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Abstract. A d-broadcast primitive is a communication primitive that
allows a sender to send a value from a domain of size d to a set of par-
ties. A broadcast protocol emulates the d-broadcast primitive using only
point-to-point channels, even if some of the parties cheat, in the sense
that all correct recipients agree on the same value v (consistency), and
if the sender is correct, then v is the value sent by the sender (validity).
A celebrated result by Pease, Shostak and Lamport states that such a
broadcast protocol exists if and only if t < n/3, where n denotes the
total number of parties and t denotes the upper bound on the number
of cheaters.
This paper is concerned with broadcast protocols for any number of
cheaters (t < n), which can be possible only if, in addition to point-to-
point channels, another primitive is available. Broadcast amplification
is the problem of achieving d-broadcast when d′-broadcast can be used
once, for d′ < d. Let φn(d) denote the minimal such d′ for domain size d.
We show that for n = 3 parties, broadcast for any domain size is possible
if only a single 3-broadcast is available, and broadcast of a single bit
(d′ = 2) is not sufficient, i.e., φ3(d) = 3 for any d ≥ 3. In contrast, for
n > 3 no broadcast amplification is possible, i.e., φn(d) = d for any d.
However, if other parties than the sender can also broadcast some short
messages, then broadcast amplification is possible for any n. Let φ∗n(d)
denote the minimal d′ such that d-broadcast can be constructed from
primitives d′1-broadcast,. . . , d′k-broadcast, where d′ =

∏
i d
′
i (i.e., log d′ =∑

i log d′i). Note that φ∗n(d) ≤ φn(d). We show that broadcasting 8n logn
bits in total suffices, independently of d, and that at least n−2 parties, in-
cluding the sender, must broadcast at least one bit. Hence min(log d, n−
2) ≤ log φ∗n(d) ≤ 8n logn.

1 Introduction

1.1 Byzantine Broadcast

We consider a set P = {P1, . . . , Pn} of n parties connected by authenticated
synchronous point-to-point channels.1 The broadcast problem (also known as

1 Synchronous means that the parties work in synchronous rounds such that the mes-
sages are guaranteed to be delivered within the same round in which they were sent.
If the sending party inputs no message (or a message outside the agreed domain) to
the channel, then the receiving party gets a default output.
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the Byzantine generals problem) is defined as follows [PSL80]: A specific party,
the sender, wants to distribute a message to the other parties in such a way that
all correct parties obtain the same message, even if up to t of the parties cheat
(also called Byzantine) and deviate arbitrarily from the prescribed protocol. We
assume that P1 is the sender and R = P \{P1} is the set of recipients. Formally:

Definition 1. A protocol for the set P = {P1, . . . , Pn} of parties, where P1 has
an input value v ∈ D and each party in R outputs a value in D, is called a
broadcast protocol for domain D if the following conditions are satisfied:2

Consistency: All correct parties Pi ∈ R output the same value v ∈ D.
Validity: If the sender P1 is correct, then v is the input value of P1.
Termination: Every correct party in P terminates.

A broadcast protocol can be understood as emulating a so-called broadcast
primitive (or channel), i.e., an ideal communication primitive where P1 inputs
a value which is output to all other parties. Broadcast is one of the most fun-
damental primitives in distributed computing. It is used as building block in
various protocols like voting, bidding, collective contract signing, secure multi-
party computation, etc.

A celebrated result by Pease, Shostak and Lamport states that for any non-
trivial D (i.e., |D| ≥ 2), a broadcast protocol exists if and only if the upper
bound t on the number of cheaters satisfies t < n/3 [PSL80,BGP92,CW92].

1.2 Broadcast Amplification

This paper is concerned with broadcast protocols for any number of cheaters
(t < n), which can be possible only if, in addition to point-to-point channels,
another primitive is available.3 We consider perfect security, which means that
the cheating probability is zero.

The perhaps most natural choice of such an additional primitive is the avail-
ability of some broadcast primitives for smaller domain sizes. Let d-broadcast
be a broadcast primitive (or broadcast channel) for message domain size d for a
specific sender.

We assume that in addition to point-to-point channels, the parties have access
to a system called BBB which provides a broadcast primitive as a black-box. If
invoked for sender Pi and domain D′, BBB takes input v ∈ D′ from Pi and outputs
v to all parties in P (except Pi).

In this setting, the first and most natural question that arises is: Can a sender
broadcast a message with domain size d by using point-to-point communication
and broadcasting only a single message with domain size d′ < d?

2 The domain can without essential loss of generality be assumed to be D = [d], where
here and below we define [k] = {1, . . . , k}.

3 One type of primitive considered previously is a so-called trusted set-
up [DS83,PW96]. In such a model, perfect security is not achievable, but statistical
or cryptographic security is.
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Definition 2. Let φn(d) denote the minimal d′ such that d-broadcast can be
constructed from d′-broadcast.

Trivially, φn(d) ≤ d, as d-broadcast can be constructed directly from d-
broadcast.

The most natural generalization of the above question is the following:4 If
any party can broadcast short messages, what is the minimal total number of
bits that need to be broadcast to construct an `-bit broadcast? More precisely,
since we consider arbitrary alphabet sizes (not just powers of 2), the question is
to determine the quantity φ∗n(d) defined below.

Definition 3. Let φ∗n(d) denote the minimal d′ such that d-broadcast can be
constructed from the k primitives d′1-broadcast, . . . , d′k-broadcast, where d′ =∏
i d
′
i.

Note that log d′ =
∑
i log d′i is the total number of bits of information5 broad-

cast using BBB. It is therefore often natural to state results for the quantity
log φ∗n(d). It is obvious that φ∗n(d) ≤ φn(d).

A protocol that amplifies the domain of a broadcast, in the sense of the above
two definitions, is called a broadcast-amplification protocol. A broadcast amplifi-
cation protocol for domain size d can be used to replace a call to a d-broadcast
primitive within another protocol. Hence broadcast amplification protocols can
be constructed recursively.

One can call φn(d) and φ∗n(d) the intrinsic broadcast complexity of domain
size d, in the single-sender and in the general multi-sender model, respectively.6

The goals of this paper are twofold. First, we study feasibility results, i.e.,
what is possible in principle. Therefore while studying the quantities φn(d) and
φ∗n(d) we do not make any restriction on the use of point-to-point channels (In
fact, our protocols which are optimized for the BBB usage communicate expo-
nential number of messages over point-to-point channels and are built for suc-
cinctness of the proof, not for communication complexity.) Second, based on the
obtained bounds for φn(d) and φ∗n(d) we search for protocols which are both
efficient in terms of the BBB and point-to-point channels usage.

1.3 Contributions of this Paper

This paper introduces the concept of broadcast amplification and proves a num-
ber of results, both feasibility results in terms of protocols as well as infeasibility
results in terms of impossibility proofs.

We first study the first question mentioned above, namely the setting where
the sender uses a single broadcast primitive of smaller domain. For the case of

4 More refined versions of this question exist but will not be considered.
5 Not necessarily exactly the number of actual bits.
6 One could also consider a single-sender multi-shot model, i.e., the model where the

sender can broadcast with BBB multiple times. Later we give a protocol for the single-
sender setting which requires only a single call to BBB and is optimal even in the
multi-shot model.
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three parties (n = 3), the smallest non-trivial case, we show the quite surprising
result that broadcast for any domain size d is possible if only a single 3-broadcast
(d′ = 3) is available. Moreover broadcast of a single bit (d′ = 2) is not sufficient.
In other words, φ3(d) = 3 for any d ≥ 3.

In contrast, for n > 3 no broadcast amplification is possible, i.e., φn(d) = d
for any d.

If not only the sender, but also other parties can broadcast some short mes-
sages, then (strong) broadcast amplification is possible for any n. We show that
broadcasting 8n log n bits of information in total suffices, independently of d, i.e.,
log φ∗n(d) ≤ 8n log n. On the negative side, we show that at least n − 2 parties
must broadcast at least one bit, i.e., min(log d, n− 2) ≤ log φ∗n(d).

The protocol that uses 8n log n bits to broadcast a value of domain size d com-
municates exponentially many messages over point-to-point channels. We give
an optimized version of this protocol which communicates a polynomial number
of messages over point-to-point channels but needs to broadcast O(n2 log log d)
bits with BBB.

1.4 Related Work

All known protocols for efficient multi-valued broadcast [TC84,FH06,LV11,Pat11]
can be interpreted as broadcast-amplification protocols, as they actually employ
an underlying broadcast scheme for short messages (besides the point-to-point
channels). These protocols tolerate only t < n/3 or t < n/2, where the under-
lying broadcast itself is realizable with a normal broadcast protocol (hence the
given broadcast channels are not needed at all).

Another approach for broadcast amplification can be derived from existing
signature-based broadcast protocols [DS83,PW96]. One can use the available
black-box broadcast to generate an appropriate setup (e.g., a PKI) and then use
the corresponding protocol over point-to-point channels to broadcast the ` bit
message. Thus we obtain broadcast-amplification protocols for t < n with crypto-
graphic and statistical security that require all parties to broadcast Poly(n) log `
bits in total for the construction of an `-bit broadcast.

Fitzi and Maurer considered amplification of the broadcast recipient set [FM00].
That is, they showed that with the access to local broadcast among every k par-
ties one can construct broadcast among n parties iff t < k−1

k+1n [FM00,CFF+05].

Another related line of research is the amplification of other primitives, like
OT extension [Bea96,IKNP03] or coin-toss extension [HMQU06].

In [HR13] the authors give a protocol for 3 players allowing to broadcast
message of any length by broadcasting 10 bits only is given. In our notation this
shows that log φ3(d) ≤ 10 for all d.

Broadcast amplification is an example of the construction of a consistency
primitive from another consistency primitive as defined in [Mau04].
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2 Broadcast-Amplification Model

A broadcast-amplification protocol consists of the programs π1, . . . , πn that the
players P1, . . . , Pn use. Each program πi is a randomized algorithm (which takes
an input from domain D in case of the sender’s program π1) and produces
an output. The program πi has n − 1 interfaces to point-to-point channels to
communicate with the other programs and additional interfaces to access BBB.

We now describe how the programs interact with BBB. First, we extend the
notion of d-broadcast given in Section 1.2. Let (r, Pi, d)-broadcast be a broadcast
channel available in round r which allows Pi to broadcast one single value from
a domain of size d among the parties. We assume that each program πj has an
interface to each (r, Pi, d)-broadcast channel. Whenever we say that the parties
broadcast with BBB, we mean that they actually access the corresponding broad-
cast channel by explicitly giving input/asking for an output on that channel’s
interface.

The protocol must ensure that the correct parties agree on which (r, Pi, d)-
broadcast channels to invoke, that is, on r, Pi and d.7 We say that a (r, Pi, d)-
broadcast channel is used if the correct parties access it, i.e., in round r correct
parties expect an output provided by Pi of a domain of the size d (in case of a
correct Pi, he provides the corresponding input). Note that which channels are
used by the protocol may not be necessarily fixed a priori and may depend on
the execution. We say that a broadcast-amplification protocol has a static BBB

usage pattern if the broadcast channels used are fixed beforehand. As opposed to
the static case, protocols with a dynamic BBB usage pattern allow to broadcast
with BBB adaptively to the execution, where of course still agreement on which
broadcast channels to use is required among the correct parties.

Depending on which channels are used we distinguish the following models.

Definition 4. The single-sender model allows for protocols where only (r, P1, d)-
broadcast channels are used, i.e., only P1 broadcasts with BBB (If only one chan-
nel is used then such a single-sender model is called single-shot; otherwise, it
is called multi-shot.) The multi-sender model does not put any limitations on
the broadcast channels used.

The costs d′ of BBB usage of a broadcast-amplification protocol with a static
BBB pattern is defined to be

∏
i di, where di’s are the domain sizes of the broad-

cast channels used. The protocols with a dynamic BBB usage pattern have costs
d′ to be computed as the maximum of

∏
i di among all possible executions.

We say that a broadcast-amplification protocol is non-trivial if its costs d′ is
strictly smaller than the size of the broadcast value domain d = |D|, i.e., d′ < d.

7 This requirement stems from the observation that the broadcast channel may be
implemented via a different protocol and hence in order to employ it all correct
parties must start its execution together while agreeing on the broadcasting party
and the domain of the broadcast value. Note that without this requirement, the
BBB could be abused to reach agreement on “hidden” information, e.g., one could
broadcast an `-bit message v with using BBB only for a single bit (in round v).
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3 Single-Sender Model

In this section we consider a single-sender model, that is, only the sender is
allowed to use the BBB oracle. First, we completely investigate the situation for
n = 3, that is, we show that 3-broadcast is enough to simulate any d-broadcast
while 2-broadcast is not. On the negative side, we prove that for any n > 3
perfectly secure broadcast amplification is not possible, showing that n = 3 is a
peculiar case in the context of broadcast-amplification protocols.

3.1 Broadcast Amplification for 3 Parties

We construct a broadcast-amplification protocol for three parties that allows the
sender to broadcast a value v from domain D of size d, where the sender uses BBB
to broadcast one value from a domain D′ of size d′ = 3. For ease of presentation,
we assume that D = [d] and D′ = [3].

The protocol works recursively. For d = 3, v is broadcast directly via BBB.
For d ≥ 4, the sender transmits v to both recipients, who then exchange the
received values and forward the exchanged values back to the sender. Finally,
the sender broadcasts a hint h from domain [d− 1], which allows each recipient
to decide which of the values he holds is the right one. Broadcasting the hint is
realized via recursion.8

The crucial trick in this protocol is the computation of the hint h. Very gener-
ically, this computation is expressed as a special function which takes as input
three values (the original value v and the two values sent back to the sender)
and outputs h. Given the hint h, the recipients decide on the value received from
the sender if it is consistent with h. Otherwise, if the other recipient’s value (as
received in the exchange phase) is consistent with h, then that value is taken.
Otherwise, some default value (say ⊥) is taken.

More formally, denote the value of the sender by v; the values received by
the recipients P2 and P3 by v2 and v3, respectively; the values received by the
recipients in the exchange phase by v32 and v23, respectively; and the values sent
back to the sender by v321 and v231, respectively. The function producing the
hint is denoted with gd and maps triples of values from [d] × [d] × [d] into the
hint domain [d− 1]. Then the sender computes the hint h = gd(v, v321, v231) and
broadcasts it. Recipient P2 outputs v2 if h = gd(v2, v32, ṽ231) for some ṽ231 ∈ [d].
Otherwise, P2 outputs v32 if h = gd(v32, ṽ321, v2) for some ṽ321 ∈ [d]. Otherwise,
P2 outputs ⊥. P3 decides analogously. Clearly, this protocol guarantees validity.
Consistency is achieved as long as

∀v2, v3, ṽ231, ṽ321 ∈ [d] : v2 6= v3 ⇒ gd(v2, v3, ṽ231) 6= gd(v3, ṽ321, v2). (1)

For d ≥ 4, the function gd(x, y, z) can be constructed as follows: For x ≤ d−1,
let gd(x, y, z) = x (for any y, z). For x = d, let gd(x, y, z) = min([d− 1] \ {y, z}).
One can easily verify that gd satisfies (1).

8 As we see later, the recursion can be made much more efficient with the help of
so-called identifying predicates. We focus on the feasibility results and hence do not
optimize the protocols.
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Protocol AmplifyBC3(d, v)
1. If d = 3 then broadcast v using the BBB.
2. Otherwise:

2.1 P1 sends v to P2 and P3. Denote the values received with v2 and v3,
respectively.

2.2 P2 sends v2 to P3 and P3 sends v3 to P2. Denote the values received
by P2 and P3 with v32 and v23, respectively.

2.3 P2 sends v32 to P1 and P3 sends v23 to P1. Denote the values received
by v321 and v231, respectively.

2.4 P1 computes h = gd(v, v321, v231). Parties invoke AmplifyBC3(d− 1, h).
2.5 P2: If there exists ṽ231 such that h = gd(v2, v32, ṽ231) decide on v2.

Else if there exists ṽ321 such that h = gd(v32, ṽ321, v2) decide on v32.
Otherwise decide on ⊥.

2.6 P3: If there exists ṽ321 such that h = gd(v3, ṽ321, v23) decide on v3.
Else if there exists ṽ231 such that h = gd(v23, v3, ṽ231) decide on v23.
Otherwise decide on ⊥.

Lemma 1. The protocol AmplifyBC3 achieves broadcast. The sender P1 broad-
casts one value from domain [3] via BBB.

Proof. We prove by induction that the broadcast properties are satisfied. For
d = 3, broadcast is achieved by assumption of BBB. Now consider d ≥ 4:

Validity: If the sender is correct, then P2 and P3 receive h = gd(v, v321, v231)
as output from the recursive call to AmplifyBC3. As h = gd(v2, v32, ṽ231) for
ṽ231 = v231, a correct P2 decides on v2 = v. Analogously, h = gd(v3, ṽ321, v23)
for ṽ321 = v321, a correct P3 decides on v3 = v.

Consistency: This property is non-trivial only if both P2 and P3 are correct,
hence v23 = v2 and v32 = v3. Due to the Consistency property of the recursive
call to AmplifyBC3 both P2 and P3 receive the same hint h. If v2 = v3, then
by inspection of the protocol both parties decide on the same value (namely
on v2 if h ∈ {gd(v2, v2, ·), gd(v2, ·, v2)} and on ⊥ otherwise). If v2 6= v3, then
(1) implies that if P2 decides on v2 (i.e., h = gd(v2, v32, ṽ231)), then P3 does
not decide on v3 (i.e., h 6= gd(v3, ṽ321, v23)), but decides on v23 = v2 (i.e.,
h = gd(v23, v3, ṽ231)). Analogously, if P3 decides on v3, then P2 decides on v3
as well.

Termination: Follows by inspection.
ut

3.2 Generic Structure of Impossibility Proofs

The given lower-bounds proofs employ a standard indistinguishability argument
that is used to prove that certain security goals cannot be achieved by any pro-
tocol in the Byzantine environment [PSL80]. Such a proof goes by contradiction,
i.e., by assuming that the security goals can be satisfied by means of some pro-
tocol (π1, . . . , πn). Then the programs πi are used to build a configuration with
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Fig. 1. Drawing of a program πi. It has n−1 interfaces to bilateral channels with other
players P \ {Pi} labeled accordingly. The program πi is given v as input.

contradictory behavior. The configuration consists of multiple copies of πi con-
nected with bilateral channels and given admissible inputs. A pictorial drawing
of a program in such a configuration is shown in Figure 1. When describing a
configuration we will often use such a drawing accompanied with a textual de-
scription. If in the drawing an interface to a bilateral channel is not depicted
then it is connected to a “null” device which simulates the program sending no
messages. The interfaces to BBB are never drawn. Once the configuration is built,
one simultaneously starts all the programs in the configuration and analyzes the
outputs produced by the programs locally. By arguing that the view of some
programs πi and πj in the configuration is indistinguishable from their view
when run by the corresponding players Pi and Pj (while the adversary corrupts
the remaining players in P \{Pi, Pj}) one deduces consistency conditions on the
outputs by πi and πj that lead to a contradiction.

The main novelty of the proofs presented in this paper is that we consider an
extended communication model where in addition to bilateral channels players
are given access to BBB. While following the path described above, one needs to
additionally define the BBB behavior in the configuration.

In the following impossibility proofs we assume that the BBB usage pattern is
static. (In the full version of the paper we show how to adapt the impossibility
proofs given to include protocols with a dynamic BBB usage pattern.) Further-
more, the lower bounds are given only for perfectly-secure protocols, i.e., those
that fail with probability 0.

3.3 Lower Bounds in the Single-Sender Model

Lemma 2. There is no perfectly-secure protocol among 3 parties achieving broad-
cast amplification for domain D with |D| ≥ 3 by broadcasting only 1 bit via BBB.

Proof. Assume towards a contradiction that there is such a protocol (π1, π2, π3).
Without loss of generality, assume that D = [d] for some d ≥ 3.

We consider the following configuration: For i = 1, 2, 3 and j = 1, 2, 3 let πji
be an instance of πi. For j = 1, 2, 3 let πj1 be given input j. We construct the

configuration by connecting programs πji as shown in Figure 2. Now we execute

the programs. Whenever any program πj1 broadcasts a bit with BBB it is given

to programs πj2 and πj3.
Since there are 3 programs π1

1 , π
2
1 , π

3
1 broadcasting 1 bit only, there exist two

of them πi1 and πj1 broadcasting the same bit. Without loss of generality, assume
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Fig. 2. The configuration for n = 3 to show the impossibility of broadcast amplification
with broadcasting 1 bit only via BBB.

π1
1 π2

2 π3
3 π4

4 π5
2 π6

3 π7
4

. . . π1
z
q+2

V

2 1 3 2 4 3 2 4 3 2 4 3 2

Fig. 3. The configuration for n = 4 to show the impossibility of non-trivial broadcast
amplification with only the sender broadcasting.

that π1
1 and π2

1 broadcast the same bit. The configuration can be interpreted in
three different ways, which lead to contradicting requirements on the outputs of
the programs. (i) P1 holds input 1 and executes π1

1 , P3 executes π1
3 , and P2 is

corrupted and executes the remaining programs in the configuration. Due to the
validity property, π1

3 must output 1. (ii) P1 holds input 2 and executes π2
1 , P2

executes π2
2 , and P3 is corrupted and executes the remaining programs in the

configuration. Due to the validity property, π2
2 must output 2. (iii) P3 executes

π1
3 , P2 executes π2

2 , and P1 is corrupted and executes the remaining programs in
the configuration. Due to the consistency property, π1

3 and π2
2 must output the

same value. These three requirements cannot be satisfied simultaneously, hence
whatever output the programs make, the protocol (π1, π2, π3) is not a perfectly-
secure broadcast-amplification protocol. ut

Lemma 3. There is no perfectly-secure protocol among n ≥ 4 parties achieving
non-trivial broadcast amplification in the single-sender multi-shot model.

Proof. We first prove the lemma for n = 4, then reduce the case of arbitrary
n > 4 to n = 4.

(Case n = 4) Assume towards a contradiction that there exists a perfectly-
secure protocol (π1, π2, π3, π4) achieving non-trivial broadcast-amplification in
the single-sender model in q rounds (for some q ∈ N). On the highest level our
proof consists of three steps. (i) we define a configuration. (ii) we show that all
programs in the configuration must output the same value v. (iii) we use an
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information flow argument to prove that there is a program in the configuration
that does not have enough information to output v with probability 1 (this
argument is inspired by [Lam83]).
(i) We consider the following configuration: Let πji denote an instance of the
program πi. Consider a chain of q + 2 programs π1

1 , π
2
2 , π

3
3 , π

4
4 , π

5
2 , π

6
3 , . . . , π

q+2
z

connected as shown in Figure 3. The chain is built starting with a program π1
1

and then by repeatedly alternating copies of the programs π2, π3 and π4 until
the chain has q + 2 programs. To simplify the notation we will sometimes refer
to the programs in the chain without the subscript, i.e., as to π1, π2, . . . , πq+2.
Let π1

1 be given as input a uniform random variable V chosen from domain D.
Now we execute the programs. Whenever π1

1 uses BBB to broadcast some x, the
value x is given to all programs in the configuration.
(ii) First, we prove that any pair of connected recipients’ programs (πai , π

a+1
j )

(a ≥ 2) in the chain output the same value. One can view the configuration as
the player Pi running the program πai and Pj running πa+1

j while the adversary

corrupting {P1, P2, P3, P4}\{Pi, Pj} is simulating the programs π1, . . . , πa−1 and
πa+2, . . . , πq+2. Due to the consistency property, πai and πa+1

j must output the
same value. Since every connected pair of the recipients’ programs in the chain
outputs the same value, then the programs π2, . . . , πa+1 in the configuration out-
put the same value. Moreover, the configuration can be viewed as P1 executing
π1
1 , P2 executing π2

2 while the adversary who corrupts {P3, P4} is simulating the
remaining chain. Due to the validity property, π2

2 must output V . Finally, each
recipient’s program π2, . . . , πq+2 in the chain outputs V .
(iii) Let Sri be a random variable denoting the state of the program πi in the
chain after r rounds of the protocol execution. By state we understand the input
that the program has, the set of all messages that the program received up to
the rth round over point-to-point channels and on the BBB’s interface together
with the random coins it has used. Let Br be a random variable denoting the
list of the values that have been broadcast with BBB up to the rth round.
After r rounds only programs π1, π2, . . . , πr+1 can receive full information about
V . The remaining programs in the chain πr+2, πr+3, . . . , πq+2 can receive only
the information that was distributed with BBB, i.e., the information contained
in Br. That is, one can verify by induction that for any r and for all i ≥ r + 2
holds I(V ;Sri |Br) = 0. Hence, for the last program in the chain πq+2 after q
rounds of computation it holds that I(V ;Sqq+2|Bq) = 0 and hence I(V ;Sqq+2) ≤
H(Bq). Because we assumed that the protocol achieves non-trivial broadcast-
amplification we have that H(Bq) < H(V ). Combining these facts we get that
I(V ;Sqq+2) < H(V ). Hence, the last program πq+2 cannot output V with prob-
ability one, a contradiction.
(Case n > 4) Assume towards a contradiction that there is a protocol (π1, π2,
π3, . . . , πn) allowing to do broadcast amplification in the single-sender model.
One particular strategy of the adversary is to corrupt parties P5, . . . , Pn and
make them not execute their corresponding programs π5, . . . , πn. Still, the re-
maining protocol (π1, π2, π3, π4) must achieve broadcast, which contradicts the
first case. ut
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3.4 Summary

Theorem 1. If n = 3 then ∀d ≥ 3 φ3(d) = 3; otherwise, if n > 3 then
∀d φn(d) = d.

The first statement follows from combining Lemma 1 and Lemma 2. The
second statement follows from Lemma 3.

4 Multi-Sender Model

As we have seen in the previous section in the single-sender model no broadcast-
amplification is achievable for n ≥ 4. In this section we consider a generalization
of this model by allowing recipients to broadcast with BBB as well. In such a
model we show that broadcast-amplification is achievable for any n. Moreover, we
prove that in order to achieve a non-trivial broadcast-amplification for arbitrary
n essentially all recipients must broadcast with BBB.

4.1 Broadcast Amplification for n Parties

In this section we present a broadcast-amplification protocol for n parties, where
the parties broadcast with BBB at most 8n log n bits in total. We first introduce
the notion of identifying predicates and give an efficient construction of them.
Then we present a protocol for graded broadcast, which achieves only a relaxed
variant of broadcast, but only requires the sender to use BBB. Finally, we give
the main broadcast-amplification protocol, which uses graded broadcast and BBB

(by each party) to achieve broadcast.
While the presented protocol is very efficient in terms of the BBB usage (it

broadcasts via BBB only 8n log n bits to achieve broadcast of any ` bits), it com-
municates exponentially many messages over authenticated channels. We then
show how to optimize this protocol such that it communicates only a polynomial
(in n) number of messages at the expense of a higher BBB usage.

Identifying Predicates. An identifying predicate allows to identify a specific
element v from some small subset S ⊆ D, where D is a potentially large domain.
To our knowledge, this concept has been firstly introduced in [HR13].

Definition 5. A c-identifying predicate for domain D is a family of functions
Qk∈K : D → {0, 1} such that for any S ⊆ D with |S| ≤ c and any value v ∈ S
there exists a key k ∈ K with Qk(v) = 1 and Qk(v′) = 0 for all v′ ∈ S \ {v}. We
say that such v is uniquely identified by Qk in S.

Note that any identifying predicates Qk achieve monotonicity in the following
sense:

Lemma 4. If v is uniquely identified by Qk in S, then v in uniquely identified
in any S′ ⊆ S with v ∈ S′.

The goal of constructing an identifying predicate family is to have |K| as small
as possible given c and |D|. We give a construction of a c-identifying predicate
with domain D below.
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Polynomial-based identifying predicate construction. Let ` = log |D|. For κ ∈ N,
let any value v ∈ D be interpreted as a polynomial fv over GF(2κ) of degree
at most b`/κc. We find a point x ∈ GF(2κ) such that fv(x) is different from all
other values fv′(x) for v′ ∈ S \ {v}. For such a point x to always exist we need
that the total number of points in the field is larger than the number of points
in which fv may coincide with other polynomials fv′ , i.e., 2κ > (c − 1)b`/κc.
To satisfy this condition, it is enough to choose κ := dlog(c`)e. The key for
the identifying predicate is defined as k = (x, fv(x)), which is encoded using
2dlog(c`)e bits.9 The predicate is defined as follows:

Q(x,y)(v) =

{
1, if fv(x) = y;

0, otherwise.

Lemma 5. The polynomial-based construction gives a c-identifying predicate Q
with domain D and key space KDc = {0, 1}2dlog(c log |D|)e.

Graded Broadcast. Graded broadcast (a.k.a. gradecast) was introduced by
Feldman and Micali [FM88]. It allows to broadcast a value among the set of
recipients but with weaker consistency guarantees. In addition to the value vi
each recipient Pi also outputs a grade gi describing the level of agreement reached
by the players. In this paper we extend the original gradecast definition [FM88]
with a more flexible grading system:

Definition 6. A protocol achieves graded broadcast if it allows the sender P1 to
distribute a value v among parties R with every party Pi outputting a value vi
with a grade gi ∈ [n] such that:

Validity: If the sender P1 is correct, then every correct Pi ∈ R outputs (vi, gi) =
(v, 1).

Graded Consistency: If a correct Pi ∈ R outputs (vi, gi) with gi < n, then
every correct Pj ∈ R outputs (vj , gj) with vj = vi and gj ≤ gi + 1.

Termination: Every correct party in P terminates.

Intuitively, the grade can be understood as the consistency level achieved.
The “strongest” grade gi = 1 means that from the point of view of Pi, the
sender “looks correct”. Grade gi = 2 means that Pi actually knows that the
sender is incorrect; however, there might be an honest Pj for whom the sender
looks correct. Grade gi = 3 means that Pi knows that the sender is incorrect
and every honest Pj knows so, too; however, there might be an honest Pk who
does not know that every honest Pj knows that the sender is incorrect. And so
on till the “weakest” grade gi = n.

The protocol proceeds as follows: The sender sends the value v he wants
to broadcast to all parties, who then exchange the received value(s) during 2n

9 Such a point x can be efficiently found by random sampling elements in GF(2κ).
Indeed, for κ = dlog(c `)e more than half of the elements in GF(2κ) are points where
fv is different from all other fv′ .
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rounds. That is, in every round each party sends the set of values received so
far to every other party. In this way each recipient Pi forms a growing sequence
of sets M1

i ⊆ M2
i ⊆ · · · ⊆ M2n

i (the set Mr
i represents the set of all messages

received by Pi up to the round r). Finally, the sender distributes a hint consisting
of the key k for an identifying predicate Qk that should identify v among the
values that the recipients hold. Then each recipient Pi computes his grade gi
to be the smallest number in [n] such that both Mgi

i and M2n−gi
i contain a

uniquely identified message. There could be only one value vi uniquely identified
in both sets since Mgi

i ⊆M
2n−gi
i . Then Pi outputs vi with the grade gi. Clearly,

if the sender is correct, then each correct recipient outputs gi = 1. Otherwise,
since for every pair Pi, Pj of correct recipients it holds that Mgi

i ⊆ Mgi+1
j and

M
2n−(gi+1)
j ⊆M2n−gi

i we have gj ≤ gi + 1.
Let us detail the step when sender distributes his hint k. While it can be done

directly with the help of BBB (which would lead to a less efficient construction),
we let the parties to invoke gradecast recursively for the distribution of k. Once
each player Pi outputs a key ki with a grade g′i he uses ki as a hint. Then the
final grade is computed by Pi as the maximum of two grades gi and g′i, i.e., it is
computed as the “weakest” grade among the two.

Protocol GradedBC(P1,D, v)
1. If |D| ≤ |KDn2n | then P1 broadcasts v using BBB, and every Pi ∈ R outputs

(v, 1).
2. Otherwise:

2.1 Sender P1: Set M0
1 := {v}. ∀Pi ∈ R: Set M0

i := ∅.
2.2 For r = 0, . . . , 2n− 1:

∀Pi ∈ P: Send Mr
i (of size at most nr) to all Pj ∈ P, Pj denotes

the union of the received sets with Mr+1
j , i.e., Mr+1

j =
⋃
iM

r
i .

2.3 Sender P1: Choose a key k for the n2n-identifying predicate Q with
domain D, the set of values M2n

1 and the value v.
2.4 Players P invoke GradedBC(P1,KDn2n , k) recursively. Let (ki, g

′
i) denote

the output of Pi ∈ R.
2.5 ∀Pi ∈ R: Let g be the smallest number in [n] such that there exists

u which is uniquely identified by Qki in Mg
i and in M2n−g

i . Output
(vi, gi) = (u,max(g, g′i)). If such g does not exist output (vi, gi) =
(⊥, n);

Lemma 6. The protocol GradedBC achieves graded broadcast while requiring
only the sender to use BBB to broadcast one value of at most d7n log ne bits.

Proof. We prove by induction that graded broadcast is achieved. For |D| ≤
|KDn2n |, graded broadcast is achieved by assumption of BBB. For |D| > |KDn2n |:
Validity: If the sender is correct then he selects a key k for the n2n-identifying

predicate Qk such that only his value v is identified by Qk in M2n
1 . All correct

players get (k, 1) as output from the recursive call to GradedBC (due to the
Validity property of the recursive GradedBC). Since for every correct player
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Pi it holds that M1
i ⊆ M2n−1

i ⊆ M2n
1 and v ∈ M1

i this implies that v is
uniquely identified in M1

i and in M2n−1
i . Hence Pi computes vi = v and

gi = 1.

Graded Consistency: Let Pi denote a correct recipient outputting the small-
est grade gi. If gi = n then Graded Consistency holds trivially. Now assume
that gi < n, and hence g′i < n. Consider any other correct recipient Pj . Due
to the Graded Consistency property of the recursive GradedBC, the fact that
g′i < n implies that Pi and Pj have the same keys ki and kj which we denote

with k. Observe that Mgi
i ⊆ Mgi+1

j ⊆ M
2n−(gi+1)
j ⊆ M2n−gi

i . The value vi

is uniquely identified by Qk in both Mgi
i and M2n−gi

i , hence vi is uniquely

identified in both Mgi+1
j and M

2n−(gi+1)
j . Hence the grade gj ∈ {gi, gi + 1}.

If gj = gi + 1 then vj = vi. If gj = gi then, since Mgi
j ⊆ Mgi+1

j and vi is

uniquely identified in Mgi+1
j , the only value that can be uniquely identified

by Qk in Mgi
j is vi. This implies that vj = vi.

Termination: Follows by inspection.

It remains to prove the stated usage complexity of BBB. Note that BBB is only
used at the deepest recursion level. We denote the logarithm of broadcast domain
size at the rth recursive level to be `r. We have that `0 = log |D| and `i+1 is
defined recursively to be 2dlog(n2n`i)e. It can be verified that `i+1 < `i for any
`i > 7n log n. Hence, the sender P1 broadcasts with BBB at most d7n log ne bits.

ut

Main Protocol. The broadcast-amplification protocol first invokes graded broad-
cast. Then, each party broadcasts his grade (using BBB), and decides depending
on the grades broadcast whether to use the output of graded broadcast or to use
some default value (say ⊥) as output.

The core idea of the protocol lies in the analysis of the grades broadcast.
Denote the set of all grades by G = {gi}i. As |R| = n − 1, there exists a grade
g ∈ [n] with g /∈ G. Consider the smallest grade gi of an honest party Pi. If
gi > g, then clearly the grade gj of each honest party Pj is gj > g. On the other
hand, if gi < g, then by the definition of graded broadcast, the grade gj of any
honest party Pj is gj ≤ gi + 1, hence gj < g. In other words, either the grades
of all honest parties are below g, or the grades of all honest parties are above g.
In the former case, every honest party Pi has gi < n and hence all values vi are
equal (and are a valid output of broadcast). In the latter case, no honest party
Pi has grade gi = 1, hence the recipients can output some default value ⊥.

Protocol AmplifyBCn(P1,D, v)
1. Players P invoke GradedBC(P1,D, v), let (gi, vi) denote the output of Pi.
2. ∀Pi ∈ R: Broadcast gi using BBB. Let G denote the set of all gi broadcast.
3. ∀Pi ∈ R: Let g = min([n] \ G). If gi < g, then decide on vi, otherwise

decide on ⊥.
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Lemma 7. The protocol AmplifyBCn achieves broadcast and requires the sender
to broadcast with BBB one value of at most d7n log ne bits and each of the recip-
ients to broadcast one value from domain [n]. In total at most 8n log n bits need
to be broadcast via BBB.

Proof. We show that each of the broadcast properties are satisfied:

Validity: If the sender is correct then all correct parties get (v, 1) as an output
from GradedBC and decide on v.

Consistency: Let g = min([n] \G), and let Pi denote a correct recipient out-
putting the smallest grade gi. If gi < g, then clearly gi < n, and all honest
parties Pj hold the same value vj = vi and grade gj ≤ gi + 1. As gj 6= g, it
follows gj < g. Hence, every honest party Pj outputs vj = vi. On the other
hand, if gi > g, then every honest party Pj holds gj > g and outputs ⊥.

Termination: Follows by inspection.

It remains to prove the stated usage complexity of BBB. The protocol AmplifyBCn
requires the sender to broadcast one value of at most d7n log ne bits during the
GradedBC invocation (cf. Lemma 6). Furthermore, each recipient broadcasts the
grade (of domain [n]) using BBB. This sums up to 8n log n bits overall. ut

Efficient Protocol. The main disadvantage of the protocol AmplifyBCn is
that the underlying gradecast protocol GradedBC requires exponential message
communication. Here we briefly sketch how one can achieve polynomial commu-
nication complexity in GradedBC at the cost of higher BBB usage. The main idea
of the optimized protocol GradedBC+ is to allow recipients to use BBB such that
they can filter out messages from the sets Mr

i . Roughly speaking, if a recipient
holds a set of messages Mr

i then he broadcasts a “challenge” forcing the sender
in his response to invalidate at least all but one values in Mr

i . After each of the
recipients has his set Mr

i filtered, recipients continue exchanging sets consisting
of at most one element. The detailed description of this protocol and its analysis
is given in Appendix A.

Lemma 8. The protocol AmplifyBCn with the underlying gradecast implemen-
tation by GradedBC+ allows to broadcast an `-bit message while broadcasting
O(n2 log `) bits with BBB and communicating O(n3`) bits over point-to-point
channels.

4.2 Lower Bounds in the Multi-Sender Model

Based on the approach presented in Section 3.2 we investigate the lower bounds
on the broadcast-amplification protocols in the multi-sender model. As it was
shown for the single-sender model there is no broadcast-amplification possible
when only the sender uses BBB for n ≥ 4. We extend this result by showing
that the sender and at least all but 2 recipients are required to broadcast some
information via BBB to achieve non-trivial broadcast-amplification.

15



πu1 πv1π2
2 π2

3

u v

2 1 313 2

Fig. 4. The configuration for n = 3 to show that the sender must use BBB to broadcast
at least one bit.

Lemma 9. Every perfectly-secure broadcast-amplification protocol for domain
D requires the sender P1 to broadcast at least 1 bit via BBB.

Proof. We first prove the theorem for n = 3, then reduce the case of arbitrary
n > 3 to n = 3.

(Case n = 3) Assume towards a contradiction that there is a protocol (π1,
π2, π3) allowing the parties P1, P2, P3 to do broadcast amplification, where the
sender does not broadcast with BBB. We consider the following configuration:
Let πu1 and πv1 denote two instances of the program π1, where πu1 is given input
u and πv1 is given input v for u, v ∈ D and u 6= v. We connect programs πu1 ,
π2, π3 and πv1 with bilateral channels as shown in Figure 4. Now we execute the
programs. Whenever π2 or π3 use BBB to broadcast some x, the value x is given
to all programs.
The configuration can be interpreted in three different ways, which lead to con-
tradicting requirements on the outputs of the programs. (i) P1 holds input u and
executes πu1 , P2 executes π2, and P3 is corrupted and executes π3 and πv1 . Due
to the validity property, π2 must output u. (ii) P1 holds input v and executes
πv1 , P3 executes π3, and P2 is corrupted and executes π2 and πu1 . Due to the
validity property, π3 must output v. (iii) P2 executes π2, P3 executes π3, and P1

is corrupted and executes πu1 and πv1 . Due to the consistency property, π2 and π3
must output the same value. These three requirements cannot be satisfied simul-
taneously, hence whatever output the programs make, the protocol (π1, π2, π3)
is not a perfectly-secure broadcast-amplification protocol.
(Case n > 3) Assume towards a contradiction that there is a protocol (π1, π2,
π3, . . . , πn) allowing to do broadcast amplification where the sender does not
broadcast with BBB. One particular strategy of the adversary is to corrupt parties
P4, . . . , Pn and make them not execute their corresponding programs π4, . . . , πn.
Still, the remaining protocol (π1, π2, π3) must achieve broadcast, which contra-
dicts the first case. ut

Lemma 10. Every perfectly-secure non-trivial broadcast-amplification protocol
requires that at least all but 2 of the recipients broadcast at least 1 bit with BBB.

Proof. Assume towards a contradiction that there is a protocol (π1, π2, π3, . . . , πn)
allowing to do non-trivial broadcast amplification with three recipients’ programs
not broadcasting with BBB. Without loss of generality, assume that these pro-
grams are π2, π3, π4.10 One particular strategy of the adversary is to corrupt

10 Such not broadcasting programs are fixed because we considered protocols with
static BBB usage pattern.
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parties P5, . . . , Pn and make them not execute their corresponding programs
π5, . . . , πn. The programs π1, π2, π3, π4 of the remaining honest players can then
put the values sent and broadcast by the corrupted parties to some default value
(say ⊥). The remaining protocol (π1, π2, π3, π4) achieves non-trivial broadcast
amplification, which contradicts Lemma 3. ut

4.3 Summary

The following theorem summarizes results obtained in this section (The proof of
this theorem follows from Lemmas 7, 9 and 10.)

Theorem 2. For all n, d we have 8n log n ≥ log φ∗n(d) ≥ min(log d, n− 2).11

Additionally, we give an efficient protocol that allows to broadcast an `-bit
value while broadcasting O(n2 log `) bits with BBB and communicating O(n3`)
bits over point-to-point channels.

5 Conclusions

Broadcast amplification is the task of achieving d-broadcast given point-to-point
channels and access to a d′-broadcast primitive, for d′ < d. The existence of such
a broadcast-amplification protocol means in a certain sense that d-broadcast
and d′-broadcast are equivalent (respectively that d′-broadcast is “as good as”
d-broadcast).

It is well known that perfectly-secure broadcast cannot be constructed from
point-to-point channels when the number of cheaters is not limited. In this paper,
we have shown that:

– For three parties, 3-broadcast and d-broadcast are equivalent for any d ≥ 3.
However, 2-broadcast and 3-broadcast are not equivalent.

– For an arbitrary number of parties, (8n log n)-bit broadcast and `-bit broad-
cast are equivalent for any ` ≥ 8n log n. However, for n ≥ 4 parties, (n−3)-bit
broadcast and `-bit broadcast are not equivalent for large enough `.

In summary, for three parties, we have given a complete picture of equivalence
of broadcast primitives for different domains, under the assumption that point-
to-point channels are freely available. For n ≥ 4 parties, we have proved a lower
bound and an upper bound on the broadcast primitive necessary for broadcasting
arbitrary messages, namely Ω(n) and O(n log n) bits, respectively.

11 The last inequality combines the facts that any non-trivial broadcast amplification
protocol broadcasts at least n−2 bits, whereas the trivial protocol always uses log d
bits.
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A A Broadcast-Amplification Protocol with Polynomial
Number of Messages

In this section we present an optimized implementation GradedBC+ of the graded
broadcast protocol GradedBC. We first introduce the notion of resolution func-
tions (which is closely related to identifying predicates) and give an efficient
construction of them. Then we describe the optimized protocol GradedBC+ that
communicates polynomially many messages over point-to-point channels. Af-
ter substituting GradedBC with GradedBC+ in AmplifyBCn we get a broadcast-
amplification protocol with the following properties.

Lemma 8. The protocol AmplifyBCn with the underlying gradecast implemen-
tation by GradedBC+ allows to broadcast an `-bit message while broadcasting
O(n2 log `) bits with BBB and communicating O(n3`) bits over point-to-point
channels.

A.1 Resolution Functions

An identifying predicate allows to identify a specific element v from some set
S of potentially a large domain D. Resolution functions extend this notion by
providing a collision-free way of choosing one of the values in S while explicitly
not choosing the others.

Definition 7. A c-resolution function for domain D and range Y is a family of
functions Fk∈K : D → Y such that for any S ⊆ D with |S| ≤ c there exists a
key k ∈ K with Fk(v) 6= Fk(v′) for any v 6= v′ from S. Such a key k is said to
resolve the set S.

We say that v is identified by a pair (k, y) in S if Fk(v) = y (trivially, only
one value can be identified if k resolves the set S). The goal of constructing such
a function F is to have |K| and |Y| as small as possible given c and |D|. We give
a construction of a c-resolution function with domain D below.

Polynomial-based resolution function construction. This construction is very
similar to the polynomial-based construction for identifying predicates presented
before. Let ` = log |D|. Consider any set S ⊆ D with |S| ≤ c. For κ ∈ N, let
any value v ∈ D be interpreted as a polynomial fv over GF(2κ) of degree at
most b`/κc. We find a point x ∈ GF(2κ) such that fv(x) 6= fv′(x) for any two
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v 6= v′ ∈ S. For such a point x to always exist we need that the total number
of points in the field is larger than the number of points in which any fv may

coincide with other polynomials fv′ , i.e., 2κ > c(c−1)
2 b`/κc. To satisfy this con-

dition, it is enough to choose κ := dlog(c2`)e. The resolution function is defined
as Fx(v) = fv(x) with the key space and range space being GF(2κ). So, the key
and the value of the resolution function can be encoded using dlog(c2`)e bits.

Lemma 11. The polynomial-based construction gives a c-resolution function F
for domain D with key and range spaces KDc = YDc = {0, 1}dlog(c2 log |D|)e.

A.2 The Optimized Graded Broadcast Protocol

The protocol proceeds as follows: The sender sends the value v he wants to broad-
cast among all recipientsR, who then exchange the received value(s) during n−1
rounds. In each round r each party Pi sends the value it currently holds (denoted
with vri ) to every other party and forms the set of at most n received values.
Then each party broadcasts a key ki for an n-resolution function which resolves
the set of the values received. In the end of the round the sender broadcasts the
values y1, . . . , yn of the resolution function for the keys k1, . . . , kn so that each
of the recipients keeps at most one value identified by all (ki, yi). Finally, each
recipient Pi decides on the grade gi to be the first “stable” round starting from
which the value he holds remain unchanged, i.e., vgii = vgi+1

i = · · · = vni .

Protocol GradedBC+(P1,D, v):
1. Sender P1: Send v to every Pi ∈ R.
∀Pi ∈ R: Denote the message received from the sender by v1i .

r. In each step r = 2, . . . , n, execute the following sub-steps:
r.1 ∀Pi ∈ R: Send the value vr−1i to all Pj ∈ R, Pj denotes the set of the

received values with Mr
j .

r.2 ∀Pi ∈ R: Choose a key kri for an n-resolution function F with domain
D, that resolves the set of values Sri . Broadcast the key kri using the
BBB.

r.3 Sender P1: Broadcast a list of values (Fkr2(v), . . . , Fkrn(v)) using the
BBB. Denote the list broadcast with (yr2, . . . , y

r
n).

r.4 ∀Pi ∈ R: Select vri to be some u ∈ Mr
i such that u is identified by

(krj , y
r
j ) for all j; set vri to ⊥ if no such u exists.

n+1.∀Pi ∈ R: Compute gi to be the smallest step r such that vri = vr+1
i = · · · =

vni . Output (vni , gi).

Lemma 12. The protocol GradedBC+ achieves graded broadcast while requiring
O(n2 log `) bits to be broadcast with BBB and communicating O(n3`) bits over
point-to-point channels.

Proof. We show that each of the graded broadcast properties is satisfied:
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Validity: If the sender is correct then for any key k he broadcasts y = Fk(v)
such that only his value v is chosen by correct recipients at every iteration.
Hence each correct Pi computes vi = v and gi = 1.

Graded Consistency: Let Pi denote a correct recipient outputting the small-
est grade gi. If gi = n then Graded Consistency holds trivially. Now as-
sume that gi < n. Consider any other correct recipient Pj . Observe that
vgii ∈ M

gi+1

j . Since Pi kept the value vgii till the round n it implies that vgii
is identified in Sri by all pairs (kra, y

r
a) for all a and r ≥ gi. Hence, vgii is

identified in Sgi+1
j , Sgi+2

j , . . . , Snj by all pairs (kra, y
r
a) for all a and r ≥ gi + 1.

Moreover, since Pj chose the keys krj for a resolution function faithfully, only

a unique value can be identified in Sgi+1
j , Sgi+2

j , . . . , Snj . Since only a unique
value can be identified then Pj outputs vj = vgii with the grade gj ≤ gi + 1.

Termination: Follows by inspection.

It remains to prove the stated usage complexity of BBB. At each step r =
2, . . . , n of the protocol GradedBC+, every recipient Pi broadcasts a key kri for
a family of n-resolution functions and the sender broadcasts a list of n values
of the function. If the polynomial-based construction of the resolution function
is used then each key and a value of function consists of dlog(n2`)e bits. Since
in total the protocol works in n − 1 rounds we broadcast 2(n − 1)2dlog(n2`)e
bits with BBB. This expression can be rewritten as O(n2(log n+ log `)). We can
assume that ` > n, since for ` ≤ n it is easier to run the trivial algorithm that
broadcasts a message bit by bit. Summing up the analysis above, we have that
the total number of the BBB invocations during the protocol run is O(n2 log `).

The communication costs of GradedBC+ over authenticated channels consist
of distributing n−1 `-bit messages during Step 1 and exchanging of (n−1)2(n−1)
`-bit messages during Steps 2, . . . , n. Hence, the total number of bits that need
to be communicated is O(n3`). ut
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