bz,z′−1, azz′) for all z = 1, ..., ϑ and z′ = 2, ..., ϑ2.

2. Output the operator ⊙ ← OdotGen(K) defined as follows:

e⊙ e′

wzz′ ← Multzz′(cz, c
′
z′) for all z, z

′ ∈ {1, ..., ϑ}2

for z = 1 to ϑ
c′′z ← wσz(1)

for z′ = 2 to ϑ2

c′′z ← Addzz′
(
c′′z , wσz(z′)

)
Output (c′′1, ..., c

′′
ϑ).

4 related to the choice of the values azz′



Fig. 2. Representation of the operator ⊙ as a Mult/Add circuit (for ϑ = 2) where (c′′1 , c
′′
2 ) = (c1, c2)⊙ (c′1, c

′
2).

Proposition 7. The operator ⊙ ← OdotGen(K) inputs two valid encryptions e, e′ and outputs a valid
encryption (c′′1, ..., c

′′
z) = e⊙ e′ of xx′ satisfying

|c′′z |S′′
z
= (a′′

zcoz(x1x
′
1, ..., xix

′
i′ , ...xϑx

′
ϑ),b

′′
z)

where coz are linear combinations chosen at random in OdotGen(K) satisfying

ϑ∑
z=1

coz(x1x
′
1, ..., xix

′
i′ , ...xϑx

′
ϑ) = xx′

Proof. Similar to the proof of proposition 6.
�

OpGen(K) outputs ⊕ ← OplusGen(K) and ⊙ ← OdotGen(K). The whole number of operators Q
involved in ⊕ and ⊙ is O(ϑ3 log δ).

5 The FHE

The private-key encryption scheme of Section 2 can be transformed in an FHE by publishing the homo-
morphic operators ⊕,⊙ and m encryptions (ev)v=1,...,m of public values xv ∈ Zn: for instance xv = 2v

mod n.

Definition 9. Let λ be a security parameter.

– KeyGen(λ). Let K = {(Sz)z=1,...,ϑ} ← KeyGen1(λ), {⊕,⊙} ← OpGen(K) and for all v = 1, ...,m,
ev ← Encrypt1(K,xv).

sk = {(Sz)z=1,...,ϑ} ; pk = {⊕,⊙, (ev)v=1,...,m}

– Evaluate(C, e1, ..., em). To evaluate C(e1, ..., em), it suffices to compute each gate with the public ho-
momorphic operators ⊕ and ⊙.

– Encrypt(pk, x ∈ Zn). It consists of evaluating a secret circuit C over the encryptions (ev)v=1,...,m such
that x = C(x1, ..., xm), i.e. output Evaluate(C, e1, ..., em)



– Decrypt(sk, e). Exactly follows Decrypt1.

The internal randomness of KeyGen can be decomposed in three parts:

– The internal randomness of KeyGen1 and OpGen is called structural randomness. For concreteness, by
invoking KeyGen1, KeyGen generates the ϑ invertible matrices S1, ..., Sϑ of sk. By invoking OpGen(K),
KeyGen randomly generates O(ϑ3) other intermediate invertible matrices denoted by Sϑ+1, ..., SΥ and
O(ϑ3) values azz′ used to build O(ϑ3) operators Add. In the following of this paper, the ith row of Su

is denoted by sui.

– The internal randomness of Encrypt1 used to build the public encryptions (ev)v=1,...,m can be decom-
posed into two independent randomnesses:

• The first one satisfying multiplicative constraints, called multiplicative randomness, comes from
the choice of the basic vectors avzl,bvzl for each encryption ev ∈ pk.

• The second one satisfying additive constraints, called additive randomness, comes from the choice
of the values xvzl for each encryption ev ∈ pk.

In Section 6, we will see that the independence of these three sources of randomness is important
in the security analysis of the FHE. We define the following sets of polynomials (indexed by structural
randomness meaning that each monomial coefficient is a function of the coefficients of (Su)u=1,...,Υ ):

– SP: the set of multi-variate polynomials ϕ :
(
Z2κδ
n

)r → Zn defined by

ϕ(w1, ..., wr) =

γ∏
t=1

sutit .wkt

where γ, r ∈ N∗, it ∈ {1, ..., 2κδ}, ut ∈ {1, ..., Υ} and kt ∈ {1, ..., r}.

– SPγ : the set of polynomials of SP of degree equal to γ, i.e.

SPγ = {ϕ ∈ SP| deg(ϕ) = γ}

Security naturally deals with these polynomials because they allow computing polynomials over the
components of |wk|Su . For instance, the decryption polynomials Φl (see Definition 1) are a sum of ϑ
polynomials of SPδ. A representation Rϕ of an arbitrary polynomial ϕ is said to be effective if its storage
is polynomial and if it allow to evaluating ϕ in polynomial time.

Proposition 8. Let γ ∈ N∗ such that γ is not a multiple of κ. Let ϕ ∈ SPγ and Rϕ be an effective
representation of ϕ. By assuming the hardness of factorization, recovering Rϕ only given pk is difficult.

Proof. Because the private-key cryptosystem is exactly the same as in [2] and the homomorphic operators
are also built by only using operators Q, the proof can be found in Appendix C of [2].

�

Corollary 1. By assuming the hardness of the factorization, the secret matrices (Su)u=1,...,Υ cannot be
polynomially recovered only given pk.

The analysis of this proposition in [2] is entirely applicable (without any modification) here. Let us
summarize it by assuming that δ = Θ(λ) and κ = Θ(λϵ>0). Proposition 8 seems a priori not sufficient
to ensure security because the knowledge of the polynomials ϕ ̸∈ SPγ could be used to break semantic
security, e.g. ϕ = Φ1+ ...+Φκ or ϕ = Φ1...Φκ (see Definition 1). However, the expanded representation of



these two polynomials is exponential-size and thus cannot be recovered. Besides, according to Proposition
8, it is difficult to find any of its natural effective representations, i.e. sum of products of small polynomials of
SP. This analysis suggests that such polynomials (having an exponential-size expanded representation)
cannot be recovered. But maybe polynomial-size polynomials ϕ (having polynomial numbers of monomi-
als) could be used to break semantic security. Moreover, by considering the monomial coefficients of such
polynomials as independent variables, they could be recovered by solving a linear system. Such attacks,
called attacks by linearization, will be extensively studied in the next section.

6 Attacks by linearization

The public key pk can be naturally regarded as a system (Sys) of nonlinear equations. Proposition 8
tends to show that the resolution of (Sys) is quite intractable. However, this does not prevent our scheme
against attacks by linearization. For instance, the most natural linearization attack consists of solving
the linear system

ϕ(ei) = xi

where (ei)i=1,...m is a family of encryptions of (xi)i=1,...,m and ϕ is a multivariate polynomial5 of degree
δ such that its monomial coefficients are the variables of the linear system. Provided m is sufficiently
large, its resolution provides a linear combination ϕ∗ of the decryption polynomials (Φl)l=1,...,κ. However,
provided δ = Θ(λ), this attack fails because the number of monomials of ϕ is exponential. Because of
the introduction of homomorphic operators, new polynomial relations leading to new efficient attacks by
linearization could appear.

6.1 General framework

In the following of the paper, Ω denotes the set of valid encryptions, i.e. the output space of En-
crypt16. Given r ∈ N∗ and e ∈ Ωr, we naturally extend the function Decrypt by writing Decrypt(e) =
(Decrypt(e1), ...,Decrypt(er)).

Let us consider an arbitrary efficient public procedure Hpk which inputs a polynomial-size tuple of
encryptions e ∈ Ωr and outputs a polynomial-size tuple y ∈ Zm

n , i.e. y ← Hpk(e).

Definition 10. (Efficient non-trivial linearization attack). Let ϕ : Zm
n → Zn be a polynomial. Given a

tuple x ∈ Zr
n, we define the subsets Ωx, Ω(ϕ) of Ωr by:

– Ωx = {e ∈ Ωr | Decrypt(e) = x}
– Ω(ϕ) = {e ∈ Ωr | ϕ(Hpk(e)) = 0}.

We say that there exists an efficient non-trivial linearization attack relative to ϕ, Hpk and x if

1. The number of monomials of ϕ is polynomial

2. |Ωx\Ω(ϕ)|
|Ωx| is negligible

3. |Ωr\Ω(ϕ)|
|Ωr| is non negligible

The two first properties ensure that the expanded representation of ϕ can be found by solving a linear
system. The third property means that ϕ(Hpk(e)) = 0 is not trivially satisfied, i.e., for any e ∈ Ωr. It could
mean that ϕ(Hpk(e)) = 0 is satisfied with higher probability whether e encrypts x rather than x′ ̸= x
giving an advantage to the attacker for distinguishing between Decrypt(e) = x and Decrypt(e) = x′. If

5 having the same monomials as the decryption polynomials Φl.
6 Ω is the set of encryptions which can be output by Encrypt1. Decrypt1 can be modified in order to check whether e belongs
to Ω before to decrypt.



this property is not satisfied, such advantages cannot be derived from ϕ and we say that the linearization
attack is trivial.

Before to analyze our scheme against such attacks in real life setting, we will consider the natural
relaxed setting where Hpk is constrained as follows:

Setting 1. Hpk inputs e ∈ Ωr, computes new encryptions e′1, ..., e
′
r′ and outputs all the vectors considered

in this computation (e, e′1, ..., e
′
r′ and all intermediate vectors output by operators Q).

For instance, Hpk could simply consists of computing ⊙, i.e. Hpk(e1, e2) outputs all the vectors considered
in the computation of e1 ⊙ e2. The procedure Hpk can be represented by a Add/Mult circuit CHpk

.

6.2 Linearization attacks in Setting 1

In order to simplify our analysis (and the task of the attacker), throughout this section, n is assumed to
be a large prime instead of an RSA modulus and we modify KeyGen as follows:

– According to Lemma 1 in [2], if there exists a linearization attack for κ > 1 then there exists a
linearization attack for κ = 1. Thus, it suffices to consider the case κ = 1.

– The matrices Su are assumed to be all equal to the same matrix S chosen at random. In particular,
all the secret matrices (Sz)z=1,...,ϑ of sk are equal to S. Given a vector w, Sw will be simply denoted
by |w| (instead of |w|S).

Let x = (x1, ..., xr) ∈ Zr
n and e = (e1, ..., er) uniformly drawn over Ωx. Each encryption ei is a tuple of

vectors (ciz)z=1,...,ϑ defined by |ciz| = (aizxiz,biz) where aiz, biz are basic vectors and xi1+ ...+xiϑ = xi.
The set of all the values xiz is denoted by X and the set of the components of the basic vectors aiz,biz
is denoted by C. According to Encrypt1,

C⊥X

Let y = (w1, ..., wt)← Hpk(e) be the concatenation of the vectors outputs by Hpk. We define the auxiliary

functions H̃pk(e), H
+
pk(e) and H∗

pk(e) as follows:

– H̃pk(e) outputs the tuple ỹ = (|w1|, ..., |wt|).
– H+

pk(e) outputs the tuple (pk)k=1,...,2δt defined
7 by

pk =

{
ỹk...ỹk+δ−1, if k mod 2δ = 1
1 Otherwise.

– H∗
pk(e) outputs the tuple (πk)k=1,...,2δt where πk = ỹk/pk.

Lemma 1. Let y ← Hpk(e), ỹ ← H̃pk(e), p← H+
pk(e) and π ← H∗

pk(e) and ϕ ∈ SP.

1. ϕ(y) is a product of deg ϕ components of ỹ,

2. Each component of π is a product of elements of C and each component of p is a polynomial defined
over X.

Proof.
1. By definition of SP.
2. By induction on the size of CHpk

.
�

Corollary 2. If e is uniformly drawn over Ωx,

π⊥p

7 or equivalently pk =

{
|w1+⌊(k−1)/2δ⌋|1...|w1+⌊(k−1)/2δ⌋|δ, if kmod 2δ = 1
1 Otherwise.



Role of the parameter δ

Let us show that ϕ(y) depends on the multiplicative randomness for any ”small” polynomial ϕ ∈ SP.
In order to simplify our analysis (and the task of the attacker), we slightly modify Encrypt1 such that
the basic vectors aiz and biz are all equal to the same basic vector c = (c1, ..., cδ) chosen at random, i.e.
aiz = biz = c. In other words, it is assumed that the encryptions (e1, ..., er) input in Hpk were built only
using the basic vector c, i.e. C ≃ c.

Lemma 2. For any d ∈ Z, the product cd1...c
d
δ of components of c is said to be trivial8. Let π ← H∗

pk(e).
Any product πk1 ...πkt is a non-trivial product of components of c provided t < δ/4.

Proof. (Sketch.) Let us define the set Πe′,e≥e′ as follows:

Πe′,e = {ce
′
i0ci1 ...cie−e′ | i0, ..., ie−e′ ∈ {1, ..., δ}}

By construction, πk ∈ Πek,ek (ek being a power of 2) provided k − 1 mod 2δ ≥ δ. Moreover, thanks to
the operator Rand, it is ensured that

∀k = 1, ...,m πk ∈ Πek/4,ek (1)

Let β = πk1 ...πkt be an arbitrary product of t components of π and e∗ = maxi=1,...,t(eki) . According to
(1), β is a product ca11 ...caδδ of components of c such that maxi=1,...,δ ai ≥ e∗/4. It follows that β should
be a product of at least δe∗/4 components of c in order to be trivial, i.e.

t∑
i=1

eki ≥ δe∗/4

As te∗ ≥
∑t

i=1 eki , we obtain t ≥ δ/4.
�

Remark 2. Let α = ci11 ...c
iδ
δ be an arbitrary non-trivial product of components of c assuming i1 ≤ i2 ≤

... ≤ iδ. It follows that α = ci2−i1
2 ...ciδ−i1

δ is independent of c (i.e. α = 1) if and only if i2 − i1 ≡ ... ≡
iδ − i1 ≡ 0 mod λ(n)/2. As n is randomly chosen, α is independent of c with negligible probability.

Role of the parameter ϑ

Each component of p = (pk)k=1,...,m ← H+
pk(e) is a polynomial function defined over X. These poly-

nomials depend on the values azz′ chosen in OplusGen(K) and OdotGen(K). These values are chosen at
random ensuring some relations of the form

ϑ∑
i=1

pki = f(x1, ..., xr)

where f is a multivariate polynomial. Is there a non-trivial polynomial relation involving t < ϑ components
of p? The following conjecture says that such relation can occur but only with negligible probability over
the choice of the values azz′ .

Conjecture 1. Let t < ϑ, k ∈ {1, ...,m}t, x = (x1, ..., xr) ∈ Zr
n be arbitrarily chosen. Let ν : Zt

n → Zn be
a polynomial-size polynomial such that deg ν = O(λ). The set Ω(ν) refers to the set of e ∈ Ωr such that
ν(pk1 , ..., pkt) = 0 where p← H+

pk(e). We say ν is not trivial relatively to k, x if

8 It is equal to 1 because c is assumed to be a basic vector.



– |Ωx \Ω(ν)|/|Ωx| is negligible
– |Ωr \Ω(ν)|/|Ωr| is non negligible.

There exists a non-trivial polynomial ν relatively to k, x with negligible probability over the choice of
(pk, sk)← KeyGen(λ).

Roughly speaking, this conjecture says that if ν(pk1 , ..., pkt) = 0 is satisfied by (almost) all tuples
e ∈ Ωx then this relation is trivial9 in the sense that ν(pk1 , ..., pkt) = 0 is also satisfied by (almost) all
tuples e ∈ Ωr. This conjecture is discussed in Appendix A for the case ϑ = 2.

Put it all together

We prove here the main result of this section. This result proves the non-existence of linearization at-
tacks by assuming that vectors input in Add or Mult are randomized. We will then discuss this assumption
in order to see how to overcome it.

Proposition 9. Let us consider an oracle OR which inputs a vector w such that |w|S = (ax,b), generates
two basic vectors c,d at random and outputs v defined by |v|S = (cx,d). Let us modify Mult or Add in
the following way: each input vector w is first randomized by OR. Let x ∈ Zr

n and ϕ be an arbitrary
polynomial-size linear combination of polynomials of SP, i.e. ϕ = a1φ1 + ... + aγφγ with ai ∈ Z∗

n and
φi ∈ SP. Assuming Conjecture 1, there exists an efficient non-trivial linearization attack relative to ϕ, x
with negligible probability provided δ = Θ(λ) and ϑ = Θ(λ).

Proof. Given a tuple of encryptions e ∈ Ωr, y = (w1, ..., wt) ← Hpk(e), ỹ = (ỹk)k=1,...,m=2δt ← H̃pk(e),
π ← Hpk(e)

∗ and p ← Hpk(e)
+. Let us partition the set {1, ...,m} with the disjoint subsets Ku = {k ∈

{1, ...,m}|yk is computed at the uth node of Cpk}.
For sake of simplicity, we assume that ϑ = δ = Θ(λ) and that the degree of each polynomial φi is equal

to d, i.e. degφi = d for all i = 1, ..., γ. According to Lemma 1, there exists a family (kij)i=1,...,γ;j=1,...,d of
elements of {1, ...,m} such that

ϕ(y) =

γ∑
i=1

ai

d∏
j=1

ỹkij =

γ∑
i=1

ai

d∏
j=1

πkijpkij (2)

Let us assume the existence of an efficient linearization attack relative to ϕ and x ∈ Zr
n. If d ≥ δ/5,

the linearization attack is not efficient (because the number of monomials is exponential) implying that
d < δ/5. According to Lemma 1, each product πki1 ...πkid is a product of elements of C. At first, we assume
that these products are equal10, i.e.

πk11 ...πk1d = ... = πkγ1 ...πkγd (3)

Thus, according to Definition 10, for each e ∈ Ωx (except maybe for a negligible subset of Ωx), p satisfies
the following equation,

ν(p)
def
=

γ∑
i=1

ai

d∏
j=1

pkij = 0 (4)

Note that ν is a polynomial-size polynomial with deg ν = d = O(λ)
According to Lemma 2, any sub-product of πki1 , ..., πkid is a non-trivial product of elements of C. By

introducing OR in our construction, Lemma 2 holds a fortiori.

9 For instance ν(pk1 , ..., pkt) = pk1 − pk1 .
10 for all the choices of C.



As vectors are assumed to be randomized by OR before to be input in Add or Mult, it is ensured that
πk⊥πk′ provided k and k′ do not belong to the same set Ku. Because of (3) and Lemma 2,

∃(i, j) s.t. kij ∈ Ku ⇒ ∀i ∈ {1, ..., γ}, ∃j ∈ {1, ..., d} s.t. kij ∈ Ku (5)

Our construction ensures that each set Pu = {pk|k ∈ Ku} contains at most 4 elements11. Thus,
according to (4) and (5), the set P = {pkij | i = 1, ..., γ; j = 1, ..., d} contains at most t ≤ 4d ≤ 4δ/5 <
δ = ϑ elements denoted by pk1 , ..., pkt . It follows that ν(p) only depends on pk1 , ..., pkt .

According to Corollary 2, p ⊥ π. Thus, it suffices that ν(p) = 0 to ensure that e ∈ Ω(ϕ). Consequently,
according to Conjecture 1, |Ω(ϕ)|/|Ωr| ≥ 1−ϵ(λ) where ϵ(λ) is negligible. It implies that this linearization
attack is trivial.

Now, let us consider the general case where the equality (2) is no longer satisfied. Let R be the
equivalence relation defined over {1, ..., γ} defined by iRi′ if and only if πki1 ...πkid = πki′1 ...πki′d (for all
the choices of C). The equivalence classes of R are denoted by I1, I2, ..., Iτ . By regrouping the products
πki1 ...πkid which are equal, ϕ can be written as a sum of τ polynomials ϕv, i.e. ϕ = ϕ1 + ...+ ϕτ with

ϕ(y) =
τ∑

v=1

∑
i∈Iv

ai

d∏
j=1

pkij

Πv

where Πv is a product of components of C. Fixing p, ϕ(y) can be seen as a multivariate polynomial
defined over C (the Πv being the monomials). As ϕ(y) = 0 for all encryptions e ∈ Ωx, this polynomial
is identically equal to 0 (at the beginning of this section, n was assumed to be a large prime). It implies
that for each e ∈ Ωx, p← H+

pk(e) satisfies

∀v = 1, ..., τ ,
∑
i∈Iv

ai

d∏
j=1

pkij = 0

Thus, the previous analysis can be done τ times leading to τ sets Ωv(ϕv) satisfying |Ω(ϕv)|/|Ωr| ≥
1−ϵv(λ). As

∩τ
v=1Ωv(ϕv) ⊆ Ω(ϕ) and |

∩τ
v=1Ωv(ϕv)|/|Ωr| ≥ 1−(ϵ1+ ...+ϵτ )(λ), the linearization attack

is still trivial.
�

Proposition 9 does not prove the non-existence of efficient non-trivial linearization attacks. However, it
allows us to argue in favor of the fact that even if such an attack exist, a polynomial attacker can recover
it with negligible probability.

• Removing OR. The use of OR ensures that (3)⇒ (5). Roughly speaking, assertion (5) implies that the
number of nodes of CHpk

involved12 in the linearization attack should be small, i.e. O(d). But, Conjecture
1 ensures that any linearization dealing with less than ϑ/3 nodes of CHpk

is surely trivial. Thus, if d = ◦(ϑ),
the linearization attack is trivial provided ϑ = Θ(λ). Conversely, if d = Ω(λ) the linearization attack is
not efficient.

What happens if OR is removed? Can we still guarantee that the number of nodes of CHpk
involved

in the linearization attack is small? To see this, let us consider two arbitrary sets of vectors W1,W2

computed in distant sets of nodes of CHpk
. We denote Π1 and Π2 the sets of components of π ← Hpk(e)

∗

associated to respectively the sets W1 and W2. The use of OR ensures that Π1 and Π2 are independent.

11 Pu contains 1, qu(X), ru(X), qu(X) + ru(X) where qu, ru are polynomials, if Add is computed at the uth node of Cpk or
1, qu(X), ru(X), qu(X)ru(X) if it is Mult.

12 A node u is said to be involved if the linearization attack deals with at least one vector w computed at node u.



To prove Proposition 9 without OR, one needs a result establishing that small products of components
of Π1 cannot be equal to small products of components of Π2. This seems intuitively true. Nevertheless,
to get a formal result, one should quantify to notion of distant sets and small products.

Moreover, one can imagine several ways to emulate OR keeping Lemma 2 true. For instance, the
operator Rand (where the permutations σ and σ′ would be randomly chosen) could be applying several
times on each vector w input in Add or Mult. In our opinion, it should be possible modify our construction
in this sense in order to extend Proposition 9 without considering OR.

• Arbitrary ϕ. Proposition 9 assumes that ϕ is a polynomial-size linear combination of polynomials of
SP. As the polynomials ϕki(w1, ..., wr) = wki can be written as a polynomial-size linear combination of
polynomials of SP1, any polynomial ϕ of degree d = O(1) can be written as a polynomial-size linear
combination of polynomials of ∪dt=0SP

t. However there are polynomial-size polynomials ϕ (e.g. ϕ(y) =
y1....yδ) of degree d ̸= O(1) which cannot. Proposition 9 does not exclude the existence of linearization
dealing with such polynomials. However, provided δ = Θ(λ), the number of d−degree monomials defined
over the components of at least one vector w computed by Hpk, is not polynomial. It implies that some
of them should be eliminated to get a polynomial attack. Intuitively, these monomials play a symmetric
role and we do see how an attacker could choose some of them a priori.

Conjecture 2. Assuming δ = ϑ = Θ(λ), an attacker can find an efficient linearization attack in Setting 1
with negligible probability (randomness being the internal randomness of KeyGen).

6.3 Linearization attacks in real-life setting

In this (short) section, Hpk is not constrained anymore: it can use pk arbitrarily. Here, we list possible
weaknesses of our scheme. While deeper investigations have been done, we did not get formal results.
This section can be seen as a guideline for deeper cryptanalysis.

• In Setting 1, it was assumed that Hpk uses the public operators Q as required by ⊕ and ⊙. Can an
attacker get any advantage by inputting arbitrary vectors in operators Q? For instance, it would be the
case if U ← S instead of being randomly chosen in SubstituteGen. Indeed, in this case, the operator Rand
could be removed from the construction (the loop would just consist of applying the operator Q) leading
to an efficient linearization attack from this13. As U and S are independently drawn, it seems irrelevant
to input ui in Q. Roughly speaking, the information contained in ui is associated to the matrix U while
Q works on the information associated to S14. As each vector computed in ⊕ or ⊙ is associated to a
unique matrix, it can be assumed that vectors are not interchangeable in our construction.

• New operators Q could be polynomially derived from pk leading to efficient linearization attacks. Let
us shortly argue against this (see Appendix B for a more detailed discussion about this):

– Proposition 8 ensures that it is not possible to recover the coefficients (or products of γ < κ coefficients)
of the matrices (Su)u=1,...,Υ involved in the public operators Q.

– Randomness can be arbitrarily introduced in any public operator Q without altering the security
analysis of the previous sections. This is detailed in Appendix K of [2]. By doing this, the system of
equations derived from public operators Q becomes widely unknown.

7 Efficiency

The computation of an operator Q requires O(κ3δ3) multiplications in Zn. Moreover, ⊕ requires the
application of O(ϑ2 log δ) operators Q and O(ϑ3 log δ) for ⊙. Thus, denoting by M(n) the runtime of

13 We let the reader find it.
14 More formally, it means that a linear perturbation is done over ui before the nonlinear phase.



multiplications in Zn, the running time per addition gate is O(ϑ2κ3δ3 log δM(n)) and the running time
per multiplication gate is O(ϑ3κ3δ3 log δM(n)). The running time of decryption is O(ϑκδ2M(n)). A
ciphertext contains ϑ 2κδ-vectors in Zn, implying that the ratio cipher size/plaintext size is equal to
2κϑδ. In terms of storage, the biggest part of the public key is the operator Q, containing O(κ3δ3)
elements of Zn, which leads to a space complexity in

O(|n|ϑ3κ3δ3 log δ)

Attacks (in particular attacks by linearization) should be better quantified in order to propose instantia-
tions of the parameters. Moreover, we think that the operators ⊕ and ⊙ could be defined with respectively
ϑ and ϑ2 (instead of ϑ2 and ϑ3 operators Add) while remaining true Conjecture 1 and thus Proposition
9. The parameter κ was only introduced to prove Proposition 8. However, this parameter is not useful
for protecting the scheme against attacks by linearization. Can we choose κ = 1? Similarly, n is assumed
to be an RSA modulus. Can n be chosen prime? small prime?

8 Discussion and open questions

In this paper, a very simple FHE based on very simple tools was developed. Its security is linked to the
difficulty of solving nonlinear systems of equations. By using arguments of symmetry, it was shown that
the resolution of the system of equations (derived from pk) is intractable. However, it is not sufficient to
ensure security against attacks by linearization. The main obstacle proving security consists of showing
that all linear attacks are exponential. We argue in this sense but further investigations should be made.
Moreover, improvements of our scheme deal with important open questions:

– The symmetry properties related to the parameter κ provide formal security guarantees but this
parameter is not useful for protecting the scheme against attacks by linearization. Can this parameter
be fixed to 1?

– the resolution of systems of nonlinear equations is NP-complete in Zn even if the factorization of n
is known. Thus, one can wonder whether n can be chosen as a large prime? a small prime?

A positive answer to these questions would lead to an efficient FHE competitive with other classical (even
not homomorphic) cryptosystems.
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A What about Conjecture 1 ?

In this section, we wish testing Conjecture 1. In our experiments, Hpk inputs only one encryption e =
(cz)z=1,...,ϑ where |cz|Sz = (azxz,bz). Hpk(e) consists of computing new encryptions, e.g. e ⊕ e, e ⊙ e,
(e⊕e)⊙e,....To validate Conjecture 1, it is required to show that there does not exist non-trivial polynomial
relation between strictly less than ϑ components of p ← Hpk(e)

+. It is important to note that it is not
required to really compute homomorphic operators ⊕ and ⊙ to get p = (pk)k=1,...,m: the components of
p only depend of the values azz′ used in OdotGen and OplusGen.

By renaming the values azz′ by a, b, c, ..., we list (by using Maple) the components of p expressed as
polynomial functions of x1 and x = x1 + x2. The components of p belong to this set

{1, x1, ax1 + b(x− x1), ax1 + b(x− x1) + cx1, ax1 + b(x− x1) + cx1 + d(x− x1),

x− x1, (1− a)x1 + (1− b)(x− x1), (1− a)x1 + (1− b)(x− x1) + (1− c)x1,

(1− a)x1 + (1− b)(x− x1) + (1− c)x1 + (1− d)(x− x1),

x21, (x− x1)
2, x1(x− x1), ex

2
1 + fx1(x− x1), ex

2
1 + fx1(x− x1) + g(x− x1)(x− x2),

(a2 − 2ab+ ac− ad+ b2 − bc+ bd− 4b)x1 + (ab+ ad+ 2b− b2 − bd)x, ...

}

By checking at the hand each component of p, we see there does not exist constant components which
only depend on x. Each component can take an exponential number of values. It means that there does
not exit a small polynomial ν ensuring ν(pk) = 0 for any15 k = 1, ...,m. It suggests that Conjecture 1 is
true for ϑ = 2.

B Informal discussion...

One could imagine that new operators Q can be polynomially derived from pk leading to efficient lin-
earization attacks. Let us informally argue against this.

First, let us see that there does not any exist general method to achieve this, by considering the
simple operator Q ← QGen(S, p1, ..., pm) where S is an arbitrary invertible matrix of Zm×m

n (m > 2) and
pi(w

′) = siw
′ × siw

′ for all i = 1, ...,m. Let σ, σ′ : {1, ...,m} → {1, ...,m} be two arbitrary functions
such that σ ̸= Id or σ′ ̸= Id and p′i(w

′) = sσ(i)w
′ × sσ′(i)w

′. By exploiting Proposition 1 of [2], one
easily shows that recovering the operator Q′ ← QGen(S, p′1, ..., p

′
m) only given Q is difficult (assuming the

hardness of factorization). Indeed, it suffices to note that the monomial coefficients of Q can be written
as m-symmetric polynomials of the tuples (s1, ..., sm) (where si is the ith row of S) while the monomial
coefficients of Q′ are not m-symmetric.

In our construction, public operators Q encapsulate “more randomness” because they involve two or
three invertible matrices chosen at random. This intuitively makes our problem more complex. Let Q0 be
a public operator dealing with three matrices S, S′, S′′ chosen at random. Our construction ensures that
there do not exist other operators Q dealing with the same triplet16 of matrices S, S′, S′′. Each (public)
monomial coefficient qj1j2j3 of Q0 is a sum of products of coefficients of T = S−1, S′ and S′′, i.e.

qj1j2j3 =

2κδ∑
i=1

tj1is
′
u′
ij2

s′′u′′
i j3

15 except if pk = 1, but in this case, the relation is trivial.
16 except the two operators Q considered in Substitute. Modifications of Substitute can avoid this.



where u′i and u′′i are parameters17 belonging to {1, ..., 2κδ}. Let us focus on the possibility of recovering a
new operator18 Q′

0. Fortunately, Proposition 8 ensures that it is not possible to recover the coefficients of
S, S′, S′′, implying that Q′

0 cannot be directly built. The construction of this operator requires computing
the coefficients q′j1j2j3 , which are sums of products of the coefficients of T = S−1, S′ and S′′. Some of the
involved products do not appear in any public value related to the public operators Q (because Q′

0 ̸= Q0

and the other operators Q do not deal with the same triplet of matrices S, S′, S′′). It follows that q′j1j2j3
cannot be obtained by computing linear combinations of these values. Moreover, it is difficult to imagine
expressing q′j1j2j3 as polynomials (or ratios of polynomials) of these values. Nevertheless, a priori, nothing
excludes public encryptions (ev)v=1,...,m being able to build Q′

0. However, these vectors depend on the
randomness introduced in Encrypt1. This randomness is independent of the matrices (Su)u=1,...,Υ used to
build the Q. Efficient linearization attacks in Setting 1 would allow removing this randomness, giving
values depending only on the coefficients of the matrices (Su)u=1,...,Υ involved in the public operators
Q. According to Conjecture 2, such attacks do not exist. This suggests that this randomness cannot be
removed and thus public encryptions (ev)v=1,...,m cannot be used to recover q′j1j2j3 .

Furthermore, without altering the security analysis of the previous sections, randomness can be in-
troduced in the choice of any public operator Q, making the system of equations derived from operators
Q widely unknown. The simplest way to achieve this consists of adding free (not involved in constraints)
components i = 2κδ+1, ... and choosing polynomials (pi)i=2κδ+1,... (see Section 3) at random: an arbitrary
number (each pi provides Θ(δ2) new variables) of new variables19 are introduced in the equations induced
by each operator Q. Another one is presented in detail in Appendix K of [2].

17 To simplify, the coefficients αi are assumed to be equal to 1 (see Definition 2).
18 still assuming αi = 1 for all i = 1, ..., 2κδ.
19 independent of pk


