
A Meet-in-the-Middle Attack on Round-Reduced mCrypton

Using the Differential Enumeration Technique

Yonglin Hao1?, Dongxia Bai1, Leibo Li2

1 Department of Computer Science and Technology, Tsinghua Universtiy, Beijing 100084, China

haoyl12@mails.tsinghua.edu.cn, baidx10@mails.tsinghua.edu.cn
2 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education,

School of Mathematics, Shandong University, Jinan, 250100, China

lileibo@mail.sdu.edu.cn

Abstract. This paper describes a meet-in-the-middle (MITM) attack against the round reduced ver-

sions of the block cipher mCrypton-64/96/128. We construct a 4-round distinguisher and lower the

memory requirement from 2100 to 244 using the differential enumeration technique. Based on the dis-

tinguisher, we launch a MITM attack on 7-round mCrypton-64/96/128 with complexities of 244 64-bit

blocks and 257 encryptions. Then we extend the basic attack to 8 rounds for mCrypton-128 by adding

some key-bridging techniques. The 8-round attack on mCrypton-128 requires a time complexity 2100

and a memory complexity 244. Furthermore, we construct a 5-round distinguisher and propose a MITM

attack on 9-round mCrypton-128 with a time complexity of 2115 encryptions and a memory complexity

of 2113 64-bit blocks.

1 Introduction

mCrypton is a 64-bit block cipher introduced in 2006 by Lim and Korkishko [1]. It is a reduced version of

Crypton [2]. It is specifically designed for resource-constrained devices like RFID tags and sensors in wireless

sensor networks. According to key length, mCrypton has three versions namely mCrypton-64/96/128.

Quite a few methods of cryptanalysis were applied to attack mCrypton. Under the related-key model,

there are two main results. Park [3] launched a related-key rectangle attack on 8-round mCrypton-128 in

the year 2009. Then, in 2012, Mala, Dakhilalian and Shakiba [4] gave a related-key impossible differential

cryptanalysis on 9-round mCrypton-96/128. These related-key attacks are important basis in estimating the

security of a block cipher, but they are not regarded as a real threat to the application of the cipher in

practice since they require a powerful assumption that the adversary can ask to modify the unknown key

used in the encryption.

For the attacks under the single-key model, there are only two biclique results on mCrypton: [5] managed

to attack mCrypton-96/128 and [6] further adapted the methods to all three versions. Like the biclique result

on AES [7], the two attacks mount to the full mCrypton but only with a marginal complexity over exhaustive

search. In this paper, we try to attack mCrypton under the single-key model using the meet-in-the-middle

method.

The meet-in-the-middle (MITM) attack was first introduced by Diffie and Hellman in 1977 [8]. In the past

decade, the MITM scenario has become one of the most fruitful cryptanalysis method. It has been used to

analyze block ciphers such as DES [9], KASUMI [10], IDEA [11],XTEA [12], KTANTAN [13] and Camellia

[14,15]. It also shows good efficiency in the cryptanalysis of hash functions [16,17,18] and is adapted to attack

against public key cryptosystem NTRU [19].

Among all the results of MITM attack, the most impressive ones come from the cryptanalysis on AES

block cipher in single-key setting [20,21,22,23,24].

Demirci and Selçuk launched the first MITM attack on AES at FSE 2008 [20]. They constructed a 5-

round distinguisher and managed to analyze 7-round AES-192 and 8-round AES-256 using data/time/memory

tradeoff. Their attack needs a small data complexity of 232. But its memory complexity reaches 2200 since it

requires to store a precomputation determined by 25 intermediated variable bytes. The number of parameters

? Corresponding author.

can be reduced to 24 by storing the differentials instead of values in the precomputation table. Although

modifications was made in [21] and [22], the crisis of memory requirement remained severe.

At ASIACRYPT 2010, Dunkelman, Keller and Shamir [23] introduced the differential enumeration and

multiset ideas to MITM attacks and reduced the high memory complexity in the precomputation phase. They

proved that if a pair conforms a truncated differential characteristic, the number of desired 24 intermediate

variable bytes will descend to 16. Furthermore, at EUROCRYPT 2013, Derbez, Fouque and Jean [24] modified

Dunkelman et al.’s attack with the rebound-like idea. They proved that many values in the precomputation

talbe are not reached under the constraint of the truncated differential. They further lower the number of

desired intermediate variable bytes to 10 and diminish the size of precomputation table by a large scale.

Based on the 4-round distinguisher, they gave the most efficient attacks on 7-round AES-128 and 8-round

AES-192/256. They also introduced a 5-round distinguisher to analyze 9-round AES-256. In this paper, we

apply [24]’s method to mCrypton.

Table 1. Summary of the Attacks on mCrypton-64/96/128 under the Single-Key Model.

Version Rounds Data Time Memory Method Reference

64
7 257 257 244 MITM Section 4

12 248 263.38 − Biclique [6]

96

7 257 257 244 MITM Section 4

12 227.54 294.09 220 Biclique [5]

12 248 294.81 − Biclique [6]

128

7 257 257 244 MITM Section 4

8 257 2100 244 MITM Section 5

9 257 2115 2113 MITM Section 6

12 220.1 2125.84 220 Biclique [5]

12 248 2126.26 − Biclique [6]

Our contribution. We construct a 4-round distinguisher of mCrypton and, using the differential enumer-

ation technique, we prove that such a distinguisher can be determined by 11 intermediate variable nibbles.

Based on these ideas, we launch a MITM attack on 7 rounds for all three versions of mCrypton, which

recovers 36 subkey bits with a low memory complexity of 244 64-bit blocks. Then, we find some properties

of key schedule and extend the basic attack to 8 rounds for mCrypton-128. The 8-round attack recovers 100

subkey bits. Furthermore, we construct a 5-round distinguisher and mount to 9 rounds for mCrypton-128..

This 9-round attack can recover 116 subkey bits with a time complexity of 2115 and a memory complexity

2113. Table 1 summarizes our results along with the other previous results of mCrypton-64/96/128 under the

single-key model.

Organization of the Paper. Section 2 provides the description of the block cipher mCrypton and some

related works. Section 3 describes the 4-round distinguisher of our basic attack and the way in which the

differential enumeration method lower the memory complexity. Section 4 describes our basic MITM attack

on 7-round mCrypton-64/96/128. In Section 5, we extend the basic attack to 8-round mCrypton-128 using

some key bridging techniques. Then, in Section 6 we present a 5-round distinguisher and attack 9-round

mCrypton-128. Finally, we summarize our paper in Section 7.

2 Preliminary

This part contains some background information of our attack. It also gives the notations and units used in

this article. As is commonly accepted, the plaintexts are denoted by p and ciphertexts by c.

2

2.1 Description of mCrypton

mCrypton is a 64-bit lightweight block cipher based on SPN design. It consists of 16 4-bit nibbles which are

represented by a 4× 4 matrix as follows:

A =


a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15

 (1)

It has three versions, categorized by key length, namely mCrypton-64/96/128. All the three versions have 12

rounds and each round consists of 4 transformations as follows.

Nonlinear Substitution γ. This transformation consists of nibble-wise substitutions using four 4-bit S-

boxes Si(0 ≤ i ≤ 3). The four S-boxes has relationship:

S0 = S−12 , S1 = S−13 .

According to our experiments, the S-boxes of mCrypton have the same property with the S-box of AES

(Property 1).

Property 1. Given ∆i and ∆o two non-zero differences in IF16, the equation

St(x)⊕ St(x⊕∆i) = ∆o, ∀t ∈ [0, 3]

has one solution on average.

Bit Permutation π. The bit permutation transformation π has the same function with the MixColumns

transformation of AES. It mixes each column of the 4 × 4 matrix A. For column i(0 ≤ i ≤ 3), it uses the

corresponding column permutations πi. Suppose

A = (A0, A1, A2, A3)

where A is the 4× 4 matrix and Ai is its i-th column. Then, we have

π(A) = (π0(A0), π1(A1), π2(A2), π3(A3)).

According to [1], each πi is defined for nibble columns a = (a0, a1, a2, a3)t and b = (b0, b1, b2, b3)t by

b = πi(a)⇔ bj =

3⊕
k=0

(m(i+j+k)mod4 • ak).

The symbol • means bit-wise AND and the masking nibbles mi are given by

m0 = 0xe = 11102,m1 = 0xd = 11012,m2 = 0xb = 10112,m2 = 0x7 = 01112.

π transformation is an involution, which means π = π−1. It has a differential brunch number of 4.

Column-To-Row Transposition τ . This is simply the ordinary matrix transposition. It moves the nibble

from the position (i, j) to position (j, i).

Key Addition σ. It is a simple bit-wise XOR operation and resembles the AddRoundKey operation of AES.

The r-th round (1 ≤ r ≤ 12) of mCrypton applied to a 64-bit state x can be denoted by

ρkr (x) = σkr ◦ τ ◦ π ◦ γ(x).

Like AES, mCrypton also performs an initial key addition transformation (σk0
) before round 1. In addition,

mCrypton adds a linear operation φ = τ ◦π ◦τ after round 12. So, the whole process of mCrypton encryption

is

c = φ ◦ ρk12
◦ ... ◦ ρk1

◦ σk0
(p)

3

Since we use some key bridging skills to analyze mCrypton-128, we briefly introduce the key schedule of

mCrypton-128:

Key Schedule of mCrypton-128. The 128-bit internal register

U = (U0, U1, U2, U3, U4, U5, U6, U7)

is first initialized with the 128-bit user key. Each Ui(0 ≤ i ≤ 7) is a 16-bit (4-nibble) word, occupying a row

of the 4× 4 matrix. Round keys kr(0 ≤ r ≤ 12) are computed consecutively as follows:

T ← S(U0)⊕ Cr, Ti ← T •Mi

kr = (U1 ⊕ T0, U2 ⊕ T1, U3 ⊕ T2, U4 ⊕ T3)

U ← (U5, U6, U7, U
<<3
0 , U1, U2, U3, U

<<8
4).

S is the nibble-wise S-box operation using S-box S0. Cr is the round constant word for round r. Masking

words Mi is to take the i-th nibble of a word:

M0 = 0xf000,M1 = 0x0f00,M2 = 0x00f0,M3 = 0x000f.

The symbol X<<n means left rotation of a 16-bit word X by n bits.

2.2 Notations and Units

Here, we summarize the notations that we use through this paper.

State xi
r: The 64-bit mCrypton state is represented by different small letters. Plaintexts and ciphertexts

are represented by p and c. In the r-th round, we denote the internal state after σkr
transformation by

xr, after γ by yr, after π by zr and after τ by wr. kr represents the round key while ur is calculated

linearly from kr with ur = π ◦ τ(kr). The difference of state x is denoted by ∆x. Besides, the superscript

represents the position that the state lies in a sequence (or set).

Nibble x[i]: We refer to the i-th nibble of a state x by x[i], and use x[i, · · · , j] for nibbles at positions from

i to j. The nibbles of the state is numbered as the matrix in equation (1).

Bit x[i]|k: Each nibble has 4 bits numbered 4,3,2,1 from left to right. If we refer to bit k of nibble x[i], we

denote it by x[i]|k.

Bit-wise operators:

‖ concatenate two strings of bits.

⊕ bit-wise XOR.

• bit-wise AND.

In this paper, memory complexities of our attacks are measured by the number of 64-bit mCrypton blocks

and time complexities by mCrypton encryptions (decryptions).

2.3 The Related Works

From the generic view of meet-in-the-middle attack, the cipher EK is treated as the combination of three

parts EK = E2
K2
◦Em ◦E1

K1
. The Em part in the middle has some particular property (such as a differential

characteristic), according to which we can identify the correct key by finding the appearance of the property

under each guess of subkey (K1,K2). The following definition will be used in this part.

Definition 1. (σ-set of AES, [25]) The σ-set is a set of 256 intermediate states of AES that one byte

traverses all values (the active byte) and the other bytes are constants (the inactive bytes).

4

We denote the σ-set by (x0, · · · , x255). After we encrypt the σ-set by an encryption function EK , the i-th

byte of the output values will form a 2048-bit ordered sequence (EK(x0)[i], · · · , EK(x255)[i]). The sequences

with particular properties will be stored in a precompted lookup table for distinguishing the correct key guess

during the attack.

In the first MITM attack on AES, Demirci et al. [20] build a distinguisher in Em associated with σ-set.

When a σ-set is encrypted, a certain byte of the 256 output values will form an ordered sequence. Demirci

et al. found that such an ordered sequence can be expressed as a function of 25 (or 24 if they only store the

differences rather than the values) intermediate byte parameters of Em. In precomputation phase of their

attack, the adversary precomputes the 28×25 ordered sequences and stores them in a table. In the online

phase, the adversary mounts an attack by guessing the value of K1, choosing suitable plaintexts to construct

a σ-set of Em, then partially decrypting the ciphertexts by guessing K2 to get the corresponding ordered

sequence, and checking whether the value lies in the precomputed table. If the value is found in the table,

the key guess (K1,K2) will be kept, otherwise discarded.

We also consider applying the differential enumeration technique proposed by Dunkelman et al. [23] to

reduce the memory requirement of the attack. This technique based on the observation that if a message of

the σ-set belongs to a pair conforming a spacial truncated differential characteristic, the possible values of

the ordered sequence will be restricted to a small subset of the value space. The essence of this technique

is fixing some values of intermediate parameters utilizing the truncated differential so that the size of the

precomputed table can be diminished by a large scale. On the other hand, additional steps has to be taken in

the online phase in order to find a pair satisfying the truncated differential characteristic because the σ-set is

constructed only for this kind of pairs. Apparently, the differential enumeration technique reduce the memory

requirement but also increase the data and time complexity. It is noticeable that Derbez et al. [24] improved

this technique at EUROCRYPT 2013. They further reduced the possible values in the precomputed table by

introducing some rebound-like ideas.

3 The 4-Round Distinguisher and The Differential Enumeration Tehcnique

The meet-in-the-middle strategy combined with the differential enumeration technique is the basis of our

attack. Imitating those of AES, we define the σ-set of the mCrypton as Definition 2.

Definition 2. (σ-set of mCrypton). A σ-set is a set of 16 64-bit mCrypton-states that are all different

in one nibble (the active nibble) and all equal in the other state nibbles (the inactive nibbles).

In our basic MITM attack, the middle part Em starts from x1 and ends at x5. So, in the following parts

of this paper, we denote the σ-set with an active nibble at position j(0 ≤ j ≤ 15) by

Aj = (x01, ..., x
15
1), (2)

and the corresponding ordered sequence constituted by the l-th nibble (l ∈ [0, 15]) of x5 is denoted by

Bl
j = (∆1x5[l], · · · , ∆15x5[l]), (3)

where ∆ixr = xir ⊕ x0r(1 ≤ i ≤ 15, 0 ≤ r ≤ 12).

Proposition 1 shows that 25 intermediate variable nibbles are required to deduce Bl
j from Aj . However,

if the x01 of σ-set A0 belongs to a pair conforming the truncated differential characteristic in Figure 1, we

can prove that the corresponding sequence B0
0 can only have 244 values determined by 11 nibble parameters

(Proposition 2). This is the differential enumeration method used in [23] and [24] to lower the memory

complexities of their attacks on AES.

Proposition 1. ∀j ∈ [0, 15] and ∀l ∈ [0, 15]. Let the σ-set be

Aj = (x01, ..., x
15
1)

Then, the corresponding sequence

Bl
j = (∆1x5[l], · · · , ∆15x5[l])

can be fully determined by 25 nibble parameters:

5

– 1 nibble of x01.

– The full 16-nibble state x03;

– 4 nibbles of x02.

– 4 nibbles of x04.

Proof. We just let j = 0 and l = 0. Then, the 25 nibbles required are:

x01[0], x02[0, 1, 2, 3], x03[0, · · · , 15], x04[0, 4, 8, 12].

For the t-th element of B0
0 (t ∈ [1, 15]), the difference ∆tx5[0] can be deduced from x04[0, 4, 8, 12] and

∆tx4[0, 4, 8, 12].

∆tx4[0, 4, 8, 12] requires the knowledge of x03[0, · · · , 15] and ∆tx3[0, · · · , 15].

∆tx3[0, ..., 15] is generated linearly from ∆ty2[0, · · · , 3], which can be deduced from x02[0, 1, 2, 3] and

∆tx2[0, 1, 2, 3].

∆tx2[0, 1, 2, 3] is generated linearly from ∆ty1[0], which requires the knowledge of x01[0] and ∆tx1[0].

∆tx1[0] can be deduced directly from A0. Hence, all the nibble parameters required are: x01[0], x02[0, 1, 2, 3],

x03[0, · · · , 15], x04[0, 4, 8, 12]. ut

Figure 1. The 4-round truncated differential characteristic. Dashed nibbles are active.

Proposition 2. If the x01 of a σ-set A0 belongs to a pair satisfying the differential characteristic in Figure

1, the corresponding sequence B0
0 can only take 244 values.

Proof. According to Proposition 1, B0
0 is determined by 25 nibbles namely:

x01[0], x02[0, 1, 2, 3], x03[0, · · · , 15], x04[0, 4, 8, 12].

But if x0 of A0 belongs to one of the pairs conforming the truncated differential characteristic in Figure 1,

the corresponding sequence B0
0 can only take 244 values determined by 11 nibbles namely

x01[0], ∆x1[0], x02[0, 1, 2, 3], x04[0, 4, 8, 12], ∆z4[0],

where ∆ refers to the difference of the pair conforming the differential characteristic.

The knowledge of x01[0] and ∆x1[0] is sufficient to deduce ∆x2[0, 1, 2, 3]. Combining x02[0, 1, 2, 3] and

∆x2[0, 1, 2, 3], we get the 16-nibble difference ∆x3.

Similarly, we can deduce ∆y4[0, 4, 8, 12] from ∆z4[0]. Adding the knowledge of x04[0, 4, 8, 12], the 16-nibble

differential ∆y3 is determined.

Since y3 = γ(x3), according to the property of mCrypton S-boxes (Property 1), we can only get one value

on average for each of the 16-nibble state x3 using super-box matches technique [26].

This is the way we deduce the sequence B0
0 from the σ-set A0. ut

The 4-round truncated differential character in Figure 1 is the distinguisher that we use in the following

section.

6

4 The Basic Attack on 7-Round mCrypton-64/96/128

In this part, we describe our basic attack on 7-round mCrypton-64/96/128. This attack can recovery 36

subkey bits. The complete differential path used in this attack can be seen in Figure 4 in Appendix A. This

attack is composed of two phases: the precomputation phase and the online phase.

Precomputation Phase:In the precomputation phase, we set up a lookup table containing 244 ordered

sequences described as Proposition 2. The procedure is similar to the proof of Proposition 1 and Proposition

2, and is described as follows.

1. For each 44-bit string x01[0]‖∆x1[0]‖x02[0, · · · , 3]‖x04[0, 4, 8, 12]‖∆z4[0], we compute the possible value of

the 25 nibbles, namely x01[0], x02[0, · · · , 3], x03, x
0
4[0, 4, 8, 12], only with which can we determine the ordered

sequence B0
0 . The procedure is as follows:

(a) Compute ∆x2[0, · · · , 3] with the knowledge of x01[0] and ∆x1[0];

(b) Compute ∆x3 with the knowledge of x02[0, · · · , 3] and ∆x2[0, · · · , 3];

(c) Compute ∆y4[0, 4, 8, 12] with the knowledge of ∆z4[0];

(d) Compute ∆y3 with the knowledge of ∆y4[0, 4, 8, 12] and x4[0, 4, 8, 12];

(e) With the knowledge of ∆y3 and ∆x3 and using the super-box matches, we can determine the possible

values of x03 satisfying γ(x03)⊕γ(x03⊕∆x3) = ∆y3. According to Property 1, x03 has only one possible

value on average.

2. Now that we have obtained the value of the 25 nibbles namely x01[0], x02[0, · · · , 3], x03, x
0
4[0, 4, 8, 12]. For all

the 15 possible values of ∆tx01[0], t ∈ [1, 15], we can compute the t-th element of B0
0 , ∆tx5[0], by executing

the following substeps:

(a) Compute ∆tx2[0, · · · , 3] with the knowledge of ∆tx0[0] and x01[0];

(b) Compute ∆tx3 with the knowledge of ∆tx2[0, · · · , 3] and x02[0, · · · , 3];

(c) Compute ∆tx4[0, 4, 8, 12] with the knowledge of ∆tx3 and x03;

(d) Compute ∆tx5[0] with the knowledge of ∆tx4[0, 4, 8, 12] and x04[0, 4, 8, 12]. And ∆tx5 is the t-th

element of B0
0

3. Store all the 244 B0
0s in a hash table Ts.

Online Phase: In the online phase of this attack, we first find the right pairs satisfying the truncated

differential characteristic. Then, for each member of the pairs, we construct its σ-set A0 and deduce the

corresponding ordered sequence B0
0 through partial encryptions&decryptions. Finally, we check whether the

obtained B0
0 exist in the precomputed lookup table Ts. The detailed procedure is as follows.

1. Encrypt 241 structures of 216 plaintexts such that p[0, 4, 8, 12] takes all values and other nibbles are

constants. There are about 231 pairs (p, p′) in each structure, so there are 272 pairs in total.

2. Within each structure, select the pairs whose ∆c only have difference at positions 0,4,8,12. Since this is

a 48-bit filter, approximately 224 of the 272 message pairs will remain after this step.

3. For each remaining pair, assuming that it satisfies the differential path in Figure 4, we do the following

substeps.

(a) Guess the difference value ∆x1[0] and linearly deduce ∆y0[0, 4, 8, 12].

(b) For each guess, deduce the possible subkey nibbles k0[0, 4, 8, 12] with the knowledge of ∆y0[0, 4, 8, 12]

and ∆x0[0, 4, 8, 12] = ∆p[0, 4, 8, 12]. According to Property 1, one k0[0, 4, 8, 12] value can be acquired

on average.

(c) Guess the difference value ∆y5[0] and deduce ∆x6[0, · · · , 3].

(d) For each guess, deduce the possible u7[0, · · · , 3] with the knowledge of∆x6[0, · · · , 3] and∆y6[0, 4, 8, 12]

(∆y6 = ∆τ(c)). According to Property 1, one u7[0, · · · , 3] can be acquired on average.

4. For each deduced subkey k0[0, 4, 8, 12]‖u7[0, · · · , 3], we obtain at least one ordered sequence B0
0 with the

following substeps.

(a) Select one message of the right pair, denoted by p0, and deduce its x01[0] through partial encryption.

(b) Then, let t traverse through [1, 15] so that we can compute ∆tx1[0] = x01[0]⊕ t and deduce plaintexts

pt with the knowledge of ∆tx1[0] and p0 through partial decryption. At this point, we have acquired

the plaintexts (p0, · · · , p15) corresponding to the σ-set (x01, · · · , x151).

7

(c) Query the ciphertexts of (p0, · · · , p15) and deduce the sequence

(x06[0, · · · , 3], · · · , x156 [0, · · · , 3]) (4)

through partial decryption with the knowledge of u7[0, · · · , 3].

(d) Guess subkey u6[0] and deduce the ordered sequence B0
0 = (∆1x5[0], · · · , ∆15x5[0]) from (4) through

partial decryption.
5. Identify the right subkeys k0[0, 4, 8, 12]‖u6[0]‖u7[0, · · · , 3] by verifying whether the sequence B0

0 exists in

the precomputed lookup table Ts. If B0
0 ∈ Ts, the key guesses are correct with high probability. The error

rate is 244−60 = 2−16 to be precise.

Complexity analysis. In the pre-computation phase, Ts contains 244 sequences and each sequence occupies

60 bits of space. So the memory complexity of this attack is dominated by Ts’ 244 64-bit blocks. Since each

sequence has 15 nibbles, it requires 244 × 15 ≈ 248 encryptions to construct the lookup table. The time

complexity of the online phase is dominated by step 1 which involves encrypting 241 × 216 = 257 plaintexts.

So the time and data complexity of our attack are both 257.

5 Extend the Basic Attack to 8 Rounds for mCrypton-128

Using the key bridging technique, we can further attack 8-round mCrypton-128. According to the key schedule

of mCrypton-128, the knowledge of k8 can deduce some bits in k0 (Proposition 3) with which we can lower

the time complexity of the online phase.

Proposition 3. By the key schedule of mCrypton-128, knowledge of the entire 16-nibble k8 allows deduce

k0[6], 3 bits of k0[2] and 1 bit of k0[14].

Proof. According to the key schedule of mCrypton-128, the relationship of the 8 bits are:

k0[2]|4,3,2 = k8[3]|3,2,1 (5)

k0[6]|4,3,2 = k8[7]|3,2,1 (6)

k0[6]|1 = k8[4]|4 (7)

k0[14]|1 = k8[12]|4 (8)

The readers may refer to [1] for the detailed key schedule of mCrypton-128. ut

In order to make full use of Proposition 3, we deliberately change the form of the truncated differential

characteristic of this attack to the one in Figure 2. The σ-set of this attack has an active nibble at position

8 and is denoted by A8. The corresponding ordered sequence is composed of nibble 0 of x5 and is denoted

by B0
8 . The complete differential characteristic of this attack can be seen in Figure 5 in Appendix A.

Figure 2. The differential characteristic for 8-round mCrypton-128.

The precomputation phase of this 8-round attack is identical to that of the basic attack. In this phase,

we construct a lookup table Ts containing 244 possible values of B0
8 determined by 11 intermediate variable

nibbles namely

x01[8], ∆x1[12], x02[0, 1, 2, 3], x04[0, 4, 8, 12], ∆z4[0].

In the online phase, additional subkey has to be deduced so that we can extend the basic 7-round attack

to 8 rounds. The procedure of the online phase is as follow.

8

1. Encrypt 241 structures of 216 plaintexts with active nibbles at positions 2,6,10,14. There are about 231

pairs (p, p′) in each structure, so there are 272 pairs in total.

2. For each pair, do the following substeps.

(a) Guess the difference ∆y6[0, · · · , 3] and compute the subkey k8 using the super-box matches. Since

there are 216 possible values of ∆y6[0, · · · , 3] and each can deduce one k8 one average (Proposition

1), 216 k8 values are obtained in this step.

(b) Deduce k0[6] from k8 using Proposition 3 and obtain ∆y0[6] through partial encryption. Discard the

keys if ∆y0[6]|4 6= 0 because

∆y0[6] = m3 •∆z0[2], m3 = 01112. (9)

This is a one-bit filter so there are 215 subkey guesses left.

(c) Now that we have acquired z0[2]|3,2,1 from (9), we guess z0[2]|4 and compute ∆y0[2, 6, 10, 14] with

which we can deduce k0[2, 6, 10, 14]. Discard the guesses violating equations (6) and (8) of Proposition

3. This step involves a 1-bit guess and a 4-bit filter, so there are about 215+1−4 = 212 subkey guesses

remain.

(d) Guess ∆y5[0] and deduce the 24 possible values of u7[0, · · · , 3]. At this point, we have acquired 216

key guesses of k0[2, 6, 10, 14]‖u7[0, · · · , 3]‖k8.

3. For each subkey, select a member of the right pair, guess u6[0] and construct the sequence B0
8 through

partial encryptions & decryptions.

4. Identify the right guess by checking whether B0
8 exist in Ts.

Complexity analysis. Similar to the basic attack, the data complexity of this attack is 257 and the memory

complexity is still dominated by the pre-computed lookup table, which is 244 64-bit blocks to be precise. The

time complexity of this attack is dominated by the 3rd step of the online phase which involves a 4-bit guess

and 16 encryptions/decryptions to construct B0
8 . Since this step has to be executed on each of the 220 subkey

guesses within each of the 272 pairs, the time complexity of this attack is 272 × 220 × 24 × 16 = 2100. The

8-round attack recovers 100 subkey bits namely k0[2, 6, 10, 14]‖u6[0]‖u7[0, · · · , 3]‖k8.

6 9-Round Attack on mCrypton-128

The 15-nibble sequences used in the previous attacks can not provide enough information to identify the

correct subkey guesses in the 9-round attack on mCrypton-128. In the 9-round attack, we consider the σ-

set with 2 active nibbles containing 256 64-bit blocks and its corresponding ordered sequence consists of

255 nibbles occupying 1020 bits of space. The key bridging technique used in this attack is interpreted as

Proposition 4.

Proposition 4. By the key schedule of mCrypton-128, the knowledge of the entire 16-nibble k9 allows to

deduce k0[0, 3]

Proof. According to the key schedule, we have

k0[3]|4,3,2 = k9[12]|3,2,1

k0[3]|1 = k9[13]|4

k0[0] = S0((k9[8]|2,1‖k9[9]|4,3))⊕ (k9[13]|3,2,1‖k9[14]|4)⊕ 1

These relationships can be deduced easily from the key schedule. ut

To fully utilize the key bridging technique, we select the σ-set with active nibbles at positions 0 and 12,

denoted by

A0,12 = {x01, x11, ..., x2551 }.

As is described in Subsection 2.1, the differential brunch of the π operation in mCrypton is 4. So, we deliber-

ately assign that the x01 of A0,12 belongs to a pair satisfying the 5-round truncated differential characteristic

9

Figure 3. The 5-round differential characteristic for attacking 9-round mCrypton-128.

shown in Figure 3. The ordered sequence corresponding to A0,12 consists of ∆tx6[0](1 ≤ t ≤ 255) and is

denoted by

B0
0,12 = (∆1x6[0], · · · , ∆255x6[0]).

Similar to Proposition 1 and 2, the sequence B0
0,12 is determined by 42 intermediate variable nibbles namely:

x01[0, 12], x02[0, · · · , 3], x03, x
0
4, x

0
5[0, 4, 8, 12]

and the number of desired nibbles can be lowered to 29 with the help of the truncated differential characteristic

in Figure 3 by using the differential enumeration method. The 29 decisive nibbles for B0
0,12 are namely

x01[0, 12], ∆x1[0, 12], x02[0, 1, 2, 3], x03, x
0
5[0, 4, 8, 12], ∆z5[0]. (10)

However, the differential character can only be satisfied when ∆z5[0] = 0x8 = 10002, which means ∆z5[0]

can only take 1 rather than 24 values. Since ∆z5[0] can only take 1 value, ∆x5[0, 4, 8] can only take 23×3 = 29

values, which is also true for x05[0, 4, 8] according to Property 1. So the total number of the targeted ordered

sequence is 24×25+9 = 2109. This 9-round attack is in high accordance with the 8-round one introduced in

Section 5, so we only briefly summarize the whole procedure as follow.

Precompuation phase. Construct the lookup table Ts containing 2109 values of B0
0,12 determined by 29

nibble parameters listed in (10).

Online phase.

1. Encrypt 225 structures of 232 plaintexts such that p[λ], where

λ = (0, 3, 4, 7, 8, 11, 12, 15),

takes all values and other nibbles are constants. There are 288 pairs in total.

2. For each pair, do the following steps.

(a) Guess ∆y7[0, · · · , 3] and deduce k9 using super-box matches. Since there are 216 possible values

of ∆y7[0, · · · , 3] and each can deduce averaging one k9 (Proposition 1), 216 k9 values are obtained

in this step.

(b) Deduce k0[0, 3] with the knowledge of k9 using Proposition 4. Then, compute ∆y0[0, 3] and deduce

∆y0[λ] with the relation between ∆y0 and ∆z0. With the knowledge of ∆y0[λ], we can further

retrieve k0[λ].

(c) Guess ∆y6[0] and deduce 23 possible values of u8[0, · · · , 3]‖u7[0], where u7[0] is deduced from the

knowledge of ∆x6[0] = 10002.

3. For each subkey, select a member of the right pair and deduce its B0
0,12 through partial decryptions.

4. Refer to the Ts and identify the right guess.

Complexity analysis. The data complexity of the 9-round attack is 225+32 = 257. The memory complexity

is dominated by the lookup table set up in the precomputation phase, which is 2109 × 1020/64 ≈ 2113 64-bit

blocks to be precise. The time complexity is dominated by the step 3 of the online phase which involves

288 × 216 × 23 × 256 = 2115 encryptions/decryptions. The 9-round attack recovers 116 subkey bits namely

k0[λ] ‖ u7[0] ‖ u8[0, · · · , 3] ‖ k9, where λ = (0, 3, 4, 7, 8, 11, 12, 15).

10

7 Conclusion

In this paper, we analyze the lightweight SPN block cipher mCrypton using the meet-in-the-middle (MITM)

attack under the single-key model. We use the differential enumeration technique to lower the memory com-

plexity, which used to be the bottleneck of the MITM method. We set up a 4-round distinguisher and manage

to launch a basic MITM attack on 7-round mCrypton-64/96/128. Adding some key bridging techniques, we

extend the basic attack to 8 rounds for mCrypton-128. We construct a 5-round distinguisher and further

mount to 9 rounds for mCrypton-128. The 9-round attack retrieves 116 subkey bits with memory complexity

2113 and time complexity 2115.

Acknowledgement. This work has been supported by the National Natural Science Foundation of China

(Grant No. 61133013) and by 973 Program (Grant No. 2013CB834205).

References

1. Lim, C.H., Korkishko, T.: mcrypton–a lightweight block cipher for security of low-cost rfid tags and sensors. In:

Information Security Applications. Springer (2006) 243–258

2. Lim, C.H.: Crypton: A new 128-bit block cipher. NIsT AEs Proposal (1998)

3. Park, J.H.: Security analysis of mcrypton proper to low-cost ubiquitous computing devices and applications.

International Journal of Communication Systems 22(8) (2009) 959–969

4. Mala, H., Dakhilalian, M., Shakiba, M.: Cryptanalysis of mcryptona lightweight block cipher for security of rfid

tags and sensors. International Journal of Communication Systems 25(4) (2012) 415–426

5. Shakiba, M., Dakhilalian, M., Mala, H.: Non-isomorphic biclique cryptanalysis and its application to full-round

mcrypton. IACR Cryptology ePrint Archive 2013 (2013) 141

6. Jeong, K., Kang, H., Lee, C., Sung, J., Hong, S., Lim, J.I.: Weakness of lightweight block ciphers mcrypton and

led against biclique cryptanalysis. Peer-to-Peer Networking and Applications (2013) 1–17

7. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full aes. In: Advances in

Cryptology–ASIACRYPT 2011. Springer (2011) 344–371

8. Diffie, W.: Exhaustive crypianalysis of the nbs daia encrypiion siandard. (1977)

9. Dunkelman, O., Sekar, G., Preneel, B.: Improved meet-in-the-middle attacks on reduced-round des. In: Progress

in Cryptology–INDOCRYPT 2007. Springer (2007) 86–100

10. Jia, K., Yu, H., Wang, X.: A meet-in-the-middle attack on the full kasumi. IACR Cryptology ePrint Archive

2011 (2011) 466

11. Demirci, H., Selçuk, A.A., Türe, E.: A new meet-in-the-middle attack on the idea block cipher. In: Selected Areas

in Cryptography, Springer (2004) 117–129

12. Sekar, G., Mouha, N., Velichkov, V., Preneel, B.: Meet-in-the-middle attacks on reduced-round xtea. In: Topics

in Cryptology–CT-RSA 2011. Springer (2011) 250–267

13. Bogdanov, A., Rechberger, C.: A 3-subset meet-in-the-middle attack: cryptanalysis of the lightweight block cipher

ktantan. In: Selected Areas in Cryptography, Springer (2011) 229–240

14. Lu, J., Wei, Y., Pasalic, E., Fouque, P.A.: Meet-in-the-middle attack on reduced versions of the camellia block

cipher. In: Advances in Information and Computer Security. Springer (2012) 197–215

15. Chen, J., Li, L.: Low data complexity attack on reduced camellia-256. In: Information Security and Privacy,

Springer (2012) 101–114

16. Aoki, K., Sasaki, Y.: Meet-in-the-middle preimage attacks against reduced sha-0 and sha-1. In: Advances in

Cryptology-CRYPTO 2009. Springer (2009) 70–89

17. Sasaki, Y.: Meet-in-the-middle preimage attacks on aes hashing modes and an application to whirlpool. In: Fast

Software Encryption, Springer (2011) 378–396

18. Sasaki, Y., Aoki, K.: Meet-in-the-middle preimage attacks on double-branch hash functions: Application to ripemd

and others. In: Information Security and Privacy, Springer (2009) 214–231

19. Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack against ntru. In: Advances in

Cryptology-CRYPTO 2007. Springer (2007) 150–169

20. Demirci, H., Selçuk, A.A.: A meet-in-the-middle attack on 8-round aes. In: Fast Software Encryption, Springer

(2008) 116–126

21. Demirci, H., Taşkın, İ., Çoban, M., Baysal, A.: Improved meet-in-the-middle attacks on aes. In: Progress in

Cryptology-INDOCRYPT 2009. Springer (2009) 144–156

11

22. Wei, Y., Lu, J., Hu, Y.: Meet-in-the-middle attack on 8 rounds of the aes block cipher under 192 key bits. In:

Information Security Practice and Experience. Springer (2011) 222–232

23. Dunkelman, O., Keller, N., Shamir, A.: Improved single-key attacks on 8-round aes-192 and aes-256. In: Advances

in Cryptology-ASIACRYPT 2010. Springer (2010) 158–176

24. Derbez, P., Fouque, P.A., Jean, J.: Improved key recovery attacks on reduced-round aes in the single-key setting.

In: Advances in Cryptology–EUROCRYPT 2013. Springer (2013) 371–387

25. Daemen, J., Rijmen, V.: Aes proposal: Rijndael. (1999)

26. Gilbert, H., Peyrin, T.: Super-sbox cryptanalysis: improved attacks for aes-like permutations. In: Fast Software

Encryption, Springer (2010) 365–383

Appendix

A The Complete Differential Characteristics Used in This Article

Figure 4. Complete 7-round differential characteristic used in Section 4

12

Figure 5. Complete 8-round differential characteristic used in Section 5

13

Figure 6. Complete 9-round differential characteristic used in Section 6

14

	A Meet-in-the-Middle Attack on Round-Reduced mCrypton Using the Differential Enumeration Technique
	Introduction
	Preliminary
	Description of mCrypton
	Notations and Units
	The Related Works

	The 4-Round Distinguisher and The Differential Enumeration Tehcnique
	The Basic Attack on 7-Round mCrypton-64/96/128
	Extend the Basic Attack to 8 Rounds for mCrypton-128
	9-Round Attack on mCrypton-128
	Conclusion
	The Complete Differential Characteristics Used in This Article

